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1 Introduction

One of the problems an oil company is confronted with when drilling for oil, is the presence

of large excess pressures in underground layers. Knowledge of the excess pressure may be of

big help in the prediction of the presence of oil and gas reservoirs. Another reason why the

pressure distribution is important, is because of safety and environmental aspects during a

drilling process.

A mathematical model for the prediction of excess pressures in a geological time scale is

based on conservation of mass and Darcy's law [1]. This leads to a time-dependent di�usion

equation, where the region also changes in time. In order to solve this di�usion equation,

the �nite element method is applied. As a consequence in each time-step a linear system of

equations has to be solved. Due to non-linear e�ects and the time-dependence of the region

the coe�cients of the di�usion equation change in each time-step.

Since the system of equations is symmetric a preconditioned Conjugate Gradient method

(ICCG) [3] is a natural candidate to solve it. Unfortunately a complication of the physical

problem we are dealing with, is that the underground consists of layers with very large

di�erences in permeability. For example in shale the permeability is of the order 10

�6

to

10

�11

, whereas in sandstone it is of the order 1 to 10

�4

. Hence a contrast of 10

�7

is common

in the system of equations to be solved.

A large contrast in coe�cients usually leads to a very ill-conditioned system of equations.

Since the convergence rate of ICCG depends on the distribution of the eigenvalues of the

matrix [7] one may expect a slow convergence rate. In Section 2 it is shown that this is

indeed the case. An even more alarming phenomenon is that numerical results suggest that

ICCG has reached a certain accuracy but that the actual accuracy is in fact orders worse. This

means that due to ill-conditioning the standard termination criterion is no longer reliable. To

our knowledge this observation has not been made before.

In [6] and [5] a de
ated CG method is proposed. In every CG iteration the residual is projected
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onto a chosen subspace. The projected CG method used in this work is closely related to

these de
ated CG methods. The main di�erence is the choice of the subspace. We base our

choice on the physical properties of the problem considered. De
ation is also used in iterative

methods for non-symmetric systems of equations [4].

2 Statement of the problem and experiments with ICCG

In each time-step we have to solve a system of equations that arises from the discretization

of a 3D time-dependent di�usion equation. In this paper, however, we are only interested in

the convergence behaviour of the ICCG process for problems with layers with large contrasts

in the coe�cients. For that reason we simplify the equation considerably and assume that we

have to solve the stationary linearized 2D di�usion equation, in a layered region:

�div�rp = 0 ; (1)

with p the excess pressure and � the permeability. At the earth surface the excess pressure

is prescribed and at the arti�cial boundaries we assume a zero 
ux condition. For our model

problem we assume that � in sandstone is equal to 1 and � in shale is equal to 10

�7

. Fur-

thermore the Dirichlet boundary condition at the earth surface is set equal to 1. The solution

of equation (1) with boundary conditions is of course p = 1, but if we start with p = 0 or a

random vector, the linear solver will not notice the di�erence with a real problem. Numerical

experiments show that the choice of start vector has only marginal e�ects.

Equation (1) is discretized by a standard �nite element method using bilinear quadrilateral

elements. This results in a system of linear equations to be solved, which will be denoted as

Ax = b : (2)

In our �rst experiment we have solved (2) on a rectangular domain with 7 straight layers

(Figure 1), using a standard CG solver without preconditioner. The termination criterion is

based on the estimation of the smallest eigenvalue during the iterations by a Lanczos method

as described by Kaasschieter [2]. Figure 2 shows the norm of the residual, the norm of the

error and also the estimation of the smallest eigenvalue as function of the number of iterations.

From this �gure the following remarkable observations may be made.

1. The residual decreases monotonously between iterations 1 and 30. For the iterations

between 31 and 1650 we have an erratic behaviour of the residual. After iterations 1650

again we have a monotone decrease of the residual.

2. If we require an accuracy of order 10

�2

, the process would stop after approximately 25

iterations, since then the residual divided by the estimation of the smallest eigenvalue

is small enough. Unfortunately the error is still large because the estimation of the

smallest eigenvalue is very inaccurate.

3. In iterations 1-30 it looks as if the smallest eigenvalue is in order 10

�2

, whereas from

iteration 31 it is clear that the smallest eigenvalue is of order 10

�7

.

So we see that the bad condition leads to a large number of iterations. Moreover, for practical

values of the error, the termination criterion is not reliable.
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Figure 1: Arti�cial con�guration with 7 straight layers

Repeating the same experiment using an ILU preconditioning gives a drastic reduction of the

number of iterations, but still the same conclusions as for the case without preconditioning

can be drawn. Figure 3 shows the convergence behaviour. Mark that the horizontal scales in

Figures 2 and 3 are quite di�erent. Although the number of iterations (48) is small compared

to the non-preconditioned algorithm (1650), still it is quite large compared to the number of

unknowns (385).

In order to get more insight in the convergence behaviour, we have investigated the eigenvalues

of the matrix. If we compute all eigenvalues of the discretization matrix, then we see that

the number of small eigenvalues (i.e. of order 10

�7

), is equal to the number of nodes that are

entirely in the shale layers plus 3. One can expect that this number is at least equal to the

number of internal "shale" nodes, since all non-zero elements in the corresponding rows of

the matrix are of order 10

�7

. The number 3 will be explained later on. The iteration process

only converges, once all small eigenvalues are "discovered".

When we use an ILU preconditioner, and compute all eigenvalues of the discretization matrix

multiplied by the preconditioning matrix, we see that only 3 eigenvalues are of order 10

�7

.

All other eigenvalues are of order 1. The convergence behaviour shown in Figure 3 can

be explained by these 3 eigenvalues. Once a small eigenvalue is "discovered" by the CG

process, the residual increases considerably. Only when all small eigenvalues are visible to

the algorithm, the actual error decreases.

3 The De
ated ICCG method

In this section we derive a De
ated Incomplete Choleski Conjugate Gradient method. In the

previous section it has been shown that the preconditioned matrix has only a small number

of very small eigenvalues. The de
ation is used to annihilate the e�ect of these eigenvalues

on the convergence of the ICCG method.
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Figure 2: Convergence behaviour of CG

without preconditioning
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Figure 3: Convergence behaviour of CG

with ILU preconditioning

We write the system of equations to be solved as:

Ax = b ;

where A is a symmetric and positive de�nite (SPD) matrix. An Incomplete Choleski decom-

position is determined such that A � LL

T

= M , where L is a sparse lower triangular matrix

and M is SPD. ICCG consists of the application of CG to the following preconditioned system

L

�1

AL

�T

y = L

�1

b ; x = L

�T

y : De�ne

~

A = L

�1

AL

�T

and

~

b = L

�1

b. Note that

~

A is SPD.

To de�ne the De
ated ICCG method we assume that the vectors v

1

; :::; v

m

are given and

form an independent set. These vectors de�ne a space V = spanfv

1

; :::; v

m

g and a matrix

V = [v

1

:::v

m

]. The projection P is de�ned by

P = I � V E

�1

(

~

AV )

T

with E = (

~

AV )

T

V :

In the remainder of this section we assume that the start vector x

0

is zero. If x

0

6= 0 the

De
ated ICCG algorithm should be applied to A(x � x

0

) = b � Ax

0

. To speed up the

convergence of ICCG we assume that the space V is chosen such that it contains the slow

converging components and split the vector y into two parts

y = (I � P )y + Py : (3)

The �rst part is determined from:

(I � P )y = V E

�1

(

~

AV )

T

y = V E

�1

V

T

~

b :

To compute the second part (Py) we use

~

APy = P

T

~

Ay = P

T

~

b ;

and solve y from

P

T

~

Ay = P

T

~

b : (4)
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The singular system (4) has a solution because P

T

~

b is an element of the Range (P

T

~

A). A

solution y of (4) may contain an arbitrary element of Null (P

T

~

A) = V . Since PV = 0; Py is

uniquely determined.

When we apply the CG algorithm to the symmetric positive semi-de�nite system (4) we get

the De
ated ICCG algorithm:

DICCG

k = 0; y

0

= 0; ~p

1

= ~r

0

= P

T

L

�1

b;

while k~r

k

k > " do

k = k + 1;

�

k

=

(~r

k�1

;~r

k�1

)

(~p

k

; P

T
~

A~p

k

)

;

y

k

= y

k�1

+ �

k

~p

k

;

~r

k

= ~r

k�1

� �

k

P

T

~

A~p

k

;

�

k

=

(~r

k

;~r

k

)

(~r

k�1

;~r

k�1

)

;

~p

k+1

= ~r

k

+ �

k

~p

k

;

end while

When the vector y

k

is multiplied by P and substituted in (3) we get an approximation of

y = L

T

x. In order to determine the matrix V we have to compute (or approximate) the

eigenvectors of the matrix

~

A.

4 A choice of projection vectors

A good choice of the projection vectors is important to obtain an e�cient De
ated ICCG

method. In this section we restrict ourselves to the class of problems de�ned in Section 2. An

analysis of the matrix (Section 2) shows that the spectrum of this matrix contains many small

eigenvalues (of order 10

�7

). For the preconditioned matrix, the number of small eigenvalues

is drastically reduced. This number is proportional to the amount of sandstone layers. In

Section 3 a De
ated ICCG method is given, which is very suitable to problems where the

matrix has a small number of extreme eigenvalues.

We consider the problem as shown in Figure 1. The choice of the projection vectors is

motivated by the properties of the eigenvectors �v

i

= L

�1

v

i

of L

�T

L

�1

A, corresponding to

the small eigenvalues. For the problem considered a vertical cross section of the eigenvectors

is plotted in Figure 4. The cross sections have the following properties:

- their value is constant in sandstone layers,

- their value is zero in the �rst sandstone layer,

- in the shale layers their graph is linear.

So the space spanf�v

1

; �v

2

; �v

3

g is identical to the space spanfw

1

; w

2

; w

3

g, where the vertical

cross section of w

i

is de�ned by:

- the value of w

i

is one in the i + 1

th

sandstone layer and zero in the other sandstone

layers,
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Figure 4: The vertical cross section of the eigenvectors corresponding to the small eigenvalues

- their graph is continuous in the whole domain and linear in the shale layers.

These vectors are used in our DICCG method.

5 Experiments

In order to test the de
ated ICCG method we have applied DICCG to the 7 straight layers

problem de�ned in Section 2. The 3 "approximate" eigenvectors are de�ned as in the previous

section. For this straight layer case this means that they span exactly the space of the 3

eigenvectors corresponding to the small eigenvalues. Figure 5 shows the convergence behaviour

of the DICCG method, the estimation of the smallest eigenvalue as well as the error. It is

clear that we have an enormous improvement compared to the results without projection

as shown in Figure 3. Because of the sparse structure of the approximate eigenvectors the

overhead per iteration is very moderate. Besides that, the decrease of the residual is now a

measure for the error, so that we have a reliable termination criterion.
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Figure 5: Convergence behaviour of DICCG for the straight layer problem
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6 Conclusions

It has been shown that the preconditioned Conjugate Gradient method for layered problems

with extreme contrasts in the coe�cients has a very erratic convergence behaviour. The resid-

ual shows large bumps and moreover the decrease of the residual cannot be used as reliable

termination criterion. Only when all eigen vectors corresponding to small eigenvalues are

detected (the smallest Ritz values are converged to the smallest eigenvalues) the convergence

behaviour is more or less as usual. In order to solve this problem a new method called DICCG

has been developed that projects the contribution of the eigenvectors corresponding to the

small eigenvalues onto the null space. This new method has excellent convergence properties

and more important a reliable termination criterion.
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