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Abstract
Especially in a country like the Netherlands it is important to have well-maintained levees, since a large
part of the Netherlands is below sea level. Therefore, researching the factors that have an impact on
the status of these levees is of importance. One of these factors is the hydrodynamic load acting on the
seabed due to waves. The distribution of this pressure may impact the levee. Therefore, it is important
to have a model that describes the behaviour of hydrodynamic loads acting on the seabed due to waves
sufficiently. The aim of this literature report is to describe such a model and solve it numerically using
the finite-element method for discretisation in space. We use Backward-Euler for discretisation in time.

To describe the behaviour of hydrodynamic loads acting on the seabed due to waves it is currently
common to use Biot’s model. This model assumes that the effective stresses of the porous soil are
zero at the surface and the load due to the waves is completely carried by the pressure at the surface.
An other important assumption made in Biot’s model is that the pore water must be compressible.
Therefore, the model of Biot is in line with the effective stress principle of Terzaghi. However, the
assumption of compressible water raises some questions.

Recently a new model tried to handle these questions. In the model of Van Damme and Den
Ouden-Van der Horst the stresses are absorbed by both the pore water particles and the soil particles.
Thus in this new model the pore water does not carry the full load in this model. Instead of setting the
effective stresses to zero at the surface, the vertical momentum balance equation is used as a boundary
condition at the surface. So Terzaghi’s stress principle is not used as a boundary condition at the surface
in the new model. Furthermore, the compressibility of the pore water does not need to be assumed
in the model of Van Damme and Den Ouden-Van der Horst, since it includes the (in)compressibility
into account. So we may choose the (in)compressibility later on instead of assuming it beforehand.
We do find that both models can describe the behaviour of the seabed subjected to waves. However,
both models make different assumptions, for example when choosing the boundary conditions and
assumption of the (in)compressibility of water. Therefore, it depends on what kind of problem the
model is used for and the corresponding physics.
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Nomenclature

Table 1: Directions and their symbols.

Direction Symbol
Horizontal 𝑥
Vertical 𝑧

Table 2: Symbols and their definitions and units.

Definition Symbol Units
Boundary domain dΩ -
Compressibility of the pore water 𝛽 -
Density of the soil 𝜌𝑠 kg/m3

Density of the pore water 𝜌𝑓 kg/m3

Displacement of the soil particles in the 𝑖-direction 𝑢𝑖 (for 𝑖 = 𝑥, 𝑧) m
Displacement of the pore water in the 𝑖-direction 𝑤𝑖 (for 𝑖 = 𝑥, 𝑧) m
Domain Ω -
Effective size of grains 𝑑10 m
Effective stress tensor 𝜎′𝑖𝑗 (for 𝑖, 𝑗 = 𝑥, 𝑧) Pa
Elasticity modulus 𝐸 Pa
Hydraulic conductivity 𝐾𝑠 m/s
Functions in time 𝐹𝑥𝑧, 𝐹𝑧𝑧 N
Lamé’s constants 𝜆, 𝜇 Pa
Length in 𝑖-direction 𝑛𝑖 (for 𝑖 = 𝑥, 𝑧) m
Normal unit vector to the boundary 𝜂 -
Poisson ratio 𝑣𝑝 -
Pore water pressure 𝑃 Pa
Porosity of the soil 𝑝
Specific weight of the pore water 𝛾𝑤 Pa
Stopping time 𝑡end s
Strain tensor for soil 𝜖𝑖𝑗 (for 𝑖, 𝑗 = 𝑥, 𝑧) -
Time 𝑡 s
Time step Δ𝑡 s
Total stress tensor 𝜎𝑖𝑗 (for 𝑖, 𝑗 = 𝑥, 𝑧) Pa
Volumetric strain of the soil particles 𝜖vol -
Vorticity of the soil particles 𝜔 Hz
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1
Introduction

For countries like the Netherlands it is important to have levees and keep them well-maintained in order
to protect the people and land. This way rivers and the sea are prevented from flooding [1]. However,
since several countries as the Netherlands, Egypt, India and China are located in lower reaches of
rivers and the fact that the water level is rising, it is important to get an indication about the influence of
the waves on a levee and to know the interaction between the pore water and the deformation of the
soil of the seabed [1]. An important factor is the water pressure, since the levees can be damaged by
the oscillations of the pressure travelling through the ground nearby the levees.

In this literature report we assume that this seabed laying before the levees is a fully-saturated
poroelastic medium. Describing the behaviour of such fully-saturated poroelastic soil is important for
different kinds of Civil Engineering. It is common to use Biot’s model. This model describes the defor-
mation of such fully-saturated poroelastic media [2] and has been studied extensively [3], [4]. However,
in this model it is often assumed that the pore water is compressible [2], because otherwise the results
of Biot’s model do not agree with the reality [5]. Unfortunately, this assumption of compressibility of
pore water can have a significant impact on the distribution of the effective stress of the soil and thus
also the deformation of the soil [6]. However, recent research has found a similar model for which both
compressible and incompressible water can be assumed [6].

The aim of this literature report is to work out a description of the behaviour of a seabed subjected
to waves using numerical methods. Two models will be described of which one is old and well-known
(Biot, 1955) [2] and the other one recently published (Van Damme and DenOuden-Van der Horst, 2023)
[6]. For both models the acceleration terms and body forces like gravity will be ignored unless stated
otherwise [6]. A main difference is that the boundary conditions at the surface in Biot’s model are in
line with the effective stress principle of Terzaghi which states that the total stress acting on a porous
medium has to be equal to the pore water pressures added tot he effective stresses [2], [3], [6] and
sets the following boundary conditions: the full hydrodynamic load due to the waves is carried by the
pressure and the effective stresses at the surface of the porous soil are zero. The new model is based
on making sure that the momentum balance equations are all valid at the computational domain and its
boundaries [6]. The new approach takes instead the following boundary conditions into account: the
stress and the gradient of the stress. The stress gradient follows from one of the momentum balance
equations and therefore, the model follows D’Alembert’s principle of minimisation of virtual work [6].
However, the effective stress principle of Terzaghi is not valid at the surface in case of hydrodynamic
load which would be valid for linear and static load [6].

Solutions of the two models will be derived by using numerical methods. In this literature report,
we will assume one or two homogeneous layers of soil as seabed and use the Finite-Element Method
(FEM) for discretising in space. For discretising in time the Backward Euler Method is used. In this
literature report, we want to find a numerical model for Biot’s model and Van Damme and Den Ouden-
Van der Horst. We would like to answer the following questions:

1. Do Biot’s model and Van Damme and Den Ouden-Van der Horst model differ in (numerical) so-
lution?

2. Do the two models have a unique solution?

1



2 1. Introduction

3. Do the results of the two models get impacted by the assumption of (in)compressibility?

4. What is the impact on the behaviour of the soil when having two different homogeneous layers of
soil compared to one homogeneous layer of soil?

To understand the interaction between the pore water and the soil, it is important to understand the
stress and strain relations first. Therefore, we start Chapter 2 with deriving Biot’s model in two dimen-
sions and its numerical discretisation. In Section 2.1, we will determine the basic equations for a linear
elastic medium. In Section 2.2 these equations will be modified into constitutive equations describing
the deformation of fully-saturated poroelastic media which is better known as Biot’s model [2] where
pore water is often assumed to be compressible. In Section 2.3 we will look into the application of the
finite-element method and in Section 2.4 we will look into the application of the backward-Euler method
on the model of Biot in order to discretise the governing equation in space and time, respectively. In this
literature report, the corresponding two-dimensional results will not be shown yet. In Chapter 3 Biot’s
model and its numerical model is derived in one dimension for first analysis, since it is a simplified form
of the two-dimensional model described in Chapter 2. In Section 3.1 the (numerical) model for one
type of soil is a unique solution derived and the results are presented. For a seabed with two layers
of two different types of soil the (numerical) model with a unique solution is derived and the results are
presented in Section 3.2. In Chapter 4 the new model of Van Damme and Den Ouden-Van der Horst
will be described in two dimensions. In Section 4.1 the governing equations are determined. In Sec-
tions 4.2 and 4.3 these equations are discretised in space by the finite-element method and in time by
the backward-Euler method, respectively. In this literature report, the corresponding two-dimensional
results will not be shown yet. In Chapter 5 the Van Damme and Den Ouden-Van der Horst model and
its numerical model is derived in one dimension which is a simplified form of the two-dimensional model
described in Chapter 4. This is done for one layer of soil having infinitely many solutions, one layer of
soil having a more strict boundary condition and thereby a unique solution, and two layers of different
types of soil assuming the more strict boundary condition. In Section 5.1 the (numerical) model with
infinitely solutions is derived and the results are presented for one type of soil. In Section 5.2 the (nu-
merical) model with only one solution is derived and the results are presented for one type of soil. In
Section 5.3 the (numerical) model with only one solution is derived and the results are presented for
a seabed with two layers having two different types of soil. Lastly, in Chapter 6 the conclusions are
made and ideas for further research are discussed.



2
Biot’s model (2D)

In the next sections we will derive the governing equations for Biot’s model in two dimensions and
discretise them first in space and second in time. For discretising in space we will use the finite-element
method and for discretising in time we will use the Backward-Euler method.

2.1. Linear elastic medium
We will begin with deriving the basic equations for a linear elastic medium, using Cartesian coordinates
𝑥, 𝑧. We can write the stresses and strains as [2], [4]

̅�̅� ∶= [𝜎𝑥𝑥 𝜎𝑥𝑧
𝜎𝑥𝑧 𝜎𝑧𝑧] and (2.1)

̅̅𝜖 ∶= [𝜖𝑥𝑥 𝜖𝑥𝑧
𝜖𝑥𝑧 𝜖𝑧𝑧] , (2.2)

where 𝜎𝑖𝑗 is the stress and 𝜖𝑖𝑗 is the strain for 𝑖, 𝑗 = 𝑥, 𝑧. We will refer to ̅�̅� and ̅̅𝜖 as the stress tensor and
strain tensor, respectively. We assume a linear elastic medium of which a volume of the solid system
will be represented by a rectangle of size 𝑛𝑥 × 𝑛𝑧, which is shown in Figure 2.1.

Figure 2.1: Stress components of 𝜎 acting on the computational domain Ω which is a rectangle.

Then we can use geometric equations, equations of motion and constitutive equations to represent the

3



4 2. Biot’s model (2D)

strain-displacement relations and stress-strain relations. In tensor form the geometric equations are
given by [2], [4]

𝜖𝑖𝑗 =
1
2 (

𝜕𝑢𝑖
𝜕𝑗 +

𝜕𝑢𝑗
𝜕𝑖 ) for 𝑖, 𝑗 = 𝑥, 𝑧, (2.3)

where 𝑢𝑖 denotes the displacement of the solid in the 𝑖-direction and 𝑢𝑖,𝑗 means derivative of 𝑢𝑖 with
respect to the 𝑗-th component.

According to [4], the constitutive equation which will be given in tensor form of Hooke’s law:

𝜎𝑖𝑗 = − ∑
𝑘=𝑥,𝑧

∑
𝑙=𝑥,𝑧

𝑐𝑖𝑗𝑘𝑙𝜖𝑘𝑙 for 𝑖, 𝑗 = 𝑥, 𝑧, (2.4)

where 𝑐𝑖𝑗𝑘𝑙 are components of a fourth-rank tensor including 81 components. Since stress tensors and
strain tensors are symmetric, we have first minor symmetry and second minor symmetry, i.e. 𝑐𝑖𝑗𝑘𝑙 =
𝑐𝑗𝑖𝑘𝑙 and 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘. Furthermore, for a homogeneous medium, we also have major symmetry, i.e.
𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑘𝑙𝑖𝑗 [4]. Because of these symmetries, the number of independent components decreases to
2 so that Equation (2.4) becomes [3]

𝜎𝑖𝑗 = −2𝜇𝜖𝑖𝑗 − 𝜆𝛿𝑖𝑗𝜖vol for 𝑖, 𝑗 = 𝑥, 𝑧,

where 𝜖vol = 𝜖𝑥𝑥 + 𝜖𝑦𝑦 + 𝜖𝑧𝑧 for 𝑖 = 𝑥, 𝑦, 𝑧, 𝛿𝑖𝑗 is the kronecker delta (𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗, otherwise 0) and 𝜆
and 𝜇 are Lame’s constants. Lamé’s constants are defind as

𝜆 =
𝑣𝑝𝐸

(1 + 𝑣𝑝)(1 − 2𝑣𝑝)
, (2.5)

𝜇 = 𝐸
2(1 + 𝑣𝑝)

, (2.6)

where 𝐸 represents Young’s modulus and 𝑣𝑝 Poisson’s ratio [1], [4]. Rewriting this in matrix-vector form
[4] gives

𝜎𝜎𝜎 = −𝐶𝜖𝜖𝜖,

where

𝜎𝜎𝜎 = [
𝜎𝑥𝑥
𝜎𝑧𝑧
𝜎𝑥𝑧
] , 𝜖𝜖𝜖 = [

𝜖𝑥𝑥
𝜖𝑧𝑧
𝜖𝑥𝑧
] , 𝐶 = [

𝜆 + 2𝜇 𝜆 0
𝜆 𝜆 + 2𝜇 0
0 0 𝜇

] .

Note that matrix 𝐶 is written this way, since it should be a non singular and invertible matrix.

2.2. Governing equations
Recall that the above relations of stresses and strains are for a linear elastic medium. We now look into
the governing equations of a fully saturated poroelastic medium. First consider a volume of a solid-fluid
system which will be described by a unit size cube and assume that the solid-fluid system is statistically
isotropic which implies that the principal stress and strain directions are the same. Furthermore, a fully
saturated poroelastic medium without the acceleration terms of the fluid relative to the solid is assumed
for now. The body forces are also ignored.

In the next sections we will describe the stress and strain relations again, but now for this fluid-
solid system. This way the governing equations of Biot’s model will be derived in two dimensions. The
corresponding boundary conditions will also be described. For deriving Biot’s model we follow the steps
presented by Verruijt [1], [3].



2.2. Governing equations 5

2.2.1. Conservation of mass equation
First of all, we need the equations of conservation of mass of the solids and the pore water. The
resulting mass balance equation for the pore water (fluid) is given by [3]

𝜕𝑝𝜌𝑓
𝜕𝑡 + 𝜕

𝜕𝑥 (𝑝𝜌𝑓
𝜕𝑤𝑥
𝜕𝑡 ) +

𝜕
𝜕𝑧 (𝑝𝜌𝑓

𝜕𝑤𝑧
𝜕𝑡 ) = 0, (2.7)

where 𝜌𝑓 is the density of the fluid, 𝑤𝑥 is the displacement of the pore water in 𝑥-direction, 𝑤𝑧 is the
displacements of the pore water in 𝑧-direction and 𝑝 the porosity of the medium. The mass balance
equation for the soil is given by [3]

𝜕(1 − 𝑝)𝜌𝑠
𝜕𝑡 + 𝜕

𝜕𝑥 ([1 − 𝑝]𝜌𝑠
𝜕𝑢𝑥
𝜕𝑡 ) +

𝜕
𝜕𝑧 ([1 − 𝑝]𝜌𝑠

𝜕𝑢𝑥
𝜕𝑡 ) = 0, (2.8)

where 𝜌𝑠 is the density of the soil, 𝑢𝑥 is the displacement of the soil in 𝑥-direction and 𝑢𝑧 is the dis-
placements of the soil in 𝑧-direction.

According to [1], we can rewrite the mass balance equation of the pore water given by Equation
(2.7) as

𝜕𝑝
𝜕𝑡 + 𝑝𝛽

𝜕𝑃
𝜕𝑡 +

𝜕
𝜕𝑥 (𝑝𝜌𝑓

𝜕𝑤𝑥
𝜕𝑡 ) +

𝜕
𝜕𝑧 (𝑝𝜌𝑓

𝜕𝑤𝑧
𝜕𝑡 ) = 0, (2.9)

where 𝑃 denotes the pore water pressure and 𝛽 the compressibility. Note that the water is incompress-
ible if 𝛽 = 0.0 and compressible if 𝛽 ∈ (0, 1]. We assume that the soil particles are incompressible.
Then we have that the density 𝜌𝑠 is constant. Therefore, we have that Equation (2.8) becomes

−𝜕𝑝𝜕𝑡 +
𝜕
𝜕𝑥 ([1 − 𝑝]𝜌𝑠

𝜕𝑢𝑥
𝜕𝑡 ) +

𝜕
𝜕𝑧 ([1 − 𝑝]𝜌𝑠

𝜕𝑢𝑧
𝜕𝑡 ) = 0. (2.10)

When adding Equations (2.9) and (2.10), we get [3]

𝑝𝛽𝜕𝑃𝜕𝑡 +
𝜕
𝜕𝑥 (𝑝

𝜕(𝑤𝑥 − 𝑢𝑥)
𝜕𝑡 ) + 𝜕

𝜕𝑧 (𝑝
𝜕(𝑤𝑧 − 𝑢𝑧)

𝜕𝑡 ) + 𝜕
𝜕𝑥 (

𝜕𝑢𝑥
𝜕𝑡 ) +

𝜕
𝜕𝑧 (

𝜕𝑢𝑧
𝜕𝑡 ) = 0. (2.11)

Using 𝜖vol =
𝜕𝑢𝑥
𝜕𝑥 +

𝜕𝑢𝑧
𝜕𝑧 , we can write Equation (2.11) as [3]

𝑝𝛽𝜕𝑃𝜕𝑡 +
𝜕
𝜕𝑥 (𝑝

𝜕(𝑤𝑥 − 𝑢𝑥)
𝜕𝑡 ) + 𝜕

𝜕𝑧 (𝑝
𝜕(𝑤𝑧 − 𝑢𝑧)

𝜕𝑡 ) + 𝜕𝜖vol𝜕𝑡 = 0. (2.12)

Using Darcy’s law we get that 𝑞𝑖 =
𝐾𝑠
𝛾𝑤

𝜕𝑃
𝜕𝑖 [3], where 𝑞𝑖 is the quantity in Darcy’s law for fluid motion for

𝑖 = 𝑥, 𝑧, 𝐾𝑠 denotes the hydraulic conductivity and 𝛾𝑤. This quantity can also be given by the porosity
multiplied by the difference of the velocities of the soil and pore water particles, i.e. 𝑞𝑖 =

𝜕𝑝(𝑢𝑖−𝑤𝑖)
𝜕𝑡 [3].

Therefore, we have that

−∇ ⋅ (𝐾𝑠𝛾𝑤
∇𝑃) = ∇ ⋅ (𝑝𝜕(𝑢

𝑢𝑢 −𝑤𝑤𝑤)
𝜕𝑡 ) , (2.13)

where ∇⋅ = 𝜕𝑣𝑥
𝜕𝑥 +

𝜕𝑣𝑧
𝜕𝑧 for all vectors 𝑣𝑣𝑣 = [𝑣𝑥𝑣𝑧]. After substituting Equation (2.13) into Equation (2.12)

and assuming 𝐾𝑠 and 𝛾𝑤 are constants, we get
𝛾𝑤
𝐾𝑠
𝑝𝛽𝜕𝑃𝜕𝑡 − ∇

2𝑃 + 𝛾𝑤𝐾𝑠
𝜕𝜖vol
𝜕𝑡 = 0. (2.14)

2.2.2. Momentum balance equation
The stress tensor can be separated into two parts, since we now have a fluid and a solid part. The
stress acting on a rectangle domain in Figure 2.1 can be denoted as Equation (2.1) [2] and the stress
acting on the fluid part the rectangle domain in Figure 2.1 can be described by the diagonal tensor [2]

̅�̅� ∶= [𝑠 0
0 𝑠] , (2.15)



6 2. Biot’s model (2D)

where 𝑠 can be calculated by 𝑠 = 𝛼𝑃 [2], [4] with 𝑃 the fluid pressure and 𝛼 the Biot constant that
depends on the geometry of the medium. Usually 𝛼 ≈ 1 can be assumed in Civil Engineering problems
[4]. We will assume from now on that 𝛼 = 1. Note the plus-signs in the relation 𝑠 = 𝛼𝑃 which describes
that scalar 𝑠must be positive when the force acting on the fluid is a pressure and the stress tensors 𝜎𝑥 , 𝜎𝑦
and 𝜎𝑧 are negative due to the positive compression convention in the formulation. Note that in [2] a
minus-sign is placed before 𝑠, since they assume negative pressure when the stresses are positive. The
strain tensor in the solid is denoted by Equation (2.2), where 𝜖𝑖𝑗 for 𝑖, 𝑗 = 𝑥, 𝑧 are described by Equation
(2.3) [2], [3]. For a linear solid medium the total stress and effective stress coincided. However, since
we now have a saturated medium, there is also the pore pressure in the relationship between total and
effective stress which is in tensor form [2], [3]

𝜎𝑖𝑗 = 𝜎′𝑖𝑗 + 𝛿𝑖𝑗𝑃 for 𝑖, 𝑗 = 𝑥, 𝑧,

where 𝜎′𝑖𝑗 denotes the effective stress tensor of the solid medium, 𝜎𝑖𝑗 the total stress tensor, 𝛿𝑖𝑗 the
Kronecker delta and 𝑃 the pore water pressure. Since 𝜎′𝑖𝑗 = −2𝜇𝜖𝑖𝑗 − 𝜆𝛿𝑖𝑗𝜖vol, we have that

𝜎𝑖𝑗 = −2𝜇𝜖𝑖𝑗 − 𝜆𝛿𝑖𝑗𝜖vol + 𝛿𝑖𝑗𝑃 for 𝑖, 𝑗 = 𝑥, 𝑧, (2.16)

where 𝛿𝑖𝑗 is the kronecker delta and 𝜆 and 𝜇 are Lamé’s constant.
The equilibrium equations for a fully saturated poroelastic medium is made out of the stresses acting

upon the rectangle which is given by [2], [4]

𝜕𝜎𝑖𝑥
𝜕𝑥 + 𝜕𝜎𝑖𝑧𝜕𝑧 = 0 for 𝑖 = 𝑥, 𝑧. (2.17)

Then substituting Equation (2.16) into Equation (2.17) gives

−2𝜇𝜕𝜖𝑖𝑥𝜕𝑥 − 𝜆𝛿𝑖𝑥
𝜕𝜖vol
𝜕𝑥 + 𝛿𝑖𝑥

𝜕𝑃
𝜕𝑥 − 2𝜇

𝜕𝜖𝑖𝑧
𝜕𝑧 − 𝜆𝛿𝑖𝑧

𝜕𝜖vol
𝜕𝑧 + 𝛿𝑖𝑧

𝜕𝑃
𝜕𝑧 = 0 for 𝑖 = 𝑥, 𝑧. (2.18)

We can rewrite this as [3]

{
−(𝜆 + 𝜇)𝜕𝜖vol𝜕𝑥 − 𝜇∇2𝑢𝑥 +

𝜕𝑃
𝜕𝑥 = 0

−(𝜆 + 𝜇)𝜕𝜖vol𝜕𝑧 − 𝜇∇2𝑢𝑧 +
𝜕𝑃
𝜕𝑧 = 0

,

where ∇2𝑣𝑣𝑣 = 𝜕𝑣𝑥
𝜕𝑥2 +

𝜕2𝑣𝑧
𝜕𝑧2 for all vectors 𝑣𝑣𝑣 = [𝑣𝑥𝑣𝑧]. We can also rewrite Equation (2.18) as

{
−𝜇 𝜕𝜔𝜕𝑧 − (𝜆 + 2𝜇)

𝜕𝜖vol
𝜕𝑥 + 𝜕𝑃

𝜕𝑥 = 0
𝜇 𝜕𝜔𝜕𝑥 − (𝜆 + 2𝜇)

𝜕𝜖vol
𝜕𝑧 + 𝜕𝑃

𝜕𝑧 = 0
, (2.19)

where 𝜔 ∶= 𝜕𝑢𝑥
𝜕𝑧 −

𝜕𝑢𝑧
𝜕𝑥 . which is used in [6]. Equation (2.19) will be used further in this chapter.

According to [2], we can uncouple Equation (2.19) by taking the curl and the divergence to obtain a
formula for the vorticity and the volumetric strain, respectively. We will do this in the next sections.

2.2.3. Vorticity equation
After applying the curl on the first equation of Equation (2.19), we get that

0 = 𝜕𝜕𝑧 (−𝜇
𝜕𝜔
𝜕𝑧 − (𝜆 + 2𝜇)

𝜕𝜖vol
𝜕𝑥 + 𝜕𝑃𝜕𝑥 ) −

𝜕
𝜕𝑥 (−𝜇

𝜕𝜔
𝜕𝑥 − (𝜆 + 2𝜇)

𝜕𝜖vol
𝜕𝑧 + 𝜕𝑃𝜕𝑧 )

= − 𝜇 [𝜕
2𝜔
𝜕𝑥2 +

𝜕2𝜔
𝜕𝑧2 ] , (2.20)

where 𝜔 is now the only unknown variable in the formula.
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2.2.4. Volumetric strain equation
After applying the divergence on the first equation of Equation (2.19), we get that

0 = 𝜕
𝜕𝑥 (−𝜇

𝜕𝜔
𝜕𝑧 − (𝜆 + 2𝜇)

𝜕𝜖vol
𝜕𝑥 + 𝜕𝑃𝜕𝑥 ) +

𝜕
𝜕𝑧 (−𝜇

𝜕𝜔
𝜕𝑥 − (𝜆 + 2𝜇)

𝜕𝜖vol
𝜕𝑧 + 𝜕𝑃𝜕𝑧 )

= − (𝜆 + 2𝜇) [𝜕
2𝜖vol
𝜕𝑥2 + 𝜕

2𝜖vol
𝜕𝑧2 ] + [

𝜕2𝑃
𝜕𝑥2 +

𝜕2𝑃
𝜕𝑧2 ] . (2.21)

After substituting the mass conservation equation given by Equation (2.14) into Equation (2.21), we get

𝐾𝑠
𝛾𝑤
𝜕𝜖vol
𝜕𝑡 − (𝜆 + 2𝜇) [𝜕

2𝜖vol
𝜕𝑥2 + 𝜕

2𝜖vol
𝜕𝑧2 ] + 𝑝𝛽

𝐾𝑠
𝛾𝑤
𝜕𝑃
𝜕𝑡 = 0, (2.22)

which is a formula depending on the volumetric strain and the pore water pressure. Note that if 𝛽 = 0,
then the there is only one unknown, namely the volumetric strain. Therefore, the formula written in this
way is preferable. Because we now have two equations with two unknowns, namely Equation (2.14)
and (2.22) with the volumetric strain and water pressure, this system of equations can be solved for
the unknowns volumetric strain and the pore water pressure.

2.2.5. Displacement
Lastly, we need also to describe the relations between the horizontal and vertical displacements and
the other unknowns. Since 𝜔 = 𝜕𝑢𝑥

𝜕𝑧 −
𝜕𝑢𝑧
𝜕𝑥 and 𝜖vol =

𝜕𝑢𝑥
𝜕𝑥 +

𝜕𝑢𝑧
𝜕𝑧 , these can be defined as [6]

−𝜕
2𝑢𝑥
𝜕𝑥2 −

𝜕2𝑢𝑥
𝜕𝑧2 = −𝜕𝜔𝜕𝑧 −

𝜕𝜖vol
𝜕𝑥 , (2.23)

−𝜕
2𝑢𝑧
𝜕𝑥2 −

𝜕2𝑢𝑧
𝜕𝑧2 = 𝜕𝜔

𝜕𝑥 −
𝜕𝜖vol
𝜕𝑧 . (2.24)

2.2.6. Boundary conditions
When using Biot’s model it is common to take 𝜎𝑧𝑧 = 𝜎′𝑧𝑧 + 𝑃 set equal to a function only depending
on time 𝐹𝑧𝑧 and suppose that 𝜎′𝑧𝑧 = 0 and 𝑃 = 𝐹𝑧𝑧. However, according to [6], the assumption of
𝜎′𝑧𝑧 + 𝑃 = 𝐹𝑧𝑧, where 𝐹𝑧𝑧 a function depending on time, gives a pressure at the surface that is much
higher than the pressure of the waves on the surface caused by water running over the porous medium.
Since 𝜎𝑧𝑧 = 𝐹𝑧𝑧 = 0 + 𝐹𝑧𝑧 = 𝜎′𝑧𝑧 + 𝑃, Terzaghi’s principle is met. Another condition at boundary 𝑧 = 0
is that 𝜎𝑥𝑧 = 𝐹𝑥𝑧 [3], where 𝐹𝑥𝑧 is a function only depending on time. Recall that the formula of shear
stress is given by 𝜎𝑥𝑧 = −2𝜇𝜖𝑥𝑧 = −𝜇 (

𝜕𝑢𝑥
𝜕𝑧 +

𝜕𝑢𝑧
𝜕𝑥 ).

At 𝑧 = −𝑛𝑧 we assume that the displacement for the soil and pore water in 𝑧-direction is zero for a
deep enough seabed. This means that 𝑢𝑧 = 0 and that there is no gradient for the pore water pressure
which is defined as 𝜕𝑃

𝜕𝑧 = 0 [5], [7] at 𝑧 = −𝑛𝑧, respectively. Since the displacement of soil is negligible

at the bottom, we find that there is no gradient for the displacements: 𝜕𝑢𝑥𝜕𝑧 = 0 and
𝜕𝑢𝑧
𝜕𝑥 = 0 [5]. Hence,

there is also no gradient for the volumetric strain 𝜕𝜖vol
𝜕𝑧 = 0 [5]. Furthermore, since 𝜕𝑢𝑥

𝜕𝑧 = 0 and
𝜕𝑢𝑧
𝜕𝑥 = 0,

we have that 𝜔 = 0 at 𝑧 = −𝑛𝑧.
Similarly, at 𝑥 = 0 and 𝑥 = −𝑛𝑥 it is assumed that the displacements will smoothen out according to

[8]. Then we get that 𝜕𝑢𝑧𝜕𝑥 = 0 and
𝜕𝑢𝑥
𝜕𝑧 = 0 at 𝑥 = 0, 𝐿 [5]. Assuming that the displacements on the sides

of the domain are negligible, we have that 𝑢𝑥 = 0 at 𝑥 = 0, 𝑛𝑥 [5]. Therefore, we also have that the
volumetric strain does not have a gradient 𝜕𝜖vol𝜕𝑥 = 0 at 𝑥 = 0, 𝑛𝑥. Furthermore, we have that the pore

water has no gradient at 𝑥 = 0 and 𝑥 = 𝑛𝑥, which is defined by 𝜕𝑃
𝜕𝑥 = 0, since the water displacements

are also assumed to be negligible [5]. Furthermore, since 𝜕𝑢𝑥
𝜕𝑧 = 0 and 𝜕𝑢𝑧

𝜕𝑥 = 0, we have that 𝜔 = 0 at
𝑥 = 0 and 𝑥 = 𝑛𝑥.
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In conclusion, we have the following boundary conditions

for 𝑧 = 0 ∶ {
𝜇𝜔 − 2𝜇 𝜕𝑢𝑥𝜕𝑧 = 𝐹𝑥𝑧
𝑃 = 𝐹𝑧𝑧
−𝜆𝜖vol − 2𝜇

𝜕𝑢𝑧
𝜕𝑧 = 0

, (2.25)

for 𝑧 = −𝑛𝑧 ∶ {𝜔 = 𝑢𝑧 =
𝜕𝑢𝑥
𝜕𝑧 =

𝜕𝑃
𝜕𝑧 =

𝜕𝜖vol
𝜕𝑧 = 0 , (2.26)

and for 𝑥 = 0 and 𝑥 = 𝑛𝑥 ∶ {𝜔 = 𝑢𝑥 =
𝜕𝑢𝑧
𝜕𝑥 =

𝜕𝑃
𝜕𝑥 =

𝜕𝜖vol
𝜕𝑥 = 0 , (2.27)

where 𝐹𝑥𝑧 and 𝐹𝑧𝑧 are a functions only depending on time. Its value and its gradient equal zero.

2.2.7. Initial conditions
We assume that at the beginning, 𝑡 = 0, everything is at rest. Therefore, it is assumed that no stresses
act on the surface in the beginning, so there are no stresses and displacements at time 𝑡 = 0 [6]. Since
we have no displacement and stresses, the volumetric strain and pressure must be zero too. Then we
have that [6]

𝜔|𝑡=0 = 𝑢𝑥|𝑡=0 = 𝑢𝑧|𝑡=0 = 𝜖vol|𝑡=0 = 𝑃|𝑡=0 = 0.
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2.3. Discretisation in space
In the following sections we will discretise the equations of conservation of mass, vorticity, volumetric
strain and displacement which was found in Section 2.2. First we will discretise these four equations
with respect to space using the finite-element method (FEM) in order to derive the Galerkin equations.
We do this per equation. In this numerical approach we assume that Ω = (0, 𝑛𝑥) × (−𝑛𝑧 , 0) ⊆ ℝ2 is the
space domain and that 𝕋 = (0, 𝑡end) is the time domain, with 𝑛𝑥 , 𝑛𝑧 , 𝑡end > 0.

The two-dimensional domain and its boundaries are given as in Figure 2.2, each with their own
color. The normal unit vectors with respect to this boundaries are also given in Figure 2.2, These have
corresponding colors to their boundary. The normal unit vectors in two dimensions are given by

𝜂1 = [
0
−1] , 𝜂2 = [

1
0] , 𝜂3 = [

0
1] , 𝜂4 = [

−1
0 ] .

Note that the first entry represents the 𝑥-direction (horizontal) and the second entry represents the
𝑧-direction (vertical).

Figure 2.2: Rectangle domain with boundaries and their normal unit vectors. The domain is given by the color blue. The
subdomains dΩ1 ,dΩ2 ,dΩ3 and dΩ4 with their normal unit vectors are given by the colors bordeaux red, light red, orange and
dark red, respectively.

We define 𝑛 to be the dimension of the space and 𝑁𝑖 are the basis-functions for 𝑖 = 1,… , 𝑛 that form
a basis for the space. Note that in the next few sections 𝑁𝑖 has a superscript which can be the symbol
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of the volumetric strain, pore water pressure or displacement in horizontal or vertical direction. In this
case, 𝑁𝑖 for 𝑖 = 1,… , 𝑛 are defined for the space of that unknown variable specifically. 𝑛 is assumed to
be the same for all spaces.

2.3.1. Conservation of mass equation
We will derive the weak form of the pressure equation and its matrix-vector form. Suppose that the test
and trial functions are given by

𝑣𝑃(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑖=1
𝑁𝑃𝑖 (𝑥, 𝑧)�̄�𝑃𝑖 (𝑡), (2.28)

𝜖vol(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑗=1
𝑁𝜖𝑗 (𝑥, 𝑧) ̄𝜖𝑗(𝑡), (2.29)

𝑃(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑙=1
𝑁𝑃𝑙 (𝑥, 𝑧)�̄�𝑙(𝑡). (2.30)

After multiplying Equation (2.14) by test function 𝑣𝜖 and integrating over the domain Ω, we have that

∫
Ω
𝑣𝑃 [𝛾𝑤𝐾𝑠

𝑝𝛽𝜕𝑃𝜕𝑡 −
𝜕2𝑃
𝜕𝑥2 −

𝜕2𝑃
𝜕𝑧2 +

𝛾𝑤
𝐾𝑠
𝜕𝜖vol
𝜕𝑡 ]dΩ = 0. (2.31)

Since 𝜕2𝑃
𝜕𝑥2 +

𝜕2𝑃
𝜕𝑧2 = ∇ ⋅ (∇𝑃), we can apply integration by parts on the −𝜕

2𝑃
𝜕𝑥2 −

𝜕2𝑃
𝜕𝑧2 part followed by the

divergence theorem. Then Equation (2.31) becomes

−∫
dΩ
𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂)dΓ + ∫

Ω
𝑣𝑃 𝛾𝑤𝐾𝑠

[𝑝𝛽𝜕𝑃𝜕𝑡 +
𝜕𝜖vol
𝜕𝑡 ] + (∇𝑣

𝑃 ⋅ ∇𝑃) dΩ = 0. (2.32)

After setting 𝑣𝑃(𝑥, 𝑧, 𝑡) = 0 for 𝑧 = 0 because of the boundary condition given by Equation (2.25) and
using the other boundary conditions given by Equations (2.26) and (2.27), we get that

∫
dΩ
𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂)dΓ = ∫

dΩ1
𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂1)dΓ + ∫

dΩ2
𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂2)dΓ

+ ∫
dΩ3

𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂3)dΓ + ∫
dΩ4

𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂4)dΓ

= 0. (2.33)

When substituting the test and trial functions given by Equations (2.28), (2.29) and (2.30) and boundary
integral given by Equation (2.33) into Equation (2.32), we get the following Galerkin equations

0 = ∫
Ω

𝑛

∑
𝑖=1
𝑁𝑃𝑖 �̄�𝑃𝑖

𝛾𝑤
𝐾𝑠
[𝑝𝛽 𝜕𝜕𝑡 (

𝑛

∑
𝑙=1
𝑁𝑃𝑙 �̄�𝑙) +

𝜕
𝜕𝑡 (

𝑛

∑
𝑗=1
𝑁𝜖𝑗 ̄𝜖𝑗)] + [∇(

𝑛

∑
𝑖=1
𝑁𝑃𝑖 �̄�𝑃𝑖 ) ⋅ ∇(

𝑛

∑
𝑙=1
𝑁𝑃𝑙 �̄�𝑙)] dΩ

=
𝑛

∑
𝑖=1
�̄�𝑃𝑖 ∫

Ω
𝑁𝑃𝑖
𝛾𝑤
𝐾𝑠
[𝑝𝛽

𝑛

∑
𝑙=1
𝑁𝑃𝑙
𝜕�̄�𝑙
𝜕𝑡 +

𝑛

∑
𝑗=1
𝑁𝜖𝑗
𝜕 ̄𝜖𝑗
𝜕𝑡 ] + [∇𝑁

𝑃
𝑖 ⋅ (

𝑛

∑
𝑙=1
�̄�𝑙∇𝑁𝑃𝑙 )] dΩ. (2.34)

Since it must hold for arbitrary �̄�𝑃𝑖 with 𝑖 = 1,… , 𝑛, we have that Equation (2.34) still holds as

0 = ∫
Ω
𝑁𝑃𝑖
𝛾𝑤
𝐾𝑠
[𝑝𝛽

𝑛

∑
𝑙=1
𝑁𝑃𝑙
𝜕�̄�𝑙
𝜕𝑡 +

𝑛

∑
𝑗=1
𝑁𝜖𝑗
𝜕 ̄𝜖𝑗
𝜕𝑡 ] + [∇𝑁

𝑃
𝑖 ⋅ (

𝑛

∑
𝑙=1
�̄�𝑙∇𝑁𝑃𝑙 )] dΩ. (2.35)

We can write Equation (2.35) as matrix-vector multiplication

𝐴𝑃𝑃�̄�𝑃𝑃𝑡 + 𝐴𝑃𝜖�̄�𝜖𝜖𝑡 + 𝐵𝑃�̄�𝑃𝑃 = 0, (2.36)
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where

𝐴𝑃𝑃𝑖𝑗 = ∫
Ω

𝛾𝑤
𝐾𝑠
𝑝𝛽𝑁𝑃𝑖 𝑁𝑃𝑗 dΩ, 𝐴𝑃𝜖𝑖𝑗 = ∫

Ω

𝛾𝑤
𝐾𝑠
𝑁𝑃𝑖 𝑁𝜖𝑗 dΩ, 𝐵𝑃𝑖𝑗 = ∫

Ω
∇𝑁𝑃𝑖 ⋅ ∇𝑁𝑃𝑗 dΩ,

�̄�𝑃𝑃 = [
�̄�1
⋮
�̄�𝑛
] , �̄�𝑃𝑃𝑡 = [

𝜕�̄�1
𝜕𝑡
⋮
𝜕�̄�𝑛
𝜕𝑡

] , �̄�𝜖𝜖𝑡 = [

𝜕�̄�1
𝜕𝑡
⋮
𝜕�̄�𝑛
𝜕𝑡

] ,

for 𝑖, 𝑗 = 1,… , 𝑛. Equation (2.36) is our third matrix problem to solve.

2.3.2. Vorticity equation
We will derive the weak form of the vorticity equation and its matrix-vector form. Suppose that the test
and trial functions are given by

𝑣𝜔(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑖=1
𝑁𝜔𝑖 (𝑥, 𝑧)�̄�𝜔𝑖 (𝑡), (2.37)

𝜔(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑗=1
𝑁𝜔𝑗 (𝑥, 𝑧)�̄�𝑗(𝑡). (2.38)

Multiplying Equation (2.20) by test function 𝑣𝜔 and integrating over the domain Ω gives

∫
Ω
𝑣𝜔𝜇 [𝜕

2𝜔
𝜕𝑧2 +

𝜕2𝜔
𝜕𝑥2 ]dΩ = 0. (2.39)

Since 𝜕2𝜔
𝜕𝑧2 +

𝜕2𝜔
𝜕𝑥2 = ∇ ⋅ (∇𝜔) with ∇ the gradient operator, we can apply integration by parts on Equation

(2.39) followed by the divergence theorem. Then Equation (2.39) becomes the weak equation

∫
dΩ
𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂)dΓ − ∫

Ω
∇𝑣𝜔 ⋅ 𝜇∇𝜔dΩ = 0, (2.40)

where dΩ contains the boundaries of domain Ω, and 𝜂𝜂𝜂 is the unit normal vector pointing outward to the
surface dΩ. Because of the boundary conditions given by Equations (2.25), (2.26) and (2.27), we set
𝑣𝜔(𝑥, 𝑧, 𝑡) = 0 for 𝑧 = −𝑛𝑧, 𝑥 = 0 and 𝑥 = 𝑛𝑥. Then we get that

∫
dΩ
𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂)dΓ = ∫

dΩ1
𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂1)dΓ + ∫

dΩ2
𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂2)dΓ

+ ∫
dΩ3

𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂3)dΓ + ∫
dΩ4

𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂4)dΓ

= ∫
dΩ3

𝑣𝜔𝜇𝜕𝜔𝜕𝑧 dΓ. (2.41)

After substituting the test and trial functions given by Equations (2.37) and (2.38), respectively, and
boundary integral given by Equation (2.41) into Equation (2.40) we get the following Galerkin equations

0 = ∫
dΩ3

𝑛

∑
𝑖=1
𝑁𝜔𝑖 �̄�𝜔𝑖 𝜇

𝜕
𝜕𝑧 (

𝑛

∑
𝑗=1
𝑁𝜔𝑗 �̄�𝑗)dΓ − ∫

Ω
∇(

𝑛

∑
𝑖=1
𝑁𝜔𝑖 �̄�𝜔𝑖 ) ⋅ 𝜇∇(

𝑛

∑
𝑖=1
𝑁𝜔𝑗 �̄�𝑗)dΩ

=
𝑛

∑
𝑖=1
�̄�𝜔𝑖 ∫

dΩ3
𝑁𝜔𝑖 𝜇

𝑛

∑
𝑗=1
�̄�𝑗
𝜕𝑁𝜔𝑗
𝜕𝑧 dΓ −

𝑛

∑
𝑖=1
�̄�𝜔𝑖 ∫

Ω
∇𝑁𝜔𝑖 ⋅ 𝜇

𝑛

∑
𝑗=1
�̄�𝑗∇𝑁𝜔𝑗 dΩ. (2.42)

Since it must hold for arbitrary �̄�𝜔𝑖 with 𝑖 = 1,… , 𝑛, we have that Equation (2.42) still holds as

0 = ∫
dΩ3

𝑁𝜔𝑖 𝜇
𝑛

∑
𝑗=1
�̄�𝑗
𝜕𝑁𝜔𝑗
𝜕𝑧 dΓ − ∫

Ω
∇𝑁𝜔𝑖 ⋅ 𝜇

𝑛

∑
𝑗=1
�̄�𝑗∇𝑁𝜔𝑗 dΩ for 𝑖 = 1,… , 𝑛. (2.43)
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We can write Equation (2.43) as matrix-vector multiplication,

(𝐵𝜔 − 𝑆𝐷𝜔) �̄�𝑤𝑤 = 0, (2.44)

where

𝐵𝜔𝑖𝑗 = ∫
Ω
𝜇 (∇𝑁𝜔𝑖 ⋅ ∇𝑁𝜔𝑗 ) dΩ, 𝑆𝐷𝜔𝑖𝑗 = ∫

dΩ3
𝜇𝑁𝜔𝑖

𝜕𝑁𝜔𝑗
𝜕𝑧 dΓ, �̄�𝑤𝑤 = [

�̄�1
⋮
�̄�𝑛
] ,

for 𝑖, 𝑗 = 1,… , 𝑛. Equation (2.44) is our first matrix problem to solve.

2.3.3. Volumetric strain equation
We will derive the weak form of the volumetric strain equation and its matrix-vector form. Suppose that
the test function for 𝜖vol is given by

𝑣𝜖(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑖=1
𝑁𝜖𝑖 (𝑥, 𝑧)�̄�𝜖𝑖 (𝑡). (2.45)

Recall the following test and trial functions

𝜖vol(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑗=1
𝑁𝜖𝑗 (𝑥, 𝑧) ̄𝜖𝑗(𝑡),

𝑃(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑙=1
𝑁𝑃𝑙 (𝑥, 𝑧)�̄�𝑙(𝑡).

Note that 𝜖vol and 𝑃 have a first derivative with respect to time which means that their test and trial
functions have to depend on time. Multiplying Equation (2.22) by test function 𝑣𝜖 and integrating over
the domain Ω gives

∫
Ω
𝑣𝜖 [𝛾𝑤𝐾𝑠

𝜕𝜖vol
𝜕𝑡 − (𝜆 + 2𝜇) (𝜕

2𝜖vol
𝜕𝑥2 + 𝜕

2𝜖vol
𝜕𝑧2 ) +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝜕𝑃𝜕𝑡 ]dΩ = 0. (2.46)

Since 𝜕2𝜖vol
𝜕𝑥2 + 𝜕2𝜖vol

𝜕𝑧2 = ∇ ⋅ (∇𝜖vol), we can apply integration by parts on the 𝜕2𝜖vol
𝜕𝑥2 + 𝜕2𝜖vol

𝜕𝑧2 part and then
the divergence theorem. Then Equation (2.46) becomes

−∫
dΩ
𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂)dΓ + ∫

Ω
𝑣𝜖 𝛾𝑤𝐾𝑠

[𝜕𝜖vol𝜕𝑡 + 𝑝𝛽𝜕𝑃𝜕𝑡 ] + (𝜆 + 2𝜇) (∇𝑣
𝜖 ⋅ ∇𝜖vol)dΩ = 0. (2.47)

Using the boundary conditions given by Equations (2.25), (2.26) and (2.27), we get that

∫
dΩ
𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂)dΓ = ∫

dΩ1
𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂1)dΓ + ∫

dΩ2
𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂2)dΓ

+ ∫
dΩ3

𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂3)dΓ + ∫
dΩ4

𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂4)dΓ

= ∫
dΩ3

𝑣𝜖 𝜕𝜖vol𝜕𝑧 dΓ. (2.48)

Substituting the test and trial functions given by Equations (2.45), (2.29), (2.30) and boundary inte-
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gral given by Equation (2.48) into Equation (2.47) gives the following Galerkin equations

0 = −∫
dΩ3

𝑛

∑
𝑖=1
𝑁𝜖𝑖 �̄�𝜖𝑖 (

𝑛

∑
𝑗=1

̄𝜖𝑗
𝜕𝑁𝜖𝑗
𝜕𝑧 )dΓ

+ ∫
Ω

𝑛

∑
𝑖=1
𝑁𝜖𝑖 �̄�𝜖𝑖

𝛾𝑤
𝐾𝑠
[ 𝜕𝜕𝑡 (

𝑛

∑
𝑗=1
𝑁𝜖𝑗 ̄𝜖𝑗) + 𝑝𝛽

𝜕
𝜕𝑡 (

𝑛

∑
𝑙=1
𝑁𝑃𝑙 �̄�𝑙)] + (𝜆 + 2𝜇) [∇(

𝑛

∑
𝑖=1
𝑁𝜖𝑖 �̄�𝜖𝑖 ) ⋅ ∇(

𝑛

∑
𝑗=1
𝑁𝜖𝑗 ̄𝜖𝑗)] dΩ

= −
𝑛

∑
𝑖=1
�̄�𝜖𝑖 ∫

dΩ
𝑁𝜖𝑖 (𝜇

𝑛

∑
𝑗=1
�̄�𝑗
𝜕𝑁𝜔𝑗
𝜕𝑥 +

𝑛

∑
𝑙=1
�̄�𝑙
𝜕𝑁𝑃𝑙
𝜕𝑧 )dΓ

+
𝑛

∑
𝑖=1
�̄�𝜖𝑖 ∫

Ω

𝛾𝑤
𝐾𝑠
𝑁𝜖𝑖 [

𝑛

∑
𝑗=1
𝑁𝜖𝑗
𝜕 ̄𝜖𝑗
𝜕𝑡 + 𝑝𝛽

𝑛

∑
𝑙=1
𝑁𝑃𝑙
𝜕�̄�𝑙
𝜕𝑡 ] + (𝜆 + 2𝜇) [∇𝑁

𝜖
𝑖 ⋅ (

𝑛

∑
𝑗=1

̄𝜖𝑗∇𝑁𝜖𝑗 )] dΩ. (2.49)

Since it must hold for arbitrary �̄�𝜖𝑖 with 𝑖 = 1,… , 𝑛, we have that Equation (2.49) still holds as

0 = −∫
dΩ3

𝑁𝜖𝑖 (
𝑛

∑
𝑗=1

̄𝜖𝑗
𝜕𝑁𝜖𝑗
𝜕𝑧 )dΓ

+ ∫
Ω

𝛾𝑤
𝐾𝑠
𝑁𝜖𝑖 [

𝑛

∑
𝑗=1
𝑁𝜖𝑗
𝜕 ̄𝜖𝑗
𝜕𝑡 + 𝑝𝛽

𝑛

∑
𝑙=1
𝑁𝑃𝑙
𝜕�̄�𝑙
𝜕𝑡 ] + (𝜆 + 2𝜇) [∇𝑁

𝜖
𝑖 ⋅ (

𝑛

∑
𝑗=1

̄𝜖𝑗∇𝑁𝜖𝑗 )] dΩ. (2.50)

We can write Equation (2.50) as matrix-vector multiplication,

𝐴𝜖𝜖�̄�𝜖𝜖𝑡 + 𝐴𝜖𝑃�̄�𝑃𝑃𝑡 + (𝐵𝜖 − 𝑆𝐷𝜖)�̄�𝜖𝜖 = 0, (2.51)

where

𝐴𝜖𝜖𝑖𝑗 = ∫
Ω

𝛾𝑤
𝐾𝑠
𝑁𝜖𝑖 𝑁𝜖𝑗 dΩ, 𝐴𝜖𝑃𝑖𝑗 = ∫

Ω

𝛾𝑤
𝐾𝑠
𝑝𝛽𝑁𝜖𝑖 𝑁𝑃𝑗 dΩ, 𝐵𝜖𝑖𝑗 = ∫

Ω
(𝜆 + 2𝜇) [∇𝑁𝜖𝑖 ⋅ ∇𝑁𝜖𝑗 ] dΩ,

𝑆𝐷𝜖𝑖 = ∫
dΩ3

𝑁𝜖𝑖
𝜕𝑁𝜖𝑗
𝜕𝑧 dΓ, �̄�𝜖𝜖 = [

̄𝜖1
⋮
̄𝜖𝑛
] , �̄�𝜖𝜖𝑡 = [

𝜕�̄�1
𝜕𝑡
⋮
𝜕�̄�𝑛
𝜕𝑡

] , �̄�𝑃𝑃𝑡 = [

𝜕�̄�1
𝜕𝑡
⋮
𝜕�̄�𝑛
𝜕𝑡

] ,

for 𝑖, 𝑗 = 1,… , 𝑛.

2.3.4. Displacement equations
We will derive the weak form of the displacement equations and its matrix-vector form. Suppose that
the test function is given by

𝑣𝑢𝑥(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑖=1
𝑁𝑢𝑥𝑖 (𝑥, 𝑧)�̄�

𝑢𝑥
𝑖 (𝑡), (2.52)

𝑣𝑢𝑧(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑖=1
𝑁𝑢𝑧𝑖 (𝑥, 𝑧)�̄�

𝑢𝑧
𝑖 (𝑡), (2.53)

𝑢𝑥(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑗=1
𝑁𝑢𝑥𝑗 (𝑥, 𝑧)�̄�𝑥𝑗 (𝑡), (2.54)

𝑢𝑧(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑗=1
𝑁𝑢𝑧𝑗 (𝑥, 𝑧)�̄�𝑧𝑗 (𝑡). (2.55)
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Recall the following test and trial functions

𝜖vol(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑘=1

𝑁𝜖𝑘(𝑥, 𝑧) ̄𝜖𝑘(𝑡), 𝜔(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑙=1
𝑁𝜔𝑙 (𝑥, 𝑧)�̄�𝑙(𝑡).

After multiplying Equations (2.23) and (2.24) by test functions 𝑣𝑢𝑥 and 𝑣𝑢𝑥 , respectively, and integrating
over the domain Ω we get

0 = ∫
Ω
𝑣𝑢𝑥 [−(𝜕

2𝑢𝑥
𝜕𝑥2 +

𝜕2𝑢𝑥
𝜕𝑧2 ) +

𝜕𝜔
𝜕𝑧 +

𝜕𝜖vol
𝜕𝑥 ]dΩ, (2.56)

0 = ∫
Ω
𝑣𝑢𝑧 [−(𝜕

2𝑢𝑧
𝜕𝑥2 +

𝜕2𝑢𝑧
𝜕𝑧2 ) −

𝜕𝜔
𝜕𝑥 +

𝜕𝜖vol
𝜕𝑧 ]dΩ. (2.57)

Since 𝜕2𝑢𝑖
𝜕𝑥2 +

𝜕2𝑢𝑖
𝜕𝑧2 = ∇ ⋅ (∇𝑢𝑖) for 𝑖 = 𝑥, 𝑧, applying integration by parts and divergence theorem to

Equations (2.56) and (2.57) gives

0 = −∫
dΩ
𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂]dΓ + ∫

Ω
𝑣𝑢𝑥 (𝜕𝜔𝜕𝑧 +

𝜕𝜖vol
𝜕𝑥 ) + [∇𝑣𝑢𝑥 ⋅ ∇𝑢𝑥]dΩ, (2.58)

0 = −∫
dΩ
𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂]dΓ + ∫

Ω
𝑣𝑢𝑧 (−𝜕𝜔𝜕𝑥 +

𝜕𝜖vol
𝜕𝑧 ) + [∇𝑣

𝑢𝑧 ⋅ ∇𝑢𝑧]dΩ. (2.59)

After substituting the boundary conditions given by Equations (2.25), (2.26) and (2.27) into Equations
(2.58) and (2.59), we get that

∫
dΩ
𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂] dΓ = ∫

dΩ1
𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂1]dΓ + ∫

dΩ2
𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂2] dΓ

+ ∫
dΩ3

𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂3]dΓ + ∫
dΩ4

𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂4]dΓ

= ∫
dΩ3

𝑣𝑢𝑥 12 (𝜔 −
1
𝜇𝐹𝑥𝑧)dΓ, (2.60)

∫
dΩ
𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂] dΓ = ∫

dΩ1
𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂1]dΓ + ∫

dΩ2
𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂2] dΓ

+ ∫
dΩ3

𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂3]dΓ + ∫
dΩ4

𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂4] dΓ

= ∫
dΩ3

𝑣𝑢𝑧 𝜆2𝜇𝜖voldΓ. (2.61)

Substituting the test and trial functions given by Equations (2.52), (2.53), (2.54), (2.55), (2.29), (2.38)
and boundary integrals given by Equations (2.60) and (2.61) into Equations (2.58) and (2.59) gives the
following Galerkin equations

0 = −∫
dΩ3

𝑛

∑
𝑖=1
𝑁𝑢𝑥𝑖 �̄�

𝑢𝑥
𝑖
1
2 [(

𝑛

∑
𝑗=1
𝑁𝜔𝑗 �̄�𝑗) −

1
𝜇𝐹𝑥𝑧] dΓ

+ ∫
Ω

𝑛

∑
𝑖=1
𝑁𝑢𝑥𝑖 �̄�

𝑢𝑥
𝑖 ( 𝜕𝜕𝑧 (

𝑛

∑
𝑗=1
𝑁𝜔𝑗 �̄�𝑗) +

𝜕
𝜕𝑥 (

𝑛

∑
𝑙=1
𝑁𝜖𝑙 ̄𝜖𝑙)) + [∇(

𝑛

∑
𝑖=1
𝑁𝑢𝑥𝑖 �̄�

𝑢𝑥
𝑖 ) ⋅ ∇(

𝑛

∑
𝑗=1
𝑁𝑢𝑥𝑗 �̄�𝑥𝑗 )] dΩ,

(2.62)

0 = −∫
dΩ3

𝑛

∑
𝑖=1
𝑁𝑢𝑧𝑖 �̄�

𝑢𝑧
𝑖 ( 𝜆2𝜇

𝑛

∑
𝑗=1
𝑁𝜖𝑗 ̄𝜖𝑗)dΓ

+ ∫
Ω

𝑛

∑
𝑖=1
𝑁𝑢𝑧𝑖 �̄�

𝑢𝑧
𝑖 (− 𝜕

𝜕𝑥 (
𝑛

∑
𝑗=1
𝑁𝜔𝑗 �̄�𝑗) +

𝜕
𝜕𝑧 (

𝑛

∑
𝑙=1
𝑁𝜖𝑙 ̄𝜖𝑙)) + [∇(

𝑛

∑
𝑖=1
𝑁𝑢𝑧𝑖 �̄�

𝑢𝑧
𝑖 ) ⋅ ∇(

𝑛

∑
𝑗=1
𝑁𝑢𝑧𝑗 �̄�𝑧𝑗 )] dΩ.

(2.63)
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Equations (2.62) and (2.63) can be written as

0 = −
𝑛

∑
𝑖=1
�̄�𝑢𝑥𝑖 ∫

dΩ
𝑁𝑢𝑥𝑖

1
2 [(

𝑛

∑
𝑗=1
𝑁𝜔𝑗 �̄�𝑗) −

1
𝜇𝐹𝑥𝑧] dΓ

+
𝑛

∑
𝑖=1
�̄�𝑢𝑥𝑖 ∫

Ω
𝑁𝑢𝑥𝑖 (

𝑛

∑
𝑗=1
�̄�𝑗
𝜕𝑁𝜔𝑗
𝜕𝑧 +

𝑛

∑
𝑙=1

̄𝜖𝑙
𝜕𝑁𝜖𝑙
𝜕𝑥 ) + [∇𝑁

𝑢𝑥
𝑖 ⋅ (

𝑛

∑
𝑗=1
�̄�𝑥𝑗 ∇𝑁

𝑢𝑥
𝑗 )] dΩ, (2.64)

0 = −
𝑛

∑
𝑖=1
�̄�𝑢𝑧𝑖 ∫

dΩ

𝜆
2𝜇𝑁

𝑢𝑧
𝑖

𝑛

∑
𝑗=1

̄𝜖𝑗𝑁𝜖𝑗 dΓ

+
𝑛

∑
𝑖=1
�̄�𝑢𝑧𝑖 ∫

Ω
𝑁𝑢𝑧𝑖 (−

𝑛

∑
𝑗=1
�̄�𝑗
𝜕𝑁𝜔𝑗
𝜕𝑥 +

𝑛

∑
𝑙=1

̄𝜖𝑙
𝜕𝑁𝜖𝑙
𝜕𝑧 ) + [∇𝑁

𝑢𝑧
𝑖 ⋅ (

𝑛

∑
𝑗=1
�̄�𝑧𝑗 ∇𝑁

𝑢𝑧
𝑗 )] dΩ. (2.65)

Since it must hold for arbitrary �̄�𝑢𝑥𝑖 and �̄�𝑢𝑧𝑖 with 𝑖 = 1,… , 𝑛, we have that Equations (2.64) and (2.65)
still holds as

0 = −∫
dΩ3

𝑁𝑢𝑥𝑖
1
2 [(

𝑛

∑
𝑗=1
𝑁𝜔𝑗 �̄�𝑗) −

1
𝜇𝐹𝑥𝑧] dΓ

+ ∫
Ω
𝑁𝑢𝑥𝑖 (

𝑛

∑
𝑗=1
�̄�𝑗
𝜕𝑁𝜔𝑗
𝜕𝑧 +

𝑛

∑
𝑙=1

̄𝜖𝑙
𝜕𝑁𝜖𝑙
𝜕𝑥 ) + [∇𝑁

𝑢𝑥
𝑖 ⋅ (

𝑛

∑
𝑗=1
�̄�𝑥𝑗 ∇𝑁

𝑢𝑥
𝑗 )] dΩ, (2.66)

0 = −∫
dΩ3

𝜆
2𝜇𝑁

𝑢𝑧
𝑖

𝑛

∑
𝑗=1

̄𝜖𝑗𝑁𝜖𝑗 dΓ

+ ∫
Ω
𝑁𝑢𝑧𝑖 (−

𝑛

∑
𝑗=1
�̄�𝑗
𝜕𝑁𝜔𝑗
𝜕𝑥 +

𝑛

∑
𝑙=1

̄𝜖𝑙
𝜕𝑁𝜖𝑙
𝜕𝑧 ) + [∇𝑁

𝑢𝑧
𝑖 ⋅ (

𝑛

∑
𝑗=1
�̄�𝑧𝑗 ∇𝑁

𝑢𝑧
𝑗 )] dΩ. (2.67)

We can write Equations (2.66) and (2.67) as matrix-vector multiplications,

{𝐵
𝑢𝑥�̄�𝑢𝑢𝑥 + (𝐷𝑢𝑥 − 𝑆𝐴𝑢𝑥)�̄�𝜔𝜔 + 𝐶𝑢𝑥�̄�𝜖𝜖 = −F𝑥𝑧

(𝐵𝑢𝑧 − 𝑆𝐴𝑢𝑧) �̄�𝑢𝑢𝑧 − 𝐶𝑢𝑧�̄�𝜔𝜔 + 𝐷𝑢𝑧�̄�𝜖𝜖 = 0 , (2.68)

where

𝑆𝐴𝑢𝑥𝑖𝑗 = ∫
dΩ3

1
2𝑁

𝑢𝑥
𝑖 𝑁𝜔𝑗 dΓ, 𝑆𝐴𝑢𝑧𝑖𝑗 = ∫

dΩ3

𝜆
2𝜇𝑁

𝑢𝑧
𝑖 𝑁𝜖𝑗 dΓ, 𝐵𝑢𝑥𝑖𝑗 = ∫

Ω
∇𝑁𝑢𝑥𝑖 ⋅ ∇𝑁𝑢𝑥𝑗 dΩ, 𝐵𝑢𝑧𝑖𝑗 = ∫

Ω
∇𝑁𝑢𝑧𝑖 ⋅ ∇𝑁𝑢𝑧𝑗 dΩ,

𝐶𝑢𝑥𝑖 = ∫
dΩ
𝑁𝑢𝑥𝑖

𝜕𝑁𝜖𝑗
𝜕𝑥 dΩ, 𝐶𝑢𝑧𝑖 = ∫

dΩ
𝑁𝑢𝑧𝑖

𝜕𝑁𝜔𝑗
𝜕𝑥 dΩ, 𝐷𝑢𝑥𝑖𝑗 = ∫

dΩ
𝑁𝑢𝑥𝑖

𝜕𝑁𝜔𝑗
𝜕𝑧 dΩ, 𝐷𝑢𝑧𝑖𝑗 = ∫

dΩ
𝑁𝑢𝑧𝑖

𝜕𝑁𝜖𝑗
𝜕𝑧 dΩ,

𝐹𝑥𝑧𝑖 = ∫
dΩ3

𝑁𝑢𝑥𝑖
1
2𝜇𝐹𝑥𝑧dΓ,

for 𝑖, 𝑗 = 1,… , 𝑛.

2.3.5. Final FEM Model
We assume that 𝑁𝜖𝑖 = 𝑁𝜔𝑖 = 𝑁𝑃𝑖 = 𝑁

𝑢𝑥
𝑖 = 𝑁𝑢𝑧𝑖 =∶ 𝑁𝑖 for all 𝑖 = 1,… , 𝑛. After collecting the governing

equations given by Equations (2.36), (2.44), (2.51) and (2.68), we get the following set of Galerkin
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equations:

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜇 (𝐵 − 𝑆𝐷)�̄�𝑤𝑤 = 0
𝛾𝑤
𝐾𝑠
𝐴�̄�𝜖𝜖𝑡 +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝐴�̄�𝑃𝑃𝑡 + [(𝜆 + 2𝜇)𝐵 − 𝑆𝐷] �̄�𝜖𝜖 = 0

𝛾𝑤
𝐾𝑠
𝐴�̄�𝜖𝜖𝑡 +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝐴�̄�𝑃𝑃𝑡 + 𝐵�̄�𝑃𝑃 = 0

𝐵�̄�𝑢𝑢𝑥 + (𝐷 − 1
2𝑆𝐴)�̄�𝜔𝜔 + 𝐶�̄�𝜖𝜖 = −𝐹𝐹𝐹𝑥𝑧

(𝐵 − 𝜆
2𝜇𝑆𝐴)�̄�𝑢𝑢

𝑧 − 𝐶�̄�𝜔𝜔 + 𝐷�̄�𝜖𝜖 = 0

, (2.69)

where 𝐴𝑖𝑗 = ∫Ω𝑁𝑖𝑁𝑗dΩ, 𝑆𝐴𝑖𝑗 = ∫dΩ3 𝑁𝑖𝑁𝑗dΓ, 𝐵𝑖𝑗 = ∫Ω ∇𝑁𝑖 ⋅ ∇𝑁𝑗dΩ,
𝐶𝑖𝑗 = ∫Ω𝑁𝑖

𝜕𝑁𝑗
𝜕𝑥 dΩ, 𝑆𝐶𝑖𝑗 = ∫dΩ3 𝑁𝑖

𝜕𝑁𝑗
𝜕𝑥 dΓ, 𝐷𝑖𝑗 = ∫Ω𝑁𝑖

𝜕𝑁𝑗
𝜕𝑧 dΩ, 𝑆𝐷𝑖𝑗 = ∫dΩ3 𝑁𝑖

𝜕𝑁𝑗
𝜕𝑧 dΓ

for all 𝑖, 𝑗 = 1,… , 𝑛.

We can write Equation (2.69) as one system of matrix-vector multiplication

𝑀𝑡𝜃𝜃𝜃𝑡 +𝑀𝜃𝜃𝜃 = 𝑓𝑓𝑓, (2.70)

where

𝑀𝑡 =

⎡
⎢
⎢
⎢
⎢
⎣

∅ ∅ ∅ ∅ ∅
∅ 𝛾𝑤

𝐾𝑠
𝐴 𝛾𝑤

𝐾𝑠
𝑝𝛽𝐴 ∅ ∅

∅ 𝛾𝑤
𝐾𝑠
𝐴 𝛾𝑤

𝐾𝑠
𝑝𝛽𝐴 ∅ ∅

∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝ5𝑛×5𝑛 , 𝑀 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜇 (𝐵 − 𝑆𝐷) ∅ ∅ ∅ ∅
−𝜇𝑆𝐶 (𝜆 + 2𝜇)𝐵 −𝑆𝐷 ∅ ∅
∅ ∅ 𝐵 ∅ ∅

𝐷 − 1
2𝑆𝐴 𝐶 ∅ 𝐵 ∅

−𝐶 𝐷 ∅ ∅ (𝐵 − 𝑆𝐴)

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝ5𝑛×5𝑛 ,

𝜃𝜃𝜃 =
⎡
⎢
⎢
⎢
⎣

�̄�𝑤𝑤
�̄�𝜖𝜖
�̄�𝑃𝑃
�̄�𝑢𝑢𝑥
�̄�𝑢𝑢𝑧

⎤
⎥
⎥
⎥
⎦

∈ ℝ5𝑛 , 𝜃𝜃𝜃𝑡 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕�̄�𝑤𝑤
𝜕𝑡𝜕�̄�𝜖𝜖
𝜕𝑡
𝜕�̄�𝑃𝑃
𝜕𝑡
𝜕�̄�𝑢𝑢𝑥

𝜕𝑡
𝜕�̄�𝑢𝑢𝑧

𝜕𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ5𝑛 , 𝑓𝑓𝑓 =
⎡
⎢
⎢
⎢
⎣

000
000
000

−F𝑥𝑧
000

⎤
⎥
⎥
⎥
⎦

∈ ℝ5𝑛 . (2.71)

Note that the boundary conditions are included.

2.4. Discretisation in time
For discretising the Galerkin equations in matrix-vector form given by Equation (2.70) we use the
Backward-Euler method. The Backward-Euler method is given by

𝜃𝜃𝜃𝑡 =
1
Δ𝑡 (𝜃𝜃𝜃

𝑘+1 −𝜃𝜃𝜃𝑘) = 𝑔 (𝑡𝑘+1, 𝜃𝜃𝜃 (𝑡𝑘+1)) , (2.72)

where 𝜃𝜃𝜃𝑘+1 = 𝜃𝜃𝜃 (𝑡𝑘+1), Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘 is the time step, and 𝑔 (𝑡𝑘+1, 𝜃𝜃𝜃 (𝑡𝑘+1)) = 𝑓𝑓𝑓𝑘+1 − 𝑀𝜃𝜃𝜃𝑘+1 and
𝑓𝑓𝑓𝑘+1 = 𝑓𝑓𝑓 (𝑡𝑘+1). Applying Equation (2.72) to Equation (2.70) gives

(𝑀𝑡 + Δ𝑡𝑀)𝜃𝜃𝜃𝑘+1 = 𝑀𝑡𝜃𝜃𝜃𝑘 + Δ𝑡𝑓𝑓𝑓𝑘+1. (2.73)

Assuming that (𝑀𝑡 + Δ𝑡𝑀) is invertible, Equation (2.73) can be written as

𝜃𝜃𝜃𝑘+1 = (𝑀𝑡 + Δ𝑡𝑀)−1 (𝑀𝑡𝜃𝜃𝜃𝑘 + Δ𝑡𝑓𝑓𝑓𝑘+1) . (2.74)

The two-dimensional results will not be determined in this literature report. However, this is one of
the main goals for our further research.



3
Biot’s Model (1D)

For simplicity, we will look at Biot’s model in one dimension and derive its numerical model. In the next
sections, the governing equations of Biot’s model will be derived in one dimension together with the
corresponding boundary conditions. Results are shown for a seabed consisting of one homogeneous
layer of soil and for a seabed consisting of two homogeneous layers of two different types of soil. Given
that the seabed is 𝑛𝑧 metres, the layer of the seabed with one type of soil has thickness 𝑛𝑧 and the two
layers of the seabed with two types of soil have thickness 𝑛𝑧

2 .

3.1. One type of soil
We will first give a solution when assuming one layer of fine sand. In this case the porosity, Lamé’s
constants and hydraulic conductive are constant and their derivatives with respect to 𝑧 equal zero.

3.1.1. Physical model and numerical model
Noting that in one dimension we have that 𝜖vol =

𝜕𝑢𝑧
𝜕𝑧 , we then have the following constitutive equations

in one dimension

⎧⎪
⎨⎪⎩

𝛾𝑤
𝐾𝑠

𝜕𝜖vol
𝜕𝑡 − (𝜆 + 2𝜇)𝜕

2𝜖vol
𝜕𝑧2 = −𝛾𝑤𝐾𝑠 𝑝𝛽

𝜕𝑃
𝜕𝑡

𝛾𝑤
𝐾𝑠
𝑝𝛽 𝜕𝑃𝜕𝑡 −

𝜕2𝑃
𝜕𝑧2 = −𝛾𝑤𝐾𝑠

𝜕𝜖vol
𝜕𝑡

𝜕𝑢𝑧
𝜕𝑧 = 𝜖vol

, for 𝑧 ∈ Ω and 𝑡 ∈ 𝕋, (3.1)

with boundary conditions

{𝜖vol = 0𝑃(0, 𝑡) = 𝐹𝑧𝑧(𝑡)
, {

𝑢𝑧(−𝑛𝑧 , 𝑡) = 0
𝜕𝑃(−𝑛𝑧 ,𝑡)

𝜕𝑧 = 0
𝜕𝜖vol(−𝑛𝑧 ,𝑡)

𝜕𝑧 = 0
, for 𝑡 ∈ 𝕋, (3.2)

and initial conditions

𝜖vol(𝑧, 0) = 𝑃(𝑧, 0) = 𝑢𝑧(𝑧, 0) = 0, for 𝑧 ∈ Ω.

Using boundary conditions, the weak equations in one-dimension are given by

⎧⎪
⎨⎪⎩

∫0−𝑛𝑧 𝑁
𝜖
𝑖
𝛾𝑤
𝐾𝑠
[𝜕𝜖vol𝜕𝑡 + 𝑝𝛽 𝜕𝑃𝜕𝑡 ] + (𝜆 + 2𝜇) (

𝜕𝑣𝜖
𝜕𝑧 ⋅

𝜕𝜖vol
𝜕𝑧 ) d𝑧 = 0

∫0−𝑛𝑧 𝑁
𝑃
𝑖
𝛾𝑤
𝐾𝑠
[𝜕𝜖vol𝜕𝑡 + 𝑝𝛽 𝜕𝑃𝜕𝑡 ] + (

𝜕𝑣𝑃
𝜕𝑧 ⋅

𝜕𝑃
𝜕𝑧 ) d𝑧 = 0

∫0−𝑛𝑧 𝑁
𝑢
𝑖
𝜕𝑢𝑧
𝜕𝑧 d𝑧 = ∫0−𝑛𝑧 𝑁

𝑢
𝑖 𝜖vold𝑧

. (3.3)
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Substituting one-dimensional trial functions into Equation (3.3) we get the following one-dimensional
Galerkin equations in matrix-vector form

⎧

⎨
⎩

𝛾𝑤
𝐾𝑠
𝐴�̄�𝜖𝜖𝑡 +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝐴�̄�𝑃𝑃𝑡 + (𝜆 + 2𝜇)𝐵�̄�𝜖𝜖 = 000

𝛾𝑤
𝐾𝑠
𝐴�̄�𝜖𝜖𝑡 +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝐴�̄�𝑃𝑃𝑡 + 𝐵�̄�𝑃𝑃 = 000

𝐶�̄�𝑢𝑢𝑧 = 𝐴�̄�𝜖𝜖
, (3.4)

where 𝐴𝑖,𝑗 = ∫
0
−𝑛𝑧 𝑁𝑖𝑁𝑗d𝑧, 𝐵𝑖,𝑗 = ∫

0
−𝑛𝑧

𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑗
𝜕𝑧 d𝑧, 𝐶𝑖,𝑗 = ∫

0
−𝑛𝑧 𝑁𝑖

𝜕𝑁𝑗
𝜕𝑧 d𝑧. and 𝐶

0
𝑖,𝑗 = 𝑁𝑖(0)

𝜕𝑁𝑗(0)
𝜕𝑧 .

We can write Equation (3.4) as two systems of matrix-vector multiplication

{𝑀
𝑡𝑆𝑆𝑆𝑡 +𝑀𝑆𝑆𝑆 = 𝑓𝑓𝑓

𝐶�̄�𝑢𝑢𝑧 = 𝐴�̄�𝜖𝜖 , (3.5)

where

𝑀𝑡 = [
𝛾𝑤
𝐾𝑠
𝐴 𝛾𝑤

𝐾𝑠
𝑝𝛽𝐴

𝛾𝑤
𝐾𝑠
𝐴 𝛾𝑤

𝐾𝑠
𝑝𝛽𝐴] , 𝑀 = [(𝜆 + 2𝜇)𝐵 ∅

∅ 𝐵 ] , 𝑆𝑆𝑆 = [�̄�𝜖𝜖�̄�𝑃𝑃] , 𝑆𝑆𝑆𝑡 = [
𝜕�̄�𝜖𝜖
𝜕𝑡
𝜕�̄�𝑃𝑃
𝜕𝑡
] , 𝑓𝑓𝑓(𝑡) = [ 000𝐹𝐹𝐹(𝑡)] . (3.6)

The Dirichlet boundary conditions are included in the numerical model by setting the corresponding
rows of matrices 𝑀𝑡 and 𝑀 to zero and then putting pivots in these same rows of 𝑀. Furthermore, we
set 𝐹𝑖 = 0 for 𝑖 = 1,… , 𝑛 − 1 and 𝐹𝑛 = 𝐹𝑧𝑧. Then we get that �̄�𝑛 = 𝐹𝑛 = 𝐹𝑧𝑧 and �̄�𝑧0 = 0. Now we apply
the time integration given by Equation (2.74) using 𝑀𝑡 , 𝑀,𝑆𝑆𝑆 and 𝑓𝑓𝑓 as described above. Assuming that
matrix (𝑀𝑡 + Δ𝑡𝑀) and 𝐶 are invertible, we get that

{𝑆𝑆𝑆
𝑘+1 = (𝑀𝑡 + Δ𝑡𝑀)−1 (𝑀𝑡𝑆𝑆𝑆𝑘 + Δ𝑡𝑓𝑓𝑓𝑘+1)
̄𝑢�̄�𝑢�̄�𝑢𝑧𝑘+1 = 𝐶−1𝐴 ̄𝜖̄𝜖̄𝜖𝑘+1

. (3.7)

Finally, we choose that

𝐹𝑧𝑧(𝑡) = {
(1 − 𝛽) (𝜆 + 2𝜇) (1 − cos (𝑡)) , if 𝑡 < 𝜋
2(1 − 𝛽) (𝜆 + 2𝜇) , if 𝑡 ≥ 𝜋 . (3.8)

Note that 𝐹𝑧𝑧, which represents the normal stress, indeed only depends on time and is chosen to be
positive for all 𝑡 ∈ 𝕋. Furthermore, the value of 𝐹𝑧𝑧 and the value of its derivative with respect to 𝑧
equals zero at initial time 𝑡 = 0. This way the initial conditions and boundary conditions are still met.
Finally, note that the normal stress 𝐹𝑧𝑧 becomes constant over time.

Then the solution of the one-dimensional model must go to the stationary solution over time. There-
fore, will now solve the stationary one-dimensional system in order to find the stationary solution.

3.1.2. Stationary model
The stationary model in one dimension is given by

⎧

⎨
⎩

𝜕2𝜖vol
𝜕𝑧2 = 0
𝜕2𝑃
𝜕𝑧2 = 0𝜕𝑢𝑧
𝜕𝑧 = 𝜖vol

, (3.9)

with boundary conditions given by Equation (3.2) using 𝐹𝑧𝑧 = 𝐹 constant (𝑡 → ∞).
The set of equations given by Equation (3.9) gives the following solutions

{
𝑢𝑧 = ∫𝜖vold𝑧 + 𝑐1 =

1
2𝑐2𝑧

2 + 𝑐3𝑧 + 𝑐1
𝜖vol = 𝑐2𝑧 + 𝑐3
𝑃 = 𝑐4𝑧 + 𝑐5

. (3.10)
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Using the boundary conditions, we find that 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 0 and 𝑐5 = 𝐹, i.e.

{
𝑢𝑧 = 0
𝜖vol = 0
𝑃 = 𝐹

. (3.11)

Then we find that also the stationary solution for 𝜖vol and 𝑢𝑧 has a unique solution. Therefore, the
solution(s) of Equation (2.69) will converge to a unique solution, namely the stationary solution given
by Equation (3.11). However, this (stationary) solution translates to the pore water pressure carrying all
load while the effective stress is zero on the whole space [−𝑛𝑧 , 0] which seems physically not possible
[6].

3.1.3. Unique solution
When adding the first and second subequations of Equation (3.1), we find

(𝜆 + 2𝜇) 𝜕
2𝜖vol
𝜕𝑧2 = 𝜕2𝑃

𝜕𝑧2
⇔

(𝜆 + 2𝜇) 𝜕𝜖vol𝜕𝑧 = 𝜕𝑃
𝜕𝑧 + 𝑑1(𝑡)

⇔
(𝜆 + 2𝜇) 𝜖vol = 𝑃 + 𝑑1𝑧 + 𝑑2,

where 𝑑1(𝑡) and 𝑑2(𝑡) are constant in space. Since we have boundary condition 𝜕𝜖vol
𝜕𝑧 = 𝜕𝑃

𝜕𝑧 = 0 at
𝑧 = 0, we get that 𝑑1(𝑡) = 0. Because we have the boundary conditions 𝜖vol = 0 and 𝑃 = 𝐹𝑧𝑧 at
𝑧 = −𝑛𝑧, we get that 𝑑2(𝑡) = −𝐹𝑧𝑧. This implies that

(𝜆 + 2𝜇) 𝜖vol = 𝑃 − 𝐹𝑧𝑧 , on Ω̄ ∶= Ω ∪ dΩ = [−𝑛𝑧 , 0].

Therefore, we not only have a unique solution for the stationary model given by Equation (3.11), but
also for the Galerkin model given by (3.5).

3.1.4. Results
The three variables 𝜖vol, 𝑃, 𝑢𝑧 and their derivatives are plotted five times, namely at 𝑡 = 0.0, 1.5, 3.0
and 4.5, 6.0, for the case of compressible water and of incompressible water. For the assumption of
compressible water we set 𝛽 = 4.8 ⋅ 10−10 and for the assumption of incompressible water we have
by definition 𝛽 = 0.0. The effective stress 𝜎′𝑧𝑧 = −(𝜆 + 2𝜇) 𝜖vol is also plotted in order to check the
relationship (𝜆 + 2𝜇) 𝜖vol(𝑧, 𝑡) = 𝑃(𝑧, 𝑡) − 𝐹𝑧𝑧. We use piece-wise linear basis-functions 𝑁𝑖, which is of
degree 1 and smoothness 0 and are called hat functions. These are given by

𝑁𝑖 = {
𝑧−𝑧𝑖−1
𝑧𝑖−𝑧𝑖−1

, if 𝑧 ∈ [𝑧𝑖−1, 𝑧𝑖]
𝑧𝑖+1−𝑧
𝑧𝑖+1−𝑧𝑖

, if 𝑧 ∈ [𝑧𝑖 , 𝑧𝑖+1]
, (3.12)

for 𝑖 = 1,… , 𝑛. Furthermore, for integration of a subdomain we use 1000 integration points, the time
step is chosen as Δ𝑡 = 0.0025 and the number of subdomains is chosen as Δ𝑧 = 0.0025. The porosity,
Poisson ratio and the effective size of the grain, 𝑑10 [m], is given by Table 3.1 and the shear modulus 𝜇
and specific weight 𝛾𝑤 are given by Table 3.2. The hydraulic conductivity is 𝐾𝑠 = 𝑐 ⋅𝑑10 [m/s] according
to Allen Hazen [9]. We will use 𝑐 = 1.0 which is often chosen in civil engineering problems. Recall that
𝜆 is given by Equation (2.5). At last, we set 𝑛𝑧 = 2, i.e. Ω̄ = [−2, 0].

Table 3.2: Parameters shear modulus and specific weight of one layer of soil which is fine sand [6].

Parameters Symbols Values
Shear modulus of ‘fine sand’ [Pa] 𝜇 7.7 ⋅ 106
Specific weight of water [Pa] 𝛾𝑤 104
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Table 3.1: Parameters effective size of the grains, porosity and Poisson ratio of one layer of soil which is fine sand [10].

Soil properties Symbols Fine sand
Effective size of the grains [m] 𝑑10 3.0 ⋅ 10−5
Porosity 𝑝 0.4
Poisson ratio 𝑣𝑝 0.3

In Figures 3.1 and 3.2 and Figures 3.3 and 3.4, for assuming compressible water and for assuming
incompressible water we find that all boundary conditions given by Equation (3.2) are (approximately)
satisfied.

When comparing the top figures of Figures 3.1 and 3.3, we find that the effective stress and volumet-
ric strain indeed behave mirrored times a constant. In subfigures of Figures 3.1 and 3.3 for water pres-
sure and volumetric strain, we do not immediately see the relationship (𝜆 + 2𝜇) 𝜖vol(𝑧, 𝑡) = 𝑃(𝑧, 𝑡) −𝐹𝑧𝑧
which is derived in the previous section which is probably due to the large values of the water pres-
sure. In subfigures for the derivative of the water pressure and volumetric strain of Figures 3.2 we
do find derivative of the relation, namely (𝜆 + 2𝜇) 𝜕𝜖vol(𝑧,𝑡)𝜕𝑧 = 𝜕𝑃(𝑧,𝑡)

𝜕𝑧 which indicates that the relation-
ship between the water pressure and the volumetric strain is present for compressible water. We also
found, when increasing the time further, that the solutions of the volumetric strain, water pressure and
vertical displacement indeed converge to the stationary solution. For incompressible water, it seems
that the solutions of the volumetric strain, water pressure and displacement in 𝑧-direction (and the
effective stress) found is already close to the corresponding steady state solutions given by Equa-
tion (3.11). Note that then the relation between the volumetric strain and water pressure still holds:
(𝜆 + 2𝜇) 𝜖vol(𝑧, 𝑡) = 𝑃(𝑧, 𝑡) − 𝐹𝑧𝑧 ⟹ 0 = (𝜆 + 2𝜇) 0 = 𝐹𝑧𝑧 − 𝐹𝑧𝑧 = 0. This is shown the subfigures of
these variables and their derivatives in Figure 3.3. In this case at 𝑡 = 0.0 the water pressure is zero
in Ω = [−2, 0], while at the next time, say 𝑡 = 1.5, the pressure is approximately 25043632.42 Pa
over the whole space Ω and the volumetric strain and vertical displacement remain approximately 0
over the whole space. When assuming incompressible water, also [7] noted the pore water pressure is
constant over space and thus directly evenly distributed over the whole space. This agrees with [6] that
the pore water pressure is directly transferred deeper in the soil for Biot’s model with the assumption
of incompressible water.

Figure 3.1: 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times, when water is assumed to be compressible with 𝛽 = 4.8 ⋅ 10−10.
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Figure 3.2: Derivatives of 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times with respect to 𝑧, when water is assumed to be compressible with
𝛽 = 4.8 ⋅ 10−10.

Figure 3.3: 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times, when water is assumed to be incompressible (𝛽 = 0).
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Figure 3.4: Derivatives of 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times with respect to 𝑧, when water is assumed to be incompressible (𝛽 = 0).

3.2. Two types of soil
Note that in previous section it was assumed that we had one type of soil. In this section we assume
that we have two types of soil and that the transitions happens at -1.0 meter.

3.2.1. Physical model and numerical model
Using the alternative boundary conditions given by (3.2), we get the same one-dimensional weak equa-
tions for the two different layers of soil, say fine sand andmedium sand, as for one type of soil. However,
𝐾𝑠 , 𝑝, 𝜆 and 𝜇 differ per separate layer. We define that the first layer, 𝑧 ∈ [−𝑛𝑧,−𝑛𝑧2 ], is medium sand
and the second layer, 𝑧 ∈ [−𝑛𝑧2 , 0], is fine sand, i.e. the boundary between the two layer is the middle
of the whole domain Ω = [−𝑛𝑧 , 0]. The subdomains are divided such that there is no overlap between
layers in one subdomain. However, note that the derivative of the constants that differ per layer does
not exist when 𝑧 → −𝑛𝑧2 . Since this is only one point and has almost no impact on the numerical model,
we ignore this for now.

Then we get that substituting one-dimensional trial functions into Equation (3.3) gives the following
one-dimensional Galerkin equations in matrix-vector form

{
𝐴𝜖�̄�𝜖𝜖𝑡 + 𝐴𝑃�̄�𝑃𝑃𝑡 + 𝐵𝜖�̄�𝜖𝜖 = 000
𝐴𝜖�̄�𝜖𝜖𝑡 + 𝐴𝑃�̄�𝑃𝑃𝑡 + 𝐵𝑃�̄�𝑃𝑃 = 000
𝐶�̄�𝑢𝑢𝑧 = 𝐴�̄�𝜖𝜖

, (3.13)

where

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

𝐴𝜖𝑖,𝑗 =
𝛾m𝑤
𝐾m𝑠
∫−

𝑛𝑧
2

−𝑛𝑧 𝑁𝑖𝑁𝑗dΩ +
𝛾f𝑤
𝐾f𝑠
∫0−𝑛𝑧2 𝑁𝑖𝑁𝑗dΩ

𝐴𝑃𝑖,𝑗 =
𝛾m𝑤
𝐾m𝑠
𝑝m𝛽 ∫−

𝑛𝑧
2

−𝑛𝑧 𝑁𝑖𝑁𝑗d𝑧 +
𝛾f𝑤
𝐾f𝑠
𝑝f𝛽 ∫0−𝑛𝑧2 𝑁𝑖𝑁𝑗d𝑧

𝐵𝜖𝑖,𝑗 = (𝜆m + 2𝜇m) ∫
−𝑛𝑧2
−𝑛𝑧

𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑗
𝜕𝑧 d𝑧 + (𝜆

f + 2𝜇f) ∫0−𝑛𝑧2
𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑗
𝜕𝑧 d𝑧

𝐵𝑃𝑖,𝑗 = ∫
0
−𝑛𝑧

𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑗
𝜕𝑧 d𝑧

𝐶𝑖,𝑗 = ∫
0
−𝑛𝑧 𝑁𝑖

𝜕𝑁𝑗
𝜕𝑧 d𝑧

, (3.14)

and the subscripts 𝑚 and 𝑓 means the parameter with property of medium and and fine sand, respec-
tively.
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We can write Equation (3.13) as two systems of matrix-vector multiplication

{𝑀
𝑡𝑆𝑆𝑆𝑡 +𝑀𝑆𝑆𝑆 = 𝑓𝑓𝑓

𝐶�̄�𝑢𝑢𝑧 = 𝐴�̄�𝜖𝜖 , (3.15)

where

𝑀𝑡 = [𝐴
𝜖 𝐴𝑃
𝐴𝜖 𝐴𝑃] , 𝑀 = [𝐵

𝜖 ∅
∅ 𝐵𝑃 ] , 𝑆𝑆𝑆 = [�̄�𝜖𝜖�̄�𝑃𝑃] , 𝑆𝑆𝑆𝑡 = [

𝜕�̄�𝜖𝜖
𝜕𝑡
𝜕�̄�𝑃𝑃
𝜕𝑡
] , 𝑓𝑓𝑓(𝑡) = [ 000𝐹𝐹𝐹(𝑡)] , (3.16)

with 𝐴𝜖 , 𝐴𝑃 , 𝐵𝜖 and 𝐵𝑃 are given by Equation (3.14). The Dirichlet boundary conditions are included in
the numerical model by setting the corresponding rows of matrices 𝑀𝑡 and 𝑀 to zero and then putting
pivots in these same rows of 𝑀. Furthermore, we set again 𝐹𝑖 = 0 for 𝑖 = 1,… , 𝑛 − 1 and 𝐹𝑛 = 𝐹𝑧𝑧.
Then we get that �̄�𝑛 = 𝐹𝑛 = 𝐹𝑧𝑧 and �̄�𝑧0 = 0.

Now we apply the time integration given by Equation (2.74) using 𝑀𝑡 , 𝑀,𝑆𝑆𝑆 and 𝑓𝑓𝑓 as described in
Equation (3.16), where we assume that matrices (𝑀𝑡 + Δ𝑡𝑀) and 𝐶 are invertible, we get again the
time integration formulas given by Equation (3.7) with 𝐹𝑧𝑧 chosen as in Equation (3.8), but with 𝑀𝑡 , 𝑀
given by Equation (3.16).

3.2.2. Stationary model and unique solution
Since the only difference between models of having one type or two different layers of soils are some
parameters being a different constant for each layer because of the properties of the type of soils, the
stationary model and its solution of the one-dimensional model with two different layers of soil remain
the same as in model with only one layer of soil. The unique stationary model was given by Equation
(3.11). It also holds that this one-dimensional model with two different types of soil still has a unique
solution.

3.2.3. Results
The three variables 𝜖vol, 𝑃, 𝑢𝑧 and their derivatives are plotted five times, namely at 𝑡 = 0.0, 1.5, 3.0
and 4.5, 6.0, for the case of compressible water and of incompressible water. For the assumption of
compressible water we take 𝛽 = 4.8 ⋅ 10−10 and for the assumption of incompressible water we have
by definition 𝛽 = 0.0. The effective stress 𝜎′𝑧𝑧 = −(𝜆 + 2𝜇) 𝜖vol is also plotted. We use the piece-wise
linear basis-functions 𝑁𝑖 for 𝑖 = 1,… , 𝑛, given by Equation (3.12). Furthermore, we use again 1000
integration points, a time step of Δ𝑡 = 0.0025 and the number of subdomains is chosen as Δ𝑧 = 0.0025.
The values of porosity 𝑝, Poisson ratio 𝑣𝑝 and the effective size of the grains 𝑑10 [m] per layer are given
by Table 3.3 and 𝜇 is given by Table 3.4. We use again that 𝐾𝑠 = 𝑐 ⋅ 𝑑10 [m/s] by Allen Hazen [9] with
𝑐 = 1.0. 𝜆 is given by Equation (2.5) and recall that we define 𝛾𝑤 = 104. We set again 𝑛𝑧 = 2, i.e.
Ω̄ = [−2, 0].

Table 3.3: Parameters effective size of the grains, porosity and Poisson ratio of two layers of soil which are fine sand and medium
sand [10].

Soil properties Symbols Fine sand Medium sand
Effective size of the grains [m] 𝑑10 3.0 ⋅ 10−5 2.3 ⋅ 10−4
Porosity 𝑝 0.4 0.44
Poisson ratio 𝑣𝑝 0.3 0.27

Table 3.4: Lamé’s constants of two layers of soil which are fine sand and medium sand [6].

Soil properties Symbols Fine sand Medium sand
Shear modulus [Pa] 𝜇 7.7 ⋅ 106 3.9 ⋅ 106

Per layer, the results look like the results of the one-dimensional model of Biot with one layer of soil.
The values of the effective stress, volumetric strain, water pressure and vertical displacement differ a
bit compared to their values for one layer, which makes sense since several parameters depend on
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the properties of the soil. For example, Lamé constants 𝜆 and 𝜇 change when the first layer changes
into the second. This may cause a jump in value or a kink at the boundary between the layers where
𝑧 = −1.0. Since the effective stress is 𝜆 + 2𝜇 times the volumetric strain, we see a bigger jump for
the assumption of compressible and incompressible water in the subfigure of the effective stress in
Figures 3.5 and 3.7, respectively. When looking at the subfigures for the pore water pressure and
volumetric strain of the Figures 3.5 and 3.6 and Figures 3.7 and 3.8, we find again the relation of the
volumetric strain and pore water pressure given by (𝜆 + 2𝜇)𝜖vol = 𝑃 − 𝐹𝑧𝑧 for both the assumptions
of compressible water and incompressible. We expect the water pressure and the 𝑧-displacement to
be continuous which seems to hold for compressible and incompressible water. This can be seen
for compressible and incompressible water when looking at the solutions for the water pressure and
vertical displacement in Figures 3.5 and 3.7, respectively. Note that approximately the solutions for
incompressible water becomes the stationary solution directly. When increasing the time, we again
find that the solutions for compressible water converge to the stationary solution.

Figure 3.5: 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times, when water is assumed to be compressible with 𝛽 = 4.8 ⋅ 10−10.
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Figure 3.6: Derivatives of 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times with respect to 𝑧, when water is assumed to be compressible with
𝛽 = 4.8 ⋅ 10−10.

Figure 3.7: 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times, when water is assumed to be incompressible (𝛽 = 0).
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Figure 3.8: Derivatives of 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times with respect to 𝑧, when water is assumed to be incompressible (𝛽 = 0).



4
Van Damme and den Ouden-van der

Horst Model (2D)
In the next sections we will derive the governing equations for the model of Van Damme and den
Ouden-van der Horst in two dimensions and apply numerical methods to discretise in space and time.
We will first discretise the new model in space using the finite-element method and in time using the
Backward-Euler method.

4.1. Governing equations
We will use Cartesian (𝑥, 𝑧)-coordinates. We will follow the derivation of four constitutive equations
by [6]. These are given by the vorticity equation, volumetric strain equation, water pressure equation
and displacements equation. These follow from the volume balance equation and the momentum
balance equations. This approach is based on defining a stress and a stress gradient as boundary
conditions which follows from the momentum balance equation [6]. Therefore, it is also in line with the
D’Alembert’s principle of minimisation of virtual work. However, it does not follow the effective stress
principle of Terzaghi [6]. Like we did for Biot’s model, we do not take the acceleration terms into account
and ignore the body forces in the model of Van Damme and den Ouden-van der Horst.

4.1.1. Volume balance equation
According to [6], the volume balance equation for compressible or incompressible pore water is given
by

𝑝𝛽𝜕𝑃𝜕𝑡 +
𝜕𝑝
𝜕𝑡 +

𝜕
𝜕𝑥 (𝑝

𝜕𝑤𝑥
𝜕𝑡 ) +

𝜕
𝜕𝑧 (𝑝

𝜕𝑤𝑧
𝜕𝑡 ) = 0, (4.1)

where 𝑡 denotes time, 𝑝 denotes the porosity of the medium, 𝛽 denotes the compressibility of the pore
water (if 𝛽 = 0 the water is incompressible, and if 𝛽 ∈ (0, 1] the water is compressible), 𝑃 denotes the
pore water pressure and 𝑤𝑥 and 𝑤𝑧 denotes the 2D displacement of the pore water in 𝑥-direction and
𝑧-direction, respectively. According to [6] the volume balance equation of the incompressible particles
in a porous medium is given by

𝜕(1 − 𝑝)
𝜕𝑡 + 𝜕

𝜕𝑥 ((1 − 𝑝)
𝜕𝑢𝑥
𝜕𝑡 ) +

𝜕
𝜕𝑧 ((1 − 𝑝)

𝜕𝑢𝑧
𝜕𝑡 ) = 0, (4.2)

where 𝑢𝑥 and 𝑢𝑧 denotes the 2D displacement of the porous medium in 𝑥-direction and 𝑧-direction, re-
spectively. Equation (4.2) describes the change in porosity caused by the movement of incompressible
particles in a porous medium. Then the volume balance equation for the porous medium is given by
adding the volume balance equation of the pore water to the volume balance equation of the particles
[6]

𝑝𝛽𝜕𝑃𝜕𝑡 +
𝜕
𝜕𝑥 (𝑝

𝜕(𝑤𝑥 − 𝑢𝑥)
𝜕𝑡 ) + 𝜕

𝜕𝑧 (𝑝
𝜕(𝑤𝑧 − 𝑢𝑧)

𝜕𝑡 ) + 𝜕𝜖vol𝜕𝑡 = 0, (4.3)

27
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where 𝜖vol =
𝜕𝑢𝑥
𝜕𝑥 +

𝜕𝑢𝑧
𝜕𝑧 is the volumetric strain of the porous medium.

4.1.2. Momentum balance equations
[6] derives the momentum balance equations using D’Alembert’s principle of virtual work. This principle
states that for the reversible displacements the total virtual work of the imposed forces plus the inertial
forces vanish [6]. The momentum balance equations are given by [6]

−𝜇 𝜕𝜕𝑧 (
𝜕𝑢𝑥
𝜕𝑧 − 𝜕𝑢𝑧𝜕𝑥 ) − (𝜆 + 2𝜇)

𝜕
𝜕𝑥 (

𝜕𝑢𝑥
𝜕𝑥 + 𝜕𝑢𝑧𝜕𝑧 ) −

𝛾𝑤
𝐾𝑠
𝜕𝑝(𝑤𝑥 − 𝑢𝑥)

𝜕𝑡 = 0, (4.4)

𝜇 𝜕𝜕𝑥 (
𝜕𝑢𝑥
𝜕𝑧 − 𝜕𝑢𝑧𝜕𝑥 ) − (𝜆 + 2𝜇)

𝜕
𝜕𝑧 (

𝜕𝑢𝑥
𝜕𝑥 + 𝜕𝑢𝑧𝜕𝑧 ) −

𝛾𝑤
𝐾𝑠
𝜕𝑝(𝑤𝑧 − 𝑢𝑧)

𝜕𝑡 = 0, (4.5)

𝜕𝑃
𝜕𝑥 +

𝛾𝑤
𝐾𝑠
𝜕𝑝(𝑤𝑥 − 𝑢𝑥)

𝜕𝑡 = 0, (4.6)

𝜕𝑃
𝜕𝑧 +

𝛾𝑤
𝐾𝑠
𝜕𝑝(𝑤𝑧 − 𝑢𝑧)

𝜕𝑡 = 0, (4.7)

where 𝐾𝑠 denotes the hydraulic conductivity, 𝛾𝑤 denotes the specific weight. 𝜆 and 𝜇 are Lamé’s con-
stant and are related to the elasticity modulus 𝐸 and Poisson ratio 𝑣𝑝 of the porous medium which is
given by [1]

𝜆 =
𝑣𝑝𝐸

(1 + 𝑣𝑝)(1 − 2𝑣𝑝)
, (4.8)

𝜇 = 𝐸
2(1 + 𝑣𝑝)

. (4.9)

4.1.3. Vorticity equation
Applying the curl on the momentum balance equations, we get a constitutive equation for the vorticity
[6]. Therefore, the vorticity is defined to be the curl of the displacement field which is given by 𝜔 =
𝜕𝑢𝑥
𝜕𝑧 −

𝜕𝑢𝑧
𝜕𝑥 . Via substituting Equations (4.6) and (4.7) into Equations (4.4) and (4.5) the Darcy’s friction

terms are replaced by the pressure gradients. Substituting 𝜖vol and 𝜔, this gives the following two
equations

𝜕𝑃
𝜕𝑥 − 𝜇

𝜕𝜔
𝜕𝑧 − (𝜆 + 2𝜇)

𝜕𝜖vol
𝜕𝑥 = 0, (4.10)

𝜕𝑃
𝜕𝑧 + 𝜇

𝜕𝜔
𝜕𝑥 − (𝜆 + 2𝜇)

𝜕𝜖vol
𝜕𝑧 = 0. (4.11)

Then taking first the curl of Equations (4.10) and (4.11), and second multiplying the resulting equation
with −1, gives [6]

𝜇 [𝜕
2𝜔
𝜕𝑧2 +

𝜕2𝜔
𝜕𝑥2 ] = 0. (4.12)

Note that Equation (4.12) does only depend on the vorticity 𝜔 now and not on the pressure 𝑃 and
volumetric strain 𝜖vol anymore. Equation (4.12) forms the first constitutive equation.

4.1.4. Volumetric strain equation
Substituting 𝜖vol and 𝜔 and then taking the divergence of Equations (4.4) and (4.5), gives

−(𝜆 + 2𝜇) (𝜕
2𝜖vol
𝜕𝑥2 + 𝜕

2𝜖vol
𝜕𝑧2 ) −

𝛾𝑤
𝐾𝑠
( 𝜕𝜕𝑥 [𝑝

𝜕(𝑤𝑥 − 𝑢𝑥)
𝜕𝑡 ] + 𝜕

𝜕𝑧 [𝑝
𝜕(𝑤𝑧 − 𝑢𝑧)

𝜕𝑡 ]) = 0. (4.13)

Substituting Equation (4.3) into Equation (4.13), we get

𝛾𝑤
𝐾𝑠
𝜕𝜖vol
𝜕𝑡 − (𝜆 + 2𝜇) (𝜕

2𝜖vol
𝜕𝑥2 + 𝜕

2𝜖vol
𝜕𝑧2 ) = −

𝛾𝑤
𝐾𝑠
𝑝𝛽𝜕𝑃𝜕𝑡 . (4.14)
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Note that in Equation (4.14) we account for the effects of damping. According to [6], if we would account
for the acceleration terms Equation (4.14) would become a wave equation in the case of no damping,
because the pore water is not part of this equation. Equation (4.14) forms the second constitutive
equation.

4.1.5. Water pressure equation
We also need a constitutive equation describing the relation for the pore water pressures. This is done
similar as for the volumetric strain. So now we take the divergence of the momentum balance equations
for the pore water which are given by Equations (4.6) and (4.7). This gives a storage equation given
by [6]

𝛾𝑤
𝐾𝑠
𝑝𝛽𝜕𝑃𝜕𝑡 −

𝜕2𝑃
𝜕𝑥2 −

𝜕2𝑃
𝜕𝑧2 = −

𝛾𝑤
𝐾𝑠
𝜕𝜖vol
𝜕𝑡 . (4.15)

4.1.6. Displacement equations
Beside the relations described above, it is also needed to form some relations between the horizontal
and vertical displacements and the vorticity and volumetric strain. These are given by [6]

−𝜕
2𝑢𝑥
𝜕𝑥2 −

𝜕2𝑢𝑥
𝜕𝑧2 = −𝜕𝜔𝜕𝑧 −

𝜕𝜖vol
𝜕𝑥 , (4.16)

−𝜕
2𝑢𝑧
𝜕𝑥2 −

𝜕2𝑢𝑧
𝜕𝑧2 = 𝜕𝜔

𝜕𝑥 −
𝜕𝜖vol
𝜕𝑧 . (4.17)

Equations (4.16) and (4.17) represent the fourth and fifth constitutive equations, respectively.

4.1.7. Boundary conditions
In this new model only the pore water pressure and displacement must be defined at the boundary,
while in Biot’s model also the effective stress was defined. According to [6], when boundary conditions
can be well-determined the use of geotechnical models to such a situation is limited by defining both
the pore water pressure and the effective stress.

The boundary condition at 𝑧 = 0 for 𝜔 and 𝑢𝑥 depend on the boundary conditions for the normal
stress and for 𝑃, 𝜖vol and 𝑢𝑧 on the shear stress [6]. Recall that for Biot’s model it is common to take
𝜎𝑧𝑧 = 𝜎′𝑧𝑧 + 𝑃 = −𝜆𝜖vol − 2𝜇

𝜕𝑢𝑧
𝜕𝑧 + 𝑃. However, according to [6], the assumption of 𝜎′𝑧𝑧 + 𝑃 = 𝐹𝑧𝑧,

where 𝐹𝑧𝑧 is a function depending on time, gives a pressure at the surface that is much higher than the
pressure of the waves on the surface caused by water running over the porous medium. 𝜎′𝑧𝑧 = 0 and
𝑃 = 𝐹𝑧𝑧 were assumed in Biot’s model which means that the water pressure is carrying all the load. The
assumption 𝜎′𝑧𝑧 = 𝐹𝑧𝑧 gives a discontinuity in the water pressure at 𝑧 = 0 [6]. Assuming that 𝑃 = 𝐹𝑧𝑧, a
solution is found where the pressure inside the pores is equal to the force of water flow on the surface,
but the porous medium can experience a pulling force [6]. Since the two assumptions 𝜎′𝑧𝑧+𝑃 = 𝐹𝑧𝑧 and
𝜎′𝑧𝑧 = 𝐹𝑧𝑧 give unlikely situations, we choose the assumption 𝑃 = 𝐹𝑧𝑧 like [6]. However, then Terzaghi’s
stress principle is not met in case of hydrodynamic loads, since we do not define the effective stresses
at the surface: 𝜎𝑧𝑧 = 𝐹𝑧𝑧 ≠ 𝜎′𝑧𝑧 + 𝐹𝑧𝑧 = 𝜎′𝑧𝑧 + 𝑃. Note that Terzaghi’s principle is valid in case of
statics and linear loads [6]. Another condition at boundary 𝑧 = 0 is that the vertical momentum balance
equation must hold. This equation is given by (𝜆 + 2𝜇) 𝜕𝜖vol𝜕𝑧 − 𝜇 𝜕𝜔𝜕𝑥 −

𝜕𝑃
𝜕𝑧 = 0 [6]. The third condition at

𝑧 = 0 can be given by 𝜎𝑥𝑧 = 𝐹𝑥𝑧 [6], where 𝐹𝑥𝑧 is a function only depending on time. Recall that the
formula of shear stress is given by 𝜎𝑥𝑧 = −2𝜇𝜖𝑥𝑧 and that 𝜖𝑥𝑧 =

1
2 (

𝜕𝑢𝑥
𝜕𝑧 +

𝜕𝑢𝑧
𝜕𝑥 ). Substituting these two

definitions into the third condition, we get −𝜇 (𝜕𝑢𝑥𝜕𝑧 +
𝜕𝑢𝑧
𝜕𝑥 ) = 𝐹𝑥𝑧. Rewriting this latter equation in terms

of 𝜔 and 𝑢𝑥 gives 𝜇𝜔 − 2𝜇 𝜕𝑢𝑥𝜕𝑧 = 𝐹𝑥𝑧 which will be used as the third boundary condition from now on.

At 𝑧 = −𝑛𝑧 we define 𝜔 = 𝑢𝑧 =
𝜕𝑢𝑥
𝜕𝑧 = 𝜕𝑃

𝜕𝑧 =
𝜕𝜖vol
𝜕𝑧 = 0, since the influence of the waves on such a

depth is assumed to be nil for these specific variables or their derivative with respect to 𝑧 [5], [6].
Similarly, at 𝑥 = 0 and 𝑥 = −𝑛𝑥 we have 𝜔 = 𝑢𝑥 =

𝜕𝑢𝑧
𝜕𝑥 = 𝜕𝑃

𝜕𝑥 =
𝜕𝜖vol
𝜕𝑥 = 0. These boundary

conditions at 𝑥 = 0 and 𝑥 = −𝑛𝑥 are based on the situation of a standing wave that increases and
decreases the load on the soil in horizontal direction [6].
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In conclusion, we have the following boundary conditions

for 𝑧 = 0 ∶ {
𝜇𝜔 − 2𝜇 𝜕𝑢𝑥𝜕𝑧 = 𝐹𝑥𝑧
𝑃 = 𝐹𝑧𝑧
(𝜆 + 2𝜇) 𝜕𝜖vol𝜕𝑧 − 𝜇 𝜕𝜔𝜕𝑥 −

𝜕𝑃
𝜕𝑧 = 0

, (4.18)

for 𝑧 = −𝑛𝑧 ∶ {𝜔 = 𝑢𝑧 =
𝜕𝑢𝑥
𝜕𝑧 =

𝜕𝑃
𝜕𝑧 =

𝜕𝜖vol
𝜕𝑧 = 0 , (4.19)

and for 𝑥 = 0 and 𝑥 = 𝑛𝑥 ∶ {𝜔 = 𝑢𝑥 =
𝜕𝑢𝑧
𝜕𝑥 =

𝜕𝑃
𝜕𝑥 =

𝜕𝜖vol
𝜕𝑥 = 0 , (4.20)

where 𝐹𝑥𝑧 and 𝐹𝑧𝑧 are a functions only depending on time. Their value and their gradient equal zero.

4.1.8. Initial conditions
We assume that that there are no waves and everything is initially at rest. This means that we assume
that no stresses act on the surface in the beginning, so there are no stresses and displacements at
time 𝑡 = 0 [6]. Since we have no displacement and stresses, the volumetric strain and pressure must
be zero too. Then we have that [6]

𝑢𝑥|𝑡=0 = 𝑢𝑧|𝑡=0 = 𝜖vol|𝑡=0 = 𝜔|𝑡=0 = 𝑃|𝑡=0 = 0. (4.21)
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4.2. Discretisation in space
In the following sections we will discretise Equations (4.28), (4.37), (4.42), (4.16) and (4.17). First
we will discretise these equations with respect to space using the finite-element method (FEM). We
do this per equation. When discretising with respect to space is finished, we discretise the resulting
equations with respect to time using Backward-Euler since this method is unconditionally stable. In this
discretisation we assume that Ω = (0, 𝑛𝑥) × (−𝑛𝑧 , 0) ⊆ ℝ2 is the space domain and that 𝕋 = (0, 𝑡end)
is the time domain, with 𝑛𝑥 , 𝑛𝑧 , 𝑡end > 0. The derivation of the Galerkin equations of the new model is
pretty similar to the ones of Biot’s model, since all governing equations are the same and most of the
boundary conditions too. Therefore, we skip some computations of the Galerkin equations for this new
model and refer to the computations of the Galerkin equations done for Biot’s model.

We again assume that the two-dimensional domain and its boundaries and the unit vectors normal
to these boundaries are given as in Figure 2.2. Recall that the normal unit vectors in two dimensions
are given by

𝜂1 = [
0
−1] , 𝜂2 = [

1
0] , 𝜂3 = [

0
1] , 𝜂4 = [

−1
0 ] . (4.22)

where the first entry represents the 𝑥-direction and the second entry represents the 𝑧-direction.
Recall that 𝑛 is the dimension of the space and 𝑁𝑖 are the basis-functions for 𝑖 = 1,… , 𝑛 that form

a basis for the space. When having the symbol of the volumetric strain, pore water pressure or dis-
placement in horizontal or vertical direction, 𝑛 and 𝑁𝑖 for 𝑖 = 1,… , 𝑛 are defined for the space of that
unknown variable. However, we assume that 𝑛 is the same for all spaces.

4.2.1. Vorticity equation
We will derive the weak form of the vorticity equation and its matrix-vector form. Suppose that the test
and trial functions are given by

𝑣𝜔(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑖=1
𝑁𝜔𝑖 (𝑥, 𝑧)�̄�𝜔𝑖 (𝑡), (4.23)

𝜔(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑗=1
𝑁𝜔𝑗 (𝑥, 𝑧)�̄�𝑗(𝑡). (4.24)

Multiplying Equation (4.12) by test function 𝑣𝜔 and integrating over the domain Ω gives

∫
Ω
𝑣𝜔𝜇 [𝜕

2𝜔
𝜕𝑧2 +

𝜕2𝜔
𝜕𝑥2 ]dΩ = 0. (4.25)

Since 𝜕2𝜔
𝜕𝑧2 +

𝜕2𝜔
𝜕𝑥2 = ∇ ⋅ (∇𝜔) with ∇ the gradient operator, we can apply integration by parts on Equation

(4.25) followed by the divergence theorem. Then Equation (4.25) becomes the weak equation

∫
dΩ
𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂)dΓ − ∫

Ω
∇𝑣𝜔 ⋅ 𝜇∇𝜔dΩ = 0, (4.26)

where dΩ contains the boundaries of domain Ω, and 𝜂𝜂𝜂 is the unit normal vector pointing outward to the
surface dΩ. Because of the boundary conditions given by Equations (4.18), (4.19) and (4.20), we set
𝑣𝜔(𝑥, 𝑧, 𝑡) = 0 for 𝑧 = −𝑛𝑧, 𝑥 = 0 and 𝑥 = 𝑛𝑥. Then we get that

∫
dΩ
𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂)dΓ = ∫

dΩ1
𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂1)dΓ + ∫

dΩ2
𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂2)dΓ

+ ∫
dΩ3

𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂3)dΓ + ∫
dΩ4

𝑣𝜔𝜇 (∇𝜔 ⋅ 𝜂𝜂𝜂4)dΓ

= ∫
dΩ3

𝑣𝜔𝜇𝜕𝜔𝜕𝑧 dΓ. (4.27)
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Substituting the test and trial functions given by Equations (4.23) and (4.24), respectively, into Equation
(4.26) and using the computations as for Biot’s model in Section 2.3.2 gives the following Galerkin
equations in matrix-vector multiplication,

(𝐵𝜔 − 𝑆𝐷𝜔) �̄�𝑤𝑤 = 0, (4.28)

where

𝐵𝜔𝑖𝑗 = ∫
Ω
𝜇 (∇𝑁𝜔𝑖 ⋅ ∇𝑁𝜔𝑗 ) dΩ, 𝑆𝐷𝜔𝑖𝑗 = ∫

dΩ3
𝜇𝑁𝜔𝑖

𝜕𝑁𝜔𝑗
𝜕𝑧 dΓ, �̄�𝑤𝑤 = [

�̄�1
⋮
�̄�𝑛
] ,

for 𝑖, 𝑗 = 1,… , 𝑛. Equation (4.28) is our first matrix problem to solve.

4.2.2. Volumetric strain equation
We will derive the weak form of the volumetric strain equation and its matrix-vector form. Suppose that
the test and trial functions are given by

𝑣𝜖(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑖=1
𝑁𝜖𝑖 (𝑥, 𝑧)�̄�𝜖𝑖 (𝑡), (4.29)

𝜖vol(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑗=1
𝑁𝜖𝑗 (𝑥, 𝑧) ̄𝜖𝑗(𝑡), (4.30)

𝑃(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑙=1
𝑁𝑃𝑙 (𝑥, 𝑧)�̄�𝑙(𝑡). (4.31)

Note that 𝜖vol and 𝑃 have a first derivative with respect to time which means that their test and trial
functions have to depend on time. Multiplying Equation (4.14) by test function 𝑣𝜖 and integrating over
the domain Ω gives

∫
Ω
𝑣𝜖 [𝛾𝑤𝐾𝑠

𝜕𝜖vol
𝜕𝑡 − (𝜆 + 2𝜇) (𝜕

2𝜖vol
𝜕𝑥2 + 𝜕

2𝜖vol
𝜕𝑧2 ) +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝜕𝑃𝜕𝑡 ]dΩ = 0. (4.32)

Since 𝜕2𝜖vol
𝜕𝑥2 + 𝜕2𝜖vol

𝜕𝑧2 = ∇ ⋅ (∇𝜖vol), we can apply integration by parts on the 𝜕2𝜖vol
𝜕𝑥2 + 𝜕2𝜖vol

𝜕𝑧2 part and then
the divergence theorem. Then Equation (4.32) becomes

−∫
dΩ
𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂)dΓ + ∫

Ω
𝑣𝜖 𝛾𝑤𝐾𝑠

[𝜕𝜖vol𝜕𝑡 + 𝑝𝛽𝜕𝑃𝜕𝑡 ] + (𝜆 + 2𝜇) (∇𝑣
𝜖 ⋅ ∇𝜖vol)dΩ = 0. (4.33)

Using the boundary conditions given by Equations (4.18), (4.19) and (4.20), we get that

∫
dΩ
𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂)dΓ = ∫

dΩ1
𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂1)dΓ + ∫

dΩ2
𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂2)dΓ

+ ∫
dΩ3

𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂3)dΓ + ∫
dΩ4

𝑣𝜖(𝜆 + 2𝜇) (∇𝜖vol ⋅ 𝜂𝜂𝜂4)dΓ

= ∫
dΩ3

𝑣𝜖 (𝜇𝜕𝜔𝜕𝑥 +
𝜕𝑃
𝜕𝑧 )dΓ. (4.34)

Note that the integrand of integral for the boundary dΩ3 differs than the one for Biot’s model, since this
particular boundary conditions is different. In this case, we have that −(𝜆 + 2𝜇)𝜖vol + 𝜇

𝜕𝜔
𝜕𝑥 +

𝜕𝑃
𝜕𝑧 = 0

instead of 𝜖vol = 0 at boundary dΩ3. Because of this difference, we write out the computations of the
Galerking equations.
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Substituting the test and trial functions given by Equations (4.29), (4.30) and (4.31) into Equation
(4.33) gives the following Galerkin equations

0 = −∫
dΩ3

𝑛

∑
𝑖=1
𝑁𝜖𝑖 �̄�𝜖𝑖 (𝜇

𝑛

∑
𝑗=1
�̄�𝑗
𝜕𝑁𝜔𝑗
𝜕𝑥 +

𝑛

∑
𝑙=1
�̄�𝑙
𝜕𝑁𝑃𝑙
𝜕𝑧 )dΓ

+ ∫
Ω

𝑛

∑
𝑖=1
𝑁𝜖𝑖 �̄�𝜖𝑖

𝛾𝑤
𝐾𝑠
[ 𝜕𝜕𝑡 (

𝑛

∑
𝑗=1
𝑁𝜖𝑗 ̄𝜖𝑗) + 𝑝𝛽

𝜕
𝜕𝑡 (

𝑛

∑
𝑙=1
𝑁𝑃𝑙 �̄�𝑙)] + (𝜆 + 2𝜇) [∇(

𝑛

∑
𝑖=1
𝑁𝜖𝑖 �̄�𝜖𝑖 ) ⋅ ∇(

𝑛

∑
𝑗=1
𝑁𝜖𝑗 ̄𝜖𝑗)] dΩ

= −
𝑛

∑
𝑖=1
�̄�𝜖𝑖 ∫

dΩ
𝑁𝜖𝑖 (𝜇

𝑛

∑
𝑗=1
�̄�𝑗
𝜕𝑁𝜔𝑗
𝜕𝑥 +

𝑛

∑
𝑙=1
�̄�𝑙
𝜕𝑁𝑃𝑙
𝜕𝑧 )dΓ

+
𝑛

∑
𝑖=1
�̄�𝜖𝑖 ∫

Ω

𝛾𝑤
𝐾𝑠
𝑁𝜖𝑖 [

𝑛

∑
𝑗=1
𝑁𝜖𝑗
𝜕 ̄𝜖𝑗
𝜕𝑡 + 𝑝𝛽

𝑛

∑
𝑙=1
𝑁𝑃𝑙
𝜕�̄�𝑙
𝜕𝑡 ] + (𝜆 + 2𝜇) [∇𝑁

𝜖
𝑖 ⋅ (

𝑛

∑
𝑗=1

̄𝜖𝑗∇𝑁𝜖𝑗 )] dΩ. (4.35)

Since it must hold for arbitrary �̄�𝜖𝑖 with 𝑖 = 1,… , 𝑛, we have that Equation (4.35) still holds as

0 = −∫
dΩ3

𝑁𝜖𝑖 (𝜇
𝑛

∑
𝑗=1
�̄�𝑗
𝜕𝑁𝜔𝑗
𝜕𝑥 +

𝑛

∑
𝑙=1
�̄�𝑙
𝜕𝑁𝑃𝑙
𝜕𝑧 )dΓ

+ ∫
Ω

𝛾𝑤
𝐾𝑠
𝑁𝜖𝑖 [

𝑛

∑
𝑗=1
𝑁𝜖𝑗
𝜕 ̄𝜖𝑗
𝜕𝑡 + 𝑝𝛽

𝑛

∑
𝑙=1
𝑁𝑃𝑙
𝜕�̄�𝑙
𝜕𝑡 ] + (𝜆 + 2𝜇) [∇𝑁

𝜖
𝑖 ⋅ (

𝑛

∑
𝑗=1

̄𝜖𝑗∇𝑁𝜖𝑗 )] dΩ. (4.36)

We can write Equation (4.36) as matrix-vector multiplication,

𝐴𝜖𝜖�̄�𝜖𝜖𝑡 + 𝐴𝜖𝑃�̄�𝑃𝑃𝑡 + 𝐵𝜖�̄�𝜖𝜖 − 𝑆𝐶𝜖�̄�𝜔𝜔 − 𝑆𝐷𝜖�̄�𝑃𝑃 = 0, (4.37)

where

𝐴𝜖𝜖𝑖𝑗 = ∫
Ω

𝛾𝑤
𝐾𝑠
𝑁𝜖𝑖 𝑁𝜖𝑗 dΩ, 𝐴𝜖𝑃𝑖𝑗 = ∫

Ω

𝛾𝑤
𝐾𝑠
𝑝𝛽𝑁𝜖𝑖 𝑁𝑃𝑗 dΩ, 𝐵𝜖𝑖𝑗 = ∫

Ω
(𝜆 + 2𝜇) [∇𝑁𝜖𝑖 ⋅ ∇𝑁𝜖𝑗 ] dΩ,

𝑆𝐶𝜖𝑖 = ∫
dΩ3

𝜇𝑁𝜖𝑖
𝜕𝑁𝜔𝑗
𝜕𝑥 dΓ, 𝑆𝐷𝜖𝑖 = ∫

dΩ3
𝑁𝜖𝑖
𝜕𝑁𝑃𝑗
𝜕𝑧 dΓ, �̄�𝜖𝜖 = [

̄𝜖1
⋮
̄𝜖𝑛
] , �̄�𝜖𝜖𝑡 = [

𝜕�̄�1
𝜕𝑡
⋮
𝜕�̄�𝑛
𝜕𝑡

] , �̄�𝑃𝑃𝑡 = [

𝜕�̄�1
𝜕𝑡
⋮
𝜕�̄�𝑛
𝜕𝑡

] ,

for 𝑖, 𝑗 = 1,… , 𝑛. Equation (4.37) is our second matrix problem to solve.

4.2.3. Pressure equation
We will derive the weak form of the pressure equation and its matrix-vector form. Suppose that the test
function is given by

𝑣𝑃(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑖=1
𝑁𝑃𝑖 (𝑥, 𝑧)�̄�𝑃𝑖 (𝑡). (4.38)

Recall the following test and trial functions

𝜖vol(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑗=1
𝑁𝜖𝑗 (𝑥, 𝑧) ̄𝜖𝑗(𝑡), 𝑃(𝑥, 𝑧, 𝑡) =

𝑛

∑
𝑙=1
𝑁𝑃𝑙 (𝑥, 𝑧)�̄�𝑙(𝑡).

Multiplying Equation (4.15) by test function 𝑣𝜖 and integrating over the domain Ω gives

∫
Ω
𝑣𝑃 [𝛾𝑤𝐾𝑠

𝑝𝛽𝜕𝑃𝜕𝑡 −
𝜕2𝑃
𝜕𝑥2 −

𝜕2𝑃
𝜕𝑧2 +

𝛾𝑤
𝐾𝑠
𝜕𝜖vol
𝜕𝑡 ]dΩ = 0. (4.39)
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Since 𝜕2𝑃
𝜕𝑥2 +

𝜕2𝑃
𝜕𝑧2 = ∇ ⋅ (∇𝑃), we can apply integration by parts on the −𝜕

2𝑃
𝜕𝑥2 −

𝜕2𝑃
𝜕𝑧2 part followed by the

divergence theorem. Then Equation (4.39) becomes

−∫
dΩ
𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂)dΓ + ∫

Ω
𝑣𝑃 𝛾𝑤𝐾𝑠

[𝑝𝛽𝜕𝑃𝜕𝑡 +
𝜕𝜖vol
𝜕𝑡 ] + (∇𝑣

𝑃 ⋅ ∇𝑃) dΩ = 0. (4.40)

Setting 𝑣𝑃(𝑥, 𝑧, 𝑡) = 0 for 𝑧 = 0 because of the boundary condition given by Equation (4.18) and using
the other boundary conditions given by Equations (4.19) and (4.20), we get that

∫
dΩ
𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂)dΓ = ∫

dΩ1
𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂1)dΓ + ∫

dΩ2
𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂2)dΓ

+ ∫
dΩ3

𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂3)dΓ + ∫
dΩ4

𝑣𝑃 (∇𝑃 ⋅ 𝜂𝜂𝜂4)dΓ

= 0. (4.41)

Substituting the test and trial functions given by Equations (4.38), (4.30) and (4.31) into Equation (4.40)
and using the computations as for Biot’s model in Section 2.3.1 gives the following Galerkin equations
in matrix-vector multiplication,

𝐴𝑃𝑃�̄�𝑃𝑃𝑡 + 𝐴𝑃𝜖�̄�𝜖𝜖𝑡 + 𝐵𝑃�̄�𝑃𝑃 = 0, (4.42)

where

𝐴𝑃𝑃𝑖𝑗 = ∫
Ω

𝛾𝑤
𝐾𝑠
𝑝𝛽𝑁𝑃𝑖 𝑁𝑃𝑗 dΩ, 𝐴𝑃𝜖𝑖𝑗 = ∫

Ω

𝛾𝑤
𝐾𝑠
𝑁𝑃𝑖 𝑁𝜖𝑗 dΩ, 𝐵𝑃𝑖𝑗 = ∫

Ω
∇𝑁𝑃𝑖 ⋅ ∇𝑁𝑃𝑗 dΩ,

�̄�𝑃𝑃 = [
�̄�1
⋮
�̄�𝑛
] , �̄�𝑃𝑃𝑡 = [

𝜕�̄�1
𝜕𝑡
⋮
𝜕�̄�𝑛
𝜕𝑡

] , �̄�𝜖𝜖𝑡 = [

𝜕�̄�1
𝜕𝑡
⋮
𝜕�̄�𝑛
𝜕𝑡

] ,

for 𝑖, 𝑗 = 1,… , 𝑛. Equation (4.42) is our third matrix problem to solve.

4.2.4. Displacement equations
We will derive the weak form of the displacement equations and its matrix-vector form. Suppose that
the test function is given by

𝑣𝑢𝑥(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑖=1
𝑁𝑢𝑥𝑖 (𝑥, 𝑧)�̄�

𝑢𝑥
𝑖 (𝑡), (4.43)

𝑣𝑢𝑧(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑖=1
𝑁𝑢𝑧𝑖 (𝑥, 𝑧)�̄�

𝑢𝑧
𝑖 (𝑡), (4.44)

𝑢𝑥(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑗=1
𝑁𝑢𝑥𝑗 (𝑥, 𝑧)�̄�𝑥𝑗 (𝑡), (4.45)

𝑢𝑧(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑗=1
𝑁𝑢𝑧𝑗 (𝑥, 𝑧)�̄�𝑧𝑗 (𝑡). (4.46)

Recall the following test and trial functions

𝜖vol(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑘=1

𝑁𝜖𝑘(𝑥, 𝑧) ̄𝜖𝑘(𝑡), 𝜔(𝑥, 𝑧, 𝑡) =
𝑛

∑
𝑙=1
𝑁𝜔𝑙 (𝑥, 𝑧)�̄�𝑙(𝑡).
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After multiplying Equations (4.16) and (4.17) by test functions 𝑣𝑢𝑥 and 𝑣𝑢𝑥 , respectively, and integrating
over the domain Ω we get

0 = ∫
Ω
𝑣𝑢𝑥 [−(𝜕

2𝑢𝑥
𝜕𝑥2 +

𝜕2𝑢𝑥
𝜕𝑧2 ) +

𝜕𝜔
𝜕𝑧 +

𝜕𝜖vol
𝜕𝑥 ]dΩ, (4.47)

0 = ∫
Ω
𝑣𝑢𝑧 [−(𝜕

2𝑢𝑧
𝜕𝑥2 +

𝜕2𝑢𝑧
𝜕𝑧2 ) −

𝜕𝜔
𝜕𝑥 +

𝜕𝜖vol
𝜕𝑧 ]dΩ. (4.48)

Since 𝜕2𝑢𝑖
𝜕𝑥2 +

𝜕2𝑢𝑖
𝜕𝑧2 = ∇ ⋅ (∇𝑢𝑖) for 𝑖 = 𝑥, 𝑧, applying integration by parts and divergence theorem gives

0 = −∫
dΩ
𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂]dΓ + ∫

Ω
𝑣𝑢𝑥 (𝜕𝜔𝜕𝑧 +

𝜕𝜖vol
𝜕𝑥 ) + [∇𝑣𝑢𝑥 ⋅ ∇𝑢𝑥] dΩ, (4.49)

0 = −∫
dΩ
𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂] dΓ + ∫

Ω
𝑣𝑢𝑧 (−𝜕𝜔𝜕𝑥 +

𝜕𝜖vol
𝜕𝑧 ) + [∇𝑣

𝑢𝑧 ⋅ ∇𝑢𝑧] dΩ. (4.50)

Using the boundary conditions given by Equation (4.18), (4.19) and (4.20), we get that

∫
dΩ
𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂]dΓ = ∫

dΩ1
𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂1] dΓ + ∫

dΩ2
𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂2] dΓ

+ ∫
dΩ3

𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂3]dΓ + ∫
dΩ4

𝑣𝑢𝑥 [∇𝑢𝑥 ⋅ 𝜂𝜂𝜂4] dΓ

= ∫
dΩ3

𝑣𝑢𝑥 12 (𝜔 −
1
𝜇𝐹𝑥𝑧)dΓ, (4.51)

∫
dΩ
𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂]dΓ = ∫

dΩ1
𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂1] dΓ + ∫

dΩ2
𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂2]dΓ

+ ∫
dΩ3

𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂3]dΓ + ∫
dΩ4

𝑣𝑢𝑧 [∇𝑢𝑧 ⋅ 𝜂𝜂𝜂4] dΓ

= ∫
dΩ3

𝑣𝑢𝑧 𝜕𝑢𝑧𝜕𝑧 dΓ. (4.52)

Substituting the test and trial functions given by Equations (4.43), (4.44), (4.45), (4.46), (4.30) and
(4.24) into Equations (4.49) and (4.50) and using the computations as for Biot’s model in Section 2.3.4
gives the following Galerkin equations in matrix-vector multiplication,

{𝐵
𝑢𝑥�̄�𝑢𝑢𝑥 + (𝐷𝑢𝑥 − 𝑆𝐴𝑢𝑥)�̄�𝜔𝜔 + 𝐶𝑢𝑥�̄�𝜖𝜖 = −F𝑥𝑧

(𝐵𝑢𝑧 − 𝑆𝐷𝑢𝑧) �̄�𝑢𝑢𝑧 − 𝐶𝑢𝑧�̄�𝜔𝜔 + 𝐷𝑢𝑧�̄�𝜖𝜖 = 0 , (4.53)

where

𝑆𝐴𝑢𝑥𝑖𝑗 = ∫
dΩ3

1
2𝑁

𝑢𝑥
𝑖 𝑁𝜔𝑗 dΓ, 𝐵𝑢𝑥𝑖𝑗 = ∫

Ω
∇𝑁𝑢𝑥𝑖 ⋅ ∇𝑁𝑢𝑥𝑗 dΩ, 𝐵𝑢𝑧𝑖𝑗 = ∫

Ω
∇𝑁𝑢𝑧𝑖 ⋅ ∇𝑁𝑢𝑧𝑗 dΩ, 𝐶𝑢𝑥𝑖 = ∫

dΩ
𝑁𝑢𝑥𝑖

𝜕𝑁𝜖𝑗
𝜕𝑥 dΩ,

𝐶𝑢𝑧𝑖 = ∫
dΩ
𝑁𝑢𝑧𝑖

𝜕𝑁𝜔𝑗
𝜕𝑥 dΩ, 𝐷𝑢𝑥𝑖𝑗 = ∫

dΩ
𝑁𝑢𝑥𝑖

𝜕𝑁𝜔𝑗
𝜕𝑧 dΩ, 𝐷𝑢𝑧𝑖𝑗 = ∫

dΩ
𝑁𝑢𝑧𝑖

𝜕𝑁𝜖𝑗
𝜕𝑧 dΩ, 𝑆𝐷𝑢𝑧𝑖𝑗 = ∫

dΩ3
𝑁𝑢𝑧𝑖

𝜕𝑁𝑢𝑧𝑗
𝜕𝑧 dΓ,

𝐹𝑥𝑧𝑖 = ∫
dΩ3

𝑁𝑢𝑥𝑖
1
2𝜇𝐹𝑥𝑧dΓ,

for 𝑖, 𝑗 = 1,… , 𝑛. Equation (4.53) is our fourth matrix problem to solve.

4.2.5. Final FEM Model
We assume that 𝑁𝜖𝑖 = 𝑁𝜔𝑖 = 𝑁𝑃𝑖 = 𝑁

𝑢𝑥
𝑖 = 𝑁𝑢𝑧𝑖 =∶ 𝑁𝑖 for all 𝑖 = 1,… , 𝑛. After collecting the governing

equations given by Equations (4.42), (4.28), (4.37) and (4.53), we get the following set of Galerkin
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equations:

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜇 (𝐵 − 𝑆𝐷)�̄�𝑤𝑤 = 0
𝛾𝑤
𝐾𝑠
𝐴�̄�𝜖𝜖𝑡 +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝐴�̄�𝑃𝑃𝑡 + (𝜆 + 2𝜇)𝐵�̄�𝜖𝜖 − 𝜇𝑆𝐶�̄�𝜔𝜔 − 𝑆𝐷�̄�𝑃𝑃 = 0

𝛾𝑤
𝐾𝑠
𝐴�̄�𝜖𝜖𝑡 +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝐴�̄�𝑃𝑃𝑡 + 𝐵�̄�𝑃𝑃 = 0

𝐵�̄�𝑢𝑢𝑥 + (𝐷 − 1
2𝑆𝐴)�̄�𝜔𝜔 + 𝐶�̄�𝜖𝜖 = −𝐹𝐹𝐹𝑥𝑧

(𝐵 − 𝑆𝐷) �̄�𝑢𝑢𝑧 − 𝐶�̄�𝜔𝜔 + 𝐷�̄�𝜖𝜖 = 0

, (4.54)

where 𝐴𝑖𝑗 = ∫Ω𝑁𝑖𝑁𝑗dΩ, 𝑆𝐴𝑖𝑗 = ∫dΩ3 𝑁𝑖𝑁𝑗dΓ, 𝐵𝑖𝑗 = ∫Ω ∇𝑁𝑖 ⋅ ∇𝑁𝑗dΩ, 𝐶𝑖𝑗 = ∫Ω𝑁𝑖
𝜕𝑁𝑗
𝜕𝑥 dΩ,

𝑆𝐶𝑖𝑗 = ∫dΩ3 𝑁𝑖
𝜕𝑁𝑗
𝜕𝑥 dΓ, 𝐷𝑖𝑗 = ∫Ω𝑁𝑖

𝜕𝑁𝑗
𝜕𝑧 dΩ, 𝑆𝐷𝑖𝑗 = ∫dΩ3 𝑁𝑖

𝜕𝑁𝑗
𝜕𝑧 dΓ for all 𝑖, 𝑗 = 1,… , 𝑛.

We can write Equation (4.54) as one system of matrix-vector multiplication

𝑀𝑡𝜃𝜃𝜃𝑡 +𝑀𝜃𝜃𝜃 = 𝑓𝑓𝑓, (4.55)

where

𝑀𝑡 =

⎡
⎢
⎢
⎢
⎢
⎣

∅ ∅ ∅ ∅ ∅
∅ 𝛾𝑤

𝐾𝑠
𝐴 𝛾𝑤

𝐾𝑠
𝑝𝛽𝐴 ∅ ∅

∅ 𝛾𝑤
𝐾𝑠
𝐴 𝛾𝑤

𝐾𝑠
𝑝𝛽𝐴 ∅ ∅

∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝ5𝑛×5𝑛 , 𝑀 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜇 (𝐵 − 𝑆𝐷) ∅ ∅ ∅ ∅
−𝜇𝑆𝐶 (𝜆 + 2𝜇)𝐵 −𝑆𝐷 ∅ ∅
∅ ∅ 𝐵 ∅ ∅

𝐷 − 1
2𝑆𝐴 𝐶 ∅ 𝐵 ∅

−𝐶 𝐷 ∅ ∅ (𝐵 − 𝑆𝐷)

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝ5𝑛×5𝑛 ,

𝜃𝜃𝜃 =
⎡
⎢
⎢
⎢
⎣

�̄�𝑤𝑤
�̄�𝜖𝜖
�̄�𝑃𝑃
�̄�𝑢𝑢𝑥
�̄�𝑢𝑢𝑧

⎤
⎥
⎥
⎥
⎦

∈ ℝ5𝑛 , 𝜃𝜃𝜃𝑡 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕�̄�𝑤𝑤
𝜕𝑡𝜕�̄�𝜖𝜖
𝜕𝑡
𝜕�̄�𝑃𝑃
𝜕𝑡
𝜕�̄�𝑢𝑢𝑥

𝜕𝑡
𝜕�̄�𝑢𝑢𝑧

𝜕𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ5𝑛 , 𝑓𝑓𝑓 =
⎡
⎢
⎢
⎢
⎣

000
000
000

−F𝑥𝑧
000

⎤
⎥
⎥
⎥
⎦

∈ ℝ5𝑛 . (4.56)

Note that the boundary conditions are included.

4.3. Discretisation in time
For discretising the final FEM model given by Equation (4.55) we use the Backward-Euler method
again. Recall that after applying the Backward-Euler method given by Equation (2.72) to Equation
(4.55), we get that

𝜃𝜃𝜃𝑘+1 = (𝑀𝑡 + Δ𝑡𝑀)−1 (𝑀𝑡𝜃𝜃𝜃𝑘 + Δ𝑡𝑓𝑓𝑓𝑘+1) , (4.57)

when assuming (𝑀𝑡 + Δ𝑡𝑀) is invertible.

For simplicity, we will look at the Van Damme and den Ouden-van der Horst Model in one dimension
which will be described in the next section. The two-dimensional results will not be determined in this
literature report. However, this is one of the main goals for our further research.



5
Van Damme and den Ouden-van der

Horst Model (1D)
For our first analysis we reduce the two-dimensional case to one-dimensional. This makes the nu-
merical analysis more simple, however, it gives a good understanding of the behaviour in 𝑧-direction.
The model in one-dimension can be determined by setting the shear stress to zero and by letting the
normal stress due to the wave be a function which only depends on time. In this case, there will be
no alterations in 𝑥-direction. This means that all displacements in 𝑥-direction, (𝑢𝑥), and all derivatives
with respect to 𝑥, ( 𝜕⋅𝜕𝑥), are equal to zero. Note that in this model the entire domain is of one type of
soil and is a simplification of the two-dimensional model. Therefore, the main goal in this section is
to represent the relations between the volumetric strain, water pressure and 𝑧-displacement. At last,
recall that in one-dimension we have 𝑧 ∈ Ω ∶= [−𝑛𝑧 , 0].

5.1. One type of soil
We will first give a solution when assuming one layer of fine sand. In this case the porosity, Lamé
constants, and hydraulic conductive are constant and their derivatives with respect to 𝑧 equal zero.

5.1.1. Model
This gives the following constitutive equations in one-dimension,

⎧⎪
⎨⎪⎩

𝛾𝑤
𝐾𝑠

𝜕𝜖vol
𝜕𝑡 − (𝜆 + 2𝜇)𝜕

2𝜖vol
𝜕𝑧2 = −𝛾𝑤𝐾𝑠 𝑝𝛽

𝜕𝑃
𝜕𝑡

𝛾𝑤
𝐾𝑠
𝑝𝛽 𝜕𝑃𝜕𝑡 −

𝜕2𝑃
𝜕𝑧2 = −𝛾𝑤𝐾𝑠

𝜕𝜖vol
𝜕𝑡

𝜕𝑢𝑧
𝜕𝑧 = 𝜖vol

, for 𝑧 ∈ Ω and 𝑡 ∈ 𝕋 (5.1)

with boundary conditions

{
𝑃(0, 𝑡) = 𝐹𝑧𝑧(𝑡)
(𝜆 + 2𝜇) 𝜕𝜖vol(0,𝑡)𝜕𝑧 = 𝜕𝑃(0,𝑡)

𝜕𝑧
, {

𝑢𝑧(−𝑛𝑧 , 𝑡) = 0
𝜕𝑃(−𝑛𝑧 ,𝑡)

𝜕𝑧 = 0
𝜕𝜖vol(−𝑛𝑧 ,𝑡)

𝜕𝑧 = 0
, for 𝑡 ∈ 𝕋 (5.2)

and initial conditions

𝜖vol(𝑧, 0) = 𝑃(𝑧, 0) = 𝑢𝑧(𝑧, 0) = 0, for 𝑧 ∈ Ω. (5.3)

Using boundary conditions, the weak equations in one-dimension are given by

⎧⎪
⎨⎪⎩

−𝑁𝜖𝑖 (0)
𝜕𝑃(0,𝑡)
𝜕𝑧 + ∫0−𝑛𝑧 𝑁

𝜖
𝑖
𝛾𝑤
𝐾𝑠
[𝜕𝜖vol𝜕𝑡 + 𝑝𝛽 𝜕𝑃𝜕𝑡 ] + (𝜆 + 2𝜇) (

𝜕𝑣𝜖
𝜕𝑧 ⋅

𝜕𝜖vol
𝜕𝑧 ) d𝑧 = 0

∫0−𝑛𝑧 𝑁
𝑃
𝑖
𝛾𝑤
𝐾𝑠
[𝜕𝜖vol𝜕𝑡 + 𝑝𝛽 𝜕𝑃𝜕𝑡 ] + (

𝜕𝑣𝑃
𝜕𝑧 ⋅

𝜕𝑃
𝜕𝑧 )d𝑧 = 0

∫0−𝑛𝑧 𝑁
𝑢
𝑖
𝜕𝑢𝑧
𝜕𝑧 d𝑧 = ∫0−𝑛𝑧 𝑁

𝑢
𝑖 𝜖vold𝑧

, (5.4)

37
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Substituting one-dimensional trial functions into Equation (5.4) we get the following one-dimensional
Galerkin equations in matrix-vector form

⎧

⎨
⎩

𝛾𝑤
𝐾𝑠
𝐴�̄�𝜖𝜖𝑡 +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝐴�̄�𝑃𝑃𝑡 + (𝜆 + 2𝜇)𝐵�̄�𝜖𝜖 − 𝐶0�̄�𝑃𝑃 = 000

𝛾𝑤
𝐾𝑠
𝐴�̄�𝜖𝜖𝑡 +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝐴�̄�𝑃𝑃𝑡 + 𝐵�̄�𝑃𝑃 = 000

𝐶�̄�𝑢𝑢𝑧 = 𝐴�̄�𝜖𝜖
, (5.5)

where 𝐴𝑖,𝑗 = ∫
0
−𝑛𝑧 𝑁𝑖𝑁𝑗d𝑧, 𝐵𝑖,𝑗 = ∫

0
−𝑛𝑧

𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑗
𝜕𝑧 d𝑧, 𝐶𝑖,𝑗 = ∫

0
−𝑛𝑧 𝑁𝑖

𝜕𝑁𝑗
𝜕𝑧 d𝑧. and 𝐶

0
𝑖,𝑗 = 𝑁𝑖(0)

𝜕𝑁𝑗(0)
𝜕𝑧 .

We can write Equation (5.5) as two systems of matrix-vector multiplication

{𝑀
𝑡𝑆𝑆𝑆𝑡 +𝑀𝑆𝑆𝑆 = 𝑓𝑓𝑓

𝐶�̄�𝑢𝑢𝑧 = 𝐴�̄�𝜖𝜖 , (5.6)

where

𝑀𝑡 = [
𝛾𝑤
𝐾𝑠
𝐴 𝛾𝑤

𝐾𝑠
𝑝𝛽𝐴

𝛾𝑤
𝐾𝑠
𝐴 𝛾𝑤

𝐾𝑠
𝑝𝛽𝐴] , 𝑀 = [(𝜆 + 2𝜇)𝐵 −𝐶0

∅ 𝐵 ] , 𝑆𝑆𝑆 = [�̄�𝜖𝜖�̄�𝑃𝑃] , 𝑆𝑆𝑆𝑡 = [
𝜕�̄�𝜖𝜖
𝜕𝑡
𝜕�̄�𝑃𝑃
𝜕𝑡
] , 𝑓𝑓𝑓(𝑡) = [ 000𝐹𝐹𝐹(𝑡)] . (5.7)

The Dirichlet boundary conditions are included in the numerical model by setting the corresponding
rows of matrices 𝑀𝑡 and 𝑀 to zero and then putting pivots in these same rows of 𝑀. Furthermore, we
set 𝐹𝑖 = 0 for 𝑖 = 1,… , 𝑛 − 1 and 𝐹𝑛 = 𝐹𝑧𝑧. Then we get that �̄�𝑛 = 𝐹𝑛 = 𝐹𝑧𝑧 and �̄�𝑧0 = 0. After applying
the time integration given by Equation (4.57) using 𝑀𝑡 , 𝑀,𝑆𝑆𝑆 and 𝑓𝑓𝑓 as described above and assuming
that matrix (𝑀𝑡 + Δ𝑡𝑀) and 𝐶 are invertible, we get that

{𝑆𝑆𝑆
𝑘+1 = (𝑀𝑡 + Δ𝑡𝑀)−1 (𝑀𝑡𝑆𝑆𝑆𝑘 + Δ𝑡𝑓𝑓𝑓𝑘+1)
̄𝑢�̄�𝑢�̄�𝑢𝑧𝑘+1 = 𝐶−1𝐴 ̄𝜖̄𝜖̄𝜖𝑘+1

. (5.8)

Finally, we choose again that

𝐹𝑧𝑧(𝑡) = {
(1 − 𝛽) (𝜆 + 2𝜇) (1 − cos (𝑡)) , if 𝑡 < 𝜋
2(1 − 𝛽) (𝜆 + 2𝜇) , if 𝑡 ≥ 𝜋 . (5.9)

Recall that 𝐹𝑧𝑧 represents the normal stress and only depends on time and is chosen to be positive for
all 𝑡 ∈ 𝕋. Furthermore, 𝐹𝑧𝑧 converges to a constant over time.

Therefore, the solution of the one-dimensional model must go to the stationary solution over time.
In the next section we will solve the stationary one-dimensional system in order to find the stationary
solution.

5.1.2. Stationary model
The stationary model in one dimension is given by

⎧

⎨
⎩

𝜕2𝜖vol
𝜕𝑧2 = 0
𝜕2𝑃
𝜕𝑧2 = 0𝜕𝑢𝑧
𝜕𝑧 = 𝜖vol

, (5.10)

with boundary conditions given by Equation (5.2) using 𝐹𝑧𝑧 = 𝐹 constant (𝑡 → ∞). The set of equations
given by Equation (5.10) gives the following solutions

{
𝑢𝑧 = ∫𝜖vold𝑧 + 𝑐1 =

1
2𝑐2𝑧

2 + 𝑐3𝑧 + 𝑐1
𝜖vol = 𝑐2𝑧 + 𝑐3
𝑃 = 𝑐4𝑧 + 𝑐5

. (5.11)
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Using the boundary conditions, we find that 𝑐2 = 𝑐4 = 0, 𝑐1 = 𝑐3𝑛𝑧 and 𝑐5 = 𝐹, i.e.

{
𝑢𝑧 = 𝑐3𝑧 + 𝑐3𝑛𝑧
𝜖vol = 𝑐3
𝑃 = 𝐹

. (5.12)

Then we find that also the stationary solution for 𝜖vol and 𝑢𝑧 has infinitely many stationary solutions.
Therefore, its likely that we also have infinitely many solutions of the one-dimensional model [5].

5.1.3. Infinitely many solutions
When adding the first and second subequations of Equation (5.1), we find

(𝜆 + 2𝜇) 𝜕
2𝜖vol
𝜕𝑧2 = 𝜕2𝑃

𝜕𝑧2
⇔

(𝜆 + 2𝜇) 𝜕𝜖vol𝜕𝑧 = 𝜕𝑃
𝜕𝑧 + 𝑑1(𝑡)

⇔
(𝜆 + 2𝜇) 𝜖vol = 𝑃 + 𝑑1𝑧 + 𝑑2,

where 𝑑1(𝑡) and 𝑑2(𝑡) are constant in space. Since we have boundary condition 𝜕𝜖vol
𝜕𝑧 = 𝜕𝑃

𝜕𝑧 = 0 at
𝑧 = 0, we get that 𝑑1(𝑡) = 0. This implies that

(𝜆 + 2𝜇) 𝜖vol = 𝑃 + 𝑑2, on Ω̄ ∶= Ω ∪ dΩ = [−𝑛𝑧 , 0]. (5.13)

Note that 𝑑2 stays undefined using the set of boundary conditions given by Equation (5.2). Therefore,
the values of 𝜖vol and 𝑃 are expected to have the same behaviour but their values can be of different
signs.

5.1.4. Results
The three variables 𝜖vol, 𝑃, 𝑢𝑧 and their derivatives are plotted five times, namely at 𝑡 = 0.0, 1.5, 3.0
and 4.5, 6.0, for the case of compressible water and of incompressible water. For the assumption of
compressible water we set 𝛽 = 4.8 ⋅ 10−10 and for the assumption of incompressible water we have
by definition 𝛽 = 0.0. The effective stress 𝜎′𝑧𝑧 = −(𝜆 + 2𝜇) 𝜖vol is also plotted in order to check the
boundary condition (𝜆 + 2𝜇) 𝜕𝜖vol(0,𝑡)𝜕𝑧 = 𝜕𝑃(0,𝑡)

𝜕𝑧 . We use piece-wise linear basis-functions 𝑁𝑖, which is
of degree 1 and smoothness 0 and are called hat functions. These are given by

𝑁𝑖 = {
𝑧−𝑧𝑖−1
𝑧𝑖−𝑧𝑖−1

, if 𝑧 ∈ [𝑧𝑖−1, 𝑧𝑖]
𝑧𝑖+1−𝑧
𝑧𝑖+1−𝑧𝑖

, if 𝑧 ∈ [𝑧𝑖 , 𝑧𝑖+1]
, (5.14)

for 𝑖 = 1,… , 𝑛. Furthermore, for integration of a subdomain we use 1000 integration points, the time
step is chosen as Δ𝑡 = 0.0025 and the number of subdomains is chosen as Δ𝑧 = 0.0025. The porosity,
Poisson ratio and the effective size of the grain, 𝑑10 [m], is given by Table 3.1 and the shear modulus 𝜇
and specific weight 𝛾𝑤 are given by Table 3.2. The hydraulic conductivity is 𝐾𝑠 = 𝑐 ⋅𝑑10 [m/s] according
to Allen Hazen [9]. We will use 𝑐 = 1.0. We recall that 𝜆 is given by Equation (4.8). At last, we set
𝑛𝑧 = 2, i.e. Ω̄ = [−2, 0].

Then we find that 𝜖 and 𝑃 behave the same which can be seen in upper right and lower left subplots
of Figures 5.1 and 5.3. In upper right and lower left subplots of Figures 5.2 and 5.4, one can see that
the derivative of volumetric strain and water pressure with respect to 𝑧 are equal, i.e. (𝜆+2𝜇)𝜕𝜖vol𝜕𝑧 = 𝜕𝑃

𝜕𝑧
holds indeed. We also find that 𝜎𝑧𝑧 +𝑃 is constant in the 𝑧-direction, which can be noticed in the upper
left and lower left subplots of Figures 5.1 and 5.3. However, note that this constant may differ in time
like in these figures. Furthermore, in Figure 5.3 we find for increasing 𝑡 the water pressure solution
becomes more of a constant line, namely 𝑃(𝑧, 𝑡) = 𝐹𝑧𝑧(𝑡) = 2(1−𝛽)(𝜆+2𝜇) as 𝑡 → ∞. This is because
𝐹𝑧𝑧 is defined to be a constant for 𝑡 ≥ 𝜋. In Figure 5.1 we find that this convergence is not shown
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(yet) for the assumption of compressible water. However, when further increasing time 𝑡, a very slow
convergence is shown.

At last, we noticed when varying the space step by changing the number of subdomains and/or
quadrature points, the behaviour and/or values of the variables changed. This is also the case when
changing the time step. One reason could be that 𝑑2(𝑡) is not defined and thus can be any constant in
space depending on time and another is simply rounding errors in calculations.

Since there are infinitely many solutions, this behaviour was expected. Nevertheless, this model
represents the relation between the variables 𝜖vol, 𝑃 and 𝑢𝑧 (and 𝜎′𝑧𝑧) well which was the main goal in
this section.

Figure 5.1: 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times, when water is assumed to be compressible with 𝛽 = 4.8 ⋅ 10−10.

Figure 5.2: Derivatives of 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times with respect to 𝑧, when water is assumed to be compressible with
𝛽 = 4.8 ⋅ 10−10.
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Figure 5.3: 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times, when water is assumed to be incompressible (𝛽 = 0).

Figure 5.4: Derivatives of 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times with respect to 𝑧, when water is assumed to be incompressible (𝛽 = 0).
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5.2. One type of soil with alternative boundary condition
To be able to compare results with different parameters correctly, it is necessarily to have a unique
solution. To find a unique solution, we explicitly set 𝑑2(𝑡) equal to some constant in 𝑧-direction, say
zero. In this case, we can define (𝜆 + 2𝜇)𝜖vol = 𝑃 at the surface instead of (𝜆 + 2𝜇)𝜕𝜖vol𝜕𝑧 = 𝜕𝑃

𝜕𝑧 . This
more strict boundary condition comes naturally in two dimensions, since in two dimensions it follows
from the momentum balance equations when deriving the analytical solutions [6]. However, for one
dimension this can not be shown.

5.2.1. Physical model and numerical model
Then the vertical momentum balance equation still holds at the surface, but the variation in value is
limited to one value. In other words, we now have the following boundary conditions,

{𝑃(0, 𝑡) = 𝐹𝑧𝑧(𝑡)
(𝜆 + 2𝜇) 𝜖vol(0, 𝑡) = 𝑃(0, 𝑡) , {

𝑢𝑧(−𝑛𝑧 , 𝑡) = 0
𝜕𝑃(−𝑛𝑧 ,𝑡)

𝜕𝑧 = 0
𝜕𝜖vol(−𝑛𝑧 ,𝑡)

𝜕𝑧 = 0
, for 𝑡 ∈ 𝕋 (5.15)

and initial conditions given by Equation (5.3).
Using these alternative boundary conditions, the weak equations in one-dimension are given by

⎧⎪
⎨⎪⎩

∫0−𝑛𝑧 𝑁
𝜖
𝑖
𝛾𝑤
𝐾𝑠
[𝜕𝜖vol𝜕𝑡 + 𝑝𝛽 𝜕𝑃𝜕𝑡 ] + (𝜆 + 2𝜇) (

𝜕𝑣𝜖
𝜕𝑧 ⋅

𝜕𝜖vol
𝜕𝑧 ) d𝑧 = 0

∫0−𝑛𝑧 𝑁
𝑃
𝑖
𝛾𝑤
𝐾𝑠
[𝜕𝜖vol𝜕𝑡 + 𝑝𝛽 𝜕𝑃𝜕𝑡 ] + (

𝜕𝑣𝑃
𝜕𝑧 ⋅

𝜕𝑃
𝜕𝑧 ) d𝑧 = 0

∫0−𝑛𝑧 𝑁
𝑢
𝑖
𝜕𝑢𝑧
𝜕𝑧 d𝑧 = ∫0−𝑛𝑧 𝑁

𝑢
𝑖 𝜖vold𝑧

. (5.16)

Substituting one-dimensional trial functions into Equation (5.16) we get the following one-dimensional
Galerkin equations in matrix-vector form

⎧

⎨
⎩

𝛾𝑤
𝐾𝑠
𝐴�̄�𝜖𝜖𝑡 +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝐴�̄�𝑃𝑃𝑡 + (𝜆 + 2𝜇)𝐵�̄�𝜖𝜖 = 000

𝛾𝑤
𝐾𝑠
𝐴�̄�𝜖𝜖𝑡 +

𝛾𝑤
𝐾𝑠
𝑝𝛽𝐴�̄�𝑃𝑃𝑡 + 𝐵�̄�𝑃𝑃 = 000

𝐶�̄�𝑢𝑢𝑧 = 𝐴�̄�𝜖𝜖
, (5.17)

where 𝐴𝑖,𝑗 = ∫
0
−𝑛𝑧 𝑁𝑖𝑁𝑗d𝑧, 𝐵𝑖,𝑗 = ∫

0
−𝑛𝑧

𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑗
𝜕𝑧 d𝑧 and 𝐶𝑖,𝑗 = ∫

0
−𝑛𝑧 𝑁𝑖

𝜕𝑁𝑗
𝜕𝑧 d𝑧. We can write Equation (5.17)

as two systems of matrix-vector multiplication as in Equation (5.7) where

𝑀𝑡 = [
𝛾𝑤
𝐾𝑠
𝐴 𝛾𝑤

𝐾𝑠
𝑝𝛽𝐴

𝛾𝑤
𝐾𝑠
𝐴 𝛾𝑤

𝐾𝑠
𝑝𝛽𝐴] , 𝑀 = [(𝜆 + 2𝜇)𝐵 ∅

∅ 𝐵 ] , 𝑆𝑆𝑆 = [�̄�𝜖𝜖�̄�𝑃𝑃] , 𝑆𝑆𝑆𝑡 = [
𝜕�̄�𝜖𝜖
𝜕𝑡
𝜕�̄�𝑃𝑃
𝜕𝑡
] , 𝑓𝑓𝑓(𝑡) = [ 000𝐹𝐹𝐹(𝑡)] . (5.18)

The Dirichlet boundary conditions are included in the numerical model by setting the corresponding
rows of matrices 𝑀𝑡 and 𝑀 to zero and then putting pivots in these same rows of 𝑀. Furthermore, we
set 𝐹𝑖 = 0 for 𝑖 = 1,… , 𝑛 − 1 and 𝐹𝑛 = 𝐹𝑧𝑧. Then we get that �̄�𝑛 = 𝐹𝑛 = 𝐹𝑧𝑧 , ̄𝜖𝑛 =

1
𝜆+2𝜇 �̄�𝑛 =

𝐹𝑧𝑧
𝜆+2𝜇 and

�̄�𝑧0 = 0.
Now we apply the Backward-Euler method given by Equation (4.57) using 𝑀𝑡 , 𝑀,𝑆𝑆𝑆 and 𝑓𝑓𝑓 as de-

scribed in Equation (5.18), where we assume that matrices (𝑀𝑡 + Δ𝑡𝑀) and 𝐶 are invertible. Then we
get again the time integration formulas given by Equation (5.8) with 𝐹𝑧𝑧 chosen as in Equation (5.9), but
with 𝑀𝑡 , 𝑀 given by Equation (5.18). To check whether we have convergence to a unique stationary
solution, we take a look again at the stationary model but now with the alternative boundary conditions
given by Equation (5.15) in the next two sections.

5.2.2. Stationary model
The stationarymodel is given by Equation (5.10) but instead of the boundary conditions given by (5.2) its
comes along with the boundary conditions given by Equation (5.15). Then we find that the coefficients
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𝐶𝑖 for 𝑖 = 1,… , 5 of Equation (5.11) are given by 𝑐2 = 𝑐4 = 0, 𝑐3 =
1

𝜆+2𝜇 𝑐5 and 𝑐5 = 𝐹, i.e.

⎧

⎨
⎩

𝑢𝑧 =
𝐹

𝜆+2𝜇 +
𝐹

𝜆+2𝜇𝑛𝑧
𝜖vol =

𝐹
𝜆+2𝜇

𝑃 = 𝐹
. (5.19)

Note that we now have only one stationary solution to the one-dimensional stationary model.

5.2.3. Unique solution
Assuming 𝑑2(𝑡) to be constant in Equation (5.13), here chosen 𝑑2(𝑡) = 0, we get a unique solution
to the one-dimensional model. We expect that by explicitly setting 𝑑2(𝑡) to a constant in space, the
variables 𝜖vol and 𝑃 (and 𝜎′𝑧𝑧) will not change drastically anymore when for example varying the step
in space and when assuming that the water is compressible (with 𝛽 = 4.8 ⋅ 10−10) or incompressible
(𝛽 = 0.0). Therefore, we now have a model that has a unique solution and tends to a unique solution
over time.

5.2.4. Results
The three variables 𝜖vol, 𝑃, 𝑢𝑧 and their derivatives are plotted five times, namely at 𝑡 = 0.0, 1.5, 3.0
and 4.5, 6.0, for the case of compressible water and of incompressible water. For the assumption of
compressible water we take 𝛽 = 4.8 ⋅ 10−10 and for the assumption of incompressible water we have
by definition 𝛽 = 0.0. The effective stress 𝜎′𝑧𝑧 = −(𝜆 + 2𝜇) 𝜖vol is also plotted in order to check the
boundary condition (𝜆 + 2𝜇) 𝜖vol(0, 𝑡) = 𝑃(0, 𝑡). We use the piece-wise linear basis-functions 𝑁𝑖 for
𝑖 = 1,… , 𝑛, given by Equation (5.14). Furthermore, we use again 1000 integration points, a time step
of Δ𝑡 = 0.0025 and the number of subdomains is chosen as Δ𝑧 = 0.0025. The parameters porosity,
Poisson ratio and effective size of the grains are given by Table 3.1 and the shear modulus and specific
weight are given by Table 3.2. Recall that we use for the hydraulic conductivity the formula by Allen
Hazen [9] again with choosing 𝑐 = 1.0 and that 𝜆 is given by Equation (4.8). We set again 𝑛𝑧 = 2, i.e.
Ω̄ = [−2, 0].

Then we find that variables 𝜎′𝑧𝑧 and 𝑃 behave the same but mirrored and when we add both solutions
we get the constant zero which was imposed as condition on the upper boundary. This can be seen
in upper left and lower left subplots of Figures 5.5 and 5.7. The derivatives of 𝜖vol and 𝑃 with respect
to 𝑧 are the same like they were with the original boundary condition (𝜆 + 2𝜇)𝜕𝜖vol𝜕𝑧 = 𝜕𝑃

𝜕𝑧 at 𝑧 = 0. We
expect this to happen, since the equation (𝜆 + 2𝜇)𝜖vol = 𝑃 on Ω̄ = [−𝑛𝑧 , 0] derived in Equation (5.13)
with 𝑑2(𝑡) = 0, guarantees that the derivative of this formula with respect to 𝑧 also holds on Ω̄. This
can be seen in upper left and lower left subplots of Figures 5.5 and 5.7.

Furthermore, in Figure 5.7 we find the convergence to the stationary solution is not recognizable
yet. However, when increasing time 𝑡 even more the solutions indicate that unique solutions reach the
unique stationary solutions.

At last, for 𝑑2(𝑡) not defined we noticed when varying some parameters the relations between the
variables 𝜖vol, 𝑃 and 𝑢𝑧 kept the same but their behaviour and values not necessarily, since there were
infinitely many solutions. Using the alternative boundary conditions, we set 𝑑2(𝑡) = 0 and leads to a
unique solution. This way not only the relations between the variables stay the same but, in general,
also their behaviour and values as well. Their are some differences in value but this is minimal with
respect to the order of the values and are probably due to computation errors.

In conclusion, this model represents the relation between the variables 𝜖vol, 𝑃 and 𝑢𝑧 (and 𝜎′𝑧𝑧) well
and also gives a unique solution that tends to a unique stationary solution over time.
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Figure 5.5: 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times, when 𝑑2(𝑡) = 0 is constant is space and when water is assumed to be compressible
with 𝛽 = 4.8 ⋅ 10−10.

Figure 5.6: Derivatives of 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times with respect to 𝑧, when 𝑑2(𝑡) = 0 is constant is space and when water
is assumed to be incompressible with 𝛽 = 4.8 ⋅ 10−10.
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Figure 5.7: 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times, when 𝑑2(𝑡) = 0 is constant is space and when water is assumed to be incompressible
(𝛽 = 0).

Figure 5.8: Derivatives of 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times with respect to 𝑧, when 𝑑2(𝑡) = 0 is constant in space and when water
is assumed to be incompressible (𝛽 = 0).
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5.3. Two types of soil with alternative boundary condition
Note that in previous section it was assumed that we had one type of soil. In this section we assume
that we have two types of soil and that the transitions happens at -1.0 meter. In this section we assume
that 𝑑2(𝑡) = 0 again, since then we can compare the results of two types of soil with one type without
the variation of 𝑑2 over time.

5.3.1. Physical model and numerical model
Using the alternative boundary conditions given by Equation (5.15) and the initial conditions given by
Equation (5.3), we get the same one-dimensional weak equations for the two different layers of soil,
say fine sand and medium sand, as for one type of soil. However, 𝐾𝑠 , 𝑝, 𝜆 and 𝜇 differ per separate
layer. We define that the first layer, 𝑧 ∈ [−𝑛𝑧,−𝑛𝑧

2 ], is medium sand and the second layer, 𝑧 ∈ [−𝑛𝑧2 , 0],
is fine sand, i.e. the boundary between the two layer is the middle of the whole domain Ω = [−𝑛𝑧 , 0].
The subdomains are divided such that there is no overlap between layers in one subdomain. However,
note that the derivative of the constants that differ per layer does not exist when 𝑧 → −𝑛𝑧2 . Since this is
only one point and has almost no impact on the numerical model, we ignore this for now.

Then we get that substituting one-dimensional trial functions into Equation (5.16) gives the following
one-dimensional Galerkin equations in matrix-vector form

{
𝐴𝜖�̄�𝜖𝜖𝑡 + 𝐴𝑃�̄�𝑃𝑃𝑡 + 𝐵𝜖�̄�𝜖𝜖 = 000
𝐴𝜖�̄�𝜖𝜖𝑡 + 𝐴𝑃�̄�𝑃𝑃𝑡 + 𝐵𝑃�̄�𝑃𝑃 = 000
𝐶�̄�𝑢𝑢𝑧 = 𝐴�̄�𝜖𝜖

, (5.20)

where

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

𝐴𝜖𝑖,𝑗 =
𝛾m𝑤
𝐾m𝑠
∫−

𝑛𝑧
2

−𝑛𝑧 𝑁𝑖𝑁𝑗dΩ +
𝛾f𝑤
𝐾f𝑠
∫0−𝑛𝑧2 𝑁𝑖𝑁𝑗dΩ

𝐴𝑃𝑖,𝑗 =
𝛾m𝑤
𝐾m𝑠
𝑝m𝛽 ∫−

𝑛𝑧
2

−𝑛𝑧 𝑁𝑖𝑁𝑗d𝑧 +
𝛾f𝑤
𝐾f𝑠
𝑝f𝛽 ∫0−𝑛𝑧2 𝑁𝑖𝑁𝑗d𝑧

𝐵𝜖𝑖,𝑗 = (𝜆m + 2𝜇m) ∫
−𝑛𝑧2
−𝑛𝑧

𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑗
𝜕𝑧 d𝑧 + (𝜆

f + 2𝜇f) ∫0−𝑛𝑧2
𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑗
𝜕𝑧 d𝑧

𝐵𝑃𝑖,𝑗 = ∫
0
−𝑛𝑧

𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑗
𝜕𝑧 d𝑧

𝐶𝑖,𝑗 = ∫
0
−𝑛𝑧 𝑁𝑖

𝜕𝑁𝑗
𝜕𝑧 d𝑧

, (5.21)

and the subscripts 𝑚 and 𝑓 means the parameter with property of medium and and fine sand, respec-
tively. We can write Equation (5.20) as two systems of matrix-vector multiplication

{𝑀
𝑡𝑆𝑆𝑆𝑡 +𝑀𝑆𝑆𝑆 = 𝑓𝑓𝑓

𝐶�̄�𝑢𝑢𝑧 = 𝐴�̄�𝜖𝜖 , (5.22)

where

𝑀𝑡 = [𝐴
𝜖 𝐴𝑃
𝐴𝜖 𝐴𝑃] , 𝑀 = [𝐵

𝜖 ∅
∅ 𝐵𝑃 ] , 𝑆𝑆𝑆 = [�̄�𝜖𝜖�̄�𝑃𝑃] , 𝑆𝑆𝑆𝑡 = [

𝜕�̄�𝜖𝜖
𝜕𝑡
𝜕�̄�𝑃𝑃
𝜕𝑡
] , 𝑓𝑓𝑓(𝑡) = [ 000𝐹𝐹𝐹(𝑡)] , (5.23)

where 𝐴𝜖 , 𝐴𝑃 , 𝐵𝜖 and 𝐵𝑃 are given by Equation (5.21).
The Dirichlet boundary conditions are included in the numerical model by setting the corresponding

rows of matrices 𝑀𝑡 and 𝑀 to zero and then putting pivots in these same rows of 𝑀. Furthermore, we
set again 𝐹𝑖 = 0 for 𝑖 = 1,… , 𝑛 − 1 and 𝐹𝑛 = 𝐹𝑧𝑧. Then we get that �̄�𝑛 = 𝐹𝑛 = 𝐹𝑧𝑧 and �̄�𝑧0 = 0.

After applying the Backward-Euler method given by Equation (4.57) using 𝑀𝑡 , 𝑀,𝑆𝑆𝑆 and 𝑓𝑓𝑓 as de-
scribed in Equation (5.23) and assuming that matrix (𝑀𝑡 + Δ𝑡𝑀) and 𝐶 are invertible, we get again the
time integration formulas given by Equation (5.8) with 𝐹𝑧𝑧 chosen as in Equation (5.9), but with 𝑀𝑡 , 𝑀
given by Equation (5.23).

5.3.2. Stationary model and unique solution
Since the only difference between models of having one type or two different layers of soils are some
parameters depending on space now, the stationary model and its solution of the one-dimensional
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model with two different layers of soil remains the same as in model with only one layer of soil. The
unique stationary model was given by Equation (5.19). It also still holds that this one-dimensional model
with alternative solution and two different types of soil has still a unique solution.

5.3.3. Results
The three variables 𝜖vol, 𝑃, 𝑢𝑧 and their derivatives are plotted five times, namely at 𝑡 = 0.0, 1.5, 3.0
and 4.5, 6.0, for the case of compressible water and of incompressible water. For the assumption of
compressible water we take 𝛽 = 4.8 ⋅ 10−10 and for the assumption of incompressible water we have
by definition 𝛽 = 0.0. The effective stress 𝜎′𝑧𝑧 = −(𝜆 + 2𝜇) 𝜖vol is also plotted in order to check the
boundary condition (𝜆 + 2𝜇) 𝜖vol(0, 𝑡) = 𝑃(0, 𝑡). We use the piece-wise linear basis-functions 𝑁𝑖 for
𝑖 = 1,… , 𝑛, given by Equation (5.14). Furthermore, we use again 1000 integration points, a time step
of Δ𝑡 = 0.0025 and the number of subdomains is chosen as Δ𝑧 = 0.0025. The values of porosity 𝑝,
Poisson ratio 𝑣𝑝 and the effective size of the grains 𝑑10 [m] per layer are given by Table 3.3 and 𝜇 is
given by Table 3.4. We use again the formula of Allen Hazen [9] with 𝑐 = 1.0, 𝜆 is given by Equation
(4.8) and recall that we define 𝛾𝑤 = 104. We set again 𝑛𝑧 = 2, i.e. Ω̄ = [−2, 0].

The results look like the results of the model with one layer of soil and using alternative boundary
conditions. However, since some parameters change, their is a difference in values for 𝑧 ∈ [−2,−1]
and there is a jump or kink in the solutions and their derivatives at 𝑧 = −1.0 [m] which can be seen
in Figures 5.9, 5.10 and 5.12. The volumetric strain and effective stress may have a jump in space,
since the Lamé’s constants are involved in the equation for volumetric strain (and thus for effective
stress, since 𝜎′𝑧𝑧 = (𝜆 + 2𝜇)𝜖vol and these vary in space now. However, we expect the water pressure
and the 𝑧-displacement to be continuous. These expectations seems to hold for compressible and
incompressible.

Figure 5.9: 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times, when water is assumed to be compressible with 𝛽 = 4.8 ⋅ 10−10.
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Figure 5.10: Derivatives of 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times with respect to 𝑧, when water is assumed to be compressible with
𝛽 = 4.8 ⋅ 10−10.

Figure 5.11: 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times, when water is assumed to be incompressible (𝛽 = 0).
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Figure 5.12: Derivatives of 𝜎′𝑧𝑧 , 𝜖vol , 𝑃, 𝑢𝑧 at different times with respect to 𝑧, when water is assumed to be incompressible (𝛽 = 0).





6
Conclusion and discussion

The goal of this literature report is to describe the behaviour of a seabed subjected to waves using
numerical methods like the finite-element method and show the one-dimensional results. The pressure
in levees is currently described by Biot’s model. In Biot’s model it is assumed that the pore water is
compressible, the effective stresses of the porous soil are zero at the surface and the load due to the
waves is completely carried by the pressure. A new model of Van Damme and Den Ouden-Van der
Horst assumes that the stresses are absorbed by the pore water particles and the soil particles. Note
that this way all momentum balance equations are satisfied everywhere on the computational domain
and its boundaries, but the effective stress principle of Terzaghi is not in case of hydrodynamic load.
On the other hand Biot’s model does agree with Terzaghi.

In Chapter 2 Biot’s model in two dimensions is derived to which a numerical approach is applied
in order to solve Biot’s model. For discretising in space the finite-element method is used and for dis-
cretising in time the Backward-Euler method is used. The finite-element method is used to solve the
model, because the method is flexible in terms of computation domain and different types of boundary
conditions can be included. In applying the finite-element method to the two-dimensional model, we ap-
proximate the unknown variables volumetric strain, pore water pressure and deformation in 𝑧-direction
by using a linear combination of basis functions. This way the weak equations become the Galerkin
equations. Then the Galerkin equations are solved by discretising in time using the Backward-Euler
method. For discretising in time we us this first-order method, since the Backward-Euler method is an
implicit method and thus is unconditionally stable and the accuracy is less of importance because we
want to find whether the numerical model gives a solution first.

In Chapter 3 we simplified Biot’s model in two dimensions to a one-dimensional model for our first
analysis and discretised again in space using the finite-element method and in time using the Backward-
Euler method. For deriving the numerical results of Biot’s model, we set a compressibility of 4.8 ⋅ 10−10
when assuming that the water is compressible. When assuming that the water is incompressible, the
compressibility is 0.0 by definition. In Section 3.1, we found that the one-dimensional model of Biot
with the assumption of one homogeneous layer of soil gives a unique solution for the volumetric strain,
water pressure and vertical displacement. When assuming compressible water we get a solution for
the volumetric strain, water pressure and vertical displacement (and effective stress) that satisfies all
boundary conditions and the relationship between the volumetric strain and water pressure holds, while
when assuming incompressible water we get the stationary solution back almost immediately which is
physically unlikely. In Section 3.2, we found that the one-dimensional model of Biot with the assumption
of two layers of two types of soil gives again a solution for the volumetric strain, water pressure and
vertical displacement that converges to its unique stationary solution. We also found that there may be
a jump or kink in the solution and its derivative at the boundary between the two layers of soil, since
some parameters are a different constant on each layer. Indeed, a jump could be seen for the effective
stress. In each of the sections of Chapter 3, we find that the one-dimensional results of the volumetric
strain, pore water pressure and deformation in vertical direction (and effective stress) are different for
the assumption of compressible water and the assumption of incompressible water. The solutions for
incompressible water converge almost directly to the stationary solution, while for compressible water
they take some more time.
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In Chapter 4 the two-dimensional model of Van Damme and Den Ouden-Van der Horst is described
and a numerical approach is given to solve this new model. For discretising in space the finite-element
method is used and for discretising in time the Backward-Euler method is used. Like done for Biot’s
model, we find the Galerkin equations for the equations of the volumetric strain, pore water pressure
and deformation in 𝑧-direction by using a linear combination of basis functions, when applying the finite-
element method to the two-dimensional model. Then by using the Backward-Euler method again for
the discretising in time, the Galerkin equations are solved and the solutions for the volumetric strain,
pore water pressure and deformation are found.

In Chapter 5 we simplified the two-dimensional model to a one-dimensional model for our first analy-
sis and discretised again in space using the finite-element method and in time using the Backward-Euler
method. For deriving the numerical results of the model of Van Damme and Den Ouden-Van der Horst,
we set again the compressibility of pore water equal to 4.8 ⋅ 10−10 when assuming that the water is
compressible en is 0.0 when assuming that the water is incompressible. In Section 5.1 we found that
the one-dimensional model of Van Damme and Den Ouden-Van der Horst when assuming one layer of
one type of soil gives infinitely many solutions when assuming that the pressure at the surface matches
the load acting on the surface and that the vertical momentum balance equation must still hold at the
surface. However, when we make the boundary condition at the surface about the vertical momentum
balance equation more strict and say that the pore water pressure must be equal to the volumetric
strain times a constant instead of their derivatives, we get a unique solution which is described in Sec-
tion 5.2. Setting this more strict boundary condition feels natural, since it follows from the momentum
balance equations in two dimensions. However, for one dimension this can not be proven. In Section
5.3 we again use this more strict boundary condition, but now we assume that seabed exists of two
layers of different types of soil. We get again a unique solution which is similar as for one layer of
one type of soil, but the increase or decrease goes faster or slower depending on the properties of the
soils. Furthermore, we noticed again a small jump for the effective stress in value due to some different
constant parameters like the Lamé’s constants. In each of the sections of Chapter 5, we find that the
one-dimensional results are different for the assumption of compressible water versus incompressible
water when looking at the values of the variables volumetric strain, pore water pressure and deforma-
tion (and effective stress) in vertical direction. However, simply looking at the behaviour the results are
similar. A small change in value and the behaviour of the variables being the same is expected, since
the value of compressibility is very small when assuming compressible water.

Comparing Chapter 2 and 4, one can find that the governing equations of the model of Van Damme
and den Ouden-van der Horst are the same and thus the steps taken for derivation of the governing
equations are similar to the derivation of the governing equations of Biot’s model. However, the thinking
steps are different. Therefore, the derivation of the governing equations of this new model is still written
down. The main difference between Biot’s model and the model of Van Damme and den Ouden-van
der Horst will be the imposed boundary equations at the surface.

When we compare the results of Chapters 3 en 5, Biot’s model and Van Damme and the model of
Den Ouden-Van der Horst in one dimension, we find that both models seem to describe the behaviour
of the seabed subjected to waves similarly for compressible water. However, the results have different
values. By changing the compressibility we could derive the same solutions for Biot’s model as for the
new model. For incompressible water, the stationary solution is almost immediately found by Biot’s
model while the results of the new model converge over time to its stationary solution. However, as
said in the introduction the solution of Biot’s model for incompressible water does not match real obser-
vations. Therefore, it is common to assume that the water is compressible. Whether the water is truly
compressible depends on the problem we want to solve. Therefore, since both models make differ-
ent assumptions (boundary conditions and the (in)compressibility of water), it depends on the problem
which model makes physically more sense.

For the rest of this master thesis the numerical system in two dimensions will be implemented for
one homogeneous layer of soil but also for two layers of two different types of soil. Especially multiple
layers of different kinds of soil is of interest to our research, since there are many assumptions about
the intersections of the layers to be consider. Another extension is to compare the (numerical) solutions
of Biot’s model and the model of Van Damme and Den Ouden-Van der Horst based on physics, mathe-
matics and data of experiments more extensively, since this research question remained unanswered
in this literature report. A different extension could be extending the two models to a three-dimensional
setting. However, this probably will be too time-consuming and will not yield any new information about
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the behaviour of the seabed subjected to waves. We could also extend the one-dimensional and two-
dimensional model by adding the acceleration terms as an extension to this literature report. This way
we can determine whether our assumption of the acceleration terms being negligible is valid. Another
extension could be trying to derive the amount of energy at the surface and look whether the same
amount of energy goes in as out during a wave in two dimensions. This could validate the different
chosen boundary conditions at the surface in the model of Van Damme and Den Ouden-Van der Horst.
Lastly, as a extension we could also make the computational domain more general. In this literature
report, we assumed a square grid in two dimensions and a vertical line in one-dimension. However,
in reality the layers of the seabed are not necessarily rectangular but can be diagonal or wavy for
example.
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