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Abstract

Especially in a country like the Netherlands it is important to have well-maintained levees, since a large
part of the Netherlands is below sea level. Therefore, researching the factors that have an impact on
the status of these levees is of importance. One of these factors is the hydrodynamic load acting on the
seabed due to waves. The distribution of this pressure may impact the levee. Therefore, it is important
to have a model that describes the behaviour of hydrodynamic loads acting on the seabed due to waves
sufficiently. The aim of this literature report is to describe such a model and solve it numerically using
the finite-element method for discretisation in space. We use Backward-Euler for discretisation in time.

To describe the behaviour of hydrodynamic loads acting on the seabed due to waves it is currently
common to use Biot's model. This model assumes that the effective stresses of the porous soil are
zero at the surface and the load due to the waves is completely carried by the pressure at the surface.
An other important assumption made in Biot's model is that the pore water must be compressible.
Therefore, the model of Biot is in line with the effective stress principle of Terzaghi. However, the
assumption of compressible water raises some questions.

Recently a new model tried to handle these questions. In the model of Van Damme and Den
Ouden-Van der Horst the stresses are absorbed by both the pore water particles and the soil particles.
Thus in this new model the pore water does not carry the full load in this model. Instead of setting the
effective stresses to zero at the surface, the vertical momentum balance equation is used as a boundary
condition at the surface. So Terzaghi’s stress principle is not used as a boundary condition at the surface
in the new model. Furthermore, the compressibility of the pore water does not need to be assumed
in the model of Van Damme and Den Ouden-Van der Horst, since it includes the (in)compressibility
into account. So we may choose the (in)compressibility later on instead of assuming it beforehand.
We do find that both models can describe the behaviour of the seabed subjected to waves. However,
both models make different assumptions, for example when choosing the boundary conditions and
assumption of the (in)compressibility of water. Therefore, it depends on what kind of problem the
model is used for and the corresponding physics.






Nomenclature

Table 1: Directions and their symbols.

| Direction | Symbol |

Horizontal x
Vertical z
Table 2: Symbols and their definitions and units.
| Definition | Symbol | Units |
Boundary domain dQ -
Compressibility of the pore water B -
Density of the soil Ds kg/m3
Density of the pore water Py kg/m3
Displacement of the soil particles in the i-direction | u; (fori=x,2) m
Displacement of the pore water in the i-direction w; (fori=x,2) m
Domain Q -
Effective size of grains dqo m
Effective stress tensor o} (fori,j =x,2z) | Pa
Elasticity modulus E Pa
Hydraulic conductivity K m/s
Functions in time J DR N
Lamé’s constants Au Pa
Length in i-direction n; (fori=x,2) m
Normal unit vector to the boundary n -
Poisson ratio vy -
Pore water pressure P Pa
Porosity of the soil D
Specific weight of the pore water Yw Pa
Stopping time tend s
Strain tensor for soil €;j (fori,j=x,2) | -
Time t s
Time step At S
Total stress tensor aij (fori,j =x,2z) | Pa
Volumetric strain of the soil particles Evol -
Vorticity of the soil particles w Hz
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Introduction

For countries like the Netherlands it is important to have levees and keep them well-maintained in order
to protect the people and land. This way rivers and the sea are prevented from flooding [1]. However,
since several countries as the Netherlands, Egypt, India and China are located in lower reaches of
rivers and the fact that the water level is rising, it is important to get an indication about the influence of
the waves on a levee and to know the interaction between the pore water and the deformation of the
soil of the seabed [1]. An important factor is the water pressure, since the levees can be damaged by
the oscillations of the pressure travelling through the ground nearby the levees.

In this literature report we assume that this seabed laying before the levees is a fully-saturated
poroelastic medium. Describing the behaviour of such fully-saturated poroelastic soil is important for
different kinds of Civil Engineering. It is common to use Biot's model. This model describes the defor-
mation of such fully-saturated poroelastic media [2] and has been studied extensively [3], [4]. However,
in this model it is often assumed that the pore water is compressible [2], because otherwise the results
of Biot’s model do not agree with the reality [5]. Unfortunately, this assumption of compressibility of
pore water can have a significant impact on the distribution of the effective stress of the soil and thus
also the deformation of the soil [6]. However, recent research has found a similar model for which both
compressible and incompressible water can be assumed [6].

The aim of this literature report is to work out a description of the behaviour of a seabed subjected
to waves using numerical methods. Two models will be described of which one is old and well-known
(Biot, 1955) [2] and the other one recently published (Van Damme and Den Ouden-Van der Horst, 2023)
[6]. For both models the acceleration terms and body forces like gravity will be ignored unless stated
otherwise [6]. A main difference is that the boundary conditions at the surface in Biot's model are in
line with the effective stress principle of Terzaghi which states that the total stress acting on a porous
medium has to be equal to the pore water pressures added tot he effective stresses [2], [3], [6] and
sets the following boundary conditions: the full hydrodynamic load due to the waves is carried by the
pressure and the effective stresses at the surface of the porous soil are zero. The new model is based
on making sure that the momentum balance equations are all valid at the computational domain and its
boundaries [6]. The new approach takes instead the following boundary conditions into account: the
stress and the gradient of the stress. The stress gradient follows from one of the momentum balance
equations and therefore, the model follows D’Alembert’s principle of minimisation of virtual work [6].
However, the effective stress principle of Terzaghi is not valid at the surface in case of hydrodynamic
load which would be valid for linear and static load [6].

Solutions of the two models will be derived by using numerical methods. In this literature report,
we will assume one or two homogeneous layers of soil as seabed and use the Finite-Element Method
(FEM) for discretising in space. For discretising in time the Backward Euler Method is used. In this
literature report, we want to find a numerical model for Biot's model and Van Damme and Den Ouden-
Van der Horst. We would like to answer the following questions:

1. Do Biot’s model and Van Damme and Den Ouden-Van der Horst model differ in (numerical) so-
lution?

2. Do the two models have a unique solution?
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3. Do the results of the two models get impacted by the assumption of (in)compressibility?

4. What is the impact on the behaviour of the soil when having two different homogeneous layers of
soil compared to one homogeneous layer of soil?

To understand the interaction between the pore water and the soil, it is important to understand the
stress and strain relations first. Therefore, we start Chapter 2 with deriving Biot's model in two dimen-
sions and its numerical discretisation. In Section 2.1, we will determine the basic equations for a linear
elastic medium. In Section 2.2 these equations will be modified into constitutive equations describing
the deformation of fully-saturated poroelastic media which is better known as Biot's model [2] where
pore water is often assumed to be compressible. In Section 2.3 we will look into the application of the
finite-element method and in Section 2.4 we will look into the application of the backward-Euler method
on the model of Biot in order to discretise the governing equation in space and time, respectively. In this
literature report, the corresponding two-dimensional results will not be shown yet. In Chapter 3 Biot’s
model and its numerical model is derived in one dimension for first analysis, since it is a simplified form
of the two-dimensional model described in Chapter 2. In Section 3.1 the (numerical) model for one
type of soil is a unique solution derived and the results are presented. For a seabed with two layers
of two different types of soil the (numerical) model with a unique solution is derived and the results are
presented in Section 3.2. In Chapter 4 the new model of Van Damme and Den Ouden-Van der Horst
will be described in two dimensions. In Section 4.1 the governing equations are determined. In Sec-
tions 4.2 and 4.3 these equations are discretised in space by the finite-element method and in time by
the backward-Euler method, respectively. In this literature report, the corresponding two-dimensional
results will not be shown yet. In Chapter 5 the Van Damme and Den Ouden-Van der Horst model and
its numerical model is derived in one dimension which is a simplified form of the two-dimensional model
described in Chapter 4. This is done for one layer of soil having infinitely many solutions, one layer of
soil having a more strict boundary condition and thereby a unique solution, and two layers of different
types of soil assuming the more strict boundary condition. In Section 5.1 the (numerical) model with
infinitely solutions is derived and the results are presented for one type of soil. In Section 5.2 the (nu-
merical) model with only one solution is derived and the results are presented for one type of sail. In
Section 5.3 the (numerical) model with only one solution is derived and the results are presented for
a seabed with two layers having two different types of soil. Lastly, in Chapter 6 the conclusions are
made and ideas for further research are discussed.



Biot's model (2D)

In the next sections we will derive the governing equations for Biot's model in two dimensions and
discretise them first in space and second in time. For discretising in space we will use the finite-element
method and for discretising in time we will use the Backward-Euler method.

2.1. Linear elastic medium

We will begin with deriving the basic equations for a linear elastic medium, using Cartesian coordinates
x,z. We can write the stresses and strains as [2], [4]

G = [""x "”] and @2.1)
O-XZ ZZ

&= €xx €Exz ) (2.2)
6XZ eZZ

where o;; is the stress and ¢;; is the strain for i, j = x, z. We will refer to ¢ and € as the stress tensor and
strain tensor, respectively. We assume a linear elastic medium of which a volume of the solid system
will be represented by a rectangle of size n, X n,, which is shown in Figure 2.1.

Figure 2.1: Stress components of ¢ acting on the computational domain Q which is a rectangle.
Then we can use geometric equations, equations of motion and constitutive equations to represent the

3
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strain-displacement relations and stress-strain relations. In tensor form the geometric equations are
given by [2], [4]

1[0y Oy for i i e 23
EU_Z 3 Y ori,j=x2z (2.3)

where u; denotes the displacement of the solid in the i-direction and u; ; means derivative of u; with
respect to the j-th component.
According to [4], the constitutive equation which will be given in tensor form of Hooke’s law:

%ij =~ Z Z Cijri€r forij=x,z, (2.4)

k=x,z l=x,z

where c; j; are components of a fourth-rank tensor including 81 components. Since stress tensors and
strain tensors are symmetric, we have first minor symmetry and second minor symmetry, i.e. ¢;jx; =
Cjike @nd c;ji; = ¢;jix- Furthermore, for a homogeneous medium, we also have major symmetry, i.e.
Cijki = cruij [4]. Because of these symmetries, the number of independent components decreases to
2 so that Equation (2.4) becomes [3]

O'L']' = —Z‘U.Gij - /15ij€vol for l,] =X,Z,

where €, = €xx + €,y + €, for i = x,y,z, §;; is the kronecker delta (6;; = 1 if i = j, otherwise 0) and 1
and u are Lame’s constants. Lamé’s constants are defind as

va

A= Arvyd-zo) 29)
E
p= 2+ )’ (2.6)

where E represents Young's modulus and v, Poisson’s ratio [1], [4]. Rewriting this in matrix-vector form
[4] gives

o = —Ce,

where

Oxx Exx A+2u A 0
o=|0,]|, €=|€;|l, C= A A+2u 0f.
Oxz €xz 0 0 u

Note that matrix C is written this way, since it should be a non singular and invertible matrix.

2.2. Governing equations

Recall that the above relations of stresses and strains are for a linear elastic medium. We now look into
the governing equations of a fully saturated poroelastic medium. First consider a volume of a solid-fluid
system which will be described by a unit size cube and assume that the solid-fluid system is statistically
isotropic which implies that the principal stress and strain directions are the same. Furthermore, a fully
saturated poroelastic medium without the acceleration terms of the fluid relative to the solid is assumed
for now. The body forces are also ignored.

In the next sections we will describe the stress and strain relations again, but now for this fluid-
solid system. This way the governing equations of Biot’s model will be derived in two dimensions. The
corresponding boundary conditions will also be described. For deriving Biot's model we follow the steps
presented by Verruijt [1], [3].
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2.2.1. Conservation of mass equation
First of all, we need the equations of conservation of mass of the solids and the pore water. The
resulting mass balance equation for the pore water (fluid) is given by [3]

dpps 0 dw, d ow,
ot T \PPrac )Tz \PPrae )= @)
where p; is the density of the fluid, w, is the displacement of the pore water in x-direction, w, is the

displacements of the pore water in z-direction and p the porosity of the medium. The mass balance
equation for the soil is given by [3]

a(1 = p)ps 9 9 9
WDy L (-mn e )+ g (-5 = 28)

where p; is the density of the soil, u, is the displacement of the soil in x-direction and u, is the dis-
placements of the soil in z-direction.
According to [1], we can rewrite the mass balance equation of the pore water given by Equation

(2.7)as
dp N aP 4 d oWy, 4 d ow, _o 29
ot PP Yo \PPrgr | T \PPrar )0 (2.9)

where P denotes the pore water pressure and § the compressibility. Note that the water is incompress-
ible if 8 = 0.0 and compressible if 8 € (0,1]. We assume that the soil particles are incompressible.
Then we have that the density p, is constant. Therefore, we have that Equation (2.8) becomes

o, 9 ), 9 (1 0z ) g 210
When adding Equations (2.9) and (2.10), we get [3]
aP O(wy, —uy) d o(w, —uy,) Jd (0Ouy 0 (0uz\
ﬁ_+_<p at Tz\PT ac AT AR A (2.11)
. Ouy duy,
Using €yq = > T 5, wecan write Equation (2.11) as [3]

P 0 oWy, —uy) d ad(w, —uy,) O€yo
PPoe T ox (p e J)te\PT o )T T (2.12)
Using Darcy’s law we get that q; = ;(S [3], where g; is the quantity in Darcy’s law for fluid motion for
i = x,z, K; denotes the hydraulic conductmty and y,,. This quantity can also be given by the porosity

multiplied by the difference of the velocities of the soil and pore water particles, i.e. q; = ap(l;t wi) [3]-

Therefore, we have that
K _ d(u—w)
v. <ﬁvp> _v <p i ) (2.13)

3 vx]. After substituting Equation (2.13) into Equation (2.12)

dx y
and assuming K, and y,, are constants, we get

av
where V- = + a—ZZ for all vectors v =

w _y2p VWMZ
p[)’ VPt 5 =0 (2.14)

2.2.2. Momentum balance equation

The stress tensor can be separated into two parts, since we now have a fluid and a solid part. The
stress acting on a rectangle domain in Figure 2.1 can be denoted as Equation (2.1) [2] and the stress
acting on the fluid part the rectangle domain in Figure 2.1 can be described by the diagonal tensor [2]

5= [(S) O], (2.15)

S
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where s can be calculated by s = aP [2], [4] with P the fluid pressure and a the Biot constant that
depends on the geometry of the medium. Usually @ = 1 can be assumed in Civil Engineering problems
[4]. We will assume from now on that « = 1. Note the plus-signs in the relation s = aP which describes
that scalar s must be positive when the force acting on the fluid is a pressure and the stress tensors oy, g,
and o, are negative due to the positive compression convention in the formulation. Note that in [2] a
minus-sign is placed before s, since they assume negative pressure when the stresses are positive. The
strain tensor in the solid is denoted by Equation (2.2), where ¢;; for i,j = x, z are described by Equation
(2.3) [2], [3]- For a linear solid medium the total stress and effective stress coincided. However, since
we now have a saturated medium, there is also the pore pressure in the relationship between total and
effective stress which is in tensor form [2], [3]

o-ijzo-i’j+8ijp fori,jZXZ

where o;; denotes the effective stress tensor of the solid medium, o;; the total stress tensor, §;; the

Kronecker delta and P the pore water pressure. Since a{j = —2ue;j — A8; €y, We have that
ij = _Z,U'Eij_ldijevol-l_(sijp for l,] =X,2Z, (216)

where §;; is the kronecker delta and 4 and u are Lamé’s constant.
The equilibrium equations for a fully saturated poroelastic medium is made out of the stresses acting
upon the rectangle which is given by [2], [4]

Bal-x 60,-2
dx 0z

=0 fori=x,z (2.17)

Then substituting Equation (2.16) into Equation (2.17) gives

5 O0€iy Y 66\,0|+6 JaP ) de;, 18 6evo|+6 aP_O for i — 218
u ax x5 Xy u 92 iz 5, iz, = ori =x,2z. (2.18)

We can rewrite this as [3]

-1+ )ae""' — uViu, + 3_ =0
—(A+ )“V“" —uVu, + 52 =0
v 2
where VZp = a% + % for all vectors v = v"]. We can also rewrite Equation (2.18) as
z
aev0| apP
% _(A+2 L

{ L ) W 219)

“a_ —(A+2)— 7+ 5. =0
where o := 2 _ %%z which is used in [6]. Equation (2.19) will be used further in this chapter.

0z dx
According to [2], we can uncouple Equation (2.19) by taking the curl and the divergence to obtain a

formula for the vorticity and the volumetric strain, respectively. We will do this in the next sections.

2.2.3. Vorticity equation
After applying the curl on the first equation of Equation (2.19), we get that

9 dw 6evo| apP 9 dw deyo OP
az<“a—‘<“2) ox ax>_§<_“a__(’1+2”)a +£>
’w 0*w
= [W + a_] (2.20)

where w is now the only unknown variable in the formula.
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2.2.4. Volumetric strain equation
After applying the divergence on the first equation of Equation (2.19), we get that

d dw Vo| oP 6 dw 66V°| oP
ax “a__(“z) ox ax az “6__(/1+2) 0z 62
€Evol %€yl 9%p a%p
(A+2)[ + 622]4—[@4_?' (2.21)

After substituting the mass conservation equation given by Equation (2.14) into Equation (2.21), we get

& 0€yol
Yw Ot

— (A +2u )[ el 626"°'] K op

— 5 =0 (2.22)

which is a formula depending on the volumetric strain and the pore water pressure. Note thatif § = 0,
then the there is only one unknown, namely the volumetric strain. Therefore, the formula written in this
way is preferable. Because we now have two equations with two unknowns, namely Equation (2.14)
and (2.22) with the volumetric strain and water pressure, this system of equations can be solved for
the unknowns volumetric strain and the pore water pressure.

2.2.5. Displacement
Lastly, we need also to describe the relations between the horizontal and vertical displacements and

the other unknowns. Since w = % - aauz and e,o = % + aauz’ these can be defined as [6]
0%u, 9%u, dw ey
C9x2  9z2 9z ox ' (2:23)
0%u, 0%*u, OJw _ Oevol
- - (2.24)

" 9x2 9z2  ox 0z

2.2.6. Boundary conditions

When using Biot’s model it is common to take ¢,, = g,, + P set equal to a function only depending
on time F,, and suppose that ¢,, = 0 and P = F,,. However, according to [6], the assumption of
o,, + P = E,,, where F,, a function depending on time, gives a pressure at the surface that is much
higher than the pressure of the waves on the surface caused by water running over the porous medium.
Since 0,, = F,, = 0+ F,, = g,, + P, Terzaghi’s principle is met. Another condition at boundary z = 0

is that o, = F,, [3], where F, is a function only depending on time. Recall that the formula of shear
stress is given by 0., = —2u€,, = —u (% + a;:)
At z = —n, we assume that the displacement for the soil and pore water in z-direction is zero for a

deep enough seabed. This means that u, = 0 and that there is no gradient for the pore water pressure
which is defined as a—P = 0 [5], [7] at z = —n,, respectively. Since the displacement of soil is negligible

= 0 [5]. Hence,

= 0 [5]. Furthermore, since —= a =0and Juz _ 0,
az ax

6uz

at the bottom, we fll’ld that there is no gradient for the displacements: "’aLZ =0 and

Evol

there is also no gradient for the volumetric strain aa
we have that w = 0 at z = —n,,.

Similarly, at x = 0 and x = —n,, it is assumed that the displacements will smoothen out according to
[8]. Then we get that aa’;z =0and 2% = patx = 0, L [5]. Assuming that the displacements on the sides
of the domain are negligible, we have that u, = 0 at x = 0,n, [5]. Therefore, we also have that the

volumetric strain does not have a gradient —= aEV°' = 0 at x = 0,n,. Furthermore, we have that the pore
water has no gradient at x = 0 and x = n,, WhICh is defined by Z—z = 0, since the water displacements

are also assumed to be negligible [5]. Furthermore, since aaiz" =0 and % = 0, we have that w = 0 at
x =0and x = n,.



8 2. Biot’s model (2D)

In conclusion, we have the following boundary conditions

duy
ﬂw_zﬂa_LLZ:sz
forz=0:{P=E, , (2.25)
Ouy
—A€yol — 214 auz =0
forz=—n,i{o=u=22=2L=%_9 | (2.26)

andforszandxznx:{w=ux=6al;z=3—§=a;—;°' =0, (2.27)

where F,, and E,, are a functions only depending on time. Its value and its gradient equal zero.

2.2.7. Initial conditions
We assume that at the beginning, t = 0, everything is at rest. Therefore, it is assumed that no stresses
act on the surface in the beginning, so there are no stresses and displacements at time t = 0 [6]. Since

we have no displacement and stresses, the volumetric strain and pressure must be zero too. Then we
have that [6]

W|e=0 = Ux|t=0 = Uzlt=0 = €vollt=0 = Plt=0 = 0.
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2.3. Discretisation in space
In the following sections we will discretise the equations of conservation of mass, vorticity, volumetric
strain and displacement which was found in Section 2.2. First we will discretise these four equations
with respect to space using the finite-element method (FEM) in order to derive the Galerkin equations.
We do this per equation. In this numerical approach we assume that Q = (0,n,) x (—n,, 0) € R? is the
space domain and that T = (0, teng) is the time domain, with n,, n,, teng > 0.

The two-dimensional domain and its boundaries are given as in Figure 2.2, each with their own
color. The normal unit vectors with respect to this boundaries are also given in Figure 2.2, These have
corresponding colors to their boundary. The normal unit vectors in two dimensions are given by

L

Note that the first entry represents the x-direction (horizontal) and the second entry represents the
z-direction (vertical).

Figure 2.2: Rectangle domain with boundaries and their normal unit vectors. The domain is given by the color blue. The
subdomains dQ,,dQ,,dQ; and dQ, with their normal unit vectors are given by the colors bordeaux red, light red, orange and
dark red, respectively.

We define n to be the dimension of the space and N; are the basis-functions fori = 1, ..., n that form
a basis for the space. Note that in the next few sections N; has a superscript which can be the symbol
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of the volumetric strain, pore water pressure or displacement in horizontal or vertical direction. In this
case, N; fori = 1, ..., n are defined for the space of that unknown variable specifically. n is assumed to
be the same for all spaces.

2.3.1. Conservation of mass equation
We will derive the weak form of the pressure equation and its matrix-vector form. Suppose that the test
and trial functions are given by

n
vP(x,2,t) = Z NP (x, 2)7° (8), (2.28)
i=1
n
€0l (X,2,t) = Z NE (%, 2)§ (1), (2.29)
j=1
n
P(x,2,t) = Z NP (x, 2)B,(t). (2.30)
=1
After multiplying Equation (2.14) by test function v€ and integrating over the domain Q, we have that
p[tw 0P 0°P 0P Yy Olul],,
L” K PPor "oz a3z Tk, o |07 (231)
Slnce — + — =V (VP), we can apply integration by parts on the —Z—P -— part followed by the
dlvergence theorem. Then Equation (2.31) becomes
opP 0
—f vP (VP -n)dr+f plw [p + EV°'] + (WP -vP)da =o. (2.32)
da ot ot

After setting v” (x,z,t) = 0 for z = 0 because of the boundary condition given by Equation (2.25) and
using the other boundary conditions given by Equations (2.26) and (2.27), we get that

f vP(vp-n)dr=f vP(VP-nl)dF+f VP (VP -1,) dT
da dQ, dQ,

+j vP (VP -n3)dl +j vP (VP -n,)dl
dQs dQy

_o. (2.33)

When substituting the test and trial functions given by Equations (2.28), (2.29) and (2.30) and boundary
integral given by Equation (2.33) into Equation (2.32), we get the following Galerkin equations

n

n n n

d _ d _

o= [ Serte b2 (Soarn )« & (Soga | o Soweer)o(Sooen
=1 =1 i=1

=1

o P, N\ 0€ <
PVW Z POt Z 75 P Z
Z f pE) NG+ ) N gt | + |7 (2.34)
=1 j=1 =1
Since it must hold for arbitrary o7 with i = 1, ..., n, we have that Equation (2.34) still holds as
0=f NPVW ﬁZNl - +ZN€ I+ |vwp ZPIVN, da. (2.35)
=1

We can write Equation (2.35) as matrix-vector multiplication

APPP, + AP€€, + BPP = 0, (2.36)
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where
pp_ [ Yw PP Pe _ | Ywyp P _ P P
_ Py _ at at
P = : , Pt = : ) ét = : )
B, P %
at at

fori,j =1,..,n. Equation (2.36) is our third matrix problem to solve.

2.3.2. Vorticity equation
We will derive the weak form of the vorticity equation and its matrix-vector form. Suppose that the test
and trial functions are given by

n
V9 (x,2,t) = Z N (x,2)52 (0), (2.37)
i=1
n
w(x,2,t) = Z NP (x, 2); (8). (2.38)
j=1
Multiplying Equation (2.20) by test function v® and integrating over the domain Q gives
f P A T 2.39
a VH 822 T gxz o (2:39)

Since ‘;27‘;’ + ZZT‘;’ = V- (Vw) with V the gradient operator, we can apply integration by parts on Equation
(2.39) followed by the divergence theorem. Then Equation (2.39) becomes the weak equation

J v®u (Vw -n)dl —j Ww® - uVodQ =0, (2.40)
dQ Q

where dQ) contains the boundaries of domain (1, and 5 is the unit normal vector pointing outward to the
surface dQ). Because of the boundary conditions given by Equations (2.25), (2.26) and (2.27), we set
v®(x,z,t) = 0forz=—n,, x =0 and x = n,. Then we get that

J veu (Va)-n)dl"=f v‘”u(Vm-nl)dF+f vu (Vo -n,)dl
do da, dQ;

N f V9 (Voo - 3) dT + f 9 (Vo - 4) dT
dQs

dQ,

9
- f v 2. (2.41)
dQs 0z

After substituting the test and trial functions given by Equations (2.37) and (2.38), respectively, and
boundary integral given by Equation (2.41) into Equation (2.40) we get the following Galerkin equations

n n

n n
2
o:f D N | Y Na dF—]V > wneoe |- Y npay |do
d0s 7= j 2 \i i=1

Jj=1 =1

n n an n n
=ngﬂf N{”uz @ja—;dr—zﬁ;ﬂf VN '“Z @ INLdQ. (2.42)
i=1 dfls j=1 i=1 Q j=1

Since it must hold for arbitrary #” with i = 1, ..., n, we have that Equation (2.42) still holds as

0 =J Ni‘"uz @ja—;dr—j VN '“Z ®;YNPdQ fori=1,..,n. (2.43)
das = Q =
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We can write Equation (2.43) as matrix-vector multiplication,

(B® — SD®)w =0, (2.44)
where
azv;v W1
B¥ = J-/J VN?® -VN®)dQ, SD¥ :f UNP ——dI, w=]|:|,
L] a ( l ] ) 9] dQ3 L aZ (Dn

fori,j =1,..,n. Equation (2.44) is our first matrix problem to solve.

2.3.3. Volumetric strain equation

We will derive the weak form of the volumetric strain equation and its matrix-vector form. Suppose that
the test function for €, is given by

n
ve(x,2,t) = Z NE(x, 2) 55 (D). (2.45)
i=1
Recall the following test and trial functions
n
fni(2,0) = ) NF(2)§(0),
j=1

P(x,2,t) = Z NP (x, 2)B,(t).
=1

Note that €,, and P have a first derivative with respect to time which means that their test and trial
functions have to depend on time. Multiplying Equation (2.22) by test function v€ and integrating over
the domain Q gives

0%e €Evol azEvol
J. [K at (/1+2[1)< + 372 )+—[3 ]dQ—O (2.46)

2
Since + aa;"' = V- (Veyo), We can apply integration by parts on the

the dlvergence theorem. Then Equation (2.46) becomes

0% fvol 0% fvol 0% Evol

+ ——= part and then

O€yol
ot

P
- f VEQL + 210) (Veyy 1) AT + f pelw [ Y it ] (A4 20) (Vo€ - Ve)dQ = 0. (2.47)
do a K at

Using the boundary conditions given by Equations (2.25), (2.26) and (2.27), we get that

LQ vE(A+ 2p) (Veyy - 1) dT = f

dg,

ve(A+2p) (Veyo -n1) dl + L vE(A+2p) (Veyo - M) dT
Q

+ f ve(A+2p) (Veyo -m3)dl + f vE(A+ 2u) (Veyo - 14) dl
dQs dQy,

9
- f peZ&vlgr (2.48)
dos 0z

Substituting the test and trial functions given by Equations (2.45), (2.29), (2.30) and boundary inte-
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gral given by Equation (2.48) into Equation (2.47) gives the following Galerkin equations

0 Nfv§ \ _61\/]-6 dr
—‘fdﬂgi_ | 265

=1 j=1
n P n P n n n
Y _ - ) _
+fZvafK—W T szfej +0B5; ZN{’Pl + (A +2w|V Zvaf -V sz;ej do
Q= $ = =1 =1 =
n n aNJw ¥ lP
=—Zaff NE “Z‘I’f +) B=L |dr
dQ 4 0x d
=1 Jj=1 =
n - n
+Zf;i€f Ywy Z +pﬁZNl al + @2 [oNg (D guny |[an (2.49)
i=1 a K j=1 j=1

Since it must hold for arbitrary #; with i = 1, ..., n, we have that Equation (2.49) still holds as

0 f Ne i_a]\]f
e . 6._
a0, \& o

=
n — n
+f N¢ Zl\lf +pﬁ’ZNl al + (A +2w) |VNE - Zevzve Q  (250)
Q. -
j=1 j=1

We can write Equation (2.50) as matrix-vector multiplication,
A€E€, + APP, + (B — SD€)é = 0, (2.51)
where

age = [ Yenenedo, ac = [ Leppnenran, B = [ (+ 20 [vwe - ung|da,
a Ks Q

a Ks
- 98 (228
61\/] ) 6'1 _ at _ at
SDf = Nf—=—dI, e=|i|, €=+ |, Pe=| 1],
do; 07 én % P
at at

fori,j=1,..,n

2.3.4. Displacement equations
We will derive the weak form of the displacement equations and its matrix-vector form. Suppose that
the test function is given by

v¥(x,z,t) = Y Ni*(x,z)0;*(t), (2.52)

2

v (x,z,t) = ) N;7(x,2)9;%(t), (2.53)
2

U (x,z,t) = Yy N/*(x,2)a*(t), (2.54)
; J J

uy(x,z,t) = » N*(x,2)u?(t). (2.55)
; J J
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Recall the following test and trial functions

Q67,0 = Y NE2DE(®), w(0z8) = ) NP 2)a0)
k=1 =1

After multiplying Equations (2.23) and (2.24) by test functions v*» and v*x, respectively, and integrating
over the domain (1 we get

0o " 0%u, 0%u, dw ey 40 0 56

_Qv o2 T2 )Tt o ’ (2.56)
0%u, 0%u, dw ey

o[ (5 5t e

92 uL 9%u;

= = = V- (Vu) for i = x,z, applying integration by parts and divergence theorem to
Equat|ons (2.56) and (2.57) gives

u w [0w | 06y u

0=- dﬂv x [Vu, -n]dl + Qv x Z+ Ep + [Vv¥x - Vu,]dQ, (2.58)
u u Jdw  0J€yg u

0=- dnv z [Vu, -n]dl’ + Qv drr + e + [VvYz - Vu,] dQ. (2.59)

After substituting the boundary conditions given by Equations (2.25), (2.26) and (2.27) into Equations
(2.58) and (2.59), we get that

f v [Vu, -n]dl = f v¥x [Vu, -n,]dl + f v¥x [Vu, -n,]dr
do dQ, dQ,

+J- v¥x [Vu, -n3]dl + f v [V, -9,]dl
dQ; dQy

1 1
= v¥x—|w— —F,, |dl, 2.60
L% 2( #xa (2.60)
f v¥z [Vu, -n]drl = J- v¥z [Vu, -9,]dl +f v¥z [Vu, -n,]dl’
da dQ, da,

+f v¥z [Vu, -n3]dl +f vz [Vu, - 9,4]dl
dQs dQy

A
= v¥z —¢, o dr. 2.61
Lﬂg, 2# vol ( )

Substituting the test and trial functions given by Equations (2.52), (2.53), (2.54), (2.55), (2.29), (2.38)
and boundary integrals given by Equations (2.60) and (2.61) into Equations (2.58) and (2.59) gives the
following Galerkin equations

fd N“X‘”x < NP@; | - xz‘dl“
Q3L’
n n n
a d
Uy -U - -
+LZNI-XUL-X & Z}V]wa)]>+a IZNIEEI >+

N =
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Equations (2.62) and (2.63) can be written as

n
1 1
—Zﬁ?*f Ni”xE ZNJ%" — —Fg, |dr
= da H

n n n
aN“’ aNE
_U u - - l u - u
;5] N;F E i VN;™ - E *VN;™* Q, 2.64
+;vl L 2 & J aZ ax + L / u] j d ( 6 )

=1 j=1

n

n n
N Zﬁ‘yz j N Z Z + |unze . Za].va?‘z da. (2.65)
i=1 Q j=1 =1

j=1

Since it must hold for arbitrary #;* and ;% with i = 1, ..., n, we have that Equations (2.64) and (2.65)
still holds as

j=1
n n n
N ON{
Uy - J = l Uy _ Uy
j= =1 j=1
0 —f iNuZ 2 NEdT
= i 1Y)
da, 2H =
n n
+f N Z g, Z &= NEY 4 o 2 12VN (2.67)
Q = =
We can write Equations (2.66) and (2.67) as matrix-vector multiplications,
BY@™ + (D% — SA¥)@ + C¥xé = —F"
( _z )- . ) (2.68)
(B%z — SAY2)u” — C%é& + D¥7é =0

where

1 yl
SAF = f EN;"‘N“’dF SA[? = f ZNuzNEdF B = f UN* - VN*dQ, B = f VN;* - VN;“dQ,
dQs dQs; Q Q

aN¢E AN AN ONE
clx = f N —Lda, ¢ = f N{?—2-dQ, D = f N*—L-da, D7 = f NP —LdQ,
dQ 0x dQ ox dQ 0z dQ 0z

Fxz =f N.“xiF dr

' dQg b 2u xe=
fori,j=1,..,n
2.3.5. Final FEM Model

We assume that Nf = N = N = N/* = N/ =: N; forall i = 1, ...,n. After collecting the governing
equations given by Equations (2.36), (2.44), (2.51) and (2.68), we get the following set of Galerkin
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equations:
1 (B —SD)w =0
’I;—WAét + )I/(—WpﬁAPt +[(A+2uw)B—-SD]é =0
J );—V:Aét + )I;—‘:pﬁAPt + BP = ) (2.69)
Bu" + (D — ;SA)® + Cé = —Fxz
(B—iSA)aZ—Ca:+Dé =
2u

where Al] = f.Q, Nl]V]dQ, SA’-] = fdﬂg NlN]dl", B” = fQ VNl . VIVJdQ,

ON; ON; ON; ON;
Ci}' = fﬂ Nla—x]dﬂ, SCU = fd9.3 Nla—x’d[‘, DU = fQ Nla—Z]dQ, SD” = fdﬂ3 Nﬁ_Z]dF
foralli,j=1,..,n.

We can write Equation (2.69) as one system of matrix-vector multiplication

MO, + M@ = f, (2.70)
where
© 0 0 00 (B — SD) ) o 0 0
] K—‘:A K—‘:pﬁA o 0 —uSc (A+2u)B -SD ¢ (0]
Mt = ) )I’(_V:A }I’(_v:pﬁA o ole RSnxSn’ M = Q)l [0)] B (1) (1) € RSnxSn’
¢ 0 ) o 0 —C D o @ (B-SA)
- a_w -
W £ 0
‘ T 0
6=|P|eR™0,=|75 |€ER™", f=| 0 [eR™ (2.71)
ﬁx aﬂx _FJCZ
uZ at, 0
- ou

L 9t -

Note that the boundary conditions are included.

2.4. Discretisation in time

For discretising the Galerkin equations in matrix-vector form given by Equation (2.70) we use the
Backward-Euler method. The Backward-Euler method is given by

1
0, = v (0%+1 — 6¥) = g (ck+1,0 (t++1)), (2.72)

where 851 = @ (¢5*1), At = th+1 — ¢* is the time step, and g (¢%*1,0 (¢%*1)) = fk+1 — MO*+* and
it = £ (¢%*1). Applying Equation (2.72) to Equation (2.70) gives

(M* + AtM) 0%+t = MtOK + Atfr+L. (2.73)
Assuming that (M* + AtM) is invertible, Equation (2.73) can be written as
9%+l = (Mt + AtM) ™ (MH6F + Atfk+1). (2.74)

The two-dimensional results will not be determined in this literature report. However, this is one of
the main goals for our further research.



Biot's Model (1D)

For simplicity, we will look at Biot's model in one dimension and derive its numerical model. In the next
sections, the governing equations of Biot's model will be derived in one dimension together with the
corresponding boundary conditions. Results are shown for a seabed consisting of one homogeneous
layer of soil and for a seabed consisting of two homogeneous layers of two different types of soil. Given
that the seabed is n, metres, the layer of the seabed with one type of soil has thickness n, and the two
layers of the seabed with two types of soil have thickness %

3.1. One type of soil

We will first give a solution when assuming one layer of fine sand. In this case the porosity, Lamé’s
constants and hydraulic conductive are constant and their derivatives with respect to z equal zero.

3.1.1. Physical model and numerical model

Noting that in one dimension we have that €,y = 24,

5, e then have the following constitutive equations
in one dimension

F] 92 apP
o -t = -RBy;
Yw aP a%p Vw 0€yol fi
gL _ 2P =-w-vd “forzeQandte€eT, (3.1)
au at  9z2 Ks 0Ot
6zz = €yol

with boundary conditions

u,(—m,t) =0

€vo =0 AP(—nzt)
, {——— =0, ,forteT, (3.2)
P(0,t) =F,(t) 6EV£(Z—nZ,t) -0
0z -

and initial conditions
€vol(2,0) = P(z,0) = u,(z,0) =0, forz € Q.

Using boundary conditions, the weak equations in one-dimension are given by

w [ 9€vol 9€vo
Lo NERE (552 5]+ vz (57 52) a2 =0
©° LPLW aevo| ﬁ ] (a;Z az)dz -0 , (3.3)
. 0
f Nlu auz dz = [, Ni‘€vodz

17
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Substituting one-dimensional trial functions into Equation (3.3) we get the following one-dimensional
Galerkin equations in matrix-vector form

Do Aé, + TpBAP + (A +21)BE =0

Ywpg, + 2eppAP, + BP =0 , (3.4)
KS KS
cu’” = A€
0 0 dN; ON; 0 N ; AN ;(0)
where Ai,j = f_nz NL']VJ'dZ, Bi,j = f_nz Ea—zde, Ci,j = f_nz Nia—z]dZ. and CB] = NL(O) OJZ .
We can write Equation (3.4) as two systems of matrix-vector multiplication
M!S, + MS =
Lt r (3.5)
Cu = Ae
where
Yw Yw 0€
A EpBA (A+20)B @ é % 0
t— | Xs Ks = 'u = € = at =
s s t

The Dirichlet boundary conditions are included in the numerical model by setting the corresponding
rows of matrices Mt and M to zero and then putting pivots in these same rows of M. Furthermore, we
setF;=0fori=1,..,n—1andF, = F,,. Then we get that B, = F, = F,, and @2 = 0. Now we apply
the time integration given by Equation (2.74) using M*, M, S and f as described above. Assuming that
matrix (M¢ + AtM) and C are invertible, we get that

Sk = (Mt + AtM)_l (MtS* + Atfh+t) 3.7
u-zk+1 — C—lAe-k+1 ) ( : )
Finally, we choose that
1- A+2 1- , if
E(t) = A-p8)A+2uw) (1 —cos(t)) fe<m (3.8)
21-p)(A+2u), ift>m

Note that E,,, which represents the normal stress, indeed only depends on time and is chosen to be
positive for all t € T. Furthermore, the value of E,, and the value of its derivative with respect to z
equals zero at initial time t = 0. This way the initial conditions and boundary conditions are still met.
Finally, note that the normal stress F,, becomes constant over time.

Then the solution of the one-dimensional model must go to the stationary solution over time. There-
fore, will now solve the stationary one-dimensional system in order to find the stationary solution.

3.1.2. Stationary model

The stationary model in one dimension is given by

62evol _

KT

— =0 , (3.9)
ﬁ

a—zz = €vol

with boundary conditions given by Equation (3.2) using E,, = F constant (t — o).
The set of equations given by Equation (3.9) gives the following solutions

u, = [ €,0dz+ ¢, = %CZZZ +c3z+ ¢
Evol = C2Z + C3 . (3.10)
P = CuZ + Csg
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Using the boundary conditions, we find that¢c; =c; =c3 =c, =0and ¢; =F, i.e.

u, =0
€l =0 . (3.11)
P=F

Then we find that also the stationary solution for €,, and u, has a unique solution. Therefore, the
solution(s) of Equation (2.69) will converge to a unique solution, namely the stationary solution given
by Equation (3.11). However, this (stationary) solution translates to the pore water pressure carrying all
load while the effective stress is zero on the whole space [—n,, 0] which seems physically not possible

[6].

3.1.3. Unique solution
When adding the first and second subequations of Equation (3.1), we find

626\,0| _ 62P

9z2  0z2
(=

6evo| oP

@A+2um) — == - +di()

g
(A + Z'LL) €vol = P+ dlz + dz,

A +2w)

where d;(t) and d,(t) are constant in space. Since we have boundary condition % = Z—IZJ = 0 at
z = 0, we get that d,(t) = 0. Because we have the boundary conditions ¢,,; = 0 and P = E,, at

z = —n,, we get that d, (t) = —F,,. This implies that
A+ 2w ey =P —FE, onQ:=QudQ=][-n,0].

Therefore, we not only have a unique solution for the stationary model given by Equation (3.11), but
also for the Galerkin model given by (3.5).

3.1.4. Results

The three variables €, P, u, and their derivatives are plotted five times, namely at t = 0.0,1.5,3.0
and 4.5, 6.0, for the case of compressible water and of incompressible water. For the assumption of
compressible water we set § = 4.8 - 1071° and for the assumption of incompressible water we have
by definition B = 0.0. The effective stress g, = — (1 + 2u) €, is also plotted in order to check the
relationship (1 + 2u) €y0(2,t) = P(z,t) — F,,. We use piece-wise linear basis-functions N;, which is of
degree 1 and smoothness 0 and are called hat functions. These are given by

Z—Zj—q .
—=, ifz€|z;_1,7]
N; =< %53 , 3.12
e e G2
Zi+1—Zi

for i = 1,...,n. Furthermore, for integration of a subdomain we use 1000 integration points, the time
step is chosen as At = 0.0025 and the number of subdomains is chosen as Az = 0.0025. The porosity,
Poisson ratio and the effective size of the grain, d,, [m], is given by Table 3.1 and the shear modulus u
and specific weight y,, are given by Table 3.2. The hydraulic conductivity is K; = ¢ - dy, [m/s] according
to Allen Hazen [9]. We will use ¢ = 1.0 which is often chosen in civil engineering problems. Recall that
A is given by Equation (2.5). At last, we setn, = 2,i.e. Q = [-2,0].

Table 3.2: Parameters shear modulus and specific weight of one layer of soil which is fine sand [6].

Parameters Symbols | Values
Shear modulus of ‘fine sand’ [Pa] u 7.7 - 10°
Specific weight of water [Pa] Yo 10*
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Table 3.1: Parameters effective size of the grains, porosity and Poisson ratio of one layer of soil which is fine sand [10].

Soil properties Symbols | Fine sand
Effective size of the grains [m] dqo 3.0-107°
Porosity p 0.4
Poisson ratio vy, 0.3

In Figures 3.1 and 3.2 and Figures 3.3 and 3.4, for assuming compressible water and for assuming
incompressible water we find that all boundary conditions given by Equation (3.2) are (approximately)
satisfied.

When comparing the top figures of Figures 3.1 and 3.3, we find that the effective stress and volumet-
ric strain indeed behave mirrored times a constant. In subfigures of Figures 3.1 and 3.3 for water pres-
sure and volumetric strain, we do not immediately see the relationship (1 + 2u) €y/(z,t) = P(z,t) — F,,
which is derived in the previous section which is probably due to the large values of the water pres-
sure. In subfigures for the derivative of the water pressure and volumetric strain of Figures 3.2 we

do find derivative of the relation, namely (1 + 2u) aEV‘;';Z’t) = 22@D \hich indicates that the relation-

ship between the water pressure and the volumetric strain is present for compressible water. We also
found, when increasing the time further, that the solutions of the volumetric strain, water pressure and
vertical displacement indeed converge to the stationary solution. For incompressible water, it seems
that the solutions of the volumetric strain, water pressure and displacement in z-direction (and the
effective stress) found is already close to the corresponding steady state solutions given by Equa-
tion (3.11). Note that then the relation between the volumetric strain and water pressure still holds:
A+ 2u) €yoi(2,t) = P(z,t) — F,, = 0= (A+2u)0 = E,, — F,, = 0. This is shown the subfigures of
these variables and their derivatives in Figure 3.3. In this case at t = 0.0 the water pressure is zero
in Q = [-2,0], while at the next time, say t = 1.5, the pressure is approximately 25043632.42 Pa
over the whole space Q and the volumetric strain and vertical displacement remain approximately O
over the whole space. When assuming incompressible water, also [7] noted the pore water pressure is
constant over space and thus directly evenly distributed over the whole space. This agrees with [6] that
the pore water pressure is directly transferred deeper in the soil for Biot's model with the assumption
of incompressible water.

Numerical solution at different times
Compressible water

Effective stress Volumetric Strain

—_—t=00s 0.000 7 —t=00s
250000 — =155 —_—t=15s
t=30s ~0.002 t=30s
200000 4 t=45s t=45s
~0.004 4
x4 150000 4 s
< <
—\ ~0.006
100000 -
50000 | \ ~0.008
o ~0.010
-200 -175 -150 -125 -1.00 -0.75  -0.50  —0.25 0.00 -200 -175 -150 -125 -100 -0.75 -0.50  -0.25 0.00
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Figure 3.1: a4, €yo1, P, U, at different times, when water is assumed to be compressible with § = 4.8 - 10710,
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Numerical solution of derivatives wrt z at different times
Compressible water
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Figure 3.2: Derivatives of g,,, €\, P, u, at different times with respect to z, when water is assumed to be compressible with
B =48-10"10,
Numerical solution at different times
Incompressible water
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Figure 3.3: 655, €voi, P, U at different times, when water is assumed to be incompressible (8 = 0).
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Numerical solution of derivatives wrt z at different times
Incompressible water
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Figure 3.4: Derivatives of o,,, €,0), P, U, at different times with respect to z, when water is assumed to be incompressible (8 = 0).

3.2. Two types of soil

Note that in previous section it was assumed that we had one type of soil. In this section we assume
that we have two types of soil and that the transitions happens at -1.0 meter.

3.2.1. Physical model and numerical model

Using the alternative boundary conditions given by (3.2), we get the same one-dimensional weak equa-

tions for the two different layers of soil, say fine sand and medium sand, as for one type of soil. However,
nz

K, p, A and u differ per separate layer. We define that the first layer, z € [—nz,—7], is medium sand

and the second layer, z € [—nZ—Z,O], is fine sand, i.e. the boundary between the two layer is the middle
of the whole domain Q = [—n,, 0]. The subdomains are divided such that there is no overlap between
layers in one subdomain. However, note that the derivative of the constants that differ per layer does
not exist when z —» _nz_z_ Since this is only one point and has almost no impact on the numerical model,
we ignore this for now.

Then we get that substituting one-dimensional trial functions into Equation (3.3) gives the following
one-dimensional Galerkin equations in matrix-vector form

A€, + A’P, + B¢ =0

AEét +APPt+BPP =0, (313)
cu’ = Ae
where
_v Yo (0
Afj = 5 Jo2 NiNjdQ + B¢ [Cne NiN;dO
vy - Vv 0
Afj = 5p"B 1,2 NiNidz + Epfﬁ f_nz_z N;N;dz
CBE = (AM 4 2um) [ 2 NN ol (O, NG, (3.14)
Bf; = (@A™ +2u )f_nzz ~ 5.0z + (@ +2,u)f_n7z o 5.4z
p _ (0 ONiON;
O Fone g
\Ci,j = |, Ni7 dz

and the subscripts m and f means the parameter with property of medium and and fine sand, respec-
tively.
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We can write Equation (3.13) as two systems of matrix-vector multiplication

cu’ = Aé’ i
where
N S B¢ ¢ é Z_i 0
Mt = A€ APl = ¢ BP , S= pl St‘ = b | f(t) = F(t) , (316)
at

with A€, A, B€ and B? are given by Equation (3.14). The Dirichlet boundary conditions are included in
the numerical model by setting the corresponding rows of matrices M* and M to zero and then putting
pivots in these same rows of M. Furthermore, we set again F; = 0 fori = 1,...,n—1and E, = F,,.
Then we get that B, = E, = F,, and g = 0.

Now we apply the time integration given by Equation (2.74) using Mt, M,S and f as described in
Equation (3.16), where we assume that matrices (M* + AtM) and C are invertible, we get again the
time integration formulas given by Equation (3.7) with F,, chosen as in Equation (3.8), but with M, M
given by Equation (3.16).

3.2.2. Stationary model and unique solution

Since the only difference between models of having one type or two different layers of soils are some
parameters being a different constant for each layer because of the properties of the type of soils, the
stationary model and its solution of the one-dimensional model with two different layers of soil remain
the same as in model with only one layer of soil. The unique stationary model was given by Equation
(3.11). It also holds that this one-dimensional model with two different types of soil still has a unique
solution.

3.2.3. Results

The three variables €, P, u, and their derivatives are plotted five times, namely at t = 0.0,1.5,3.0
and 4.5, 6.0, for the case of compressible water and of incompressible water. For the assumption of
compressible water we take f = 4.8 - 1071° and for the assumption of incompressible water we have
by definition p = 0.0. The effective stress g,, = — (1 + 2u) €, is also plotted. We use the piece-wise
linear basis-functions N; for i = 1,...,n, given by Equation (3.12). Furthermore, we use again 1000
integration points, a time step of At = 0.0025 and the number of subdomains is chosen as Az = 0.0025.
The values of porosity p, Poisson ratio v, and the effective size of the grains d,, [m] per layer are given
by Table 3.3 and u is given by Table 3.4. We use again that K; = ¢ - d;¢ [m/s] by Allen Hazen [9] with
c = 1.0. A is given by Equation (2.5) and recall that we define y,, = 10*. We set again n, = 2, i.e.

0 =[-20].

Table 3.3: Parameters effective size of the grains, porosity and Poisson ratio of two layers of soil which are fine sand and medium
sand [10].

Soil properties Symbols | Fine sand | Medium sand
Effective size of the grains [m] dqo 3.0-107° 2.3-107%
Porosity D 04 0.44
Poisson ratio vy 0.3 0.27

Table 3.4: Lamé’s constants of two layers of soil which are fine sand and medium sand [6].

Soil properties

Symbols

Fine sand

Medium sand

7.7 - 10°

3.9-10°

Shear modulus [Pa] U

Per layer, the results look like the results of the one-dimensional model of Biot with one layer of soil.
The values of the effective stress, volumetric strain, water pressure and vertical displacement differ a
bit compared to their values for one layer, which makes sense since several parameters depend on



24 3. Biot's Model (1D)

the properties of the soil. For example, Lamé constants 4 and u change when the first layer changes
into the second. This may cause a jump in value or a kink at the boundary between the layers where
z = —1.0. Since the effective stress is 1 + 2u times the volumetric strain, we see a bigger jump for
the assumption of compressible and incompressible water in the subfigure of the effective stress in
Figures 3.5 and 3.7, respectively. When looking at the subfigures for the pore water pressure and
volumetric strain of the Figures 3.5 and 3.6 and Figures 3.7 and 3.8, we find again the relation of the
volumetric strain and pore water pressure given by (1 + 2u)e,o = P — F,, for both the assumptions
of compressible water and incompressible. We expect the water pressure and the z-displacement to
be continuous which seems to hold for compressible and incompressible water. This can be seen
for compressible and incompressible water when looking at the solutions for the water pressure and
vertical displacement in Figures 3.5 and 3.7, respectively. Note that approximately the solutions for
incompressible water becomes the stationary solution directly. When increasing the time, we again
find that the solutions for compressible water converge to the stationary solution.

Numerical solution at different times
Compressible water

Effective stress Volumetric Strain
t=00s 0.000 1 —1=00s
250000 m—t=ThE —t=15s
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1=6.0s —0.004 - 1=6.0s
N 150000 A 3 et
—— 3
—0.006
100000 N
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50000 -
—0.010 1
o
—2.00 =175 -1.50 -1.25 -1.00 -0.75 —0.50 —0.25 0.00 —2.00 =175 -1.50 -1.25 -1.00 —0.75 —0.50 -0.25 0.00
z z
le7 Water Pressure z-displacement
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m—t=155 —0.0025 1
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41 —t=45s —0.0050 4
5 t=6.0s —0.0075 1
N
o S —0.0100
21 —0.0125
19 —0.0150 ¢
—0.0175 4
o
—2.00 =175 -1.50 -1.25 -1.00 =0.75 -0.50 —0.25 0.00 —2.00 =175 -1.50 -1.25 -1.00 -0.75 —0.50 -0.25 0.00
z z

Figure 3.5: 655, €y01, P, u at different times, when water is assumed to be compressible with g = 4.8 - 1071°.
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Numerical solution of derivatives wrt z at different times
Compressible water
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Figure 3.6: Derivatives of g, €y, P, U, at different times with respect to z, when water is assumed to be compressible with

B =48-10"10,

Numerical solution at different times
Incompressible water
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Figure 3.7: 655, €voi, P, U at different times, when water is assumed to be incompressible (8 = 0).
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Numerical solution of derivatives wrt z at different times

Incompressible water
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Figure 3.8: Derivatives of o,,, €,0), P, u, at different times with respect to z, when water is assumed to be incompressible (8 = 0).



Van Damme and den Ouden-van der
Horst Model (2D)

In the next sections we will derive the governing equations for the model of Van Damme and den
Ouden-van der Horst in two dimensions and apply numerical methods to discretise in space and time.
We will first discretise the new model in space using the finite-element method and in time using the
Backward-Euler method.

4.1. Governing equations

We will use Cartesian (x, z)-coordinates. We will follow the derivation of four constitutive equations
by [6]. These are given by the vorticity equation, volumetric strain equation, water pressure equation
and displacements equation. These follow from the volume balance equation and the momentum
balance equations. This approach is based on defining a stress and a stress gradient as boundary
conditions which follows from the momentum balance equation [6]. Therefore, it is also in line with the
D’Alembert’s principle of minimisation of virtual work. However, it does not follow the effective stress
principle of Terzaghi [6]. Like we did for Biot's model, we do not take the acceleration terms into account
and ignore the body forces in the model of Van Damme and den Ouden-van der Horst.

4.1.1. Volume balance equation
According to [6], the volume balance equation for compressible or incompressible pore water is given

by
6P+6p+8 ow, +6 dw, _ 0 41
PPoctac tax\Pac JTaz\Par )= © (4.1)
where t denotes time, p denotes the porosity of the medium, g denotes the compressibility of the pore
water (if B = 0 the water is incompressible, and if g € (0, 1] the water is compressible), P denotes the
pore water pressure and w, and w, denotes the 2D displacement of the pore water in x-direction and

z-direction, respectively. According to [6] the volume balance equation of the incompressible particles
in a porous medium is given by

i(1-p) 0 1 ouy d 1 Ju, ~0 4.9
T‘*‘a(( —p)ﬁ>+£<( _p)6t>_ , (4.2)

where u, and u, denotes the 2D displacement of the porous medium in x-direction and z-direction, re-
spectively. Equation (4.2) describes the change in porosity caused by the movement of incompressible
particles in a porous medium. Then the volume balance equation for the porous medium is given by
adding the volume balance equation of the pore water to the volume balance equation of the particles

[6]

7t ( M>+ ; (Pa(wz_u2)>+ O _ g (4.3)

PPoe T ox at 9z at at

27
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ouy u.
where €,q = —= + ==

™ e is the volumetric strain of the porous medium.

4.1.2. Momentum balance equations

[6] derives the momentum balance equations using D’Alembert’s principle of virtual work. This principle
states that for the reversible displacements the total virtual work of the imposed forces plus the inertial
forces vanish [6]. The momentum balance equations are given by [6]

0 (0duy ou, ouy ou, Yw ap(Wx — Uy) _
_ﬂ& (E‘ 6x>_(/1+2'u)_<ﬁ+ EP —ET—O; (4.4)
0 (0u, Ou, Ju,  Ou, Yw Op(W; — u,) _
Hox ( 0z ox ) @+2u)3 ( ox Yoz ) kT “.5)
P Yw ap(wx - ux) _
Ix E—at =0, (4.6)
aop Vw ap(Wz - uz) =0, (47)

9z K at

where K denotes the hydraulic conductivity, y,, denotes the specific weight. 2 and ¢ are Lamé’s con-
stant and are related to the elasticity modulus E and Poisson ratio v, of the porous medium which is
given by [1]

= i 48
(14 - 21y (4.8)
E

4.1.3. Vorticity equation

Applying the curl on the momentum balance equations, we get a constitutive equation for the vorticity
[6]. Therefore, the vorticity is defined to be the curl of the displacement field which is given by w =
duy  Ouy

P o Via substituting Equations (4.6) and (4.7) into Equations (4.4) and (4.5) the Darcy’s friction

terms are replaced by the pressure gradients. Substituting €,, and w, this gives the following two
equations

0 _ 9% itz —0 4.10
Tl ( ) ) (4.10)
9 L 9%° a2 a'EV"'—o 4.11

Then taking first the curl of Equations (4.10) and (4.11), and second multiplying the resulting equation
with —1, gives [6]

0w 0%w
u 0. (4.12)

922 T ox2

Note that Equation (4.12) does only depend on the vorticity @ now and not on the pressure P and
volumetric strain €, anymore. Equation (4.12) forms the first constitutive equation.

4.1.4. Volumetric strain equation
Substituting €, and w and then taking the divergence of Equations (4.4) and (4.5), gives

2vo 62vo w d ax_x 0 az_z
—(/1+2u)< vol | a;') h (a[p¥]+£[p¥]>=0. (4.13)

Substituting Equation (4.3) into Equation (4.13), we get

Yw 0€yol Evol 626\,0| yw aP
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Note that in Equation (4.14) we account for the effects of damping. According to [6], if we would account
for the acceleration terms Equation (4.14) would become a wave equation in the case of no damping,
because the pore water is not part of this equation. Equation (4.14) forms the second constitutive
equation.

4.1.5. Water pressure equation

We also need a constitutive equation describing the relation for the pore water pressures. This is done
similar as for the volumetric strain. So now we take the divergence of the momentum balance equations
for the pore water which are given by Equations (4.6) and (4.7). This gives a storage equation given

by [6]

Yw 0P 0*P 0°P 'y, ey
K,"" ot 9x?  0z2 K, ot

(4.15)

4.1.6. Displacement equations
Beside the relations described above, it is also needed to form some relations between the horizontal
and vertical displacements and the vorticity and volumetric strain. These are given by [6]

0%u,  0%uy, dw  0€y,
C9xz 9z2 9z ox ' (4.16)
%u, 0°u, OJw Dey 4.17)

0x2 9z2  dx 0z

Equations (4.16) and (4.17) represent the fourth and fifth constitutive equations, respectively.

4.1.7. Boundary conditions

In this new model only the pore water pressure and displacement must be defined at the boundary,
while in Biot's model also the effective stress was defined. According to [6], when boundary conditions
can be well-determined the use of geotechnical models to such a situation is limited by defining both
the pore water pressure and the effective stress.

The boundary condition at z = 0 for w and u, depend on the boundary conditions for the normal
stress and for P, €, and u, on the shear stress [6]. Recall that for Biot's model it is common to take
Oy = Ogy + P = —A€yo — Zuauz + P. However, according to [6], the assumption of a,, + P = F,,,
where F,, is a function dependlng on time, gives a pressure at the surface that is much higher than the
pressure of the waves on the surface caused by water running over the porous medium. ¢;, = 0 and
P = F,, were assumed in Biot's model which means that the water pressure is carrying all the load. The
assumption a,, = F,, gives a discontinuity in the water pressure at z = 0 [6]. Assuming that P = F,,, a
solution is found where the pressure inside the pores is equal to the force of water flow on the surface,
but the porous medium can experience a pulling force [6]. Since the two assumptions a,,, + P = E,, and
o,, = F,, give unlikely situations, we choose the assumption P = F,, like [6]. However, then Terzaghi’s
stress principle is not met in case of hydrodynamic loads, since we do not define the effective stresses
at the surface: o,, = F,, # 0,, + F,, = 0,, + P. Note that Terzaghi’s principle is valid in case of
statics and linear loads [6]. Another condition at boundary z = 0 is that the vertical momentum balance

equation must hold. This equation is given by (1 + 2u) == ae""' - #a_w — — = 0 [6]. The third condition at
z = 0 can be given by o,, = F, [6], where F,, is a functlon onIy depending on time. Recall that the

ox 0z
formula of shear stress is given by g, = —2ué,, and that €, = = (6u" + afj) Substituting these two

Juy duy,

+

definitions into the third condition, we get y( ) = F,,. Rewriting this latter equation in terms

of w and u, gives uw — Zu— = E,, which will be used as the third boundary condition from now on.

u apP de
Atz =-n,wedefinew =u, = —* =—= "°' = 0, since the influence of the waves on such a

depth is assumed to be nil for these speC|f|c varlables or their derivative with respect to z [5], [6].

Similarly, at x = 0 and x = —n, we have w = u, = fu, _ 9P _ a;“" = 0. These boundary

ax
conditions at x = 0 and x = —n, are based on the situation of a standlng wave that increases and
decreases the load on the soil in horizontal direction [6].
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In conclusion, we have the following boundary conditions

ﬂw_zlu% = Fe,
forz=0:<P =F,, (4.18)

A+2u) 20— 22— 22 =g
forz=—n,i{o=u=22=2=%_9 | (4.19)
andforszandxznx:{w=ux=661;2:3—2:6;—;"' =0, (4.20)

where F,, and E,, are a functions only depending on time. Their value and their gradient equal zero.

4.1.8. Initial conditions

We assume that that there are no waves and everything is initially at rest. This means that we assume
that no stresses act on the surface in the beginning, so there are no stresses and displacements at
time t = 0 [6]. Since we have no displacement and stresses, the volumetric strain and pressure must
be zero too. Then we have that [6]

Uglt=0 = Uzlt=0 = €vollt=0 = @|t=0 = Pl¢=0 = 0. (4.21)
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4.2. Discretisation in space

In the following sections we will discretise Equations (4.28), (4.37), (4.42), (4.16) and (4.17). First
we will discretise these equations with respect to space using the finite-element method (FEM). We
do this per equation. When discretising with respect to space is finished, we discretise the resulting
equations with respect to time using Backward-Euler since this method is unconditionally stable. In this
discretisation we assume that Q = (0,n,) x (—n,, 0) S R? is the space domain and that T = (0, teng)
is the time domain, with n,,n,, teng > 0. The derivation of the Galerkin equations of the new model is
pretty similar to the ones of Biot's model, since all governing equations are the same and most of the
boundary conditions too. Therefore, we skip some computations of the Galerkin equations for this new
model and refer to the computations of the Galerkin equations done for Biot's model.

We again assume that the two-dimensional domain and its boundaries and the unit vectors normal
to these boundaries are given as in Figure 2.2. Recall that the normal unit vectors in two dimensions

are given by
0 1 0 -1
n = [_1]' N = [0] ) n3 = [1]' Ny = [ 0 ] (422)

where the first entry represents the x-direction and the second entry represents the z-direction.

Recall that n is the dimension of the space and N; are the basis-functions for i = 1, ...,n that form
a basis for the space. When having the symbol of the volumetric strain, pore water pressure or dis-
placement in horizontal or vertical direction, n and N; for i = 1,...,n are defined for the space of that
unknown variable. However, we assume that n is the same for all spaces.

4.2.1. Vorticity equation
We will derive the weak form of the vorticity equation and its matrix-vector form. Suppose that the test
and trial functions are given by

n

v9 (x,2,t) = Z N (x, 2)5% (¢), (4.23)
i=1
n
w(x,2,t) = Z NE (x, 2)@; (£). (4.24)
j=1
Multiplying Equation (4.12) by test function v® and integrating over the domain Q gives
] P ACONCC P 4.25
q VTH 522 T 9xz - (4.25)
Since ‘227‘; + 227‘;’ = V- (Vw) with V the gradient operator, we can apply integration by parts on Equation

(4.25) followed by the divergence theorem. Then Equation (4.25) becomes the weak equation
f v®u(Vw -n)dr — f Vv® - uVwdQ = 0, (4.26)
dQ Q

where dQ contains the boundaries of domain Q, and 5 is the unit normal vector pointing outward to the
surface d). Because of the boundary conditions given by Equations (4.18), (4.19) and (4.20), we set
v?®(x,z,t) = 0forz = —n,, x = 0 and x = n,.. Then we get that

f mewnmr=f mewmaw+f 9 (Voo - 17) dT
do dQ,

do,

+j WWWwWQM+J Y9 (Vo - 1) dT
dQs dQy,

9
- J vouZ2r. (4.27)
dQs 0z
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Substituting the test and trial functions given by Equations (4.23) and (4.24), respectively, into Equation
(4.26) and using the computations as for Biot's model in Section 2.3.2 gives the following Galerkin
equations in matrix-vector multiplication,

(B® — SD®)Ww =0, (4.28)
where
ON® W1
BY =f u (VNP -UNP)do,  SDY =f uNe—Ldr, w=|: |,
Q do 0z A
3 W,

fori,j =1,..,n. Equation (4.28) is our first matrix problem to solve.

4.2.2. Volumetric strain equation
We will derive the weak form of the volumetric strain equation and its matrix-vector form. Suppose that
the test and trial functions are given by

veé(x,z,t) = ) Nf(x,z)v;(t), (4.29)
2
€vol(x,z,t) = ) Nf(x,2)&(t), (4.30)
' ; J j
P(x,z,t) = ) NF(x,2z)P,(t). (4.31)
IZ P 2P,

Note that €,, and P have a first derivative with respect to time which means that their test and trial
functions have to depend on time. Multiplying Equation (4.14) by test function v¢ and integrating over
the domain Q gives

0% Evol 62Evol
f [K at (/1+2[1)< + 372 )+—ﬁ ]dQ—O (4.32)

a2 0" €vol + Ll 0% €yl a? evol a? evol

Since w5z T2 = = V- (Veyo), We can apply integration by parts on the
the divergence theorem. Then Equation (4.32) becomes

+

part and then

Yw | O€vol op
—f v€(A+ 2u) (Ve -n)dl + J- veé— +pB——|+ A+ 2p) (Vv - Ve,)dQ = 0. (4.33)
40 qo K| ot at

Using the boundary conditions given by Equations (4.18), (4.19) and (4.20), we get that

f V(L + 21) (Veyg - ) dF = f e+ 21) (Ve - 1) AT + f V(A + 21) (Veyoy - 112) AT
da dQ, dq,

+ f ve(A+2u) (Veyg -m3)dl + J- (A +2u1) (Veyg - m4)dl
Qs

d0,

d opP
[ v (H_“ + _> dr. (4.34)
dﬂ3 6 aZ

Note that the integrand of integral for the boundary dQ; differs than the one for Biot's model since this

particular boundary conditions is different. In this case, we have that —(1 + 2u)eyq + u P 24 E =0

instead of €,,; = 0 at boundary d);. Because of this difference, we write out the computations of the
Galerking equations.
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Substituting the test and trial functions given by Equations (4.29), (4.30) and (4.31) into Equation
(4.33) gives the following Galerkin equations

n
ONF
0:—] Nﬁf Z ZPl ’
do, &

n a n n n
sz;e-j + B szfﬁl +(+20)|v ZNfﬁf v szjfe-j 40
j =1 i=1
=—Zﬁff NE Z +Zpl

- dQ

e _
for + PP ZNz T 2+ (A +24) VN - Ze‘jvzvf dQ. (4.35)
Jj=1

+Z . f Yw
Since it must hold for arbitrary #; with i = 1, ..., n, we have that Equation (4.35) still holds as

0 f N§ Zn:'aN"w+nPaNl dr
= — Slu ;i —— _—
a0, \ &) ox & Yoz

]:
n — n
Yw 0€ j l
+f Yw e Zl\ljea—+pﬁZNl L+ 2 | Zevzvf do. (4.3
Q -

j=1 j=1
We can write Equation (4.36) as matrix-vector multiplication,
A%€€, + A°PP, + B€ — SC¢@ — SDEP = 0, (4.37)
where

A5E = f W Neneda, AsP = L’I’(_WPBN;NJPdQ, B;}.:fn(z+2#)[VN;.ije]dQ,
S

- 98y 9Py
aNy® aN?‘D €1 at } at
SCE =f uNE—L-dr, SDf =f Ne—Ldr, e=|:|, &=|:]| B.=|:]|
da, 0x do; 0z €n %én 9Py
at at

fori,j =1,..,n. Equation (4.37) is our second matrix problem to solve.

4.2.3. Pressure equation
We will derive the weak form of the pressure equation and its matrix-vector form. Suppose that the test
function is given by

n
P (x,2, 1) = Z NP (x, 2)57 (D). (4.38)
i=1
Recall the following test and trial functions
n n
€y (%2, 1) = Z NEGLDE(), P,z t) = Z NP (x, 2)P,(t).
j=1 =1
Multiplying Equation (4.15) by test function v¢ and integrating over the domain Q gives

fvpy_wﬁf’_P_az_P_az_P Y 9€val
o' |KPPar T ox? T a2 T Kk, ot

]dﬂ = 0. (4.39)
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Smce + a_z = V- (VP), we can apply integration by parts on the — g I: - ';275 part followed by the
dlvergence theorem. Then Equation (4.39) becomes
aopP 6
- f vP (VP -m)dl + f plw [pﬁ ;V;'] + (VvP -VP)dQ = 0. (4.40)
do

Setting vF (x, z,t) = 0 for z = 0 because of the boundary condition given by Equation (4.18) and using
the other boundary conditions given by Equations (4.19) and (4.20), we get that

f vP(VP-n)dr=f vP(VP-nl)dF+J vP (VP -p,)dr
da doy da,
+f vP (VP-ng)dl"+f vP (VP -p,)dr
da;

dQ,

= 0. (4.41)
Substituting the test and trial functions given by Equations (4.38), (4.30) and (4.31) into Equation (4.40)
and using the computations as for Biot’'s model in Section 2.3.1 gives the following Galerkin equations
in matrix-vector multiplication,

APPPt + APEét + BPP = 0, (442)

where

A{’j”zfn pBNPNFAQ,  APF —f —~NFNFdQ, Bngﬂvzvf-wvfdﬂ,

_ 0P1 661

_ F? _ at B at
p=|:|, P,=|:| e&=|":][

B, 0P 2

at at

fori,j =1,..,n. Equation (4.42) is our third matrix problem to solve.

4.2.4. Displacement equations
We will derive the weak form of the displacement equations and its matrix-vector form. Suppose that
the test function is given by

Vi (x, 7, £) = ; N (x, 2) 5% (0), (4.43)
viz(x,2,t) = ; N (x, 2)7" (t), (4.44)
U (x,2,t) = Z N (x, )@ (t), (4.45)
Uy (x,2,t) = Z N (x, 2) 2 (E). (4.46)

Recall the following test and trial functions

Evol(X,2,t) = Z N (x,2)€x(t), w(x,zt)= Z NP (x,2)a0(t).
k=1 =1
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After multiplying Equations (4.16) and (4.17) by test functions v*» and v*x, respectively, and integrating
over the domain Q we get

—f we |- (Tt Tt} | 90, O] 4 4.47
I ax2 " 9z2 ) T oz T ax |0 (4.47)
0%u, 0%u, dw ey
— Uy | -
O—Lv [ (axz + 6z2> P + P ]dﬂ. (4.48)
Since a;xf + ‘z:;i =V - (Vu;) for i = x, z, applying integration by parts and divergence theorem gives
dw  J€yqg
0=— f Vi [Vay -] dT + f e (22 4 + [Vt - V] dO, (4.49)
da Q 0z dx
4] ad
0= —j v¥ [Vu, -5 dl +f vl <——w + EV"') + [Vv¥= - Vu,] dQ. (4.50)
do Q dx 0z

Using the boundary conditions given by Equation (4.18), (4.19) and (4.20), we get that

f v [Vu, -n]dl = f v¥x [Vu, -n,]dl + f v [Vu, -9,]dl
dQ dQ, dQ,

+J- v [Vu, -n3]dl + f v¥x [Vu, -n,]dl
dog d

Qg
f ue L < 1F )dF (4.51)
= v —|w— — , .
"~ 2 M Xz
f v¥z [Vu, -n]dl = f v¥z [Vu, -9,]dl +f v¥z [Vu, -n,]dl’
da dQ, da,
+J- v¥z [Vu, -n3]dl +f v¥z [Vu, -n,]dl
dQs; dQy
du,
= f vz dr. (4.52)
dQs 0z

Substituting the test and trial functions given by Equations (4.43), (4.44), (4.45), (4.46), (4.30) and
(4.24) into Equations (4.49) and (4.50) and using the computations as for Biot's model in Section 2.3.4
gives the following Galerkin equations in matrix-vector multiplication,

(4.53)

1]

B¥xit* 4+ (D% — SA*)@ + C¥xé = —F"*
(B¥z — SD¥2)u? — C%@® + D¥™é =0

where

1 INE
SA;F = J SN/*NPdr, B = j UN;* -VN/*dQ, B} = j VN -UN2dQ, ¢ = J N*—2Ldq,
do; 2 ) ) do 0x
aN:
dQ, SD;7 = f N} —L—
dos 0z

w
u, INj

IN®
it = [ veran Dl = | N
da da

€
on;

F:
0z d

do, Dy =LQN}‘Z

1
FXZ = N —F,_drT,
LQ3 boop

fori,j =1,..,n. Equation (4.53) is our fourth matrix problem to solve.
4.2.5. Final FEM Model

We assume that Nf = N = N = N/* = N/ =: N; forall i = 1, ...,n. After collecting the governing
equations given by Equations (4.42), (4.28), (4.37) and (4.53), we get the following set of Galerkin
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equations:
1 (B —SD)w =0
%Aét + ]I/{—":pﬂAI_’t + (A4 2u)BE — uSCw —SDP =0
f(—“:Aét + );—":p,li’APt +BP =0 (4.54)
Bu* + (D — ;SA)® + Cé = —F*
(B —SD)u” — Ca + Dé =0

where Al] = fQ, Nl]V]d.Q, SAU = fd9-3 NlN]dl", BU = fQ VNL . V]V]d.Q, Cl] = fQ Nl%dﬂ,

ON ; ON ; ON ; .
SCU = fd9.3 Nla—x’d[‘, DL] = fQ Nla—zjdﬂ, SD” = fdQ?, Nla_zjdl—‘ for all L,j= 1,..,n.
We can write Equation (4.54) as one system of matrix-vector multiplication

M6, + M6 = f, (4.55)
where
@ 0 @ (/B0 u(B—SD) ] o 0 )
I L —uSC (A+2WB -SD ¢ 0
Mt =g }I'{_WA ];_WPBA 0 olersmsn, M= 01 0] B (0} (0} € R5™X5n
6 @ ) o 0 —C D ® @ (B-SD)
— a_w -
‘W 3t 0
€ g 0
0=|P|eR™O, =5 [eR™, f=| 0 |eR™ (4.56)
ﬂx 61_‘)( _FXZ
u” ot 0
- ou

_at-_

Note that the boundary conditions are included.

4.3. Discretisation in time

For discretising the final FEM model given by Equation (4.55) we use the Backward-Euler method
again. Recall that after applying the Backward-Euler method given by Equation (2.72) to Equation
(4.55), we get that

9+t = (Mt + AtM) " (MEQK + Atfk+1), (4.57)
when assuming (M + AtM) is invertible.
For simplicity, we will look at the Van Damme and den Ouden-van der Horst Model in one dimension

which will be described in the next section. The two-dimensional results will not be determined in this
literature report. However, this is one of the main goals for our further research.



Van Damme and den Ouden-van der
Horst Model (1D)

For our first analysis we reduce the two-dimensional case to one-dimensional. This makes the nu-
merical analysis more simple, however, it gives a good understanding of the behaviour in z-direction.
The model in one-dimension can be determined by setting the shear stress to zero and by letting the
normal stress due to the wave be a function which only depends on time. In this case, there will be
no alterations in x-direction. This means that all displacements in x-direction, (u*), and all derivatives
with respect to x, (:x) are equal to zero. Note that in this model the entire domain is of one type of
soil and is a simplification of the two-dimensional model. Therefore, the main goal in this section is
to represent the relations between the volumetric strain, water pressure and z-displacement. At last,
recall that in one-dimension we have z € Q := [—n,, 0].

5.1. One type of soil
We will first give a solution when assuming one layer of fine sand. In this case the porosity, Lamé
constants, and hydraulic conductive are constant and their derivatives with respect to z equal zero.

5.1.1. Model
This gives the following constitutive equations in one-dimension,
Yw 9€vol J€yol 92 evol _ _w ap
K. ot (/12+ 2 Ze =T PPy
VW g‘”’ Cli = VWaEV‘" ,forzeQandteT (5.1)
at 0z2 Ks Ot
E)uz _
37 = Evol

with boundary conditions

u,(—n,t) =0

P(0,t) =F,,(t) AP(~nyt
aevo|(0 £) 6ZPZ(0,t) ) —(an ) =0,forteT (5.2)
(/1 +2 ) = 9z 6evolf_nzrt) _
—— =0
0z
and initial conditions
€vol(2,0) = P(z,0) = u,(z,0) =0, forz € Q. (5.3)

Using boundary conditions, the weak equations in one-dimension are given by

~NEOZELL 4 [0 fj{W[f’EV°'+ P+ + 2w (2 2)dz =0

0 PYw aEvol av? =
f—onz N; 2 +pBY; at ( 9z az)dz = 00 , (54)
Uz
f_ Nlu 9z d = f_nz Nl-uEVO|dZ

37
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Substituting one-dimensional trial functions into Equation (5.4) we get the following one-dimensional
Galerkin equations in matrix-vector form

" Aé, + MpBAP, + (A +21) BE—C°P =0

f(—WAét + )I;—Wp,BAI_’t + BP =0 , (5.5)
ca’ = Aé
where A, = [° NiNjdz,By; = [*, 2520dz,¢.5 = [ N;5Ldz. and €)= Ny(0) L2
We can write Equation (5.5) as two systems of matrix-vector multiplication
M'S, +MS =
Lt I (5.6)
Cu = Aé
where
Yw Yw 0€é
A L pBA 2W)B —C° >
me=|f g | m=|GFIOE L = 1%] fO=|pen| &7
A Pppa 2 F(t)

The Dirichlet boundary conditions are included in the numerical model by setting the corresponding
rows of matrices Mt and M to zero and then putting pivots in these same rows of M. Furthermore, we
setF; =0fori=1,..,n—1and E, = F,,. Then we get that B, = F, = F,, and @3 = 0. After applying
the time integration given by Equation (4.57) using M¢, M, S and f as described above and assuming
that matrix (M + AtM) and C are invertible, we get that

SKFL = (M4 AtM) T (MES® + Atfi*t) 5.8
dzk+1 =C- 1A€k+1 ( ’ )
Finally, we choose again that
1- A+2 1- t)), ift
E,(t) = A=) A+2uw) (1 —cos(t)) fe<m (5.9)
21-p)(A+2u), ift>mn

Recall that F,, represents the normal stress and only depends on time and is chosen to be positive for
all t € T. Furthermore, F,, converges to a constant over time.

Therefore, the solution of the one-dimensional model must go to the stationary solution over time.
In the next section we will solve the stationary one-dimensional system in order to find the stationary
solution.

5.1.2. Stationary model

The stationary model in one dimension is given by

9?2 O€vol __

&z

oo (5.10)
Uz

5z _ Evol

with boundary conditions given by Equation (5.2) using E,, = F constant (t - ). The set of equations
given by Equation (5.10) gives the following solutions

u, = [ €,0dz + ¢, = %CZZZ +c3z+ ¢
Evol = C2Z + C3 . (5.11)
P = CuZ + Csg
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Using the boundary conditions, we find that c; = ¢, =0, ¢; = czn, and ¢ = F, i.e.

U, = C3z + c3n,
€vol = C3 ) (5.12)
P=F

Then we find that also the stationary solution for €,, and u, has infinitely many stationary solutions.
Therefore, its likely that we also have infinitely many solutions of the one-dimensional model [5].

5.1.3. Infinitely many solutions
When adding the first and second subequations of Equation (5.1), we find
626\,0| _ OZP

9z2 ~ 0z2

A +2w)

(A + 2,“.) Evol = P+ d]_Z + dz,
where d,(t) and d,(t) are constant in space. Since we have boundary condition % = Z—I: = 0 at
z =0, we get that d,(t) = 0. This implies that

(A+2wey =P+d, onQ:=QudQ=[-n,O0]. (5.13)

Note that d, stays undefined using the set of boundary conditions given by Equation (5.2). Therefore,
the values of €, and P are expected to have the same behaviour but their values can be of different
signs.

5.1.4. Results

The three variables €, P, u, and their derivatives are plotted five times, namely at t = 0.0, 1.5,3.0
and 4.5, 6.0, for the case of compressible water and of incompressible water. For the assumption of
compressible water we set § = 4.8 - 1071° and for the assumption of incompressible water we have

by definition g = 0.0. The effective stress g, = — (1 + 2u) €, is also plotted in order to check the
boundary condition (1 + 2u) 66“‘;;0'” = aP;:‘t). We use piece-wise linear basis-functions N;, which is

of degree 1 and smoothness 0 and are called hat functions. These are given by

Z—Zj_4 .
—=, ifz€|[zi_q, 7]
N; =< %7 %3 , 5.14
' 22 if 2 € (24, Zi44] ( )
Zi+1~Zj

for i = 1,...,n. Furthermore, for integration of a subdomain we use 1000 integration points, the time
step is chosen as At = 0.0025 and the number of subdomains is chosen as Az = 0.0025. The porosity,
Poisson ratio and the effective size of the grain, d,, [m], is given by Table 3.1 and the shear modulus u
and specific weight y,, are given by Table 3.2. The hydraulic conductivity is K; = ¢ - d4, [m/s] according
to Allen Hazen [9]. We will use ¢ = 1.0. We recall that A is given by Equation (4.8). At last, we set
n, = 2,i.e. Q= [-2,0].

Then we find that € and P behave the same which can be seen in upper right and lower left subplots

of Figures 5.1 and 5.3. In upper right and lower left subplots of Figures 5.2 and 5.4, one can see that
the derivative of volumetric strain and water pressure with respect to z are equal, i.e. (1 + Zu)% = ‘;—I;
holds indeed. We also find that g,, + P is constant in the z-direction, which can be noticed in the upper
left and lower left subplots of Figures 5.1 and 5.3. However, note that this constant may differ in time
like in these figures. Furthermore, in Figure 5.3 we find for increasing t the water pressure solution
becomes more of a constant line, namely P(z,t) = E,,(t) = 2(1-B)(1+2u) as t — co. This is because

F,, is defined to be a constant for t > m. In Figure 5.1 we find that this convergence is not shown
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(yet) for the assumption of compressible water. However, when further increasing time t, a very slow

convergence is shown.

At last, we noticed when varying the space step by changing the number of subdomains and/or
quadrature points, the behaviour and/or values of the variables changed. This is also the case when
changing the time step. One reason could be that d,(t) is not defined and thus can be any constant in
space depending on time and another is simply rounding errors in calculations.

Since there are infinitely many solutions, this behaviour was expected. Nevertheless, this model
represents the relation between the variables ¢, P and u, (and g,,) well which was the main goal in

this section.

Numerical solution at different times

Compressible water

1e9 Effective stress Volumetric Strain
0.0 7 —_—t=00s —t=00s
m—t=15s 100 4 m—t=15s
-0.5
t=30s t=30s
_104 t=45s 80 1 t=45s
t=60s t=6.0s
N 5 60
o L5 W
—2.0 40 4
25 20 4
—3.0 0
—2.00 -1.75 -1.50 -1.25 -1.00 -0.75 —0.50 —0.25 0.00 —2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 —0.25 0.00
z r4
leg Water Pressure z-displacement
0.0 —t=00s 35
05 — =305 0
—_—t=455 25
-1.01 p— t=6.0s
~ 204
L 55 =]
15
=2.01 10 4
- ] _/
304 fp - e
—2.00 -1.75 -1.50 -1.25 -1.00 —0.75 —0.50 —0.25 0.00 —2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 —0.25 0.00
z z

Figure 5.1: a4, €yo1, P, U, at different times, when water is assumed to be compressible with § = 4.8 - 10710,

Numerical solution of derivatives wrt z at different times

1le10 Derivative of Effective Stress wrt z

Compressible water

Derivative of Volumetric Strain wrt z

—t=005s 3000 | = t=00s
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z z
1e10 Derivative of Water Pressure wrt z Derivative of z-displacement wrt z
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] 40 -
=
0+ -
204 -
24 g
41 T T T T T T T T T °1 T T T T T T T T T
=2.00 =175 -1.50 -1.25 -1.00 -=0.75 -0.50 -0.25 0.00 -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00
z z

Figure 5.2: Derivatives of a,,, €y, P, U, at different times with respect to z, when water is assumed to be compressible with

B =48-10710,
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Numerical solution at different times

Incompressible water

Effective stress

Volumetric Strain
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Figure 5.3: a;,, €., P, u, at different times, when water is assumed to be incompressible (8 = 0).
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Figure 5.4: Derivatives of o,,, €,0), P, U, at different times with respect to z, when water is assumed to be incompressible (8 = 0).
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5.2. One type of soil with alternative boundary condition

To be able to compare results with different parameters correctly, it is necessarily to have a unique
solution. To find a unique solution, we explicitly set d,(t) equal to some constant in z-direction, say
zero. In this case, we can define (1 + 2u)e o = P at the surface instead of (1 + 2 )ae“" = z_z;_ This

more strict boundary condition comes naturally in two dimensions, since in two dlmen3|ons it follows
from the momentum balance equations when deriving the analytical solutions [6]. However, for one
dimension this can not be shown.

5.2.1. Physical model and numerical model
Then the vertical momentum balance equation still holds at the surface, but the variation in value is
limited to one value. In other words, we now have the following boundary conditions,

u,(—n,t) =0

P(0,t) = F,(t) PCmt)  _ 0 forteT (5.15)
A+ 2 ew® =POD" | oadtnn _,
0z -

and initial conditions given by Equation (5.3).
Using these alternative boundary conditions, the weak equations in one-dimension are given by

I W ] 0220 (- ) o

0 PYW aEvol avP _

f_onz N! il B ( ia aZ)dz -0 . (5.16)
Uz

Jon, NI 52 d = [, Niewidz

Substituting one-dimensional trial functions into Equation (5.16) we get the following one-dimensional
Galerkin equations in matrix-vector form

B pé, + ™ppAP + (A +2u)BE =0

)I/(—WAét + }I/(—Wp,[?APt + BP =0, (5.17)
cu” = Ae
where 4; f N;N;dz,B;; = fonz aaN‘ aN’d and C; ; f N; aaN’ dz. We can write Equation (5.17)

as two systems of matrlx vector multlphcatlon asin Equat|on (5 7) \Z/vhere

Twa Leppa A+2u) B g 0
Mt = f/;_va i—”s’pﬁA' [( +2WB 0 ] H lz_{, f(t):[F(t)]. (5.18)

The Dirichlet boundary conditions are included in the numerical model by setting the corresponding
rows of matrices M¢ and M to zero and then putting pivots in these same rows of M. Furthermore, we
setF;=0fori=1,..,n—1andE, = F,,. Thenwe getthat P, = F, = E,,,é, = ﬁﬁn = ;LZZH and
ug = 0.

Now we apply the Backward-Euler method given by Equation (4.57) using Mt,M,S and f as de-
scribed in Equation (5.18), where we assume that matrices (Mt + AtM) and C are invertible. Then we
get again the time integration formulas given by Equation (5.8) with E,, chosen as in Equation (5.9), but
with M;, M given by Equation (5.18). To check whether we have convergence to a unique stationary
solution, we take a look again at the stationary model but now with the alternative boundary conditions
given by Equation (5.15) in the next two sections.

5.2.2. Stationary model
The stationary model is given by Equation (5.10) but instead of the boundary conditions given by (5.2) its
comes along with the boundary conditions given by Equation (5.15). Then we find that the coefficients
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1

C;fori=1,..,5 of Equation (5.11) are givenby c; =¢c, =0, c3 = Tr2n s andcs =F,i.e.
- _F L _F
Uz = ,1+21_y + /1+2unz
€vol = A+2 (5.19)
P=F

Note that we now have only one stationary solution to the one-dimensional stationary model.

5.2.3. Unique solution

Assuming d,(t) to be constant in Equation (5.13), here chosen d,(t) = 0, we get a unique solution
to the one-dimensional model. We expect that by explicitly setting d,(t) to a constant in space, the
variables ¢,, and P (and a,,) will not change drastically anymore when for example varying the step
in space and when assuming that the water is compressible (with § = 4.8 - 1071%) or incompressible
(B = 0.0). Therefore, we now have a model that has a unique solution and tends to a unique solution
over time.

5.2.4. Results
The three variables €, P, u, and their derivatives are plotted five times, namely at t = 0.0,1.5,3.0
and 4.5, 6.0, for the case of compressible water and of incompressible water. For the assumption of
compressible water we take § = 4.8 - 1071° and for the assumption of incompressible water we have
by definition B = 0.0. The effective stress o, = — (1 + 2u) €, is also plotted in order to check the
boundary condition (4 + 2u) €,/(0,t) = P(0,t). We use the piece-wise linear basis-functions N; for
i =1,..,n, given by Equation (5.14). Furthermore, we use again 1000 integration points, a time step
of At = 0.0025 and the number of subdomains is chosen as Az = 0.0025. The parameters porosity,
Poisson ratio and effective size of the grains are given by Table 3.1 and the shear modulus and specific
weight are given by Table 3.2. Recall that we use for the hydraulic conductivity the formula by Allen
Hazen [9] again with choosing ¢ = 1.0 and that A is given by Equation (4.8). We set again n, = 2, i.e.
Q=[-2,0].

Then we find that variables o, and P behave the same but mirrored and when we add both solutions
we get the constant zero which was imposed as condition on the upper boundary. This can be seen
in upper left and lower left subplots of Figures 5.5 and 5.7. The derivatives of ¢€,, and P with respect

to z are the same like they were with the original boundary condition (1 + Zu)% = 3—2 atz=0. We

expect this to happen, since the equation (1 + 2u)e,q = P on Q = [—ny, 0] derived in Equation (5.13)
with d,(t) = 0, guarantees that the derivative of this formula with respect to z also holds on Q. This
can be seen in upper left and lower left subplots of Figures 5.5 and 5.7.

Furthermore, in Figure 5.7 we find the convergence to the stationary solution is not recognizable
yet. However, when increasing time t even more the solutions indicate that unique solutions reach the
unique stationary solutions.

At last, for d,(t) not defined we noticed when varying some parameters the relations between the
variables ¢, P and u, kept the same but their behaviour and values not necessarily, since there were
infinitely many solutions. Using the alternative boundary conditions, we set d,(t) = 0 and leads to a
unique solution. This way not only the relations between the variables stay the same but, in general,
also their behaviour and values as well. Their are some differences in value but this is minimal with
respect to the order of the values and are probably due to computation errors.

In conclusion, this model represents the relation between the variables ¢, P and u, (and g,,) well
and also gives a unique solution that tends to a unique stationary solution over time.
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Numerical solution at different times
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Figure 5.5: 0},, €y, P, U, at different times, when d, (t) = 0 is constant is space and when water is assumed to be compressible

with g = 4.8-1071°,
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Figure 5.6: Derivatives of a,,, €., P, u at different times with respect to z, when d, (t) = 0 is constant is space and when water

is assumed to be incompressible with § = 4.8 - 10710,
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Numerical solution at different times

Incompressible water

le7 Effective stress Volumetric Strain
01 =l — (=005 2.00 7 —t=00s
—t=155 1.75 —t=155
-17 t=3.0s 150 4 t=30s
t=45s ) t=45s
-2 t=6.0s 1.25 4 t=6.0s
M ¥ <
N 5 i
- S Loo
0.75 1
=4 1 0.50 1
0.25 1
5
0.00 1
—2.00 -1.75 —-1.50 -1.25 -1.00 -0.75 —0.50 —-0.25 0.00 —2.00 —-1.75 -1.50 -1.25 -1.00 —-0.75 —0.50 -0.25 0.00
z z
107 Water Pressure z-displacement
54 —t=00s 0.7 1 = t=00s
m— =155 m—t=15s
— =305 0.6 1 — =305
41 — — =
t=45s 05 4 t=45s
I=6.0s 1=6.0s
34 0.4 1
a B
5 0.3+
0.2 1
14
0.1 4
04 0.0 1
—2.00 -1.75 -1.50 -1.25 -1.00 —0.75 —0.50 —0.25 0.00 —2.00 -1.75 -1.50 -1.25 -1.00 -0.75 —0.50 —0.25 0.00
z b4

Figure 5.7: a4, €y01, P, u, at different times, when d, (t) = 0 is constant is space and when water is assumed to be incompressible

(B =0).

Numerical solution of derivatives wrt z at different times
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Figure 5.8: Derivatives of a,,, €,0), P, U at different times with respect to z, when d, (t) = 0 is constant in space and when water

is assumed to be incompressible (8 = 0).
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5.3. Two types of soil with alternative boundary condition

Note that in previous section it was assumed that we had one type of soil. In this section we assume
that we have two types of soil and that the transitions happens at -1.0 meter. In this section we assume
that d,(t) = 0 again, since then we can compare the results of two types of soil with one type without
the variation of d, over time.

5.3.1. Physical model and numerical model
Using the alternative boundary conditions given by Equation (5.15) and the initial conditions given by
Equation (5.3), we get the same one-dimensional weak equations for the two different layers of soil,
say fine sand and medium sand, as for one type of soil. However, K, p, A and u differ per separate
layer. We define that the first layer, z € [-nz,—~Z], is medium sand and the second layer, z € [-~%,0],
is fine sand, i.e. the boundary between the two layer is the middle of the whole domain Q = [—n,, 0].
The subdomains are divided such that there is no overlap between layers in one subdomain. However,
note that the derivative of the constants that differ per layer does not exist when z —» —%. Since this is
only one point and has almost no impact on the numerical model, we ignore this for now.

Then we get that substituting one-dimensional trial functions into Equation (5.16) gives the following
one-dimensional Galerkin equations in matrix-vector form

A€, + APP, + B¢ =0
A€, + APP,+BPP =0, (5.20)
Cu’ = Aé

where

€ Yw - V\Ev 0

= W 2 N + = N

Al,] gn -ng NlN]dQ sf- _nzz NlN]dQ
nz

" -3 by 0
AL = %pmﬂ 2 NiNjdz + %pfﬁ f_nTZ N;N;dz
_ -ZZ 3N, ON; f (0 ON;ON; ) (5.21)
BLEJ = (ﬂm + Zﬂm) f—TLZZ Egdz + (/1 + 2#)[_1172 Egdz
P _ 0 aNi 61\/]'
B Fone g
\Ci,j = |, Ni75dz

and the subscripts m and f means the parameter with property of medium and and fine sand, respec-
tively. We can write Equation (5.20) as two systems of matrix-vector multiplication

t —
{M_ft+MS —f_’ (5.22)
Cu = A€
where
¢ A€ AP B¢ @ € Z—i 0
M" = AE AP ’ M= @ BP ) S = P ’ St: a_P ’ f(t): F(t) ’ (523)

at

where A€, A?, B¢ and BP are given by Equation (5.21).

The Dirichlet boundary conditions are included in the numerical model by setting the corresponding
rows of matrices Mt and M to zero and then putting pivots in these same rows of M. Furthermore, we
setagain F; =0fori=1,..,n—1andE, = E,,. Then we get that B, = F, = F,, and @% = 0.

After applying the Backward-Euler method given by Equation (4.57) using M¢, M,S and f as de-
scribed in Equation (5.23) and assuming that matrix (Mt + AtM) and C are invertible, we get again the
time integration formulas given by Equation (5.8) with E,, chosen as in Equation (5.9), but with M;, M
given by Equation (5.23).

5.3.2. Stationary model and unique solution
Since the only difference between models of having one type or two different layers of soils are some
parameters depending on space now, the stationary model and its solution of the one-dimensional
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model with two different layers of soil remains the same as in model with only one layer of soil. The
unique stationary model was given by Equation (5.19). It also still holds that this one-dimensional model
with alternative solution and two different types of soil has still a unique solution.

5.3.3. Results

The three variables ¢, P, u, and their derivatives are plotted five times, namely at t = 0.0,1.5,3.0
and 4.5, 6.0, for the case of compressible water and of incompressible water. For the assumption of
compressible water we take f = 4.8 - 1071° and for the assumption of incompressible water we have
by definition 8 = 0.0. The effective stress g, = — (1 + 2u) €, is also plotted in order to check the
boundary condition (4 + 2u) €,4/(0,t) = P(0,t). We use the piece-wise linear basis-functions N; for
i =1,..,n, given by Equation (5.14). Furthermore, we use again 1000 integration points, a time step
of At = 0.0025 and the number of subdomains is chosen as Az = 0.0025. The values of porosity p,
Poisson ratio v, and the effective size of the grains d,, [m] per layer are given by Table 3.3 and u is
given by Table 3.4. We use again the formula of Allen Hazen [9] with ¢ = 1.0, 1 is given by Equation
(4.8) and recall that we define y,, = 10*. We set againn, = 2,i.e. O = [-2,0].

The results look like the results of the model with one layer of soil and using alternative boundary
conditions. However, since some parameters change, their is a difference in values for z € [-2,—1]
and there is a jump or kink in the solutions and their derivatives at z = —1.0 [m] which can be seen
in Figures 5.9, 5.10 and 5.12. The volumetric strain and effective stress may have a jump in space,
since the Lamé’s constants are involved in the equation for volumetric strain (and thus for effective
stress, since a,, = (1 + 2u)€,o and these vary in space now. However, we expect the water pressure
and the z-displacement to be continuous. These expectations seems to hold for compressible and
incompressible.
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Figure 5.9: a5, €yo1, P, u at different times, when water is assumed to be compressible with g = 4.8 - 1071°.
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Numerical solution of derivatives wrt z at different times
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Figure 5.10: Derivatives of a,,, €,0), P, U, at different times with respect to z, when water is assumed to be compressible with
B =48-10710,
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Figure 5.11: 6},, €y, P, u, at different times, when water is assumed to be incompressible (8 = 0).
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Numerical solution of derivatives wrt z at different times
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Figure 5.12: Derivatives of oy, €,0), P, U at different times with respect to z, when water is assumed to be incompressible (8 = 0).






Conclusion and discussion

The goal of this literature report is to describe the behaviour of a seabed subjected to waves using
numerical methods like the finite-element method and show the one-dimensional results. The pressure
in levees is currently described by Biot's model. In Biot's model it is assumed that the pore water is
compressible, the effective stresses of the porous soil are zero at the surface and the load due to the
waves is completely carried by the pressure. A new model of Van Damme and Den Ouden-Van der
Horst assumes that the stresses are absorbed by the pore water particles and the soil particles. Note
that this way all momentum balance equations are satisfied everywhere on the computational domain
and its boundaries, but the effective stress principle of Terzaghi is not in case of hydrodynamic load.
On the other hand Biot's model does agree with Terzaghi.

In Chapter 2 Biot's model in two dimensions is derived to which a numerical approach is applied
in order to solve Biot's model. For discretising in space the finite-element method is used and for dis-
cretising in time the Backward-Euler method is used. The finite-element method is used to solve the
model, because the method is flexible in terms of computation domain and different types of boundary
conditions can be included. In applying the finite-element method to the two-dimensional model, we ap-
proximate the unknown variables volumetric strain, pore water pressure and deformation in z-direction
by using a linear combination of basis functions. This way the weak equations become the Galerkin
equations. Then the Galerkin equations are solved by discretising in time using the Backward-Euler
method. For discretising in time we us this first-order method, since the Backward-Euler method is an
implicit method and thus is unconditionally stable and the accuracy is less of importance because we
want to find whether the numerical model gives a solution first.

In Chapter 3 we simplified Biot's model in two dimensions to a one-dimensional model for our first
analysis and discretised again in space using the finite-element method and in time using the Backward-
Euler method. For deriving the numerical results of Biot's model, we set a compressibility of 4.8 - 10710
when assuming that the water is compressible. When assuming that the water is incompressible, the
compressibility is 0.0 by definition. In Section 3.1, we found that the one-dimensional model of Biot
with the assumption of one homogeneous layer of soil gives a unique solution for the volumetric strain,
water pressure and vertical displacement. When assuming compressible water we get a solution for
the volumetric strain, water pressure and vertical displacement (and effective stress) that satisfies all
boundary conditions and the relationship between the volumetric strain and water pressure holds, while
when assuming incompressible water we get the stationary solution back almost immediately which is
physically unlikely. In Section 3.2, we found that the one-dimensional model of Biot with the assumption
of two layers of two types of soil gives again a solution for the volumetric strain, water pressure and
vertical displacement that converges to its unique stationary solution. We also found that there may be
a jump or kink in the solution and its derivative at the boundary between the two layers of soil, since
some parameters are a different constant on each layer. Indeed, a jump could be seen for the effective
stress. In each of the sections of Chapter 3, we find that the one-dimensional results of the volumetric
strain, pore water pressure and deformation in vertical direction (and effective stress) are different for
the assumption of compressible water and the assumption of incompressible water. The solutions for
incompressible water converge almost directly to the stationary solution, while for compressible water
they take some more time.
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In Chapter 4 the two-dimensional model of Van Damme and Den Ouden-Van der Horst is described
and a numerical approach is given to solve this new model. For discretising in space the finite-element
method is used and for discretising in time the Backward-Euler method is used. Like done for Biot’s
model, we find the Galerkin equations for the equations of the volumetric strain, pore water pressure
and deformation in z-direction by using a linear combination of basis functions, when applying the finite-
element method to the two-dimensional model. Then by using the Backward-Euler method again for
the discretising in time, the Galerkin equations are solved and the solutions for the volumetric strain,
pore water pressure and deformation are found.

In Chapter 5 we simplified the two-dimensional model to a one-dimensional model for our first analy-
sis and discretised again in space using the finite-element method and in time using the Backward-Euler
method. For deriving the numerical results of the model of Van Damme and Den Ouden-Van der Horst,
we set again the compressibility of pore water equal to 4.8 - 1071 when assuming that the water is
compressible en is 0.0 when assuming that the water is incompressible. In Section 5.1 we found that
the one-dimensional model of Van Damme and Den Ouden-Van der Horst when assuming one layer of
one type of soil gives infinitely many solutions when assuming that the pressure at the surface matches
the load acting on the surface and that the vertical momentum balance equation must still hold at the
surface. However, when we make the boundary condition at the surface about the vertical momentum
balance equation more strict and say that the pore water pressure must be equal to the volumetric
strain times a constant instead of their derivatives, we get a unique solution which is described in Sec-
tion 5.2. Setting this more strict boundary condition feels natural, since it follows from the momentum
balance equations in two dimensions. However, for one dimension this can not be proven. In Section
5.3 we again use this more strict boundary condition, but now we assume that seabed exists of two
layers of different types of soil. We get again a unique solution which is similar as for one layer of
one type of soil, but the increase or decrease goes faster or slower depending on the properties of the
soils. Furthermore, we noticed again a small jump for the effective stress in value due to some different
constant parameters like the Lamé’s constants. In each of the sections of Chapter 5, we find that the
one-dimensional results are different for the assumption of compressible water versus incompressible
water when looking at the values of the variables volumetric strain, pore water pressure and deforma-
tion (and effective stress) in vertical direction. However, simply looking at the behaviour the results are
similar. A small change in value and the behaviour of the variables being the same is expected, since
the value of compressibility is very small when assuming compressible water.

Comparing Chapter 2 and 4, one can find that the governing equations of the model of Van Damme
and den Ouden-van der Horst are the same and thus the steps taken for derivation of the governing
equations are similar to the derivation of the governing equations of Biot's model. However, the thinking
steps are different. Therefore, the derivation of the governing equations of this new model is still written
down. The main difference between Biot’s model and the model of Van Damme and den Ouden-van
der Horst will be the imposed boundary equations at the surface.

When we compare the results of Chapters 3 en 5, Biot's model and Van Damme and the model of
Den Ouden-Van der Horst in one dimension, we find that both models seem to describe the behaviour
of the seabed subjected to waves similarly for compressible water. However, the results have different
values. By changing the compressibility we could derive the same solutions for Biot's model as for the
new model. For incompressible water, the stationary solution is almost immediately found by Biot’s
model while the results of the new model converge over time to its stationary solution. However, as
said in the introduction the solution of Biot's model for incompressible water does not match real obser-
vations. Therefore, it is common to assume that the water is compressible. Whether the water is truly
compressible depends on the problem we want to solve. Therefore, since both models make differ-
ent assumptions (boundary conditions and the (in)compressibility of water), it depends on the problem
which model makes physically more sense.

For the rest of this master thesis the numerical system in two dimensions will be implemented for
one homogeneous layer of soil but also for two layers of two different types of soil. Especially multiple
layers of different kinds of soil is of interest to our research, since there are many assumptions about
the intersections of the layers to be consider. Another extension is to compare the (numerical) solutions
of Biot's model and the model of Van Damme and Den Ouden-Van der Horst based on physics, mathe-
matics and data of experiments more extensively, since this research question remained unanswered
in this literature report. A different extension could be extending the two models to a three-dimensional
setting. However, this probably will be too time-consuming and will not yield any new information about
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the behaviour of the seabed subjected to waves. We could also extend the one-dimensional and two-
dimensional model by adding the acceleration terms as an extension to this literature report. This way
we can determine whether our assumption of the acceleration terms being negligible is valid. Another
extension could be trying to derive the amount of energy at the surface and look whether the same
amount of energy goes in as out during a wave in two dimensions. This could validate the different
chosen boundary conditions at the surface in the model of Van Damme and Den Ouden-Van der Horst.
Lastly, as a extension we could also make the computational domain more general. In this literature
report, we assumed a square grid in two dimensions and a vertical line in one-dimension. However,
in reality the layers of the seabed are not necessarily rectangular but can be diagonal or wavy for
example.
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