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ABSTRACT

Barrier options are fundamental financial tools that give rise to pricing challenges, par-
ticularly when embedded within stochastic models. This study directs its focus towards
Lévy processes as a strategic approach to navigate and resolve these intricate complexi-
ties.

The model assumption adopted in this thesis is that the underlying log-asset price
follows a Levy process. This assumption, in combination with the COS method, enables
us to reduce the dimensionality of the pricing problem for barrier options. To be more
precise, the strike price and the log-asset price are both factored out from the calculation
formula.

The traditional COS method, known for rapid European option valuation, depends
on the knowledge of the ch.f.. The COS method has been extended to pricing barrier
options in [1] and [2]. However, both methods depend on a recursive calculation formula
whereby the number of recursion equal to the number of monitoring dates, and thus, the
calculation speed lags behind pricing European options , especially with quite a number
of monitoring dates.

Our key insight lies in the potential of using the traditional COS method for pricing
barrier options. As the first step, we integrate the barrier hitting probability into the ch.f.,
thereby transforming it into a survival ch.f. Although the exact function of the survival
ch.f. is unknown, its values on the grid used by the COS method can be accurately solved
via Singular Value Decomposition (SVD). Testing results robustly reinforces our findings.

Building on this, we work out two techniques to approximate the characteristic func-
tion through supervised learning. The model takes Lévy process model parameters and
yields approximation function of the ch.f..

The first method, COS-GPR, combines Gaussian Process Regression (GPR) with the
traditional COS method for ch.f. estimation. Assuming mutual independence among
multivariate model outputs, COS-GPR addresses GPR’s limitations at boundaries with
an additional Fourier expansion. Notably, COS-GPR demonstrates significant signifi-
cantly faster calculation than the existing COS Barrier by seven times while maintaining
heightened accuracy, with occasional outliers.

The second method, the COS Fourier CPD (CFC) method, replaces the ch.f. in the
COS method by a Fourier-series expansion of the ch.f., after which the dimension is
strategically reduced using Canonical Polyadic Decomposition (CPD). CFC achieves su-
perior overall accuracy compared to COS Barrier, with a speed increase of 180 times
and minimal instances of extreme errors. In comparison to COS-GPR, CFC’s accuracy
slightly decreases but exhibits a smaller maximum error. The CFC method has a 180-
fold increase in speed compared to the COS Barrier method and maintains linear time
complexity as training points per dimension increase.

In conclusion, this study introduces efficient methods based on supervised machine
learning for barrier option pricing under Levy processes. The fusion of conventional
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methods with advanced approaches leads to significant improvements in both speed
and precision. These innovations hold the potential to transform financial derivative
valuation, enhancing accuracy and efficiency in the process.
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1
INTRODUCTION

In the dynamic and intricate landscape of finance, the valuation of derivative instru-
ments, particularly options, assumes a pivotal role in effective risk management and the
optimization of portfolios. Within this array of financial tools, barrier options stand out,
offering a compelling blend of safeguarding against adverse market shifts and enticing
profit potential. Nonetheless, achieving accurate pricing for barrier options remains a
formidable undertaking. This challenge is primarily rooted in the gradual convergence
of conventional techniques, such as Monte Carlo (MC) simulations, leading to notable
computational inefficiencies.

Moreover, the growing adoption of Neural Network (NN), including Deep Neural Net-
work (DNN)/Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM), in
the realm of quantitative finance [3], [4] for option pricing, has raised concerns about in-
terpretability. These models often function as enigmatic "black boxes," hindering a clear
understanding of the pricing process.

An alternative innovative avenue in the domain of barrier option pricing is the COS
Barrier method [1],[2] an approach that has been previously established. This method
builds upon the foundational COS method in 2008 [5], which is renowned for its rapid
convergence, particularly when dealing with simpler options such as European options.

The two methods developed in this thesis are based on our insight presented and
proved in Chapter 3. That is, the COS method for pricing European options can be
directly used for pricing barrier options, if one replaces the ch.f. by what we name as
"survival ch.f.". This evidence underscores the adaptability of the COS method for bar-
rier option pricing, highlighting its superiority over traditional approaches such as the
COS Barrier method [1]. The central aim of both models is to estimate the survival char-
acteristic function (ch.f.). However, within the context of barrier options, the precise
modeling of this survival ch.f. becomes more intricate and challenging, primarily due
to its integration of the barrier hitting probability inherent in the underlying stochastic
process.

The first method we propose, elucidated in Chapter 4, is the COS-GPR method. This
approach harnesses Gaussian Process Regression (GPR) to estimate the survival ch.f. for
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option valuation using the COS method. GPR, a supervised learning technique widely
utilized in quantitative finance [6], employs labeled data to generate predictions. In this
context, model parameters of the underlying process serve as inputs, while the outputs
pertain to the survival ch.f.. One notable advantage of employing supervised learning
methods like GPR is their expedited option pricing, as demonstrated in Chapter 5. More-
over, the inherent transparency of supervised learning aligns with the requisites of the
financial industry. Nevertheless, GPR’s limitations near data boundaries [6] and the un-
derlying assumptions regarding multivariate outputs [7] necessitate the introduction of
a complementary model, a challenge we subsequently address.

In Chapter 6, we introduce the CFC method, an approach that amalgamates the COS
method (C) with Fourier-cosine expansion (F) of the survival ch.f., combined with di-
mensionality reduction through Canonical Polyadic Decomposition (C). Diverging from
GPR’s localized decomposition, the CFC-method achieves a global decomposition by
employing cosine basis functions spanning the entire function space. This globalized
approach stays accurate around training boundaries and significantly expedite compu-
tation, thereby addressing the limitations of the COS-GPR method. The accuracy of the
CFC method, compared to the other two methods, is extensively elaborated upon in
Chapter 7, which also involves an analysis of the error behavior when we adjust method
parameters to determine optimal values.

As we navigate through this thesis, we delve into the intricate mechanics, strengths,
and limitations of these two innovative pricing methods. Our overarching objective is
to equip financial practitioners with a comprehensive toolkit, fostering the adoption of
efficient and accurate valuation techniques, and building upon the foundational work
laid by Fang and Oosterlee [5] and [1].



2
MATHEMATICAL FRAMEWORK

This chapter presents the foundation of all mathematical tools used in this paper. This
knowledge is required to understand our research and apply our results in the field of
option pricing.

2.1. STOCHASTIC CALCULUS
In this section, we will explore definitions and theorems in the field of stochastic calcu-
lus. The notation used throughout is based on references [8] and [9]. These findings are
crucial for the formulation and examination of option pricing.

Definition 2.1.1. (Adapted process). A process X = {X t , t ≥ 0} is adapted to a filtration
{F , t ≥ 0} if for all t ≥ 0, X t is Ft -measurable.

Definition 2.1.2. (Martingale). Let M = {Mt , t ≥ 0} be a process defined on the probability
space (Ω,F ,P ) equipped with a filtration Ft , t ≥ 0. Then M is said to be a martingale if:

1. For all t ≥ 0, Mt is integrable.

2. M is an adapted process.

3. M satisfies the martingale property, which reads:

E[Mt |Fs ] = Ms , ∀0 ≤ s ≤ t .

Definition 2.1.3. (Semimartingale). A stochastic process X = {X t , t ≥ 0} is called a semi-
martingale if it can be decomposed as follows:

X = X0 +M + A,

where the random variable X0 is finite and F0-measurable, the stochastic process M
is a local martingale, and the stochastic process A has finite variation.

3
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Definition 2.1.4. A real-valued process {W (t ), t ≥ 0} is called a Brownian motion if:

1. Initial value at 0: W (0) = 0.

2. Normally distributed increments: For all 0 ≤ s < t , W (t )−W (s) ∼N (0, t − s).

3. Independent increments: For 0 ≤ t0 < t1 < . . . < tn , the random variables Yi =W (ti )−
W (ti−1), i = 1, . . . ,n, are independent.

4. Continuous trajectories: The map t 7→W (t ) is continuous.

Theorem 2.1.1. The Brownian motion W = {W (t ), t ≥ 0} is a martingale.

Definition 2.1.5. For any square-integrable adapted process g (t ) with continuous sample
paths, the Itô integral is given by:

I (T ) =
∫ T

0
g (t )dW (t ) := lim

m→∞ Im(T ), in L2,

Here, Im(T ) = ∫ T
0 gm(t )dW (t ) for some simple process gm(t ) =∑n−1

j=0 η j 1[t j , t j+1), sat-
isfying:

lim
m→∞E

[∫ T

0
(gm(t )− g (t ))2d t

]
= 0,

where η j is Ft j -measurable for all j = 0,1, . . . ,n −1 and square-integrable.

Theorem 2.1.2. (Itô’s Isometry). For any Brownian motion W (t ) and stochastic process
g (t ) , satisfying the usual regularity conditions, the following equality holds:

E

[(∫ T

0
g (t )dW (t )

)2
]
=

∫ T

0
E[g 2(t )]d t .

Theorem 2.1.3. (Itô’s formula). Let f ∈ C 2(R) and consider a continuous semimartin-
gale X with decomposition X = M + A. Then, the stochastic process ( f (X t ))t≥0 is also a
semimartingale, and it holds:

f (X t ) = f (X0)+
∫ t

0

∂ f

∂x
(Xu)d Xu + 1

2

∫ t

0

∂2 f

∂x2 (Xu)d [X ]u ,

where [X ] denotes the quadratic variation of the process (X t )t≥0.
Itô’s formula is often expressed in differential form:

d f (X t ) = ∂ f

∂x
(X t )d X t + 1

2

∂2 f

∂x2 (X t )d [X ]t .
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2.1.1. MODELS DESCRIBING ASSET PATHS
This paper employs two illustrative models, namely the Geometric Brownian Motion
(GBM) and the CGMY model, to capture the stochastic dynamics exhibited by asset tra-
jectories. Both models belong to the category of Lévy processes and are characterized by
distinct sets of model parameters. Comprehensive insights and theorems pertaining to
Lévy processes can be referenced in [10].

The acronym ‘CGMY’ derives from the initials of its creators: Carr, Geman, Madan,
and Yor. The original formulation of this model was introduced in their seminal paper
[11] in 2002. This paper provides an in-depth elucidation of the rationale underlying the
model’s parameterization.

In this study, we extend our analysis beyond the conventional CGMY model to en-
compass . This extension incorporates the utilization of a positive volatility, adding an
extra layer of sophistication to the model’s representation.

Definition 2.1.6. (Lévy process). A Lévy process is a stochastic process X = {X t : t ≥ 0} that
satisfies the following properties:

1. Initial condition: X0 = 0 almost surely.

2. Independence of increments: For any 0 ≤ t1 < t2 < . . . < tn < ∞, the random vari-
ables X t2 −X t1 , X t3 −X t2 , . . . , X tn −X tn−1 are mutually independent.

3. Stationary increments: For any 0 ≤ s < t , the increment X t −Xs has the same distri-
bution as X t−s .

4. Continuity in probability: For any ϵ > 0 and t ≥ 0, it holds that limh→0P(|X t+h −
X t | > ϵ) = 0.

If X is a Lévy process, it is possible to construct a version of X such that the mapping
t 7→ X t is almost surely right-continuous with left limits.

Definition 2.1.7. (Characteristic function). Given a stochastic process X and a time t , the
characteristic function of the stochastic process at time t is given by:

ϕX (u, t ) := E
[

e i uX (t )
]

.

Moreover, when conditional on the initial value X (0) = x it will also be written with the
regular φ as:

φX (u, t ; x) := E
[

e i uX (t ) | x
]

.

Theorem 2.1.4. (Lévy-Khintchine). The distribution of a Lévy process X = {X t , t ≥ 0} is
characterized by its characteristic function, given by the Lévy-Khintchine formula:

ϕX (u, t ) = E
[

e i uX (t )
]
= exp

(
t

(
µi u − 1

2
σ2u2 +

∫
R\{0}

(
e i ux −1− i ux1|x|<1

)
Π(d x)

))
whereµ ∈R,σ≥ 0 , andΠ is aσ-finite measure called the Lévy measure of X , satisfying

the property:
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∫
R\{0}

min(1, x2)Π(d x) <∞.

This theorem suggests that every Lévy process is uniquely determined by its ch. f. and hence
by a Lévy-triplet (µ,σ,Π), where µ represents the drift, σ the diffusion (Brownian motion)
andΠ the Lévy jump process.

Theorem 2.1.5. (Lévy relation ch. f.). Given a Lévy process X = {X t , t ≥ 0}, with X0 = x.
The ch. f. of X given initial value follows the relation:

φ(u, t ; x) =φ(u, t ;0)e i ux =ϕl ev y (u)e i ux , (2.1)

where φ(u, t ; x) := E[e i uX (t ) | X0 = x].

Definition 2.1.8. (GBM Model). A real-valued process X = {X t , t ≥ 0} is called a Geometric
Brownian Motion (GBM) with drift µ and volatility σ if it satisfies the SDE:

d X (t ) =µX (t )d t +σX (t )dW (t ).

The model parameters are in the following domain: µ ∈ R and σ > 0. Under the risk-
neutral measure the drift is defined as µ = r − 1

2σ
2, where r is the risk-free interest rate.

The process follows a log-normal distribution, since the process log(X ) follows a normal
distribution.

Theorem 2.1.6. The ch. f. of the GBM-model for a time t is given by:

φGB M (u; t ) = exp

(
i uµt − 1

2
σ2u2t

)
.

Definition 2.1.9. (CGMY-model). A real-valued process X = {X (t ), t ≥ 0} follows the CGMY-
dynamics, with model parameters (C ,G , M ,Y ,σB ) and given a risk-free interest rate r , if
the following requirements hold:

1. The drift is given by

µ= r − 1

2
σ2

B + ω̄,

where the drift correction term is given by

ω̄=−CΓ(−Y )
[
(M −1)Y −M Y + (G +1)Y −GY ]

,

2. the diffusion term is given by σB > 0,

3. the Lévy density is defined to be

fCGMY (y) =C

[
e−M |y |

|y |1+Y
1y>0 + e−G|y |

|y |1+Y
1y<0

]
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The model parameters are in the following domain: C ≥ 0,G ≥ 0, M ≥ 0,Y ≤ 2 and B > 0.

Theorem 2.1.7. The ch. f. of the CGMYB-model for a time t is given by

φCGMY B (u, t ) = exp

(
i uµt − 1

2
σ2

B u2t

)
·φCGMY (u, t ),

where
φCGMY (u, t ) = exp

(
C tΓ(−Y )

[
(M − i u)Y −M Y + (G + i u)Y −GY ])

.

The drift and the drift correction term are defined as in Definition (2.1.9). Note that when
C = 0 the ch. f. is the same as for the GBM model, which implies by uniqueness that GBM
is a special case of CGMY.

2.2. PROBABILITY THEORY
Probability theory provides a systematic framework for analyzing and quantifying the
likelihood of events occurring in various contexts. In option pricing these events are the
price paths, from which the option prices can be derived.

Definition 2.2.1. For a random variable X , the Cumulative Density Function (CDF) is
given by:

FX (x) =P(X ≤ x),

which is also often known as just the probability distribution function.
The Probability Density Function (PDF) for a continuous random variable is given by:

fX (x) = d

d x
FX (x).

Definition 2.2.2. For a continuous random variable X , the expectation is given by:

E[X ] =
∫ ∞

−∞
x · fX (x)d x (2.3),

where fX (x) is the PDF of X . The variance of X is then given by:

V[X ] =
∫ ∞

−∞
(x −E[X ])2 · fX (x)d x.

Definition 2.2.3. We say that X is a univariate normally distributed with expectation µ

and variance σ2, denoted as X ∼N (µ,σ2), when the CDF is given by:

FX (x) = 1

σ
p

2π

∫ x

−∞
exp

(
− (u −µ)2

2σ2

)
du.

This implies that the PDF is given by:

fX (x) = 1

σ
p

2π
exp

(
− (x −µ)2

2σ2

)
.

Definition 2.2.4. We say that a d-dimensional vector X follows a multivariate normal
distribution with mean vector µ and covariance matrix Σ, denoted as X ∼N (µ,Σ), if the
PDF is given by:

fX (x) = 1√
(2π)d |Σ|

exp

(
−1

2
(x −µ)⊤Σ−1(x −µ)

)
,
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2.3. MATHEMATICS BEHIND OPTION PRICING
In this section, we lay the foundation for option pricing by introducing essential math-
ematical notations, alongside key definitions and underlying theories. These elements
will serve as the cornerstone upon which we will develop methods for pricing barrier
options. The notational framework and definitions are drawn from [8] and [12].

Options are a versatile financial instrument derived from an underlying asset. This
asset path is assumed to be an adapted process S. Options grant holders the right, but
not the obligation, to buy or sell the asset at a predetermined strike price K within a
specific timeframe, which is determined by the maturity T .

When dealing with options the holder, who buys or shorts, the option has to decide
the side, which is the type of option. For options one can choose to trade in call or put
options, which are defined below.

Definition 2.3.1. (European Call). A European call option is a financial contract that
gives the holder the right, but not the obligation, to buy a specific underlying asset S from
the issuer at a predetermined strike K at the expiration date T .

Definition 2.3.2. (European Put). A European put option is a financial contract that gives
the holder the right, but not the obligation, to sell a specific underlying asset S from the
issuer at a predetermined strike K at the expiration date T .

At maturity T the holder has to decide whether to exercise the option or not. The
holder will only exercise if it is favorable for him (no loss). To write this mathematically
for the two different European option types; the payoff of the option can be written as.

Definition 2.3.3. (Payoff European options). Given an adapted asset process S, maturity
T and strike K . The payoff at maturity for a European call and put is given by:

ΛEU
call (T,S) := max(S(T )−K ,0) := (S(T )−K )+

ΛEU
put (T,S) := max(K −S(T ),0) := (K −S(T ))+.

In the financial world also options exist that can be exercised before maturity. The
two most popular ones are the American style options and Bermudan style options,
which employ the same payoff function as the European style options. For American
options the holder can choose to exercise the options at 0 ≤ t ≤ T . Bermudan options
can only be exercised at M pre-specified times 0 ≤ t1 ≤ t2 ≤ ·· · ≤ tM = T . This option style
is in between the American and European style options. In this paper only options are
considered, which can only be exercised at maturity. This includes European options,
but also other exotic options.

Exotic options have a more complicated payoff function. These options were in-
troduced in the financial market, since they can have more favorable attributes for the
holder than European options. Examples of European options are Asian, Lookback and
Basket options. In this paper we only focus on the exotic options called barrier op-
tions. Barrier options are a type of derivative contract where the payoff and activation
of the option depend on whether the underlying asset’s price reaches or crosses a pre-
defined barrier level H during the option’s lifespan. These barrier levels can be specified
as knock-outs (deactivate option) or lower barriers knock-ins (activate option). Investors
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may choose to buy barrier options instead of European options for reasons such as lower
upfront premiums, customized risk-return profiles, enhanced profit potential, risk man-
agement benefits, and opportunities in volatile markets. The definitions on knock-out
and knock-in barrier options are given below. In theory there are a lot more different
types of barrier options, but in this paper only knock-out and knock-in are considered
since these are the most liquid in the real world.

Definition 2.3.4. (Knock-out option). A knock-out option is a type of option contract that
becomes deactivated or "knocked out" if the underlying asset’s price reaches or crosses a
predefined barrier level during the option’s lifespan. Once the barrier level is breached, the
option immediately loses its value and ceases to exist.
One refers to an up-and-out option if the barrier level is above the initial asset price, and
a down-and-out option if it is below the barrier level.

Definition 2.3.5. (Knock-in option). A knock-in option is a type of option contract that
becomes activated or "knocked in" if the underlying asset’s price reaches or crosses a pre-
defined barrier level during the option’s lifespan. Once the barrier level is breached, the
option becomes active and starts providing payoff.
One refers to an up-and-in option if the barrier level is above the initial asset price, and a
down-and-in option if it is below the barrier level.

When the barrier option is still activated, it pays off as an European option at matu-
rity T . This means the holder still has the right to exercise if it is profitable. To define the
payoff of these two types of barrier options we define:

Smax := max
[0,T ]

S(t ) and Smin := min
[0,T ]

S(t ).

Definition 2.3.6. (Payoff knock-out and knock-in barrier options). Given an adapted
asset process S, maturity T , strike K , side (call or put) and barrier level H. The payoff is
given by:

• Up-and-out (UO) option: ΛUO
side(T,S) :=ΛEU

side(T,S) ·1{Smax≤H }

• Down-and-out (DO) option: ΛDO
side(T,S) :=ΛEU

side(T,S) ·1{Smin≥H }

• Up-and-in (UI) option: ΛU I
side(T,S) :=ΛEU

side(T,S) ·1{Smax≥H }

• Down-and-in (DI) option: ΛD I
side(T,S) :=ΛEU

side(T,S) ·1{Smin≤H },

In the field of option pricing or in general the quantitative finance field, fair op-
tion pricing for any time 0 ≤ t < T is of utmost importance due to the principle of no-
arbitrage. This principle ensures that there is no possibility to make a risk-free profit
in the market that exceeds the risk-free return on a savings account at the bank. The
growth of this savings account is determined by the risk-free interest rate r . An arbitrage
is present if the following criteria hold:
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Definition 2.3.7. (Arbitrage). An investment strategy is called an arbitrage if the value
process V of the strategy satisfies the following two properties:

1. Non-zero probablity of winning:

P (VT > (1+ r )V0) > 0

2. Zero probability of losing:
P (VT ≥ (1+ r )V0) = 1,

where T is the maturity and r denotes the risk-free interest rate.

In our research, options values are used to benchmark and fit our models to the cor-
rect values, in order to find the relation between the input parameters and the option
value. One of the most important results in the field of option pricing regarding no ar-
bitrage is the discovery of the Black-Scholes pricing PDE by Black, Scholes and Merton
from their well-known groundbraking paper [13] . This pricing PDE describes the rela-
tion between the option value process V and the time t , asset price S, volatility σ2 and
risk-free interest rate r . The celebrated formula is as follows:

∂V

∂t
+ r S

∂V

∂S
+ 1

2
σ2S2 ∂

2V

∂S2 − r V = 0 (2.2)

This expression can be derived using the Feynman-Kac theorem stated in [14], but
originally this was derived using the theory of replication. This concept essentially mimic
the payoff of the option using a portfolio of different assets, and setting the value of these
portfolios equal to suffice the principles of no-arbitrage. For European options the so-
lution of V to this PDE is analytically known. The value for an option at time t before
maturity and initial price S(t ) is given by

V EU
cal l (t ,S) = S(t )N (d1)−K e−r (T−t )N (d2), (2.3)

V EU
put (t ,S) =−S(t )N (−d1)+K e−r (T−t )N (−d2), (2.4)

where

d1 =
log(S(t )/K )+ (

r + 1
2σ

2
)

(T − t )

σ
p

T − t
(2.5)

d2 =
log(S(t )/K )+ (

r − 1
2σ

2
)

(T − t )

σ
p

T − t
= d1 −σ

p
T − t , (2.6)

and the function N (·) denotes the cumulative density function of a standard normal dis-
tributed variable. Furthermore, for barrier options, under GBM dynamics the expression
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for the value process V is known. Down below the analytical formula for pricing up-and-
out barrier calls is stated [12]:

V UO
call (t ,S) = S(t )

(
N (d1)−N (e1)−

(
H

S(t )

)1+2r /σ2

(N ( f2)−N (g2))

)
(2.7)

−K e−r (T−t )

(
N (d2)−N (e2)−

(
H

S(t )

)−1+2r /σ2

(N ( f1)−N (g1))

)
(2.8)

Here the values d1,d2 are defined in (2.5) and(2.6) and the other coordinates are de-
fined as:

e1 =
log(S(t )/H)+ (r + 1

2σ
2)(T − t )

σ
p

T − t
(2.9)

e2 =
log(S(t )/H)+ (r − 1

2σ
2)(T − t )

σ
p

T − t
(2.10)

f1 =
log(S(t )/H)− (r − 1

2σ
2)(T − t )

σ
p

T − t
(2.11)

f2 =
log(S(t )/H)− (r + 1

2σ
2)(T − t )

σ
p

T − t
(2.12)

g1 =
log(S(t )K /H 2)− (r − 1

2σ
2)(T − t )

σ
p

T − t
(2.13)

g2 =
log(S(t )K /H 2)− (r + 1

2σ
2)(T − t )

σ
p

T − t
. (2.14)

The pricing of options using the GBM model is a trivial process due to the availability
of analytical expressions for option values. As a result, computations can be performed
instantly. However, for general Lévy processes such as CGMY, these analytical expres-
sions are unavailable, necessitating the application of alternative techniques to accu-
rately determine value data for our customized models. The subsequent sections of this
chapter, specifically Sections 2.5 and 2.6, will delve into the methodologies employed to
address this challenge.

2.4. SINGULAR VALUE DECOMPOSITION (SVD)
Within the realm of linear algebra, matrices that deviate from the realm of normality
present intriguing challenges. While normal matrices, such as real-symmetric or Hermi-
tian matrices, readily yield to Spectral Decomposition (SD), enabling them to be trans-
formed into diagonal matrices via unitary or orthogonal transformations, non-normal
matrices lack this convenient property. Instead, an illustrious factorization technique
known as Singular Value Decomposition (SVD) comes to the forefront, extending the
benefits of orthogonal decomposition to the non-normal matrix domain [15].
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In contrast to SD’s restriction to normal matrices and its focus solely on eigenvalues
and eigenvectors, SVD takes a more comprehensive approach. It offers a broader fac-
torization framework, capable of handling rectangular matrices and encompassing both
singular values and singular vectors. This versatility significantly broadens its scope,
making SVD a more general factorization method than SD.

In the context of this paper, SVD proves invaluable for efficiently approximating train-
ing outputs in a machine learning model. Further insights into this decomposition tech-
nique can be gleaned from [16] or [17]. A pivotal theorem within SVD can be stated as
follows:

Theorem 2.4.1. (SVD). Let A ∈Rm×n with m ≥ n. Then A =UΣV T where:

• U ∈Rm×m is an orthogonal matrix,

• Σ= di ag (σ1, ...,σn) ∈Rm×n with σ1 ≥ ... ≥σn ≥ 0 and σi ∈R for all i ,

• V ∈Rn×n is an orthogonal matrix.

The rank of the matrix has value r = min{l | σl > 0}, which is the singular value with the
smallest index that exceeds 0.

In SVD these matrices are referred to as:

• The column vectors of U = [u1...um] are called the left singular vectors of A,

• The column vectors of V = [v 1...v n] are called the right singular vectors of A,

• The values {σ1, ...,σn} are called the non-singular values of A.

CONSTRUCTION OF THE SVD MATRICES

Similarly to the spectral decomposition for normal matrices, the SVD decomposes a ma-
trix into three simpler matrices the matrices for SVD. These matrices, just as in SD, con-
structed using eigenvalues and eigenvectors. The only difference is that for SD only one
set of eigenvectors and eigenvalues is needed, while for SVD two (mostly different) sets
of eigenvectors and eigenvalues have to be calculated.
For a matrix A ∈Rm×n with m ≥ n, the SVD factorization is calculated using the following
steps:

1. Calculate the matrix AT A, which results in an n ×n matrix.

2. Find the eigenvalues and eigenvectors of the matrix obtained in step 1. This can
be done using various numerical methods, such as the Gram-Schmidt (GS) or the
QR algorithm, which aim to find a set of mutually orthogonal eigenvectors.

3. The eigenvectors obtained in step 2 correspond to the right singular vectors of A,
stored as the columns of the matrix V .
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4. Calculate the singular values, which are the square roots of the eigenvalues ob-
tained in step 2. Arrange them in a diagonal matrix Σ, with non-negative singular
values in descending order along the diagonal, i.e. Σi i =σi ≥ 0 .

5. Calculate the left singular vectors by normalizing the columns of the matrix U .
Each column of U is obtained by dividing the corresponding eigenvector of AT A
by the square root of the corresponding singular value.

The resulting factorization is the celebrated SVD factorization:

A =UΣV T (2.15)

The matrix U ∈ Rm×m containing the left singular vectors, the matrix Σ ∈ Rm×n is a
diagonal matrix containing the singular values, and the matrix V T ∈Rn×n containing the
right singular vectors.

2.4.1. SVD FOR SOLVING LINEAR SYSTEMS
In this paper, SVD is employed to achieve a ’best fit’ solution for a system of linear equa-
tions. This approach is particularly powerful for addressing linear systems, especially
when dealing with overdetermined scenarios, where the number of equations (m) sur-
passes the count of unknowns (n). This application bears resemblance to multidimen-
sional regression fitting, wherein SVD is employed to determine the Least-squares (LS)
solution of the system.

Let’s consider a linear system represented by the matrix equation:

Ax = b (2.16)

Here, A ∈Rm×n , x is an n-dimensional vector of unknowns, and b ∈Rm . The LS solu-
tion xLS aims to minimize the Euclidean distance between the estimated solution AxLS

and the vector of constants b. This leads to an unconstrained optimization problem:

xLS = argmin
x∈Rn

||Ax −b||2. (2.17)

To derive the LS solution using SVD, the following steps are undertaken:

1. Compute the SVD of matrix A:

A =UΣV T

2. Calculate the pseudoinverse of Σ, denoted as Σ†, by taking the reciprocal of each
non-zero singular value and transposing the resultant matrix.

The pseudoinverse of Σ is given by:

Σ† =


1
σ1

. . .
1
σn


where σ1,σ2, . . . ,σn are the singular values of A.
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3. Compute the LS solution xLS using the formula:

xLS =VΣ†U T b

Here, xLS is the vector of least square solutions, representing the solution to the
minimization problem described by equation (2.17).

By leveraging SVD and its associated steps, this approach offers an effective means of
obtaining robust solutions for linear systems, particularly in scenarios where an overde-
termined system needs to be addressed.

2.5. COS METHOD
The COS method, initially presented by Fang and Oosterlee in [5], has found its applica-
tion in the field of option valuation. Its fundamental principle involves the reconstruc-
tion of the unknown probability density function using a Fourier-cosine series expan-
sion. The key insight behind this method lies in the fact that the series coefficients can
be obtained from the characteristic function, which is often more readily derived than
the density function itself.

In the context of option valuation, the COS method offers a valuable approach to
estimate the prices of options. The ch.f. provides essential information about the under-
lying asset’s behavior. Combining this with the option payoff results in accurate and fast
calculations of various option contracts.

2.5.1. COSINE SERIES EXPANSION
The COS method is classified as a Fourier-based method, which belongs to a family of
techniques relying on the relationship between the density function and its correspond-
ing ch.f.. Specifically, the density function, denoted as f (x), and the ch.f., denoted as
φ(ω), form a Fourier pair:

φ(ω) =
∫ ∞

−∞
f (x)e iωx d x (2.18)

f (x) = 1

2π

∫ ∞

−∞
φ(ω)e−iωx d x. (2.19)

The COS method utilizes the Fourier-cosine series expansion to recover the density func-
tion using a approximation of the integral (2.19). It is worth noting that any real function
with finite support can be represented by a cosine expansion. Additionally, the Fourier-
cosine series expansion provides an optimal approximation for functions with a finite
support, as indicated in [18]. The first step to derive the COS method is to truncate the
integral representation of the density function of the underlying process in (2.19). An
important note is that the function has to decay to zero at both ±∞ in order for the trun-
cation to be accurate.

For this infinitely support density function f assume that the truncation range is
given by the closed interval [a,b] ∈R. This defines the cosine representation of the func-
tion to be:
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f (x) = ∑′∞
k=0 Ak cos

(
kπ

x −a

b −a

)
, (2.20)

where the cosine series coefficients are defined by

Ak = 2

b −a

∫ b

a
f (x)cos

(
kπ

x −a

b −a

)
d x. (2.21)

The notation
∑′

means that the first term of the sum is multiplied by 1/2. The accuracy
loss of the density on this truncated interval [a,b] is very small and hence also the error
of the truncated integral of the ch. f. in (2.18). This is important, since there is a link
between the Fourier-cosine series coefficients Ak and the ch. f. Looking at the following
approximation of the ch. f.

φ1(ω) :=
∫ b

a
f (x)e iωx d x ≈

∫ ∞

−∞
f (x)e iωx d x =φ(ω), (2.22)

and comparing it to (2.21) arises the expression for the cosine series coefficients:

Ak := 2

b −a
Re

{
φ1

(
kπ

b −a

)
exp

(
−i

kπa

b −a

)}
. (2.23)

Now replacing the truncated ch. f. with the real ch. f. (2.22) gives the approximation
Ak ≈ Fk of the cosine series coefficients :

Fk := 2

b −a
Re

{
φ

(
kπ

b −a

)
exp

(
−i

kπa

b −a

)}
, (2.24)

which gives the following approximation of the density function when combining it with
a truncated sum:

f (x) ≈ ∑′∞
k=0 Fk cos

(
kπ

x −a

b −a

)
≈ ∑′N−1

k=0 Fk cos
(
kπ

x −a

b −a

)
. (2.25)

Here N describes the number of basis functions used to estimate the function. This
summation is the density approximation. This recovery of the density using the ch. f. is
the result of the COS method.

To use the COS method for option pricing, the approximated density is used in the
discounted expectation of the payoff. That is given some initial log-asset price x, time t ,
maturity T , strike K and risk-free interest rate r :

v(x, t ) = e−r∆t
∫ ∞

−∞
v(y,T ) f (y |x)d y, (2.26)

where v(y,T ) is the value of the option with log-asset price y at T , i.e. the payoff. The
first approximation of this integral, denoted v1(x, t ), is given by the truncation on [a,b]:

v1(x, t ) ≈ e−r∆t
∫ b

a
v(y,T ) f (y | x)d y (2.27)

= e−r∆t
∫ b

a
v(y,T )

∑′∞
k=0 Ak cos

(
kπ

x −a

b −a

)
d y (2.28)

= b −a

2
e−r∆t

∑′∞
k=0 Ak (x)Vk , (2.29)
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where the interchanging of integral and summation is used and the payoff series coeffi-
cients Vk are defined as:

Vk = 2

b −a

∫ b

a
v(y,T )cos

(
kπ

y −a

b −a

)
d y, (2.30)

which are the cosine series coefficients of v(y,T ) in y . Truncation this sum using N
cosine basis functions gives the next approximation

v2(x, t ) = b −a

2
e−r∆t

∑′N−1
k=0 Ak (x)Vk , (2.31)

and the final approximation uses the estimation of the cosine coefficients Fk in (2.24):

v(x, t ) ≈ v3(x, t ) = e−r∆t
∑′N−1

k=0 Re

{
φ

(
kπ

b −a
; x

)
exp

(
−i

kπa

b −a

)}
Vk . (2.32)

For European options the payoff series coefficients Vk can be calculated analytically.
Throughout the paper these are essential for option pricing and hence the derivation
will be stated below.

For European options using the log-asset prices x = log(S0/K ) and y = log(ST /K ) the
payoff is v(y,T ) = [αK (e y − 1)]+, where α is 1 for a call option and -1 for a put option.
They are the following:

V cal l
k = 2

b −a
K (χk (0,b)−ψk (0,b)) (2.33)

V put
k = 2

b −a
K (−χk (a,0)+ψk (a,0)). (2.34)

Here the expressionsχk (c,d) := ∫ d
c e y cos

(
kπ y−a

b−a

)
d y andψk (c,d) := ∫ d

c cos
(
kπ y−a

b−a

)
d y

are for a given subinterval [c,d ] ⊂ [a,b] derived, using integration by parts, to be:

χk (c,d) = 1

1+
(

kπ
b−a

)2

{
ed cos

(
kπ

d −a

b −a

)
−ec cos

(
kπ

c −a

b −a

)
(2.35)

+ kπ

b −a
ed sin

(
kπ

d −a

b −a

)
− kπ

b −a
ec sin

(
kπ

c −a

b −a

)}
(2.36)

and

ψk (c,d) =
{

b−a
kπ sin

(
kπd−a

b−a

)
− b−a

kπ sin
(
kπ c−a

b−a

)
,k ̸= 0

d − c ,k = 0
(2.37)

INTEGRATION RANGE [a,b]
Accurate option price prediction through the COS method hinges on carefully defining
integration bounds. Extensive bounds lead to higher basis function usage (N ), increas-
ing complexity. Narrow bounds, however, amplify truncation-induced error. [5] suggests
bounds based on:

[a,b] =
[

c1 −L
√

c2 +p
c4,c1 +L

√
c2 +p

c4

]
, (2.38)
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with L = 10. Coefficients (ci )i=1,2,4, called cumulants, depend on contract and model
parameters. These cumulants are detailed in [5] and [8] for discussed models and others.
For GBM and CGMY models used here, these cumulants are listed in the Appendix A.2.

2.5.2. COS METHOD UNDER LÉVY PROCESSES
This paper focuses exclusively on Lévy processes, which provide a robust foundation for
the research conducted herein. The pivotal reason for this choice lies in the ch.f. φ of
a general Lévy process (X (t ))t≥0, which follows a vital decomposition as expressed in
equation (2.1):

φ(ω; x) =φ(ω;0) ·e iωx =ϕlev y (ω) ·e iωx , (2.39)

where ϕlev y (ω) := φ(ω;0). This remarkable property allows the extraction of the initial
value X0 = x from the ch.f., a feature particularly advantageous for option pricing under
Lévy processes using formula (2.32). Consequently, equation (2.39) can be reformulated
as:

v(x, t ) ≈ v3(x, t ) = e−r∆t
∑′N−1

k=0 Re

{
ϕlev y

(
kπ

b −a

)
exp

(
i kπ

x −a

b −a

)}
Vk . (2.40)

It’s noteworthy that when evaluating the option value under a Lévy process, the ini-
tial log-asset price x can be extracted from the function ϕlev y , thus reducing the input
dimension of this function by one. This reduction proves highly advantageous, as eluci-

dated later in this paper during the process of estimating the values ϕlev y

(
kπ

b−a

)
.

2.6. COS METHOD FOR PRICING DISCRETE BARRIER OPTIONS
A follow up on the paper of [5] about the traditional COS method is another paper by
Fang and Oosterlee [1] about pricing Bermudan and discretely monitored barrier op-
tions using Fourier-cosine series. Our research only focuses on barrier options, in which
from now will be referred to this method as the COS Barrier method. The pricing of bar-
rier options depends on a survival event. This event triggers the option to be in value of
out of value.
In this section only the knock-out event is treated, and specifically the up-and-out bar-
rier option. This means that the option is worthless if on the M monitoring dates T =
{tm : 1 ≤ m ≤ Mmon} , with tMmon = T , the underlying stock process (St )t≥0 is above the
barrier level H . The option can only be exercised at maturity T . Equivalently this means
that the payoff is:

v(x,min(T,τ)) = (α(ST −K ))+ ·1τ>T , (2.41)

where τ := inf{tm ≥ t0 : Stm ≥ H } is the first monitoring date that registers a breach of St

on the barrier level H . Thus the indicator 1τ>T becomes zero if the barrier level is crossed
at one of the monitoring dates. Furthermore, x is the log-asset price and α= 1 for a call
option and −1 for a put option. Note that for the other knock-in and out options only
the 1τ>T or τ has to be changed. The following derivations will hence be analogous for
the other barrier options and will not be treated seperately.
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RECURSIVE RELATION CONTINUATION VALUE

The COS Barrier method uses Mmon recursive steps in order to find the initial value of
the barrier option. It initialises the option value at tMmon = T , since there the value is
known (payoff). After that it iterates backwards in time to calculate the option value at
one monitoring date prior. This is done until the initial time is reached. Given the set of
monitoring dates T = {tm : 1 ≤ m ≤ M } the following recursive relation can be derived
for the price of the discretely monitored barrier options at the M monitoring dates.

• For m = Mmon , Mmon −1, Mmon −2, ...,2 :
c(x, tm−1) = e−r (tm−tm−1)

∫ ∞
−∞ v(x, tm) f (y | x)d y,

v(x, tm−1) =
{

0, if x ≥ h

c(x, tm−1), if x < h

(2.42)

inside the recursive formula:

– c(x, tm−1) is the continuation value at tm−1,

– v(x, tm−1) is the option value at tm−1 ,

– f (y | x) is the PDF of y given x ,

– x = log(Stm−1 /K ), y = log(Stm /K ) and h = log(H/K ) .

• For m = 1:

v(x, t0) = e−r (t1−t0)
∫ ∞

−∞
v(x, t1) f (y | x)d y, (2.43)

which represents the barrier option value at initial time t0.

APPLICATION OF THE COS METHOD

Calculating the integrals of the continuation value in (2.42) and option value in (2.43)
will be done using the COS method from Section 2.5. That is, the continuation value
c(x, tm−1) is estimated using

c(x, tm−1) ≈ ĉ(x, tm−1) = e−r∆t
∑′N−1

k=0 Fk (x)Vk (tm), (2.44)

where a truncation range [a,b] and number of basis function N is defined. The coeffi-
cients Fk (x) is defined as (2.24). Here Vk (tm) is the Fourier-cosine series of v(y, tm) i.e.:

Vk (tm) = 2

b −a

∫ b

a
v(y, tm)cos

(
kπ

y −a

b −a

)
d y. (2.45)

Then the value of the option v(x, tm−1) is estimated iteratively by

v(x, tm−1) ≈ v̂(x, tm−1) =
{

0, if x ≥ h

ĉ(x, tm−1), if x < h
. (2.46)

For the calculation of c(x, tm−2) another layer of approximation is needed, because of the
definition of Vk (tm−1) in (2.45). This is calculated using v(x, tm−1) ≈ v̂(x, tm−1). Hence
this continuation value is calculated by:
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V̂k (tm) := 2

b −a

∫ b

a
v̂(y, tm)cos

(
kπ

y −a

b −a

)
d y, (2.47)

c(x, tm−1) ≈ e−r∆t
∑′N−1

k=0 Fk (x)V̂k (tm). (2.48)

SOLVING FOR V̂k USING BACKWARDS INDUCTION

The main insight is that the coefficients V̂k (tm) are solvable using backwards induction.
That is by (2.46):

V̂k (tm) = 2

b −a

∫ b

a
v̂(y, tm)cos

(
kπ

y −a

b −a

)
d y (2.49)

= 2

b −a

∫ h

a
ĉ(y, tm)cos

(
kπ

y −a

b −a

)
d y, (2.50)

where Ĉk (x1, x2, tm) := 2
b−a

∫ x2
x1

ĉ(x, tm)cos
(
kπ y−a

b−a

)
d y . Hence V̂k (tm) = Ĉk (a,h, tm).

This means after some calculations that the V̂k (tm) are calculated as follows:

• For the terminal condition: m = Mmon , it is given that V̂k (tMmon ) = Vk (tMmon ),
which is defined as:

– For h < 0:

Vk (tMmon ) =
{

0, for call option

Gk (a,h), for put option
, (2.51)

– For h ≥ 0:

Vk (tMmon ) =
{

Gk (0,h), for call option

Gk (a,0), for put option
(2.52)

⋄ Here the notation Gk is defined as (2.30). This notation is used to prevent
confusion with the other value coefficients Vk (tm).

• The derivation of the expression Ĉk is a matrix-vector product:

Ĉ (x1, x2, tm) = e−r∆t

π
Im{(Mc +Ms )u}. (2.53)

– The elements of the matrices Mc and Ms are defined as:

(Mc )k,l :=


(x2−x1)πi
b−a , if k = l = 0,

exp
(
i (k+l )

(x2−a)π
b−a

)
−exp

(
i (k+l )

(x1−a)π
b−a

)
k+l , otherwise

(2.54)

and (2.55)

(Ms )k,l :=


(x2−x1)πi
b−a , if k = l ,

exp
(
i (l−k)

(x2−a)π
b−a

)
−exp

(
i (l−k)

(x1−a)π
b−a

)
l−k , otherwise

(2.56)
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– u := {ul }N−1
l=0 , ul =ϕlev y

(
lπ

b−a

)
, u0 = 1

2ϕl ev y (0)V0(tm+1)

The matrices Mc and Ms are respectively part of Hankel and Toeplitz matrices, which
is discussed in [19]. Hankel and Toeplitz matrices offer valuable advantages when it
comes to the Discrete Fourier Transform (DFT). The matrix-vector products Mc u and
Ms u involving these special matrices can be transformed into a circular convolution, a
mathematical operation that combines two vectors using element-wise multiplication
and summation. This circular convolution is equivalent to the inverse DFT of the prod-
uct of the forward DFTs of the vectors. That is:

x ∗ y =D−1 [
D(x) ·D(y)

]
. (2.57)

This relationship to the DFT is key to understanding the efficiency and usefulness of
Hankel and Toeplitz matrices. Making clever use of the particular arrangements in-
herent within these matrices, the circular convolution operation can be calculated with
notable expedience through employment of the Fast Fourier Transform (FFT) algorith-
mic process. The FFT algorithm capitalizes on the symmetry and periodicity of the
DFT, significantly reducing the computational complexity. As a result, the computa-
tion of Hankel and Toeplitz matrices, such as Mc and Ms can be performed more ef-
ficiently compared regular matrix-vector multiplication. This FFT procedure reduces
the computational complexity from O (N 2) to O (N log2(N )). Since this procedure has to
be done Mmon −1 times, the overall complexity of the COS Barrier methods ends up to
be O ((Mmon −1)N log2(N )).

RULE OF THUMB FOR THE TRUNCATION RANGE [a,b]
Similarly to the traditional COS Method, it is crucial to choose a truncation range [a,b]
that approximates the barrier value accurately. A range too large causes the model too be
slower, since it will need a higher number of basis function N . A range too small makes
the truncation error large.

The proposed truncation range from [1] is not the same as (2.38). Additionally, the
initial log-asset price x = log(S0/K ) is included:

[a,b] =
[

c1 +x −L
√

c2 +p
c4,c1 +x +L

√
c2 +p

c4

]
, (2.58)

where L = 10 and (ci )i=1,2,4 are the cumulants of the underlying stochastic process.

2.7. TENSOR CALCULUS
Tensor calculus is an advanced mathematical framework that extends the concepts of
matrices and vectors to higher-dimensional objects called tensors. In this paper it is
used to describe higher-dimensional problems, which is needed for our second model
in Chapter 6. The fundamentals of tensor calculus are explained and illustrated in this
section using [20] and [21].

Tensors, on the other hand, introduce additional dimensions and provide a more
flexible way to represent and manipulate data. A tensor can be thought of as a multi-
dimensional array of numbers, with each element characterized by its position within
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the array. While tensors might seem initially daunting due to their higher dimensionality,
they are indispensable when modeling and analyzing systems with intricate interactions
between multiple variables.

In tensor calculus, one of the fundamental operations is tensor unfolding. This pro-
cess rearranges the elements of a tensor into a matrix format, unveiling underlying pat-
terns and structures within the tensor. Unfolding tensors enables the application of tra-
ditional matrix-based techniques and algorithms. The number of dimensions in a tensor
is called the order of a tensor. Here every dimension is called a mode of the tensor. To
indicate a specific element of a dth order tensor X ∈ RI1×I2×···×Id an index set (in)d

n=1 is
used. Here 1 ≤ in ≤ In for n = 1, ...,d .

Before understanding how to do operations with tensors the concept of fibers has to
be introduced. As matrices have rows and columns, but extending this to higher dimen-
sional tensors this is referred to as fibers. A fiber is an array which is obtained by fixing
every index but one. For a three-dimensional tensor the fibers are known as the rows,
columns and tubes shown in Figure 2.1 .

Figure 2.1: Visual illustration of the fibers of a third-order tensor [20].

Performing operations on higher-order tensors can be quite abstract and involve
some manipulations to make it more intuitive. A transformation process called unfold-
ing is applied to transform higher-order tensors into matrices. As an example we look at
unfolding a order-3 tensor with dimension 2×3×4. This tensor can be rearranged into a
4×6, 3×8 or 2×12 matrix. There are a lot of different ways one can unfold a tensor into
a matrix [20], but for our research only the mode-n unfolding is relevant. The mode-n
unfolding of a tensor X is denoted as X(n). It is constructed by setting the mode-n fibers
as columns of the matrix. For the example above for R2×3×4 the three possible mode-n
unfoldings are:

• mode-1 unfolding in R4×6: using the columns as fibers of the tensor:

X(1) =


x111 x121 x131 x112 x122 x132

x211 x221 x231 x212 x222 x232

x311 x321 x331 x312 x322 x332

x411 x421 x431 x412 x422 x432

 , (2.59)



2

22 2. MATHEMATICAL FRAMEWORK

• mode-2 unfolding in R3×8: using the rows as fibers of the tensor:

X(2) =
 x111 x211 x311 x411 x112 x212 x312 x412

x121 x221 x321 x421 x122 x222 x322 x422

x131 x231 x331 x431 x132 x232 x332 x432

 , (2.60)

• mode-3 unfolding in R2×12: using the tubes as fibers of the tensor:

X(3) =
[

x111 x211 x311 x411 x121 x221 x321 x421 x131 x231 x331 x431

x112 x212 x312 x412 x122 x222 x322 x422 x132 x232 x332 x432

]
.

(2.61)

These three unfolding operations are respectively illustrated in Figure 2.1a),b) and c).
Once the tensors have been unfolded, the standard matrix operations can be applied.
The operations used in this paper will be defined below.

Definition 2.7.1. (Outer Product). Let u ∈ Rm ,v ∈ Rn be two vectors. Their outer product
is denoted with u◦v ∈Rm×n , and the resulting matrix can be obtained by multiplying each
element of u by each element of v,

u◦v =


u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn
...

...
. . .

...
um v1 um v2 · · · um vn


= [

u · v1 u · v2 · · · u · vn
]

Definition 2.7.2. (Kronecker Product). The Kronecker product of matrices A ∈ RI×J and
B ∈RK×L is denoted with A⊗B ∈RI K×JL , and is defined by

A⊗B =


a11B a12B · · · a1J B
a21B a22B · · · a2J B

...
...

. . .
...

aI 1B aI 2B · · · aI J B


Definition 2.7.3. (Khatri-Rao Product). The Khatri-Rao product can be viewed as the
columnwise Kronecker product. Given the matrices A ∈ RI×K and B ∈ RJ×K , the Khatri-
Rao product, denoted with A⊙B ∈RI J×K , is defined by

A⊙B = [
a1 ⊗b1 a2 ⊗b2 · · · aK ⊗bK

]
Definition 2.7.4. (Hadamard Product). The Hadamard product is the element-wise ma-
trix product. Therefore, given the matrices A,B ∈ RI×J , the Hadamard product A ⊛B ∈
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RI×J produces the matrix

A⊛B =


a11b11 a12b12 · · · a1J b1J

a21b21 a22b22 · · · a2J b2J
...

...
. . .

...
aI 1bI 1 aI 2bI 2 · · · aI J bI J


To quantify the similartities between two tensors one can use the matrix norm called

the Forbenius norm. This norm can be used to find the distance between two tensors.
In this paper, it is used for our second method in Chapter 6.

Definition 2.7.5. (Frobenius Norm). Given a tensor X ∈RI1×I2×···×Id , its Frobenius norm,
often abbreviated with F-norm, is defined as the square root of the sum of the squares of
all its elements:

∥X ∥2
F =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
Id∑

id=1
x2

i1i2...id





3
OUR INSIGHT: PRICING BARRIER

OPTIONS USING THE COS
METHOD FOR EUROPEAN OPTIONS

This chapter forms the foundation of our research in this paper, as it demonstrates that it
is possible to price barrier options using the COS method for European options.. Pricing
barrier options is generally computationally intensive. Currently, analytical expressions
for barrier option prices are known only for certain models like Geometric Brownian
Motion (GBM). For more complex models like the CGMY process, pricing barrier options
using the COS Barrier method (as discussed in Section 2.6) can be computationally slow.

In this chapter, we will provide theoretical proof that the COS method for pricing Eu-
ropean options can be directly used to price barrier options. Specifically, we will focus on
the up-and-out barrier call options. The key idea is to consider the barrier option’s value
at time t as the expected payoff of the corresponding European call option at maturity,
given that the barrier has not been hit by the asset’s path. We will also assume that the
marginal survival density of the underlying asset price exists, denoted as p̄(S | St = s).
Using these assumptions, we will derive an expression for the barrier option price in
terms of a single-dimensional integral.

Furthermore, we will show that the barrier option can be represented using a similar
integral, but with a different density function, which we refer to as the survival density..
This will lead to the idea of using the traditional COS method for barrier option pricing
by inserting the ch.f. of the survival probability.

The chapter will also present testing evidence to support this theoretical proof. We
will compare the barrier option prices obtained using the one-step COS method with
those obtained using the COS Barrier method. The results will demonstrate that the two
closely each other, even though the method uses the same payoff coefficients Vk as for
European options.

The insights gained from this chapter will serve as the foundation for the two models
that we will develop in Chapter 4 and 6, by combining machine learning with the one-
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step COS method (i.e. the COS method for pricing European options), achieving efficient
and accurate pricing for complex Lévy processes like the CGMY model.

3.1. OUR KEY INSIGHT
This chapter’s theoretical underpinning emanates from a paper that delves into pricing
continuously monitored barrier options using a discrete approximation, as expounded
in [22]. Our primary focus centers on the up-and-out barrier call option, delving into its
pricing derivation.

The process of pricing these barrier options shares conceptual parallels with the
derivation of option prices through the COS method, as elucidated in [5]. Building upon
this premise, we seek to establish a similar formulation for barrier options in this section
by drawing insights from the paper’s findings.

Within the framework of an underlying asset path denoted as S = St ,0 ≤ t ≤ T with a
maturity period of T , our attention gravitates towards instances where the path evades
crossing an upper barrier level denoted as H . In this context, we introduce the notion of
the barrier’s first hitting time, represented as τt

H := inf s ≥ t | Ss ≥ H . The payoff associ-
ated with an up-and-out call option upon reaching maturity T is succinctly expressed as
v(ST ,T ).

In scenarios where the barrier remains unbreached until maturity, the behavior of
the up-and-out call option closely mirrors that of a standard European call option. Con-
sequently, the payoff equation simplifies to v(ST ,T ) = (ST −K )+, where K denotes the
strike price. As a result, the value of a barrier option at any given time 0 ≤ t ≤ T , contin-
gent upon the underlying asset’s valuation St , can be succinctly characterized as follows:

vBar(St , t ) = e−r∆tE[vEU(ST ,T )1τt
H>T | St ], (3.1)

where vEU(ST ,T ) is the payoff of the European call option at maturity T , and 1τt
H>T

is the indicator function, which is 1 if τt
H > T and 0 otherwise.

We assume that the marginal survival density of the underlying asset price S exists and
is denoted as p̄(S | St = s) := P(T,S | St = s,τt

H > T ). The value of the option in Equation
(3.1) can thus be written as:

vBar(St , t ) = e−r∆t
∫ ∞

0
vEU(S,T )P(T,S | St = s,τt

H > T )dS = e−r (T−t )
∫ ∞

0
vEU(S,T )p̄(S)dS,

(3.2)

which results in a single-dimensional integral. Using the substitutions x = log(St /K ) and
y = log(ST /K ), we get:

vBar(x, t ) = e−r∆t
∫ ∞

−∞
vEU(y,T )p̄(y | x)d y. (3.3)

Comparing this to the derivation of the COS method for European options in equation
(2.26), we notice that we have a similar integral here with the same payoff function as the
European option. This implies that we can use the same payoff coefficients Vk as defined
in equation (2.30), and only the density coefficients need to be different. Therefore, we
get the insight that the value of a barrier option can be calculated using the one-step COS
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method for European options, with a ch.f. corresponding to the survival probability of
the barrier option.

Furthermore, an important assumption is that Theorem 2.1.5 also holds for the ch.f.
φ̄. This means that the following assumption is made for a Lévy process X :

φ̄H (u, t ; x) = φ̄H (u, t ;0)e i ux = ϕ̄levy(u)e i ux , (3.4)

where ϕ̄levy(u) is used to make the notation more convenient. Thus, for pricing barrier
options under Lévy processes, the COS representation looks like:

vBar(x, t ) ≈ e−r∆t
N−1∑
k=0

Re

{
ϕ̄levy

(
kπ

b −a

)
exp

(
i kπ

x −a

b −a

)}
Vk . (3.5)

This assumption allows us to extend the COS method for European options to price bar-
rier options under Lévy processes using the same set of basis functions. The next section
will present empirical evidence to support this claim and demonstrate the accuracy and
efficiency of the traditional COS method for pricing barrier options.

3.2. NUMERICAL EVIDENCE
Here we test and verify the theoretical framework of one-dimensional integration. By
deriving the integral for barrier options and contrasting it with the derivation of the COS
method for European options, a reasoned inference emerges: the coefficients Vk gov-
erning the payoff values remain consistent for barrier options. However, a noticeable
divergence arises regarding the survival density, which is integrated into a novel ch.f.
denoted as ϕ̄l ev y . The specific nature of this function remains enigmatic.

The numeric investigation relies on the presumption that the value of a barrier op-
tion under a Lévy process, with an initial log-asset price x, can be depicted as follows:

vB ar (x; t ,θ) ≈ e−rθ∆t
∑′N−1

k=0 Re

{
ϕ̄lev y

(
kπ

b −a

)
exp

(
i kπ

x −a

b −a

)}
Vk . (3.6)

Within this context, the symbol Vk is defined according to the description provided
in (2.30). Notably, for a barrier call, the coefficients align with those of a European call,
and the converse holds true for a barrier put. In this equation, θ denotes a specific blend
of model parameters (e.g., µ,σ for GBM), while ∆t = T − t .

Importantly, we introduce two distinct portrayals of the survival ch.f.. This diver-
gence originates from subsequent considerations of boundaries when applying the GPR
method to the pricing of barrier options. The initial representation refrains from assum-
ing a predetermined structure for the ch.f., whereas the second representation employs
a Fourier expansion to depict the ch.f..

3.2.1. SETUP OF THE LINEAR SYSTEM: REPRESENTATION 1

The objective is to solve ϕ̄lev y

(
kπ

b−a

)
for k = 0, ..., N −1. It’s important to note that ϕ̄lev y :

R→C, thus necessitating a dissection of the function into its real and imaginary compo-
nents. Consequently, we express it as:
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ϕ̄lev y

(
kπ

b −a

)
= fR

(
kπ

b −a

)
+ i · f I

(
kπ

b −a

)
, (3.7)

Rk := fR

(
kπ

b −a

)
, Ik := f I

(
kπ

b −a

)
. (3.8)

While the precise form of ϕ̄lev y remains elusive, we possess knowledge of benchmark
values vbench(x ; t ,θ) for a subset of log-asset prices x ∈ Rn . These benchmarks can be
computed in advance using techniques such as COS Barrier or Monte Carlo simulations.
The method to validate this fit involves determining the coefficients R and I through a
comparison between the benchmark values vbench(x ; t ,θ) and the COS formula values
vB AR (x ; t ,θ).

To achieve this, a linear system comprising n equations can be derived from the COS
formula. By leveraging Euler’s identity1 to expand the complex exponent and utilizing
(3.7), the Re-operator can be eliminated:

For a given θ and t to find R and I , this expansion is set equal to v bench(x ; t ,θ). This
results in:

∑′N−1
k=0

[
Rk cos

(
kπ

x −a

b −a

)
− Ik sin

(
kπ

x −a

b −a

)]
Vk = erθ∆t v bench(x ; t ,θ), (3.9)

where this system of equations can be written in the form

M
[

R
I

]
= erθ∆t v bench(x ; t ,θ). (3.10)

Since there are two different vectors the matrix M ∈Rn×2N is split up in two parts like
M = [M R M I ], where M R ∈Rn×N and M I ∈Rn×N correspond respectively to the vectors
R and I . The elements of these two matrices are defined as follows:

(M R )i j =
{

1
2 cos

(
jπ xi−a

b−a

)
(= 1/2) if j = 0

cos
(

jπ xi−a
b−a

)
if j ̸= 0

(3.11)

(M I )i j =
{
− 1

2 sin
(

jπ xi−a
b−a

)
(= 0) if j = 0

−sin
(

jπ xi−a
b−a

)
if j ̸= 0

. (3.12)

1Euler’s identity is a fundamental mathematical expression that links the exponential function with trigono-
metric functions [23]. It states that for any real number η:

eiη = cos(η)+ i · sin(η).

This identity elegantly connects the complex exponential function eiη with the familiar trigonometric func-
tions cos(η) and sin(η), showcasing the profound interplay between exponential growth and circular motion.
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An important note is that the matrix M only has to be calculated once given a set of
x , since it is not dependent on the model parameters θ nor the time t . These are all
absorbed in the vectors R and I . Furthermore it is important to note that the risk-free
interest rate rθ is dependent on the model parameters and is taken to the RHS in (3.10).

SOLVING THE LINEAR SYSTEM USING SVD: REPRESENTATION 1
When tackling the linear system (3.10), a pivotal consideration is the matrix dimension
M ∈ Rn×2N . This involves n benchmark points x and N basis functions, rendering the
linear system to consist of n equations with 2N unknowns. While there are three scenar-
ios (n < 2N ,n = 2N , and n > 2N ), we employ a consistent approach across these cases.
Regardless of the case, and given θ and time t , SVD is employed to deduce the Least
Squares (LS) solution for equation (3.10). Specifically, the LS solutions for the real and
imaginary ch.f. coefficients are determined through the following optimization prob-
lem: [

RLS

I LS

]
= argmin

R ,I∈RN

∣∣∣∣∣∣∣∣M
[

R
I

]
−erθ∆t v bench(x ; t ,θ)

∣∣∣∣∣∣∣∣
2

. (3.13)

This optimization task is effectively resolved through SVD, a method elaborated upon
in Section 2.4. Subsequent to acquiring the LS solution, these vectors are utilized within
the COS formula to compute new values. Consequently, the COS method can be em-
ployed to compute barrier options values for a specified θ and t .

An illustrative example of an up-and-out option within the GBM framework sheds
light on how the expansion’s option price converges towards benchmark values as the
number of benchmark points n increases. In the graphical representation depicted be-
low, the red vertical line signifies the number of unknowns, i.e., 2N . This particular in-
stance employs N = 32, implying a total of 64 real and imaginary ch.f. terms. The hor-
izontal axis denotes the number of benchmark points used to fit the expansion terms.
The convergence trend as n increases is visually apparent in Figure 3.1.

3.2.2. SETUP OF THE LINEAR SYSTEM: REPRESENTATION 2
The motivation behind the existence of the second model stems from a limitation in
the first model, which fails to consider the interconnectedness between the variables
Rk and Ik , both originating from a shared underlying function. This oversight becomes
particularly consequential when employing machine learning techniques, as the initial
representation struggles with predictive accuracy near the boundaries, especially when
accommodating an additional dimension for function input. Moreover, the validation of
this revised approach reinforces the applicability of the COS-CPD method.

In the second model, the ch. f. is articulated through its Fourier expansion. This in-
volves delineating the real and imaginary components of the ch. f. as distinct functions,
denoted as fR and f I respectively, both operating within the interval [aϕ,bϕ], where
[a,b] signifies the truncated integration range for the COS method, and N represents
the count of basis functions employed by the COS method. To construct these func-
tions, Nϕ basis functions are utilized. This collective framework yields the subsequent
formulation for valuing barrier options using the COS method:
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Figure 3.1: Convergence of barrier option prices to benchmark values with increasing n for various examples
of (µ,σ) in the GBM Model with N = 32.

ϕ̄l ev y (u) = fR (u)+ i · f I (u) =
Nϕ−1∑

j=0
A j cos

(
jπ

u −aϕ
bϕ−aϕ

)
+ i ·B j sin

(
jπ

u −aϕ
bϕ−aϕ

)
. (3.14)

Just as with the first representation, the same steps are followed to derive a linear
system of equations for this representation. The full derivation is stated in the Appendix
A.1.

v B AR (x ; t ,θ) ≈ e−rθ∆t
∑′N−1

k=0 Re

{
ϕ̄l ev y

(
kπ

b −a

)
exp

(
i kπ

x −a

b −a

)}
Vk (3.15)

= e−rθ∆t
Nϕ−1∑

j=0
A j

[∑′N−1
k=0 cos

(
jπ

uk −aϕ
bϕ−aϕ

)
cos

(
kπ

x −a

b −a

)
Vk

]
(3.16)

−e−rθ∆t
Nϕ−1∑

j=0
B j

[∑′N−1
k=0 sin

(
jπ

uk −aϕ
bϕ−aϕ

)
sin

(
kπ

x −a

b −a

)
Vk

]
(3.17)

:= e−rθ∆t
Nϕ−1∑

j=0
(A j C j (x)−B j S j (x)), (3.18)

where uk = kπ
b−a . The notations C j (x) and S j (x) are used for convenience to describe

respectively the sum of the cosines and sines. To find A and B for a given θ and t , this
expansion is set equal to v bench(x ; t ,θ). This results in:

Nϕ−1∑
j=0

(A j C j (x)−B j S j (x)) = erθ∆t v bench(x ; t ,θ), (3.19)
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where this system of equations can be written in the form

M̃
[

A
B

]
= erθ∆t v bench(x ; t ,θ). (3.20)

Since there are two different vectors the matrix M̃ ∈ Rn×2Nϕ is split up in two parts
like M̃ = [M̃ A M̃ B ], where M̃ A ∈ Rn×Nϕ and M̃ B ∈ Rn×Nϕ correspond respectively to the
vectors A and B . The elements of these two matrices are defined as follows:

(M̃ A)i j =C j (xi ) = ∑′N−1
k=0 cos

(
jπ

uk −aϕ
bϕ−aϕ

)
cos

(
kπ

xi −a

b −a

)
Vk , (3.21)

(M̃ B )i j =−S j (xi ) =−∑′N−1
k=0 sin

(
jπ

uk −aϕ
bϕ−aϕ

)
sin

(
kπ

xi −a

b −a

)
Vk . (3.22)

SOLVING THE LINEAR SYSTEM USING SVD: REPRESENTATION 2

Much like the approach employed in solving the first model, the linear system (3.20) is
tackled using a consistent optimization procedure. However, a key distinction lies in the
dimensionality of matrix M̃ ∈ Rn×2Nϕ . Here, n denotes the count of benchmark points
utilized, while Nϕ signifies the number of basis functions engaged in the Fourier expan-
sion of the ch.f.. The cases n < 2Nϕ,n = 2Nϕ, and n > 2Nϕ are again considered. Across
all instances, regardless of the relationship between n and 2Nϕ, the equation (3.20) is
solved using SVD to find the LS solution. This involves determining LS solutions for the
real and imaginary components of the ch. f. Fourier-expansion terms, which are gov-
erned by the following optimization:

[
ALS

B LS

]
= argmin

A,B∈RNϕ

∣∣∣∣∣∣∣∣M̃
[

A
B

]
−erθ∆t v bench(x ; t ,θ)

∣∣∣∣∣∣∣∣
2

. (3.23)

By incorporating this LS solution and plugging it into the Fourier-expansion of the
ch. f., the complete ch.f. is recovered. This contrasts with the first model, where only
the values of a specific set of N points are computed. Subsequently, leveraging this esti-
mated ch. f., novel values for barrier options can be ascertained. It’s important to note
that this process remains contingent upon a fixed θ and t .

Similarly to the initial representation, the convergence towards benchmark values
becomes evident as the quantity of benchmark points augments. In the ensuing visual-
izations, the vertical line demarcates the count of unknowns, represented as 2Nϕ. Within
these illustrations, we consider two instances: Nϕ = 32 and Nϕ = 64, signifying a total of
64 and 128 real and imaginary Fourier expansion terms for the ch. f. respectively. Addi-
tionally, the number of basis functions within the COS method is designated as N = 64.
On the horizontal axis, we denote the number of benchmark points utilized for fitting
the expansion terms. The progressive convergence as n increases is depicted in Figure
3.2.
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Figure 3.2: Convergence of barrier option prices to benchmark with increasing n for multiple examples of (µ,σ)
in the GBM Model with Nϕ = 32 and N = 64.

3.2.3. CHOICE OF BENCHMARK VALUES x
Choosing the appropriate grid of benchmark points is crucial to achieving machine pre-
cision accuracy in barrier option pricing using the traditional COS method. This impor-
tance stems from the behavior of vbench concerning values of S near the barrier level H .
Specifically, the value curve is not smooth around H due to the fact that for up-and-out
barrier options with initial prices S ≥ H , the option is worthless, i.e., vbench(log(S/K )) =
0.

When incorporating asset prices above the barrier level, both representations’ LS so-
lutions are also fitted on these values, leading to the presence of a Gibbs phenomenon,
as observed in Figure 3.3 around S = H . Consequently, this adversely affects the overall
accuracy across the entire benchmark axis, resulting in a significant decrease in accu-
racy. In Figure 3.4, we can see the L1-error increase from around O (10−11) to O (10−3)
when starting to include values after H . The L∞-error even increases from O (10−10) to
O (10−1).

To illustrate this behavior, we consider two benchmark grids 2: S0 = (3 : H : 1000)
and S1 = (3 : H +1 : 1000), where H represents the specific barrier value. We define x0 =
log(S0/K ) and x1 = log(S1/K ). As a result, x0 contains benchmark asset values up to H ,
while x1 includes asset values above H as well.

By understanding the impact of the Gibbs phenomenon and carefully selecting the
benchmark grids, we can optimize the accuracy of barrier option pricing with the tradi-
tional COS method.

In conclusion, the choice of the benchmark grid is critical for achieving machine pre-
cision accuracy in barrier option pricing using the traditional COS method. The pres-
ence of the Gibbs phenomenon, observed when incorporating asset prices above the

2The notation (a : b : n) is consistently utilized in the paper to define a range spanning from boundary a to
boundary b, partitioned into n evenly spaced intervals.
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(a) Benchmark set x0.

(b) Benchmark set x1.

Figure 3.3: Comparison of Option Price Estimation: Fitted Expansion Terms using SVD on Training Sets x0 and
x1.

barrier level, negatively impacts the overall accuracy of the pricing model. To optimize
accuracy, it is recommended to use the benchmark grid x0, containing asset values up to
the barrier level H , thereby avoiding complexities associated with the discontinuity near
H . By making this careful selection, reliable and accurate pricing results can be obtained
for barrier options using the traditional COS method.

3.2.4. CHOICE OF THE INTEGRATION RANGE [a,b]
When utilizing the COS method for pricing barrier options, it is crucial to select a trun-
cation range [a,b] that yields accurate results for the barrier option prices. For European
options, the rule of thumb for determining this range is defined by calculating the values
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(a) Benchmark set x0.

(b) Benchmark set x1.

Figure 3.4: Comparison of Absolute Errors: Option price vs. Fitted option price using SVD-calculated expan-
sion terms on training sets x0 and x1.

with (2.38). For the COS Barrier method, which differs from the regular COS method,
there is (2.58). However, for pricing barrier options using the traditional COS method,
there is no established rule of thumb for determining the truncation range.

In our research, when applying the COS method in our own models for pricing bar-
rier options, we fix the truncation range beforehand to ensure that the SVD of the expan-
sion matches benchmark values up to machine precision. This step allows us to verify
that the calculated option values correspond to the benchmark values within very small
numerical differences.



4
OUR METHOD 1 FOR OPTION

PRICING: THE COS-GPR METHOD

In this chapter, we present our first method called the COS-GPR method. By combin-
ing the power of Gaussian Process Regression (GPR) with the COS method, we achieve
enhanced accuracy and reduced time complexity compared to existing methods.

Traditionally, option pricing focuses solely on predicting option prices. However, our
COS-GPR method takes a different approach by estimating the survival ch.f., i.e. the
ch.f. of the underlying process’s survival density, which reduces the dimensionality of
the problem. This reduction in dimensions streamlines the problem, making the inputs
to the training step only the model parameters.

Inside the COS method, the GPR comes into play, approximating a vector of charac-
teristic function (ch.f.) coefficients, and as a result we get a predicted price in the end. We
explore two different variations of the COS-GPR method, starting with the intuitive GPR1
model. However, GPR1 lacks the binding relation among the elements within the output
vector due to the independence assumption. To address this limitation, we introduce
the GPR2 model, incorporating the Fourier-cosine expansion of the survival ch.f. itself
to account for the aforementioned binding relation and therefore enhance accuracy.

Throughout the chapter, we delve into the training and theoretical aspects of the
COS-GPR method, paving the way for its application in pricing barrier options under
the CGMY-model. On this application, the COS-GPR method’s performance is evalu-
ated against the 1D COS Barrier method developed in [1] by comparing the two fits to
the benchmark value curve. The results demonstrate that our approach outperforms
the existing method in terms of accuracy and significantly reduces computational time.
However, it is important to note that GPR faces challenges in predicting values near the
boundary of the training data set, which is also visualised further in Chapter 5. This is a
common phenomenon for GPR prediction.

35
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4.1. BACKGROUND INFORMATION ON GPR
GPR is a powerful non-parametric Bayesian technique that facilitates modeling complex
relationships in data without imposing strong assumptions on the underlying function.
Utilizing principles of probability and statistics, GPR offers a flexible framework for es-
timating and predicting unknown values based on benchmark data. In the context of
supervised learning, GPR operates as a regression method, focusing on estimating real
values, such as the value of a ch.f. or an option.

The choice of GPR over other supervised learning methods is motivated by its ex-
tensive research application in quantitative finance [6] and its transparency compared
to black-box deep-learning techniques like NN techniques. GPR’s intuitive assumptions
about the relationship between the underlying structure and the output make it an at-
tractive option for financial modeling.

The training phase, while time-consuming, needs to be performed only once. Once
trained, GPR allows for rapid and efficient new predictions, contributing to its compu-
tational advantage. However, it’s essential to alreaady acknowledge that GPR may en-
counter limitations near the boundaries of the training set.

4.1.1. CONSTRUCTING THE MODEL
As for all supervised learning methods, GPR is fitted to the data using a training set with
n observations Dtr ai n = (X , Y ) = {(x i , y i )}n

i=1 . Here X ∈ Rn×di n symbolises the training

input data and Y ∈Rn×dout the training output data. With this training data the goal is to
find a mapping f : Rdi n −→ Rdout such that it represents the relation between the inputs
and the outputs i.e.:

y i = f (x i )+ϵi . (4.1)

In the GPR method this function f is a Gaussian process and the noise ϵi ∼N (0, Iσ2
GPR )

is assumed to be independent and identically distributed among observations i = 1, ...,n.
Here I is an identity matrix with the correct dimensions.

Definition 4.1.1. A stochastic process (X t )t∈T is a Gaussian process iff for every finite set
of indices t1, ..., tn the vector (X t1 , ..., X tn ) assumes a multivariate normal distribution.

For the model in 4.1, the process f (x) is defined by a mean function (here we assume
a mean function equal to zero) and a covariance function, also called the kernel, k(x , x̃)
. In the univariate case where f has an one-dimensional output, then for some (X , f ) :

f (X ) ∼N (0,K (X , X )). (4.2)

This covariance matrix K (X , X ) is constructed using the kernel k(x , x̃) . Namely the co-
efficients of the matrix (K (X , X ))i j = k(x i , x j ) . The kernel used throughout the paper
is called the squared-exponenital (SE) kernel i.e. the SE-kernel . This is one of the most
widely used kernels for Gaussian processes. It is dependent on two hyperparameters σ2

f
and l and the function is defined as:

k(x , x̃) =σ2
f exp

(
−||x − x̃ ||22

2l 2

)
. (4.3)



4.1. BACKGROUND INFORMATION ON GPR

4

37

4.1.2. MULTIVARIATE GPR FOR MODEL OUTPUTS
In this paper, our models require multivariate outputs (vectors of expansion terms).
However, a significant assumption made in this context is that there is no cross-correlation
between different response variables, implying that all response variables are treated as
mutually independent. This simplifying assumption is adopted due to the complexity of
GPR with cross-correlation, an area that is still under active research [7].

Thus, we consider the function f (x) = ( f1(x), ..., fdout (x)), where each individual func-
tion f j is modeled as a separate Gaussian process using the SE-kernel. Naturally, the
parameters of the kernels for these functions differ. Specifically, for j = 1, ...,dout , a sam-
ple (X , f j ) is associated with a Gaussian process f j (X ) ∼N (0,K j (X , X )), with covariance
matrix K j (X , X ) defined by the SE-kernel with parameters σ2

f , j and l j .

Since the multivariate outputs are treated independently, the total output of the model,
denoted as Y ∈Rn×dout , must be split per response variable. Specifically, for each model
j , the input X is linked to the corresponding output, which is represented by the j -th
column of Y , denoted as Y [:, j ].

To find the optimal kernel parameters σ2
f , j and l j , we maximize the following objec-

tive function, which essentially represents the log-likelihood function:

(σ̂2
f , j , l̂ j ) = argmax

σ2
f , j ,l j

[
−1

2
log(det(K j (X , X )))− 1

2
Y [:, j ]T K j (X , X )Y [:, j ]+ c

]
. (4.4)

This formulation allows us to effectively model and optimize each individual response
variable while acknowledging their independence, facilitating the application of Gaus-
sian Process Regression in a multivariate context.

4.1.3. PREDICTION OF TEST DATA
Let us fix the input dimension j . After training, the model is tested using new inputs
X test . Using this test set as input, the GPR model returns an estimate for Y test , which
is related to the mapping 4.1. Then using this mapping , and the distribution of new
data f j ,test (X test ) ∼ N (0,K (X test , X test )), the GPR method estimates the f j ,test using
the following joint distribution:[

Y [:, j ]
f j ,test (X test )

]
∼N

(
0,

[
K j (X , X )+σ2

GPR I K j (X , X test )
K j (X test , X ) K j (X test , X test )

])
. (4.5)

From this distribution, the distribution of f j ,test conditioned on the training output for
the j th response variable, Y [:, j ] , is deducted. The expectation (e.g. mean) of this distri-
bution will be the predictor of the test outputs for the j th response variable:

f j ,test | Y [:, j ], X , X test ∼N (µ j ,Σ j ), (4.6)

where

µ j = K j (X test , X )
[
K j (X , X )+σ2

GPR I
]−1

Y [:, j ] (4.7)

Σ j = K j (X test , X test )−K j (X test , X )
[
K j (X , X )+σ2

GPR I
]−1

K j (X , X test ). (4.8)
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This means that the estimate yields

f̂ j ,test = E[ f j ,test | Y [:, j ], X , X test ] =µ j . (4.9)

Then doing this for all j = 1, ...,dout gives the total output y i = Y [i , :] for i = 1, ...,n. The
probabilistic nature of the GPR predictor allows for an estimation that provides not only
the mean but also the uncertainty associated with the predictions for each response vari-
able.

4.2. GPR FOR BARRIER OPTION PRICING VIA SURVIVAL CH.F.
ESTIMATION

In Chapter 3, we established that barrier options can be efficiently priced using the 1D
COS method for pricing European options. Moreover, under Lévy processes, we discov-
ered evidence that the initial price can be extracted from the survival ch.f., reducing the
dimensionality by two: one for the initial price and another for the strike, which can be
derived as a scalar multiple of Vk (see 2.30).

In this section, we utilize GPR as an approximation method for the survival ch.f..
That is, given the model inputs θ of the underlying stochastic process, GPR returns the
survival ch.f.. Using which, option values can be computed. To achieve this, we first con-
struct a training set comprising input parameters (model parameters) and outputs (ch.f.
coefficients). These outputs are calculated using SVD and associated with the corre-
sponding inputs. As discussed in Chapter 3, two representations are generated, leading
to the creation of two distinct GPR models.

For Representation 1 from Section 3.2.1, we observed some boundary-related issues.
We address and resolve these problems by imposing the binding relation between the
training input and output, resulting in improved accuracy and performance for barrier
option pricing.

4.2.1. CALIBRATION USING REPRESENTATION 1: GPR1
In this section, we apply GPR to calibrate the first representation introduced in Section
3.2.1. We aim to find the mapping of the survival ch.f. θ 7→ ϕ̄lev y (u | θ) for a fixed
value of u. Rather than considering the mapping (u,θ) 7→ ϕ̄lev y (u | θ), which can lead
to boundary issues with GPR, we focus on two sets of separate mappings, each set is
with k = 0, ..., N −1, given a truncation range [a,b].

The mappings we seek to find are:

θ 7→ Re

{
ϕlev y

(
kπ

b −a
| θ

)}
:= Rk (θ), (4.10)

θ 7→ Im

{
ϕlev y

(
kπ

b −a
| θ

)}
:= Ik (θ). (4.11)

Collectively, these mappings can be represented as vectors:

θ 7→ R(θ), (4.12)

θ 7→ I(θ). (4.13)
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To obtain these mappings, we require training data. The training data is initialized as
a d-dimensional grid with n total grid points, where d is the dimension of the parameter
space Θ. For each training input θi ∈ X, i = 1, ..., M , the corresponding training outputs
R(θi ) and I(θi ) are computed using SVD (Section 3.2.1) with a given N , set of log-asset
prices x, and truncation range [a,b].

The GPR1 model assumes the form in (4.1), where the mappings R(θi ) and I(θi ) are
represented as follows:

R(θi ) = fR (θi )+ϵR
i , (4.14)

I(θi ) = fI (θi )+ϵI
i . (4.15)

Here, the independent noise vectors ϵR
i ,ϵI

i ∼ N (0, Iσ2
GPR ) include the approxima-

tion error from the SVD when numerically calculating the corresponding outputs of the
mapping. To facilitate coding convenience, these two mappings are combined into a
collective mapping as follows: [

R(θi )
I(θi )

]
=

[
fR (θi )
fI (θi )

]
+

[
ϵR

i
ϵI

i

]
, (4.16)

which is expressed as a sum of 2N -dimensional vectors:

RI(θi ) = f(θi )+ϵi . (4.17)

The process of obtaining this mapping is explained in Section 4.1.2, where binding
relation among the different response variables is assumed to be non-existent. Solving
the multivariate mapping simplifies to solving 2N univariate mappings. Per mapping,
the kernel matrix is evaluated, which depends on the kernel parameters. These hyper-
parameters are obtained by optimizing a log-likelihood function (Section 4.4) based on
the output data of the corresponding response variable.

For our research, we used the GaussianProcessRegressor function from the Python
library scikit-learn. This module, even when dealing with multivariate output, as-
sumes independence between the different response variables.

4.2.2. CALIBRATION USING REPRESENTATION 2: GPR2
In this section, we apply GPR to calibrate the second representation introduced in Sec-
tion 3.2.2. Similar to GPR1, GPR2 also aims to find a mapping θ 7→ ϕ̄lev y (u | θ). How-
ever, in GPR2, the functional assumption input u is incorporated into the model. This
is achieved by fitting the Fourier-cosine coefficients of the ch.f. using only the model
parameters θ as input. As a result, the GPR2 model directly represents the ch.f. as a
function of u, unlike GPR1, which collects the ch.f. values at specific points kπ/(b −a).
From now on, GPR applied to this representation will be referred to as GPR2.

For GPR2, we want to find 2Nϕ different mappings using 3.14. For j = 0, ..., Nϕ−1,
the mappings we aim to obtain are:

θ 7→ A j (θ), (4.18)

θ 7→ B j (θ), (4.19)
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which can be expressed as vectors:

θ 7→ A(θ), (4.20)

θ 7→ B(θ). (4.21)

The process for obtaining the training data for GPR2 is analogous to the GPR1 model.
A d-dimensional grid of model parameters X is created, and for each training input θi ∈
X, the corresponding training outputs A(θi ) and B(θi ) are calculated using SVD from
Section 3.2.2 for a given N , set of log-asset prices x, and truncation range [a,b], and
stored in the training output data Y.

The GPR2 model assumes the form in 4.1, where the mappings A(θi ) and B(θi ) are
represented as follows:

A(θi ) = fA(θi )+ϵA
i , (4.22)

B(θi ) = fB (θi )+ϵB
i . (4.23)

The independent noise vectors ϵA
i ,ϵB

i ∼N (0, Iσ2
GPR ) capture the approximation er-

ror resulting from the SVD process when numerically calculating the corresponding out-
puts of the mapping. To simplify coding, we combine these two mappings into a collec-
tive mapping: [

A(θi )
B(θi )

]
=

[
fA(θi )
fB (θi )

]
+

[
ϵA

i
ϵB

i

]
, (4.24)

written as a sum of 2Nϕ-dimensional vectors:

AB(θi ) = f(θi )+ϵi . (4.25)

The process for obtaining this mapping is analogous to the GPR1 model using scikit-learn
and GaussianProcessRegressor.

4.3. APPLICATION OF THE COS-GPR METHOD TO EFFICIENT

BARRIER OPTION PRICING
Our research primarily aims to develop a fast and accurate pricer for barrier options
under Lévy processes. In this section, we introduce the COS-GPR method, our first ap-
proach, to price an up-and-out barrier option under the CGMY-process (see definition
in 2.1.9). We employ GPR2 from Section 4.2.2 for this pricing, as GPR1 can be analo-
gously used. However, it’s worth noting that the analytical expression of the option price
under this stochastic process remains unknown.

The current benchmark method used to price this option under CGMY is the COS
Barrier method [1], which we discussed in Section 2.6. This method calculates continua-
tion values at a pre-specified number of monitoring dates denoted as Mmon . However, a
significant drawback of the COS Barrier method is that its computational time increases
with a higher number of monitoring dates.
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In this section, we conduct a comparison of the computational time between the
COS-GPR method and the COS Barrier method for 250 monitoring dates. We will assess
the accuracy of the COS-GPR method against the COS Barrier method with 25 monitor-
ing dates for the case of 250 monitoring dates. It’s worth noting that the COS Barrier
method with a smaller number of monitoring dates provides a good approximation of
the COS Barrier method with higher monitoring dates.

For this CGMY method example, we consider fixed values for the diffusion termσB =
0.5 and the interest rate r . Additionally, the contract parameters, including maturity T ,
barrier level H , and the type of option (call), are also fixed. Consequently, the input
parameters are C ,G , M , and Y , resulting in an input dimension of d = 4. The GPR2 aims
to find a mapping (C ,G , M ,Y ) 7→ ϕ̄lev y (u|C ,G , M ,Y ) using the Fourier-cosine series of
the unknown survival ch.f.. Following Section 4.2.2, the 2Nϕ mappings we aim to obtain
for j = 0, ..., Nϕ−1 are as follows:

(C ,G , M ,Y ) 7→ A j (C ,G , M ,Y ) (4.26)

(C ,G , M ,Y ) 7→ B j (C ,G , M ,Y ), (4.27)

These mappings are connected to the ch.f. in 3.14, where Nϕ represents the number
of expansion terms used to describe the real and imaginary parts of the ch.f.. The GPR2
provides an estimation of the ch.f. as follows:

ϕ̄l ev y (u|C ,G , M ,Y ) =
Nϕ−1∑

j=0
A j (C ,G , M ,Y )cos

(
jπ

u −aϕ
bϕ−aϕ

)
+i ·B j (C ,G , M ,Y )sin

(
jπ

u −aϕ
bϕ−aϕ

)
.

(4.28)
The next step involves finding these mappings using training data. We begin by set-

ting up a predefined set of training values, where the number of training points per
dimension is the same and denoted as m. Consequently, the total number of train-
ing points is M = m4. For each training input (Ci ,Gi , Mi ,Yi ), we calculate the outputs
A j (Ci ,Gi , Mi ,Yi ) and B j (Ci ,Gi , Mi ,Yi ) using SVD (see 3.2.2). Specifically, we solve the
problem 3.23 for i = 1, ..., M , which in this example can be expressed as:

[
A(Ci ,Gi , Mi ,Yi )
B (Ci ,Gi , Mi ,Yi )

]
= argmin

A,B∈RNϕ

∣∣∣∣∣∣∣∣M̃
[

A
B

]
−er T v bench(x ;Ci ,Gi , Mi ,Yi )

∣∣∣∣∣∣∣∣
2

. (4.29)

Here, x represents a predefined set of log-asset prices, and v bench(x ;Ci ,Gi , Mi ,Yi ) is
calculated using the COS Barrier method with the corresponding number of monitoring
dates Mmon . The choice of the benchmark grid is motivated by including asset values
up to the barrier level, as this optimizes the performance of the SVD and avoids the oc-
currence of the Gibbs phenomenon (see Section 3.2.3). This output acquisition is part of
the pre-processing of the training and only needs to be done once. Once all the outputs
have been calculated for both the real and imaginary parts, stored respectively in output
matrices YA and YB (both of size M ×Nϕ), we train the GPR2 with multivariate outputs,
as explained in Section 4.1.2.
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We now proceed to evaluate the model’s performance on a single test example de-
noted as X test = (Ctest ,Gtest , Mtest ,Ytest ), using the GPR mapping obtained during the
training phase. Our primary focus is on the real part coefficient mappings A(θ), with
the understanding that the imaginary part can be treated similarly. For a given index
j = 0, ..., Nϕ−1, we consider the distribution of a new test value, A j (X test ), obtained us-
ing the found kernel matrices K A, j (·, ·):[

Y A[:, j ]
A j (X test )

]
∼N

(
0,

[
K A, j (X , X )+σ2

GPR I K A, j (X , X test )
K A, j (X test , X ) K A, j (X test , X test )

])
. (4.30)

From this distribution, we derive the conditional distribution of the test value A j (X test )
(conditioned on the training data):

A j (X test ) | Y A[:, j ], X , X test ∼N (µA, j ,ΣA, j ), (4.31)

where the mean µA, j and covariance ΣA, j are given by:

µA, j = K A, j (X test , X )
[
K A, j (X , X )+σ2

GPR I
]−1

Y A[:, j ] (4.32)

ΣA, j = K A, j (X test , X test )−K A, j (X test , X )
[
K A, j (X , X )+σ2

GPR I
]−1

K A, j (X , X test ). (4.33)

By assumption, the predictor for this random variable is the mean, the estimate is
given by:

Â j (X test ) = E[A j (X test ) | Y A[:, j ], X , X test ] =µA, j . (4.34)

By repeating this procedure for all j , we obtain the full estimated real part expansion
vector A(X test ) = [Â0(X test ), Â1(X test ), ..., ÂNϕ−1(X test )]T for the new test input value X test =
(Ctest ,Gtest , Mtest ,Ytest ). Performing the same analogous procedure for the imaginary
part with B j (X test ) provides all the necessary Fourier-series expansion terms to calcu-
late the barrier option value using the COS formula derived in A.10. For this example,
the barrier option value using COS-GPR is described as follows:

v B AR (x ; t , X test ) = e−r∆t
Nϕ−1∑

j=0
(Â j (X test )C j (x)− B̂ j (X test )S j (x)). (4.35)

To illustrate, we consider an example where we set the contract parameters as T = 1,
H = 10, K = 6 and Mmon =, and the risk-free interest rate as r = 0.01. The diffusion
of the CGMY-model is fixed at σB = 0.5. We use the COS formula with N = 100 and
integration range [a,b] = [−3,3]. Within the COS formula, the ch.f. is represented by
Nϕ = 30 expansion terms. These expansion terms are estimated using SVD with n = 100
benchmark asset points over a model parameter grid with m = 10 points per dimension,
resulting in a total of M = 10000 training points. The resulting estimation for barrier
option prices over a asset grid with test value X test = (0.05,0.4,0.2,0.4) is shown in Figure
4.1, together with the corresponding relative and absolute errors.

We observe improved accuracy in the COS-GPR method compared to an existing ap-
proach, as demonstrated by a specific test input. However, it’s important to note that this



4.3. APPLICATION OF THE COS-GPR METHOD TO EFFICIENT BARRIER OPTION PRICING

4

43

(a) Comparison of barrier option price estimation with 250 monitoring dates using the
COS-GPR method and the COS Barrier method with 25 monitoring dates.

(b) Absolute and relative error plots corresponding to the prediction of the two methods.

Figure 4.1: Comparison of the performance of two methods for barrier option pricing under the CGMY-model.

single example doesn’t provide the complete accuracy picture. Specifically, GPR-based
estimations tend to exhibit reduced accuracy near the boundaries of the training set.
This aspect will be further examined in Chapter 5.

In terms of computational efficiency, the COS Barrier option with 25 monitoring
dates demonstrates notable efficiency gains, as evidenced by an approximately 7-fold
reduction in the average time required for calculating a single option value along the
curve. This comparison is summarized in Table 4.1. Further insights into the compu-
tational complexity of our initial method will be presented in the subsequent Chapter
5.
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Method CPU Time (seconds)

COS-GPR 1.10×10−3

COS Barrier 25 7.20×10−3

Table 4.1: Comparison between the COS-GPR method, with m = 10, and the COS Barrier 25 method for average
CPU times for calculating option prices for inputs in the given test set
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In this chapter, we conduct a thorough numerical error analysis for pricing barrier op-
tions under Lévy processes using the COS-GPR method introduced in Chapter 4. Our
main focus is to explore the impact of the number of training points on both compu-
tational complexity and prediction accuracy. By systematically varying this parameter,
we aim to gain insights into the model’s performance under different training scenarios.
Subsequently, we investigate the effects of varying the truncation range and the number
of terms in the COS method to understand their influence on option price prediction.
This step allows us to identify the optimal configuration of the COS-GPR method specif-
ically for the CGMY-model example.

Moreover, we address the challenge of accurately predicting option values near the
boundary, a known difficulty in the GPR machine learning method. Evaluating the COS-
GPR model’s accuracy in this region is crucial to assess its practical applicability and
robustness.

To provide a comprehensive evaluation, we compare the computational time re-
quired by the COS-GPR method against a lower estimated benchmark. This benchmark
serves as a reference for assessing the efficiency of our approach in terms of computa-
tional speed. By doing so, we obtain valuable insights into the practical feasibility and
computational efficiency of the COS-GPR method for pricing barrier options.

The results of this analysis will contribute to our understanding of the trade-offs be-
tween computational complexity and prediction accuracy. Additionally, the findings will
shed light on the strengths and limitations of the COS-GPR method in the context of
barrier option pricing, helping practitioners make informed decisions when using this
innovative pricing technique.

45
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5.1. OPTIMAL SAMPLING FREQUENCY

In the context of estimating barrier option prices using the COS-GPR method, the choice
of the number of grid points per dimension, denoted by m, plays a crucial role in deter-
mining the accuracy and efficiency of the pricing process. The GPR method is a powerful
non-parametric regression technique that utilizes a probabilistic framework to estimate
the characteristic function (ch.f.), and the parameter m directly influences the granular-
ity of the grid used for the approximation.

One of the primary considerations is the effect of the accuracy of the barrier option
pricing when estimating the ch.f.. A higher value of m corresponds to a denser grid, al-
lowing the GPR model to capture more intricate features and nuances in the survival
ch.f.. Consequently, increasing m should lead to more accurate ch.f. estimates, espe-
cially in regions where the function exhibits rapid changes or non-linear behavior. How-
ever, this does not necessarily guarantee a more accurate barrier option price estimation,
as we will see in the subsequent analysis.

For the CGMY-model example, we vary the number m between 3 and 14 points per
dimension. The primary focus of this analysis is to investigate how the accuracy of the
estimated price behaves as we increase the number of grid points and compare it against
the benchmark price. Specifically, we are interested in estimating a discretely monitored
up-and-out barrier option under the CGMY-model with Mmon = 250 monitoring dates.

Figure 5.1: Comparison of the L2-error for the COS-GPR method applied to a test set of barrier options values
with a watchtime of Mmon = 250, while varying the sampling frequency m.

The analysis includes the L2-error for different values of m allowing us to compre-
hensively assess the performance of the COS-GPR method for barrier option pricing un-
der various sampling frequencies. Figure 5.1 presents the comparison of these error met-
rics for the COS-GPR method applied to a test set of barrier option values Xtest = (0.005 :
0.52 : 6)4 with a watchtime of Mmon = 250. From the three plots, the sampling frequency
is chosen to be set to m = 10 based on the observed error behavior.
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5.2. OPTIMAL TRUNCATION RANGE OF THE COS METHOD
In this section, we delve into exploring the impact of the truncation range [a,b] on bar-
rier option pricing using the traditional COS method, building upon the insights gained
from the optimal sampling frequency analysis in Section 5.1, where m = 10 was identi-
fied as the most optimal choice. The truncation range [a,b] defines the interval within
which the COS method approximates the ch.f., and finding the optimal range is crucial
for accurate pricing of barrier options.

As stated in Section 3.2.4, there is no rule-of-thumb for selecting the truncation range
for barrier options using the COS method. Therefore, we perform a numerical investiga-
tion by considering a wide range of values for c between 0.25 and 75. The parameter c
defines the interval as [−c,c], and we keep the sampling frequency m fixed at 10 during
this study.

To systematically analyze the behavior, we first examine the errors for different trun-
cation range values. We use the same error metrics, namely L1-error, L2-error, and L∞-
error, as employed in the previous analysis. Figure 5.2 presents a comparison of these
error metrics for the COS-GPR method with optimal m = 10, applied to a test set of bar-
rier option values with a watchtime of Mmon = 250, while varying the truncation range
[−c,c].

From Figure 5.2a, we observe that the errors vary significantly with different trunca-
tion range values. To obtain a more precise analysis, we zoom in on the region where the
errors exhibit a notable decrease, specifically between c = 1.5 and c = 3.0, as shown in
Figure 5.2b.

After careful examination of the zoomed-in plot, we identify the optimal choice for
the truncation range interval as c = 2.45. This value minimizes both the L1-error and
L2-error, providing significantly improved accuracy compared to other values within the
specified range. By selecting c = 2.45, we can achieve more precise pricing of barrier op-
tions using the COS method in conjunction with the GPR model, enhancing the overall
performance and reliability of our approach.

5.3. OPTIMAL NUMBER OF COS TERMS
In this section, we explore the impact of the number of expansion terms, denoted by N ,
on the COS method. Having already established a truncation interval of [−2.45,2.45] and
a fixed sampling frequency of m = 10 in previous sections, we now focus on finding the
optimal value for N by evaluating the three error metrics. The parameter N is crucial as
it influences the complexity of the COS method and how it describes the option price.
While the conventional COS method exhibits exponential convergence as N increases
for pricing European options [5], our model employs a different expansion to estimate
the ch.f.. As a result, the behavior may differ, and a higher N does not necessarily guar-
antee a better overall approximation.

To conduct the analysis, we vary the values of N within the range of 30 to 200. The
same test set utilized in the previous sections will be employed to determine the optimal
choice for N . By studying the errors at different N values, we aim to identify the most
suitable expansion term count for our model.

Figure 5.3 displays the behaviour of the three error metrics when increasing N . We
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(a) Varying c between 0.25 and 75.

(b) Varying c between 1.25 and 3.5.

Figure 5.2: Comparison of three error metrics for the COS-GPR method with optimal m = 10 applied to a test
set of barrier options values with a watchtime of Mmon = 250, while varying the truncation range [−c,c].

find that the optimal choice here is to pick the number of COS terms N = 96 . For this
value all three errors assume their minimum on the selected range of COS terms.

5.4. PERFORMANCE COMPARISON: COS-GPR VS. COS BAR-
RIER METHOD

To observe the improvements from our own method compared to the current bench-
mark method regarding speed and accuracy, we will show this by estimating the price of
a barrier option under the CGMY model with 250 monitoring dates and observe these
two properties. The method that we compare our own COS-GPR method with the COS
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Figure 5.3: Comparison of three error metrics for the COS-GPR method with optimal m = 10, truncation range
[−2.45,2.45] applied to a test set of barrier options values with a watchtime of Mmon = 250, while varying the
number COS terms N .

Barrier method which assumes 25 monitoring dates. Our COS-GPR method uses the op-
timized settings after initialization of Nϕ = 30, which were derived in previous sections.
That is:

• From Section 5.1; the sampling frequency is set to m = 10. This implies that the
number of training points is M = md = 10000.

• From Section 5.2; the truncation range, assumed to be symmetric around 0, is
[a,b] = [−c,c] with c = 2.45.

• From Section 5.3; the number of ch.f. terms in the COS method is set to be N = 154.

The performance comparison between the COS-GPR method and the COS Barrier
method is done on a test set, which also includes points outside the training set. This is
done to get a better overall view of the performance instead of focusing on single input
to get a better performance indication. This is a different test set from the one which is
used to derive the optimal parameters of the COS-GPR model.

Using a single input we can see the behaviour of the fit of the method to the bench-
mark. The benchmark here is the option valuated using the COS Barrier method with
250 monitoring dates. We have two test examples

θi n = (Ci n ,Gi n , Mi n ,Yi n) = (0.14,0.27,0.15,0.22),

θout = (Cout ,Gout , Mout ,Yout ) = (0.52,0.27,0.15,0.22),

respectively the single test example in and out of the training set. The fits of both samples
are plotted in Figure 5.4 for both the COS-GPR method and the COS Barrier method with
25 monitoring dates.
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5.4.1. ACCURACY COMPARISON
To perform a more thorough analysis on the prediction capabilities of the COS-GPR and
COS Barrier methods, I have decided to extend the analysis on the previous example.
The goal is to compare the accuracy of the two methods on a larger test set, which is dif-
ferent from the one used to optimize the model’s parameters. This new test set will cover
a range of four dimensions with varying values from 0.002 to 10 with a step size of 0.55,
defined as (0.002 : 0.55 : 10)4. To compare the two methods, we will iterate over all the dif-
ferent test inputs, generate predictions for each input using both the COS-GPR and COS
Barrier methods, and accumulate all the errors to obtain a comprehensive performance
evaluation of both models.

Firstly, we will generate a table of the overall errors of all the log-asset prices over all
test inputs. These error metrics are the L1, L∞, relative L1, and relative L∞ errors. For
this table these are defined as:

L1-error = 1

n ·M

n∑
i=1

M∑
j=1

|vbench(xi | θ j )− vmethod (xi | θ j )|, (5.1)

Relative L1-error = 1

n ·M

n∑
i=1

M∑
j=1

∣∣∣∣ vbench(xi | θ j )− vmethod (xi | θ j )

vbench(xi | θ j )

∣∣∣∣ ·100%, (5.2)

L∞-error =max
i , j

(|vbench(xi | θ j )− vmethod (xi | θ j )|) (5.3)

Relative L∞-error =maxi , j (|vbench(xi | θ j )− vmethod (xi | θ j )|)
maxi , j (|vbench(xi | θ j )|) ·100% (5.4)

We will look at both the COS-GPR and COS-Barrier method, and their errors have
been inserted into Table 5.1, which tells us that the COS-GPR method is for all error met-
rics more accurate than the COS Barrier 25 method. Additionally, the COS-GPR method
with m = 10 is 7 times faster than the other method. This table provides a good general
indicator of the prediction performance of the two methods. However, these single error
metrics do not tell the full story about the fit of the value curve for a single test input. To
gain deeper insights, we will perform a more elaborate analysis by looking at these er-
ror metrics per test input and collecting them to make a better assessment of the fitting
capability of the two methods for each specific input scenario.

Method Relative L1 (%) L1-error Relative L∞ (%) L∞-error CPU (ms)

COS Barrier 25 31.184 1.681 ·10−2 25.768 6.535 ·10−2 7.204
COS-GPR 1.846 9.953 ·10−4 19.889 5.044 ·10−2 1.101

Table 5.1: Comparison of our barrier option price estimation method with the COS Barrier method under the
CGMY-model using a given set of test values. The errors represent the combined results over all benchmark
values for the entire set of test inputs.

The upcoming plots share a conceptual resemblance with an empirical cumulative
density function (ECDF), albeit with distinctive characteristics. Our visualization will
deviate from the conventional approach of representing cumulative probability below a
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given threshold on the vertical axis. Instead, we will illustrate the cumulative count of
observations falling under specific error magnitudes.

The selected error metrics for the plot encompass the relative L1-error across all ob-
servations, the relative L1-error across all inputs, and the L∞-error across all inputs. It’s
important to note that these definitions differ from those outlined in equations (5.1) to
(5.4) , and we’ll delve into their nuances in subsequent explanations.

To provide clarity, let’s establish that for a specific error magnitude presented along
the horizontal axis, the corresponding point on the vertical axis will denote the count of
observations within the test set that exhibit an error magnitude equal to or less than the
specified value. Multiple categories of errors will be taken into consideration, yielding
distinct outcomes in the graphical representations.

This methodology offers a robust means to enhance our comprehension of the COS-
GPR and COS Barrier methodologies’ performance across an expansive test dataset. Con-
sequently, it facilitates a more efficient and insightful comparison of their predictive ca-
pacities. By adopting this analytical approach, we can discern which approach excels
comprehensively and in varied error metric scenarios, thereby aiding us in making a
comprehensive assessment of their relative merits.

In this analysis, we employ three distinct error metrics to evaluate the performance
disparity between the COS-GPR method and the COS Barrier 25 method. Let’s delve into
the intricacies of each error metric and its implications:

1. Relative L1-error over all observations (Figure 5.5a):

This metric centers on the relative absolute error within every observation. For
each test input θ ∈ Xtest and for each log-asset price x, the error computation takes
this form:

Relative L1-error = |vbench(x|θ)− vmethod(x|θ)|
vbench(x|θ)

×100% (5.5)

The resulting plot manifests the cumulative distribution of these relative errors.
The visualization distinctly showcases that the COS-GPR method consistently sur-
passes the COS Barrier 25 method, consistently yielding lower error values. It’s
noteworthy that the paths of the two methods never intersect, denoting that no
error threshold exists wherein COS Barrier 25 outperforms COS-GPR.

2. Relative L1-error over the whole curve for a given input (Figure 5.5b):

In contrast to the prior metric, this assessment examines the complete value curve
for a given input, rather than singular values. The error computation entails:

Relative L1-error = 1

n

n∑
i=1

∣∣∣∣ vbench(xi |θ)− vmethod(xi |θ)

vbench(xi |θ)

∣∣∣∣×100% (5.6)

The resultant graph visualizes the cumulative distribution of this error across the
entire spectrum of log-asset prices for each test input θ. Similarly, the COS-GPR
method consistently exhibits superior performance over COS Barrier 25. Notably,
while COS-GPR maintains an overall advantage, the maximum relative L1-error of
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the COS Barrier method is marginally smaller, implying potential instances where
COS-GPR misestimates the complete value curve. This metric proves instrumental
in uncovering structural vulnerabilities within the COS-GPR method during full
value curve plotting.

3. Relative L∞-error (Figure 5.5c):

The relative L∞-error gauges the utmost absolute percentage deviation between
value predictions and benchmark values across an entire log-asset price grid for
each input θ. The calculation is defined as:

Relative L∞-error = maxi (|vbench(xi |θ)− vmethod(xi |θ)|)
maxi (vbench(xi |θ))

×100% (5.7)

The graph universally underscores COS-GPR’s superiority over COS Barrier 25,
with COS Barrier’s errors ranging between 20%−40% while COS-GPR consistently
maintains lower errors. Yet, the COS-GPR method does incur some exceptional er-
rors not mirrored by COS Barrier. This error metric provides valuable insights into
the specific scenarios wherein COS-GPR falters in accurate predictions, notwith-
standing its overall robust performance.

In summation, the analysis unequivocally affirms COS-GPR’s prevailing accuracy
over COS Barrier 25. However, it is equally imperative to consider the nuanced contexts
wherein each method may exhibit strengths or vulnerabilities, as highlighted through
the diverse error metrics employed in this evaluation.

5.4.2. CPU COMPARISON

The computational time of our model is influenced by the device’s performance.1 . In
this section, we will derive the analytical asymptotic time complexity for a general d-
dimensional model. Subsequently, we will analyze the computational behavior using
Geometric Brownian Motion (GBM) with d = 2, while varying the sampling frequency m.
GBM is chosen as our device can handle only up to m = 14 for a 4-dimensional CGMY
model. Thus, to assess the empirical time complexity over a broader range, we opt for
the GBM approach.

ANALYTICAL TIME COMPLEXITY COS-GPR METHOD

The computational complexity of calculating the ch. f. for the COS method using GPR
can be obtained by looking at the prediction procedure. To recall; given a training set
(X,y). In general, for test inputs Xtest ∈Rmtest×d the predicted value ftest is given by :

ftest = K (X test , X )
[
K (X , X )+σ2

GPR I
]−1

y ,

where K the kernel matrix, is determined by the kernel function k(·, ·). The computa-
tional of this prediction can be described as O ((mtest ·M)2 ·d), by observing that:

1For this research, we utilized a Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz (8 CPU cores), with the code
written in Python 3.8.10.
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• The prediction can be written as ftest = K (X test , X )v, where v ∈ RM can be calcu-
lated beforehand. Resulting in a regular matrix-vector product with O (mtest M).

• The time it takes to compute K (X test , X ) using the Squared Exponential (SE) ker-
nel, defined in (4.3), is approximately O ((mtest · M)2 ·d) for mtest · M matrix ele-
ments in d dimensions. This complexity arises from calculating the squared Eu-
clidean distance for each pair of data points and computing the exponential func-
tion for each entry in the mtest ×m matrix.

• This results in a complexity of O ((mtest ·M)2 ·d)+mtest M), which is the same as
O ((mtest ·M)2 ·d).

From now on we assume that we are looking at a single test input xtest Furthermore, it
was assumed that we have m training points per dimensions, i.e. M = md , which results
in a complexity of O (m2d ·d). Using this complexity we can obtain the complexity for
calculating barrier option prices using GPR1 and GPR 2 model (from Section 4.2.1 and
4.2.2 respectively).

COMPUTATIONAL COMPLEXITY GPR1 MODEL

For a given test value θ and log-asset price x time complexity of calculating a single bar-
rier option value using GPR1 is analytically derived to be O (N m2d d), since:

• Calculating the ch.f. terms R(θ) and I(θ) will have a time complexity of O (N m2d d),

• The calculating of the sine and cosine part, which is dependent on x, is done seper-
ately from the calculation of the expansion terms using GPR. This will have com-
plexity O (N ) and can be neglected,

• The sum of the COS method can be seen as a inner product with complexity O (N ),

• Combining the three processes the complexity will be O (N m2d d).

COMPUTATIONAL COMPLEXITY OF THE GPR2 MODEL

For a given test value θ and log-asset price x, the time complexity of calculating a single
barrier option value using the GPR2 method is given by O (Nϕm2d d), where:

• Calculating the Fourier expansion terms of the ch.f. A(θ) and B(θ) has a time com-
plexity of O (Nϕm2d d),

• Calculating the ch.f. coefficients using the Fourier expansion can be seen as an
inner product with 2Nϕ elements. This results in a complexity of O (Nϕ),

• The sum of the COS method can be seen as an inner product with complexity
O (N ),

• Since all processes are calculated separately, the total complexity results in O (Nϕm2d d+
Nϕ+N ), which simplifies to O (Nϕm2d d).
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It’s important to note that for both methods, the number of monitoring dates is not
included in the complexity of COS-GPR. However, for pricing options with the COS Bar-
rier method, the computational complexity is equal to O ((Mmon − 1)N log2(N )), which
was illustrated in Section 2.6. This means that for especially higher monitoring dates,
the CPU time of COS-GPR should be significantly lower than that of the COS Barrier
method. This will be shown in the next subsection.

By having a lower computational complexity, the COS-GPR method is more efficient,
allowing for faster pricing of barrier options compared to the COS Barrier method, es-
pecially when considering a larger number of monitoring dates. The advantages of the
COS-GPR method in terms of computational speed become more apparent as the prob-
lem size increases.

OBSERVED COMPUTATIONAL COMPLEXITY

To compare the analytical computational complexity with empirical results, we conduct
tests to observe the CPU time behavior as the sampling frequency increases. Due to
memory limitations at m = 14 for the 4-dimensional CGMY model, we opt to use the
GBM model for our observations. By selecting a lower value of d and utilizing GBM, we
can assume larger values of m, enabling a more comprehensive analysis of the CPU time
behavior.

The logarithmic linear relationship in the plots suggests exponential complexity, de-
spite the CGMY and GBM models having expected polynomial complexities of O (m8)
and O (m4), respectively. This contradictory observation could be due to the dataset’s
unique characteristics fact that polynomial functions, particularly with higher degrees,
can mimic exponential growth within smaller value ranges. Although polynomial growth
slows as values move away from zero2, this initial resemblance to exponential behavior
might explain the linear-like trend in the data.

2A known result from analysis shows that for any k ∈R, the limit

lim
x→∞

xk

ex = 0

.
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m CPU Time (seconds)
4 1.700×10−5

6 3.993×10−5

8 1.197×10−4

10 4.289×10−4

12 1.576×10−3

14 4.467×10−3

Table 5.2: Values of m and Corresponding CPU
Times

m CPU Time (seconds)
4 9.40005779×10−6

10 1.09817505×10−5

16 1.10027313×10−5

22 1.09834671×10−5

28 1.40339851×10−5

34 1.57017946×10−5

40 2.03879833×10−5

46 2.66747952×10−5

52 3.60366344×10−5

58 5.01916409×10−5

64 6.74517632×10−5

70 7.99804688×10−5

76 1.08228874×10−4

82 1.38113737×10−4

88 1.77308679×10−4

94 2.32108641×10−4

100 2.99650669×10−4

106 3.56075740×10−4

112 4.28155684×10−4

118 5.30181503×10−4

Table 5.3: Values of m and Corresponding CPU
Times
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5. CONVERGENCE TESTS FOR

METHOD 1: COS-GPR METHOD

(a) Sample from the training set: COS-GPR fitting barrier options prices.

(b) Sample from outside the training set: COS-GPR fitting barrier options
prices.

(c) Analyzing Barrier Option Price Errors: Contrasting Examples from
Within and Outside the Training Set

Figure 5.4: Comparison of the COS-GPR method with the COS Barrier method for fitting barrier options prices
for two samples: one from the training set (a) and one from outside the training set (b). Additionally, the
absolute errors of the two examples are shown in (c).
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(a) Relative L1-error over all observations.

(b) Relative L1-errors over all inputs.

(c) Relative L∞-errors over all inputs.

Figure 5.5: Three plots illustrating the distribution of observations based on the magnitude of an error metric.
The horizontal axis represents the error metric’s value, while the vertical axis indicates the cumulative number
of observations/input below each corresponding error threshold.
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5. CONVERGENCE TESTS FOR

METHOD 1: COS-GPR METHOD

(a) CGMY

(b) GBM

Figure 5.6: CPU observations as m varies for two distinct stochastic underlying processes using the COS-GPR
method.



6
OUR METHOD 2 FOR OPTION

PRICING: THE CFC METHOD

This chapter introduces our second method for option pricing: the CFC method. The
abbreviation comes from the fact that the method uses the COS Method (C), a Fourier-
cosine expansion on the ch.f. (F) and the CPD method (C) . To understand the method
an introduction is given about Canonical Polyadic Decomposition (CPD), which is heav-
ily reliant on tensor calculus, and how this is used in combination with the COS method
to price barrier (and European) options. The motivation for this second model is that
compared to the first model it makes use of a global decomposition, namely the one
which using Fourier-cosine basis functions. While the COS-GPR method focuses on a lo-
calised decomposition, which is a reason that it lacks performance for predictions near
the training boundary. Furthermore, CPD applied on the Fourier-cosine expansion de-
creases the dimension of the model drastically when dealing with higher-dimensional
models, e.g. 4-dimensional.

6.1. BACKGROUND INFORMATION: CANONICAL POLYADIC DE-
COMPOSITION (CPD)

The notation used here is the same as in [20], which was also employed in previous Msc
these of FF Quant [24] and [25]. Furthermore, all required definitions of tensor calcu-
lus can be found in Section 2.7. The CPD technique involves the factorization of an
dth-order tensor into a sum of component rank-one tensors. In this context, rank-one
tensors are of central importance. A dth-order tensor X requires d sets of indices {in},
n = 1, . . . ,d , to specify a specific element. Each index in ranges from 1 to In , represent-
ing the mode-n of tensor X . As a convention, an dth-order tensor can be explicitly
represented as X = RI1×···×Id , where In for n = 1, . . . ,d directly indicates the number of
elements in the n-th mode. A tensor X of order d is considered rank-one if it can be
expressed as an outer product of d vectors. i.e.,

59
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X = a1 ◦a2 ◦ · · · ◦ad = ◦d
i=1ai . (6.1)

By employing CPD, a dth-order tensor can be factorized as:

X = JA1, A2, . . . , AN KR =
R∑

r=1
◦d

i=1ai r , (6.2)

where An = [an1, an2, . . . , anR ] ∈ RIn×R for n = 1,2, . . . ,d . The rank R is defined as the
minimum number of components required to synthesize tensor X , this is explained.
This minimal rank is commonly referred to as the canonical rank. It is worth noting that
every tensor can be represented by a CPD with R <∞ and, under mild conditions, this
representation is unique [26]. However, determining the canonical rank is a challenging
problem in the class of NP-hard problems. This implies that there is no algorithm to find
its exact value [27]. It can only be checked in polynomial time if the solution is validate.
In practice, a lower rank R̃ is often employed to approximate the original tensor:

X ≈
R̃∑

r=1
◦d

i=1ai
r . (6.3)

These lower-rank CPD models are widely utilized to mitigate the curse of dimension-
ality. The expression in Equation (3.1) can also be represented element-wise as follows:

X [i1, i2, . . . , id ] ≈
R∑

r=1

d∏
i=1

(An [in ,r ]) =
R∑

r=1

(
d∏

n=1
a j r [in]

)
, (6.4)

where anr [in] denotes the element of the vector anr at index in . This description
of the tensor describes that it can be build up by the product of all seperate dimension
individually. This relation represents the tensor into its factor matrices, which is called
its CPD. It is important to find the corresponding factor matrices given R,N and d to get
an accurate CPD.

SOLVING THE FACTOR MATRICES

The CPD of X is found by find the optimal factor matrices. That is a loss function (e.g.
least-squares) is used to find the factor matrices that minimize the distance between the
original tensor and the given CPD approximation:

min
{Ai }d

i=1

∥∥X − JA1,A2, . . . ,AN KR
∥∥2

F = min
{Ai }d

i=1

∥∥∥∥∥X −
R∑

r=1
◦d

i=1ai
r

∥∥∥∥∥
2

F

. (6.5)

Here F denoted the Frobenius norm of the tensor defined in (2.7.5). To solve this mini-
mizaiton problem, we combine the methodology of a previous thesis done at FF Quant
[28] and [26]. Here Alternating Least Squares (ALS) is used to iteratively update the fac-
tor matrices. This is done by solving all factor matrices individually in a cyclical manner.
Hence all matrices are fixed except for the one that is being solved, which results in a
conditionally linear problem. The solution is the new update, and using this the next
factor matrix is solved. Using tensor unfolding and the Khatri-Rao product, we obtain a
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set of minimization problems for the factor matrices, which is equivalent to solving (6.5).
The set of minimization problems are for the mode unfoldings n = 1, ...,d :

min
{An }N

n=1

∥∥∥X(n) −An
(⊙i ̸=n Ai

)T
∥∥∥2

F
, (6.6)

where X(n) is the mode-n unfolding of the tensor X . Because of the multilinearity of the
factor matrices one can apply the ALS algorithm by fixing every factor matrix except for
An . These are updated iteratively, until a stopping criterion is triggered, for n = 1, ...,d
by:

An ← argmin
An

∣∣∣∣∣∣X(n) −An
(⊙i ̸=n Ai

)T
∣∣∣∣∣∣ (6.7)

6.2. REDUCING DIMENSIONALITY OF FOURIER-COSINE SERIES

EXPANSION USING CPD
This section describes how CPD is applied to reduce the dimensionality of the Fourier-
cosine expansion for multivariate functions, which has already been analysed in a previ-
ous thesis by FF Quant [28]. Such an expansion is needed in our research, since the ch.f.
is also a multivariate function.

To understand the structure of how CPD works for multivariate functions, first the
Fourier-cosine series expansion of a function f (x) on interval [a,b] is shown here. Fur-
thermore, we describe the number of basis functions with K instead of N to distinct that
we are not applying the expansion on the COS method for option pricing:

f (x) = ∑′∞
k=0 Ak cos

(
kπ

x −a

b −a

)
≈ ∑′K−1

k=0 Ak cos
(
kπ

x −a

b −a

)
, (6.8)

with the one-dimensional Fourier-cosine coefficients Ak being

Ak = 2

b −a

∫ b

a
f (x)cos

(
kπ

x −a

b −a

)
d x. (6.9)

For the first dimension the coefficients Ak can easily be stored in a vector A = [A0, A1, ..., AN−1].
To describe it more generally; this is a first-order tensor.

Extending the Fourier-cosine transform to a two-dimensional function f (x1, x2) de-
fined on [a1,b1]× [a2,b2] the approximation of the Fourier-cosine expansion of f be-
comes

f (x1, x2) ≈
∑′K−1

k1=0

∑′K−1
k2=0 cos

(
k1π

x1 −a1

b1 −a1

)
cos

(
k2π

x2 −a2

b2 −a2

)
, (6.10)

with two-dimensional Fourier-cosine coefficients given by

Ak1,k2 =
2

b1 −a1

2

b2 −a2

∫ b1

a1

∫ b2

a2

f (x1, x2)cos

(
k1π

x1 −a1

b1 −a1

)
cos

(
k2π

x2 −a2

b2 −a2

)
d x1d x2.

(6.11)
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These coefficients Ak1k2 can be stored in a K ×K -dimensional matrix (second order ten-
sor) where the matrix A is

A =


A0,0 A0,1 · · · A0,N−1

A1,0 A1,1
...

...
. . .

...
AN−1,0 · · · · · · AN−1,N−1

 . (6.12)

Now to generalise it over all dimensions; for a ddimensional function f (x1, ..., xd ) de-
fined on ×d

i=1[ai ,bi ] the Fourier-cosine transform is the following:

f (x1, . . . , xd ) ≈
∑′K−1

k1=0 · · ·
∑′K−1

kd=0 Ak1,...,kd

d∏
i=1

cos

(
kiπ

xi −ai

bi −ai

)
, (6.13)

with d-dimensional Fourier-cosine series coefficients defined as

Ak1,...,kd
=

[
d∏

i=1

2

bi −ai

]∫ b1

a1

· · ·
∫ bd

ad

f (x1, . . . , xd )
d∏

i=1
cos

(
kiπ

xi −ai

bi −ai

)
d x1 · · ·d xd . (6.14)

These coefficients are represented by a tensor of the dth order. This means that a co-
efficient A ∈ RK×K ···×K . This implies that with a d-dimensional function, the number of
Fourier-cosine coefficients grow exponentially as O (K d ). With this also the computa-
tional time of the d-dimensional integral grows as the dimension increases when com-
puted numerically.

APPLYING CPD
This exponential growth in the number of Fourier-cosine terms becomes computation-
ally too heavy when estimating all these coefficients. Here, CPD is applied to describe
this tensor in a lower dimension. To do this using the CPD-technique; the d-dimensional
tensor of the coefficients is approximated using a sum of rank-1 tensor:

A ≈ [A1,A2, ...,Ad ]R =
R∑

r=1
◦d

i=1ai r . (6.15)

Notice that the set of factor matrices {Ai }d
i=1, with Ai ∈RK×R have a computational com-

plexity of O (dK R). Hence the computational complexity went from O (K d ) to O (dK R),
hence as the dimension of the input d increases, the computational time only grows lin-
early instead of exponentially. These factor matrices are computed iteratively using ALS
described in Section 6.1.

When the stopping criterion of the ALS procedure has been triggered and all fac-
tor matrices {Ai }d

i=1 have been derived. The coefficients of the dth-order tensor with
Fourier-cosine coefficients can be written as

Ak1,...,kd
=A [k1, . . . ,kd ] =

R∑
r=1

d∏
i=1

ai
r [ki ] . (6.16)

Substituting this into the Fourier-cosine expansion (6.13) gives
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f (x1, . . . , xd ) ≈
∑′K−1

k1=0 · · ·
∑′K−1

kd=0

R∑
r=1

d∏
i=1

ai
r [ki ]cos

(
kiπ

xi −ai

bi −ai

)
. (6.17)

For convenience, we denote vi [ki ] := cos
(
kiπ

xi−ai
bi−ai

)
. This when filled in into (6.17) sim-

plifies to

f (x1, ..., xd ) ≈
R∑

r=1

d∏
i=1

fi ,r (xi ) =
R∑

r=1

d∏
i=1

vT
i Ai [:,r ]. (6.18)

This means that every fi ,r (xi ) = vT
i Ai [:,r ] describes a one-dimensional Fourier-cosine

expansion (for index i ). To write it more conveniently using the Hadamard product we
get:

f̂ = (
vT

1 A1 ⊛ · · ·⊛vT
d Ad

)
1⃗ =

(
⊛d

i=1vT
i Ai

)
1⃗. (6.19)

Hence the d-dimensional expansion in (6.13) can be written as a sum of products.
Here all sum elements are products of the d univariate expansions, one expansion per
input dimension. This eliminates the presence of nested sums from the original expan-
sion, which removes the exponential aspect in the computational time. In the next sec-
tion this principle is applied on our research, which relates to the estimation of the ch.f.
Here the ch.f. has a multidimensional input consisting of the model parameters, which
in future examples for the CGMY-model is already 4.

6.3. OUR METHOD 2 FOR BARRIER OPTION PRICING: THE CFC
METHOD

In our study, we have introduced a second method for assessing barrier options, referred
to as the CFC method. In this section, we will delve into the three sequential steps com-
prising the CFC method, designed to determine the price of a barrier option.

The initial layer of the method involves employing the 1D COS method for pricing
European options, which we extensively expound upon in Chapter 3. This forms the
fundamental basis of our findings.

Subsequently, the second layer entails expressing the survival characteristic function
as a Fourier-series expansion. impose the binding relation of the Fourier series coeffi-
cients. That is, the 1D COS formula indicates that the Fourier series coefficients are ac-
tually sampled from the same function. Please note that this insight has led to accurate
results in the GPR2 method.

Moving deeper, the third and innermost layer focuses on dimension reduction. Here,
we employ Canonical Polyadic Decomposition (CPD) to simplify the expansion’s com-
plexity. This intricate maneuver streamlines the problem, making it more manageable.

As we progress through these steps, we generate stored tensors. These tensors serve
as the foundation for subsequent computations, enabling us to determine the prices of
new barrier options within the context of a given Lévy Process. This method empowers
us to perform fresh calculations and expand our ability to price diverse barrier options
effectively.
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6.3.1. INTRODUCTION TO THE CFC METHOD

PART 1: COS METHOD APPLIED ON BARRIER OPTIONS

To recall, to evaluate barrier options using the traditional COS method the following ex-
pression is derived in Chapter 3:

vB ar (x; t ,θ) ≈ e−rθ∆t
∑′N−1

k=0 Re

{
ϕ̄l ev y

(
kπ

b −a

)
exp

(
i kπ

x −a

b −a

)}
Vk .

Using benchmark values the survival ch.f. ϕ̄lev y can be derived using SVD. In Chapter
3 two different representations of the ch.f. were constructed. This method focuses on
representation 2 from Section 3.2.2.

PART 2: FOURIER-COSINE EXPANSION OF THE CH.F.
In this representation the ch.f. was written as a Fourier-cosine expansion, which is de-
fined in (3.14). When entering this expansion inside the COS method for barrier option
this resulted in the final form:

v B ar (x ; t ,θ) ≈ e−rθ∆t
Nϕ−1∑

j=0
(A j C j (x)−B j S j (x)),

where the definition of C j (x) and S j (x) can found at the derivation above (A.10). Note
that in this model the model parameters θ are fixed. Since the ch.f.,which is the function
we want to estimate, is dependent on θ we now assume the following form:

v B ar (x ; t ,θ) ≈ e−rθ∆t
Nϕ−1∑

j=0
(A j (θ)C j (x)−B j (θ)S j (x)), (6.20)

where the Fourier-cosine coefficients of the ch.f. change depending on the value of the
model parameters θ. Note that the cosine and the sine part of the sum is not dependent
on θ. Hence the functions we want to estimate are A j (θ) :Rd →R and B j (θ) :Rd →R for
j = 0, ..., Nϕ−1, where d = dim(θ) is the number of model parameters.

Now assuming a multidimensional cosine-expansion for these functions per j . This
results in:

A j (θ) = ∑′K−1
k1=0 · · ·

∑′K−1
kd=0 D j ,k1,...,kd

d∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)
(6.21)

B j (θ) = ∑′K−1
k1=0 · · ·

∑′K−1
kd=0 E j ,k1,...,kd

d∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)
, (6.22)

which implies that the value of the barrier options is now described as

v B ar (x ; t ,θ) ≈ e−rθ∆t
∑′K−1

k1=0 · · ·
∑′K−1

kd=0

Nϕ−1∑
j=0

(D j ,kC j (x)−E j ,kS j (x))
d∏

i=1
cos

(
kiπ

θi −ai

bi −ai

)
.

(6.23)
This means that per j we want to estimate two K ×K ×·· ·×K dimensional tensors D j ,k

and E j ,k, which results in a computational complexity O (2K d Nϕ) unknowns.
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PART 3: CPD OF THE FOURIER-COSINE EXPANSION

The CPD part comes into play when we want to estimate these functions. The same
procedure is followed as in a previous thesis of FF Quant. Additionally, for our model
this procedure has to be done 2Nϕ times, compared to only a single time in the other
research paper.

Using CPD applied on Fourier-cosine series, which is described in Section 6.2, the
dimension of (6.21) will drop. For this problem CPD reduces the computational com-
plexity from O (2K d Nϕ) to O (2dK RNϕ). If we fix j = 0, ..., Nϕ−1, we observe that for the

factor matrices {D j
i }d

i=1 and {E j
i }d

i=1 of the tensors of the Fourier-expansion terms Dk and
Ek, the CPD of the expansion terms will be

A j (θ) =
(
⊛d

z=1v T
z D j

z

)
1⃗ (6.24)

B j (θ) =
(
⊛d

z=1v T
z E j

z

)
1⃗. (6.25)

These factor matrices have dimension K×R and the cosine vectors v z [kz ] := cos
(
kzπ

θz−az
bz−az

)
∈

RK . Here K is the number of cosine basis functions per dimension, and [az ,bz ] is the do-
main where the zth variable exists on. The goal is to use training data to estimate these
tensors in order to set up the estimated ch.f.. This will then give a closed formula for the
barrier option price, which can be used for calibration.

6.3.2. SETUP OF THE TRAINING DATA

In order to find the factor matrices training data is needed. First we fix the index j and
only focus on the A part, since the other part will be analogous. Secondly, let us consider
the grid of M combinations of d model parameters θ. This will be the training input.

Then for i = 1, ..., M the training output will be A j (θi ). These values are derived
using SVD in Section 3.2.2. With this a set of log-asset prices x is needed to calcu-
late a set of benchmark values per θi . This means that first the whole vector A(θi ) =
[A0(θi ), ..., ANϕ−1(θi )]T ∈ RNϕ is computed using minimization problem (3.23). Then all
these vectors are collectively stored in an M ×Nϕ matrix.

To get the correct output, we split them apart afterwards such that for index j we get
the output vector A j (θ) = [A j (θ1), ..., A j (θM )]T ∈ RM . We denote the estimated outputs

of A j (θ) and A j (θ) by y j
A and y j

B .

6.3.3. DERIVING THE TENSOR USING FSA-HTF
Upon configuring the training data, the task of determining the complex Hermitian fac-
tor (ch. f .) is reduced to addressing 2Nϕ distinct problems. In this section, we delve into

the derivation of the factor matrices denoted as D j
i i = 1d and E j

i i = 1d using a technique
known as hidden tensor factorization. These factor matrices are intricately linked to the
training output, particularly for indices j = 0, ..., Nϕ−1.

The factor matrices exhibit a crucial relationship with the training output, expressed
as follows for each j :
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y j
A =

(
⊛d

z=1V zT D j
z

)
1⃗ (6.26)

y j
B =

(
⊛z = 1d V T

z E j
z

)
1⃗, (6.27)

In these equations, the matrix V z ∈ RK×M , with its elements defined as V z[k,m] =
cos

(
kzπ

θm
z −az

bz−az

)
. In this context, θm

z represents the value associated with the zth coor-

dinate at the sampling point θm . Notably, as elucidated in Section 6.1, the traditional
CPD technique, which involves the decomposition of the complete tensor, is infeasible
for tensors comprised of Fourier coefficients due to the requirement of computing the
entire set of coefficients. Instead, we employ the Fourier Series Approximation via Hid-

den Tensor Factorization (FSA-HTF) approach to deduce the factor matrices {D j
i }d

i=1 and

{E j
i }d

i=1 to assemble the complete tensors. This methodology, introduced in [28], was de-
vised to tackle analogous problems, as it obviates the need to compute the entire tensor.

Consequently, equations (6.26) and (6.27) undergo modification, transforming into
a regression model. This shift in perspective implies that, for each j , two distinct mini-
mization problems manifest:

min
1

M

M∑
m=1

L (y j
A,m − A j (θm)) for j = 0, ..., Nϕ−1, (6.28)

min
1

M

M∑
m=1

L (y j
B ,m −B j (θm)) for j = 0, ..., Nϕ−1, (6.29)

where L (·) denotes a loss function. For our research the squared error is used, since
this makes the calculation of the gradient easy. In this manner the Fourier-cosine coeffi-
cients are fitted on the ch.f. data. This results in the minimization problems:

min{
D j

z

}d

z=1

1

M

M∑
m=1

(
y j

A,m −
(
⊛d

z=1

(
V z [:,m]T D j

z

))
1⃗
)2

for j = 0, ..., Nϕ−1, (6.30)

min{
E j

z

}d

z=1

1

M

M∑
m=1

(
y j

B ,m −
(
⊛d

z=1

(
V z [:,m]T E j

z

))
1⃗
)2

for j = 0, ..., Nϕ−1. (6.31)

Recall the definition of the matrix Q z =
(
⊛i ̸=n

(
AT

i V i
))

. Here we define Q A
z, j :=

(
⊛i ̸=z

(
(D j

i )T V i

))
and QB

z, j :=
(
⊛i ̸=z

(
(E j

i )T V i

))
. Then per j for minimization problem (6.30) all factor ma-

trices {D j
i }d

i=1 are fixed except for D j
z . Analogously for (6.31), regarding the matrices

{E j
i }d

i=1 and E j
z .
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min
D j

z

1

M

M∑
m=1

(
y j

A,m −V z [:,m]T D j
zQ A

z, j [:,m]
)2

for j = 0, ..., Nϕ−1, (6.32)

min
E j

z

1

M

M∑
m=1

(
y j

B ,m −V z [:,m]T E j
zQ A

z, j [:,m]
)2

for j = 0, ..., Nϕ−1. (6.33)

Because of the convexity of the problem a (global) minimum can be achieved by setting
the gradient of the loss function for the two separate problem equal to zero. That is:

2

M

M∑
m=1

(
y j

A,m −V z [:,m]T D j
zQ A

z, j [:,m]
)
·
[
−V z [:,m](Q A

z, j )T [:,m]
]
= 0 for j = 0, ..., Nϕ−1,

(6.34)

2

M

M∑
m=1

(
y j

B ,m −V z [:,m]T E j
zQB

z, j [:,m]
)
·
[
−V z [:,m](Q A

z, j )T [:,m]
]
= 0 for j = 0, ..., Nϕ−1,

(6.35)

which leads to the two linear systems per j that have to be solved to obtain {D j
z }d

z=1

and {E j
z }d

z=1,
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(6.37)

To solve equations (6.37) and (6.36) the Conjugate Gradient (CG) method is used, which
is explained thoroughly in previous theses at FFQuant [24] and [28].

After all d factor matrices have been found the tensors D j ,k = JD j
1,D j

2, ...,D j
dK and

E j ,k = JE j
1,E j

2, ...,E j
dK can be reconstructed and are used to describe the ch.f. of the un-

derlying Lévy process in (6.24). Which in itself is used in the valuation of the option using
equation (6.23). For storage convenience in the code, the collection of tensors is defined

as D := {D j ,k}
Nϕ

j=1 and E := {E j ,k}
Nϕ

j=1. Here the 4th order tensors D,E ∈RNϕ×d×K×R .

6.4. APPLICATION OF THE CFC METHOD TO EFFICIENT BAR-
RIER OPTION PRICING

In this section, we apply a different method called the CFC method for rapid barrier
option pricing under the CGMY-model, as explained in Section 4.3. The CFC method
was developed to address two key aspects that set it apart from our first method, the
COS-GPR method.
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Firstly, the CFC method employs a global decomposition approach, in contrast to the
COS-GPR method, which relies on localized decomposition from the supervised method
called GPR. This distinction becomes evident in Section 4.3, where it was observed that
the accuracy of the barrier option fit diminished significantly for test values of the input
parameter C close to the barrier, compared to estimates within the training set.

Secondly, the CFC method boasts a smaller computational complexity. As demon-
strated analytically in Chapter 7, the complexity of the CFC method grows linearly as the
number of grid points per dimension m increases. On the other hand, the complexity of
the COS-GPR method grows polynomially with a degree higher than two. This increase
in computational speed will be made evident as well in this section.

We will explore the practical application of the CFC method in the same environment
as the COS-GPR method, focusing on pricing barrier options under the dynamics of the
CGMY-model. We will provide a detailed explanation of how to apply the CFC method
to this example.

Subsequently, we will assess the accuracy and computational efficiency of the CFC
method in pricing discretely monitored barrier options with Mmon = 250. To establish a
benchmark for comparison, we will also include the COS Barrier method with Mmon = 25
as the existing method of estimating this specific barrier option.

To apply the CFC method, we first combine the COS method with the Fourier-cosine
series expansion, resulting in a known formula represented by equation (3.6):

v B ar (x ; t ,θ) = e−r∆t
Nϕ−1∑

j=0
(A j (θ)C j (x)−B j (θ)S j (x)).

Similar to the COS-GPR method, we seek to acquire mappings for j = 0, ..., Nϕ−1 in the
form of:

(C ,G , M ,Y ) 7→ A j (C ,G , M ,Y ) (6.38)

(C ,G , M ,Y ) 7→ B j (C ,G , M ,Y ) (6.39)

However, the CFC method employs a global decomposition on these mappings, as they
are described as a d-dimensional Fourier series expansion. In our case, d = 4, as we have
four input parameters (C ,G , M , and Y ). The 2Nϕ different mappings are represented by
the expansions:

A j (C ,G , M ,Y ) = ∑′K−1
kC=0

∑′K−1
kG=0

∑′K−1
kM=0

∑′K−1
kY =0

[
D j ,kC ,kG ,kM ,kY cos

(
kCπ

C −aC

bC −aC

)
· (6.40)
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(
kGπ

G −aG

bG −aG

)
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kMπ

M −aM
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(
kY π
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bY −aY

)]
(6.41)

B j (C ,G , M ,Y ) = ∑′K−1
kC=0

∑′K−1
kG=0

∑′K−1
kM=0

∑′K−1
kY =0

[
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(
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C −aC
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)
· (6.42)
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(
kY π

Y −aY

bY −aY

)]
.

(6.43)



6.4. APPLICATION OF THE CFC METHOD TO EFFICIENT BARRIER OPTION PRICING

6

69

To find these mappings, we need to estimate the K ×K ×K ×K dimensional tensors D j ,k

and E j ,k for each j . This estimation requires training output data, denoted as YA and
YB , which are the same as used in the COS-GPR method example (Section 4.3). These
matrices have dimensions M ×Nϕ, where M = m4 is the number of training points. The
output used for index j is represented by the vector YA[:, j ] for the real part and YB [:, j ]

for the imaginary part. These are also denoted by y j
A and y j

B . More specifically, the data

point y j
A,m corresponds to YA[m, j ] and y j

B ,m corresponds to YB [m, j ].
Next, the CPD (Canonical Polyadic Decomposition) part uses this data to find a dimension-

reduced Fourier-series expansion by finding factor matrices. For each index j , the two

tensors D j ,k and E j ,k are estimated by factor matrices {D j
i }4

i=1 and {E j
i }4

i=1. The optimiza-
tion process is described as follows:

min
D j

1 ,D j
2 ,D j

3 ,D j
4

1

M

M∑
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(
y j

A,m −
(
⊛4

z=1

(
V z [:,m]T D j

z

))
1⃗
)2

for j = 0, ..., Nϕ−1, (6.44)

min
E j

1 ,E j
2 ,E j

3 ,E j
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1
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y j
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(
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z=1

(
V z [:,m]T E j

z

))
1⃗
)2

for j = 0, ..., Nϕ−1. (6.45)

The optimization procedure, detailed in Section 6.3.3, leverages the CPD method in con-
junction with the Alternating Least Squares (ALS) algorithm to solve a system of condi-
tionally linear equations. This iterative process cyclically handles all four factor matrices,
wherein three matrices are fixed, and the fourth one is solved after random initialization.
The procedure continues until a predefined stopping criterion is satisfied.

For the sake of illustration, let’s consider an example with specific contract parame-
ters: T = 1, H = 10, K = 6, and a risk-free interest rate of r = 0.01. We set the diffusion of
the CGMY-model as σB = 0.5. The COS formula is applied with N = 100 and an integra-
tion range of [−3,3]. Within the COS formula, the characteristic function is represented
by Nϕ = 30 expansion terms. These terms are estimated using Singular Value Decompo-
sition (SVD) with n = 100 benchmark asset points over a model parameter grid with m
points per dimension, resulting in a total of M training points.

The resulting estimation provides barrier option prices over an asset grid with a test
value of X test = (0.05,0.4,0.2,0.4), as depicted in Figure 6.1a.

The associated absolute and relative errors for both methods are presented in Figure
6.1b. Notably, the CFC method exhibits superior accuracy across all points on the curve,
outperforming the COS Barrier 25 method in this specific instance.

Additionally, Table 6.1 displays a comparison of computational speeds. Evidently,
the CFC method significantly outpaces the existing COS Barrier 25 method in terms of
efficiency, as illustrated by the following CPU time results:

In Chapter 7, we delve into a comprehensive analysis similar to that of our initial
approach, the COS-GPR method. This involves a thorough exploration of the accuracy
prediction behavior as model parameters evolve. The CFC method offers greater flexi-
bility, resulting in a more comprehensive and detailed analysis.

Furthermore, our examination extends beyond the COS Barrier method comparison.
We also evaluate the performance of the CFC method against our primary approach, the
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(a) Comparison of barrier option price estimation with 250 monitoring dates using the CFC
method and the COS Barrier method with 25 monitoring dates.

(b) Absolute and relative error plots corresponding to the prediction of the two methods.

Figure 6.1: Comparison of the performance of two methods for barrier option pricing under the CGMY-model.

COS-GPR method. This entails scrutinizing both speed and accuracy across a range of
test values, providing a comprehensive understanding of the CFC method’s efficacy.
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Method CPU Time (seconds)

CFC 4.01×10−5

COS Barrier 25 7.20×10−3

Table 6.1: Comparing average CPU times for option price calculations on the provided test set: COS-GPR
method (m = 10) versus COS Barrier 25 method
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METHOD 2: CFC METHOD

This chapter delves into numerical error analysis for pricing barrier options under Lévy
processes, employing our second method: the CFC method, as previously discussed in
Chapter 6. In contrast to our first method (the COS-GPR method), the CFC method offers
the advantage of using a global decomposition instead of a local one.

The error analysis of the CFC method is conducted in a more comprehensive manner
compared to the COS-GPR method. Firstly, we analyze its asymptotic computational
complexity. Next, we compare the CPU time required for the CFC Barrier method against
the COS Barrier method for a specific set of monitoring dates.

Furthermore, we perform sensitivity analysis on the number of training points in
each direction, which directly impacts the number of expansion terms in the CPD. By
analyzing these results, we gain insights into the effect of the truncation range on the
method’s performance. Whereafter we can analyze the behaviour of the number of terms
in the COS expansion.

Moreover, we explore the variation in computation time and accuracy by adjusting
the rank of the CPD method. This observation helps us understand the behavior of the
method as we modify this parameter. Overall, the comprehensive analysis of the CFC
method and its comparison to the COS-GPR method will provide valuable insights into
its pricing accuracy and computational efficiency.

7.1. MANAGING OVERFITTING: BALANCING SAMPLING POINTS

AND EXPANSION TERMS IN FUNCTION APPROXIMATION
The CPD algorithm described in Section 6.2 is a supervised learning technique applied
on approximating the Fourier coefficient tensor using a reduced dimension. In the con-
text of supervised learning, the model is built by minimizing the misfit between the train-
ing data and the model output, which results in a minimization problem. For a given
index j , the objective is to minimize the sum of squares of the total misfits between the

73
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training data values y j
A,m and y j

B ,m assigned to the sample θm . The values of the Fourier-
cosine series expansion evaluated at the same sample θm . This minimization problems
are expressed as:

min
D j ,k

1
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M∑
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· · ·
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, (7.1)
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· · ·
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E j ,k

d∏
i=1

cos

(
kiπ
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(7.2)

Here, k = (k1, ...,kd ) is a multi-index, and θm
i denotes the value of the i th coordinate

in the sampling point θm .
The minimization problems in (7.1) and (7.2) involve, per j index, K d Fourier coeffi-
cients for which the minimization problem has to be solved. Since the two minimiza-
tion problems are solved individually from eachother and also per j , the number K d can
be viewed as the degree of complexity the model has in minimizing the error with the
training data. A higher value of K d allows for more complex representations of the data,
while a lower value leads to a simpler model. With this case, the Fourier-cosine expan-
sion terms can be fitted to all training points whole
The number of training data points is denoted with M . In our examples following in the
paper, we will assume that the number of training points is equal for each dimension.
Hence, if we have m training points per dimension, the total training set has M = md

training points. Within the minimization problem, the number of inputs M is describes
the number of values the expansion needs to be matched to. Equivalently, this repre-
sents how constrained the model is.

When initializing the training of the model it is crucial to give the right relation be-
tween the number of input data M = md and the number of expansion terms per dimen-
sion K . There are three cases between the relation of K and m. There is K < m,K > m
and K = m. From a prior thesis at FF Quant [28] the optimal choice will be to choose
K = m, for which the degree of flexibility within the model is equal to the level of con-
straints imposed during its construction. Striking the right balance between these two
factors becomes crucial in achieving an accurate fit to all the training data points while
ensuring a reliable approximation of the overall function.

7.2. OPTIMAL SAMPLING FREQUENCY FOR TRAINING DATA IN

FUNCTION APPROXIMATION
In the context of estimating barrier option prices using the Fourier-cosine series with
the CPD algorithm, the selection of the number of grid points per dimension, denoted
by m, is a crucial determinant of both accuracy and computational efficiency. Similar to
the COS-GPR method, the CFC method employs a grid-based approach, where a denser
grid (higher m) captures finer details in the survival characteristic function.

The main objective of this section is to identify the optimal value of m for the CFC
method. To achieve this, we follow a similar approach as we did with the COS-GPR
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method in Section 5.1. We generate a range of m values spanning from 4 to 30, lever-
aging the device’s ability to handle a higher sampling rate for the CFC method compared
to COS-GPR, as GPR consumes more memory.

The choice of sampling rate m in the CFC method has a direct impact on the number
of Fourier cosine terms K , with the relationship K = m. Increasing the value of m leads
to a more intricate Fourier cosine expansion of the characteristic function. This intricacy
facilitates a finer fit, enabling the capture of nuanced features and non-linear patterns.
However, it’s important to note that a complex fit of the characteristic function doesn’t
necessarily guarantee more accurate estimations of barrier option prices, a point we will
delve into in the subsequent investigation.

It’s worth mentioning that we won’t be determining an optimal value for m in the
context of the CFC method. The reason behind this decision is our intention to maintain
consistency in comparing the CFC method with the COS-GPR method. Both methods
will employ the same granularity of training grid to ensure a fair and meaningful com-
parison. Although we will proceed with the rest of the sensitivity analysis to identify
other optimal parameters for the CFC method. This endeavor aims to uncover intrigu-
ing behavioral insights arising from these parameter variations.

7.3. OPTIMAL TRUNCATION RANGE

The approach for the CFC method mirrors that of Section 5.2 for the COS-GPR method.
We will observe analogous error behavior. The truncation range is symmetrically as-
sumed to be [−c,c], with c > 0. We will examine error behavior within a value range
spanning from 0.25 to 75. As depicted in Figure 7.1a, we focus on the interval 1.25 to
3.5 for a more detailed error analysis, following the zoomed-in view in Figure 7.1b. This
analysis reveals an optimal truncation range value of c = 2.70 for the CFC method, closely
aligned with the COS-GPR method’s optimal value of c = 2.45. Thus, utilizing the pro-
vided test set for the CFC method, we determine the most effective truncation range to
be [−2.70,2.70].

7.4. OPTIMAL NUMBER OF COS EXPANSION TERMS

Having established the optimal truncation range as [−2.70,2.70], the next step involves
determining the appropriate number of expansion terms for the COS method. This pa-
rameter, denoted as N in the context of the CFC method, signifies the coordinates within
the approximated characteristic function that influence the barrier option’s valuation.
Notably, in the conventional COS method for pricing European options, a higher value
of N generally leads to improved accuracy. However, given our focus on an estimated
survival characteristic function and a distinct option type, we anticipate a dissimilar be-
havior.

Our analysis involves assessing accuracy across a test set, varying N within the range
of 60 to 200. Initial examination, as depicted in Figure 7.2a, reveals a broader region of
interest lying between 100 and 140. A closer inspection, as shown in Figure 7.2b, pin-
points the optimal value within this precise range to be N = 98. This value is selected as
the foundation for the CFC method.



7

76
7. CONVERGENCE TESTS FOR

METHOD 2: CFC METHOD

(a) Zoomed out.

(b) Zoomed in.

Figure 7.1: Comparison of three error metrics for the COS-GPR method with optimal m = 10 applied to a test
set of barrier options values with a watchtime of Mmon = 250, while varying the truncation range [−c,c].

7.5. OPTIMAL RANK

The final segment of the sensitivity analysis for the CFC method delves into the role of
the CPD rank. This rank signifies the count of terms employed to characterize the ten-
sor, which corresponds to the value computation of the barrier option in (6.23). While
a higher rank facilitates the discovery of more intricate tensor patterns, its increment
doesn’t necessarily equate to a more accurate option valuation. Consequently, this sec-
tion conducts an in-depth analysis of accuracy across a range of rank values, spanning
from 4 to 60, to shed light on this nuanced relationship.

Illustrated in Figure 7.3, the L2-error is depicted concerning the rank R for the CGMY-
model, utilizing the priorly optimized parameters m, c, and N . Through this visual rep-
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(a) Zoomed out.

(b) Zoomed in.

Figure 7.2: Comparison of three error metrics for the CFC method with optimal m = 10 and truncation range
[−c,c], with c = 2.7, applied to a test set of barrier options values with a watchtime of Mmon = 250, while
varying the number of COS terms N

resentation, we identify the optimal rank value for this specific model to be R = 15.

7.6. PERFORMANCE COMPARISON: CFC VS. COS-GPR VS. COS
BARRIER METHOD

After optimizing the procedure in the preceding sections, we proceed to evaluate the
performance of the CFC method in estimating barrier option values with 250 monitoring
dates. Once again, the benchmark is established using the COS Barrier method with 250
monitoring dates. We compare the estimation performance of the CFC method against
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Figure 7.3: Variation of accuracy given by the L2-error with different ranks

the estimation outcomes of the COS Barrier method with 25 monitoring dates, as well as
our initial method, the COS-GPR method. Both the CFC and COS-GPR methods employ
their respective optimized settings, which have been derived in this paper. For COS-
GPR, these settings can be found at the beginning of Section 5.4. For the CFC method,
the optimized settings are as follows:

• Sampling frequency: In accordance with Section 7.1 and 7.2, we set the sampling
frequency to m = 10, resulting in M = md = 10000 training points.

• Truncation range: As outlined in Section 7.3, the symmetric truncation range around
0 is set to [a,b] = [−c,c], where c = 2.70.

• Number of ch.f. terms: Following Section 7.4, we determine the number of char-
acteristic function terms in the COS method as N = 98.

• Rank of the CPD: As per Section 7.5, we fix the rank of the Canonical Polyadic De-
composition (CPD) at R = 15.

To assess the performance of these three methods, we first evaluate their effective-
ness on two individual test values in order to analyze their fit. One test value lies within
the training region, while the other lies outside. These test values are defined as:

θi n = (Ci n ,Gi n , Mi n ,Yi n) = (0.14,0.27,0.15,0.22),

θout = (Cout ,Gout , Mout ,Yout ) = (0.52,0.27,0.15,0.22),

where θi n represents a single test example within the training set, and θout repre-
sents a test example outside the training set. The fits for both samples are graphed in
Figure 7.4, illustrating the performance of the CFC method, the COS-GPR method, and
the COS Barrier method with 25 monitoring dates.
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7.6.1. ACCURACY COMPARISON
In this section, we seek to determine the most accurate method by assessing their per-
formance over a grid of test points denoted as (0.002 : 0.55 : 10)4. We have three meth-
ods to compare: the COS Barrier method, the COS-GPR method, and our proposed CFC
method. The plots and tables generated here mirror those in Section 5.4.1. The error
metrics employed are also defined in the aforementioned section.

To commence, we calculate the total error and compile it into a single vector. This
vector contains the errors computed for each test input against the benchmark curve.
Table 7.1 presents four error metrics: Relative L1, L1-error, Relative L∞, and L∞-error.
These metrics are defined in (5.1) upto (5.4).

Method Relative L1 (%) L1-error Relative L∞ (%) L∞-error CPU (ms)

COS Barrier 25 31.184 1.681 ·10−2 25.768 6.535 ·10−2 7.204
COS-GPR 1.846 9.953 ·10−4 19.889 5.044 ·10−2 1.101
CFC 5.304 2.860 ·10−3 16.369 4.151 ·10−2 0.040

Table 7.1: Comparison of the CFC method, COS-GPR method, and COS Barrier method under the CGMY-
model using a set of test values. Errors represent combined results over all benchmark values for the entire set
of test inputs.

We focus primarily on the CFC method from this chapter, alongside our initial method
(COS-GPR) and the existing COS Barrier method (25 monitoring dates). Their corre-
sponding errors are presented in Table 7.1. Notably, the COS-GPR method outperforms
the CFC method in terms of accuracy, specifically when considering the L1 norm and
relative L1-error. This is probably because our understanding of how to set the trunca-
tion ranges in the CFC method is still based on trial and error, and these ranges are fixed
in the code. This inflexibility significantly impacts the effectiveness of the CFC method,
leading to the observed performance difference between the two methods. Conversely,
the CFC method exhibits lower L∞ and relative L∞-error values. This indicates that the
CFC method’s errors are less extreme, although the COS-GPR method consistently out-
performs it in terms of average accuracy across all observations. Additionally, the CFC
method proves significantly faster than both alternatives, boasting a speed increase of
25 times over our previous method and around 180 times faster than the COS Barrier
method with 25 monitoring dates.

For a more comprehensive understanding of error behavior across the value curve,
we analyze individual values per test input rather than aggregating across test inputs.
This is achieved through plots, depicting the number of observations below a certain
error magnitude on the vertical axis against the error magnitude on the horizontal axis.
Figure 7.5 showcases these curves for the three discussed methods.

1. Relative L1-error over all observations (Figure 7.5a):

This metric gauges the relative absolute error across each observation (5.5). The
graph reveals that both the CFC method and COS-GPR method outperform the
COS Barrier 25 method, with a higher number of errors below a given threshold.
Notably, the COS-GPR method surpasses the CFC method in accuracy, as indi-
cated by the earlier growth of its curve. This observation aligns with the data in
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Table 7.1.

2. Relative L1-error over the whole curve for a given input (Figure 7.5b):

In contrast, this assessment examines the entire value curve for a specific input
(5.6). While both the COS-GPR and CFC methods maintain superiority over the
COS Barrier 25 method, the latter exhibits smaller maximum errors. This suggests
that the COS Barrier 25 method may perform better for certain test inputs. No-
tably, the CFC method yields larger values for this specific error metric.

3. Relative L∞-error (Figure 7.5c):

This metric quantifies the maximum absolute percentage deviation across the value
predictions and benchmark values for each input (5.7). While the COS-GPR method
consistently outperforms the other two methods, the COS Barrier 25 method again
displays smaller maximum errors. The COS-GPR method records larger values for
this error metric.

In conclusion, our analysis reveals that the CFC method exhibits enhanced accuracy
compared to the COS Barrier 25 method. However, the COS-GPR method emerges as
the ultimate champion, showcasing superior accuracy across all three methods, as evi-
denced by its steeper growth in the curves depicted in the aforementioned plots. While
the CFC method demonstrates a reduction in extreme errors, the COS-GPR method main-
tains a consistently higher level of accuracy on average. Furthermore, the CFC method
excels notably in terms of computational efficiency, boasting a remarkable 25-fold im-
provement over our previous method and a staggering approximate 180-fold accelera-
tion compared to the COS Barrier method with 25 monitoring dates. It’s important to
acknowledge that both the COS-GPR method and the CFC method hold untapped po-
tential for improvement in various aspects. Consequently, as further research advances
and refines these models, the results could potentially diverge, presenting new insights
and outcomes for both methodologies.

7.6.2. CPU COMPARISON
To gain insights into the computational complexity of the CFC method, we will initially
deduce the analytical complexity of the model based on the description provided in
Chapter 6. Subsequently, we will empirically examine the observed complexity by sys-
tematically varying the parameter m, thereby tracking the resulting increase in compu-
tational time for the CGMY model scenario.

ANALYTICAL TIME COMPLEXITY CFC METHOD

Looking at the value estimation formula used in the CFC method, it boils down to first
obtaining the 2Nϕ mappings A j (θ) and B j (θ), which are calculated individually for each
j using equations (6.24). Afterward, the next step is to set up the characteristic function
(ch.f.) and use it to calculate the value using the COS method representation. The ana-
lytical complexity of calculating a barrier option value using the CFC method will come
down to O (d NϕK R).

Firstly, for a given j , the complexity of the expression(
⊛d

z=1v T
z D j

z

)
1⃗
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depends on the dimensions of the involved matrices and vectors.
Let’s break down the complexity step by step:

• Hadamard product: The expression inside the parenthesis involves an element-

wise product of d matrices v T
z D j

z . If each matrix has dimensions K ×R, then the
element-wise product will have a complexity of O (dK R).

• Summation: After performing the element-wise product, the result will be a matrix
of dimensions K ×R. The next operation is to sum up the elements of this matrix.
The complexity of the summation is O (K R).

• Matrix-vector multiplication: The resulting matrix from the summation will be
multiplied by the vector 1⃗ of dimensions R × 1. The complexity of matrix-vector
multiplication for a matrix of dimensions K ×R and a vector of dimensions R×1 is
O (K R).

Overall, the complexity of the entire expression
(
⊛d

z=1v T
z D j

z

)
1⃗ is dominated by the

element-wise product, which is O (dK R). The other operations (summation and matrix-
vector multiplication) have lower complexity compared to the element-wise product
and can be considered O (K R). Furthermore, the derivation of the complexity is anal-

ogous for calculating mapping B j (θ) using
(
⊛d

z=1v T
z E j

z

)
1⃗.

Finally, the barrier option value is expressed using formula (3.6), which is essentially
a sum for a single log-asset price x, resulting in a complexity of O (2Nϕ), which is dom-
inated by the O (d NϕK R). This means that the computational complexity of the CFC
method is O (d NϕK R) or similarly, since K = m, the computational complexity can be
written as O (d NϕmR).

COMPUTATIONAL COMPLEXITY CFC METHOD

Similar to Section 5.4.2, we extend our analysis to examine the CPU time behavior of
the CFC method by increasing the sampling frequency and studying the resulting CPU
times. Unlike the COS-GPR method, which encounters memory constraints beyond
m = 14 for the CGMY-model, the CFC method does not face this issue. This distinction
provides us with a more comprehensive understanding of the underlying relationship.

Figure 7.6 presents a clear departure from the GPR-COS approach. Instead of a loga-
rithmic linear association, the CFC method demonstrates a distinct linear trend, indicat-
ing a notable difference. This linear behavior aligns analytically with our earlier deriva-
tion of computational time for the CGMY-model, presenting a complexity of O (4NϕmR),
thereby validating our computational complexity analysis. The specific numerical values
defining the curve in Figure 7.6 are detailed in Table 7.2.
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7. CONVERGENCE TESTS FOR

METHOD 2: CFC METHOD

m CPU (seconds)

6 3.982×10−5

8 3.985×10−5

12 4.001×10−5

18 4.021×10−5

24 4.048×10−5

36 4.069×10−5

Table 7.2: CPU Times for Different Values of m
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(a) Sample from the training set: COS-GPR fitting barrier options prices.

(b) Sample from outside the training set: COS-GPR fitting barrier options
prices.

(c) Comparing absolute errors between benchmark option values and the
estimated value for the CFC/COS-GPR and COS Barrier 25 method.

Figure 7.4: Comparison of the CFC method with COS-GPR method and the COS Barrier method for fitting
barrier options prices for two samples: one from the training set (a) and one from outside the training set (b).
Additionally, the absolute errors of the two examples are shown in (c).
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7. CONVERGENCE TESTS FOR

METHOD 2: CFC METHOD

(a) Relative L1 for all observations.

(b) Relative L1 for inputs.

(c) Relative L∞ for inputs.

Figure 7.5: Empirical cumulative distribution functions (ECDFs) for error metrics.
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Figure 7.6: Variation in CPU times of the CFC method across different values of parameter m.





8
CONCLUSION

In this research thesis, our primary objective was to develop a highly efficient barrier
option pricer. While the COS Barrier method is notably slower than pricing European
options using existing methods, we leveraged the natural separation of variables as in
the COS Method assumption and the Lévy process to effectively reduce the problem’s
dimensionality by two. More precisely, the strike and initial log-asset price dimensions
are separated from the model parameters in the option pricing formula.

Our theoretical and numerical analyses revealed a promising approach: we demon-
strated that we could employ the same payoff coefficients for barrier options as those
used for European options within the 1D COS Method framework for pricing European
options. However, a key distinction for barrier options is that the ch.f. corresponds to
a survival density associated with the barrier level. Unfortunately, this survival density
function remains unknown, prompting us to introduce two innovative methods in this
thesis to estimate this survival ch.f.

The first method, referred to as COS-GPR, employs GPR to estimate new values of
the survival ch.f. based on new test inputs, which correspond to model parameters of
the underlying Lévy process. GPR, a supervised learning technique, offers transparency
compared to more opaque methods like NN, making it particularly appealing in the fi-
nancial industry. Our evaluation, involving the estimation of barrier option values with
250 monitoring dates, indicated that the COS-GPR method delivers a sevenfold increase
in speed compared to the COS Barrier method with 25 monitoring dates. Moreover, the
accuracy of the COS-GPR method consistently surpasses that of the existing method, al-
beit with some instances of increased error due to GPR’s limitations near training bound-
aries.

To address these challenges, we devised a second model named the CFC method.
Unlike the localized approach of COS-GPR, the CFC method employs a global func-
tional decomposition, employing a multidimensional Fourier-series expansion on the
ch.f. and utilizing CPD to mitigate exponential complexity growth in the model dimen-
sion d . Evaluating the performance of the CFC method against both the COS Barrier
method and the COS-GPR method using the CGMY model revealed that the CFC method
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generally outperforms the COS Barrier method in terms of accuracy. However, it also
entails occasional extreme errors in option values. Comparatively, while the COS-GPR
method frequently surpasses the accuracy of the CFC method, it too experiences in-
stances of more pronounced errors.

The hallmark feature of the CFC method is its remarkable speed, boasting a 180-fold
acceleration compared to the COS Barrier method and a 25-fold improvement over the
COS-GPR method. It is crucial to acknowledge that both of our methods entail numer-
ous parameters that can be optimized, indicating that the full potential of these models
is yet to be fully realized. Consequently, the present state represents a snapshot, with
ample room for further enhancement and refinement.

8.1. FURTHER RESEARCH
Our research uncovers numerous promising directions for further exploration. One crit-
ical aspect involves establishing a robust pricing rule for barrier options using the tradi-
tional COS method. Our investigation underscores the significant impact of selecting an
appropriate truncation range, as ill-informed choices have resulted in notably inaccu-
rate estimations. Additionally, we aim to support our theoretical findings with rigorous
analytical proofs.

To further delve into this evolving investigation, our intention is to conduct a meticu-
lous scrutiny of the COS-GPR method. This approach mandates an exhaustive analysis,
particularly in light of the memory-related challenges that have surfaced. Notably, in the
context of a 4-dimensional scenario, our progress has been curtailed due to the limita-
tion of only m = 14 training points per dimension. Exploring the capabilities of more
powerful computing resources, such as the DelftBlue1, could potentially offer us deeper
insights into the method’s performance.

Furthermore, our exploration of the GPR method for estimating characteristic func-
tion coefficients prompts a deeper investigation into the cross-correlation among out-
puts. This endeavor holds the potential to utilize the initial representation more effec-
tively, addressing the oversight of neglecting the shared functional origin of coefficients.

Shifting our focus to the CFC method, there remains ample room for optimization
within the CPD framework. Realizing its full potential presents an intriguing challenge.
The efficiency of this method, a standout feature in our paper, underscores its signifi-
cance in the quantitative finance domain, where speed is of paramount importance.

Taking a different approach, an alternative path involves evaluating the performance
of value estimates when the characteristic function is estimated using neural networks.
A particularly intriguing aspect lies in deciphering any noticeable patterns or behaviors
that emerge as we manipulate the parameters of these models. The diverse array of su-
pervised learning methods within the machine learning realm introduces complexity
and endless possibilities to our research.

While our current focus revolves around Lévy processes, expanding to non-Lévy pro-
cesses like Heston or other rough volatility models presents an enticing extension. This
strategic expansion promises a more comprehensive grasp of intricate financial phe-
nomena, enriching the depth and practical applicability of our findings.

1DelftBlue is a high-performance computer situated at the Delft University of Technology.
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A.1. DERIVATION OF REPRESENTATION 2

Below is the comprehensive derivation of the barrier option value employing the COS
method with representation 2, which involves a Fourier-cosine expansion applied to
the characteristic function. The derivation encompasses various techniques, including
leveraging Euler’s identity to eliminate the real part operator and employing summation
interchange.

v B AR (x ; t ,θ) ≈ e−rθ∆t
∑′N−1

k=0 Re

{
ϕ̄l ev y

(
kπ

b −a

)
exp

(
i kπ

x −a

b −a

)}
Vk (A.1)

= e−rθ∆t
∑′N−1

k=0 Re
{(

fR

(
kπ

b −a

)
+ i · f I

(
kπ

b −a

))
(A.2)

·
(
cos

(
kπ

x −a

b −a

)
+ i · sin

(
kπ

x −a

b −a

))}
Vk (A.3)

= e−rθ∆t
∑′N−1

k=0 Re
{Nϕ−1∑

j=0

[
A j cos

(
jπ

uk −aϕ
bϕ−aϕ

)
+ i ·B j sin

(
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uk −aϕ
bϕ−aϕ

)]
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·
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(
kπ

x −a

b −a

)
+ i · sin
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)]}
Vk (A.5)
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= e−rθ∆t
∑′N−1

k=0

Nϕ−1∑
j=0
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A j cos
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jπ

uk −aϕ
bϕ−aϕ

)
cos

(
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)
(A.6)
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Nϕ−1∑

j=0
(A j C j (x)−B j S j (x)), (A.10)
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A.2. CUMULANTS OF CGMY AND GBM
The cumulants and drift-correction term of the CGMY model and the Geometric Brow-
nian Motion are represented by the values c1,c2,c4, and w , respectively. These values,
along with those from other established models obtained from [5], are presented in Ta-
ble A.1:

Table A.1: Cumulants, denoted as cn , characterize ln(St /K ) across various models of the underlying asset.
Additionally, we have the drift correction term, represented by w , which fulfills the condition exp(−w t ) =
ϕ(−i , t ).

Model: Cumulants:

GBM

c1 =µT

c2 =σ2T

c4 = 0

w = 0

CGMY

c1 = µT +C TΓ(1−Y )
(
M Y −1 −GY −1

)
c2 = σ2T +C TΓ(2−Y )

(
M Y −2 +GY −2

)
c4 =C TΓ(4−Y )

(
M Y −4 +GY −4

)
w =−CΓ(−Y )

[
(M −1)Y −M Y + (G +1)Y −GY

]

VG

c1 =(µ+θ)T

c2 =
(
σ2 +νθ2)T

c4 = 3
(
σ4ν+2θ4ν3 +4σ2θ2ν2)T

w = 1

ν
ln

(
1−θν−σ2ν/2

)

Heston

c1 =µT +
(
1−e−λT

) ū −u0

2λ
− 1

2
ūT

c2 = 1

8λ3

(
ηTλe−λT (u0 − ū) (8λρ−4η)

+λρη
(
1−e−λT

)
(16ū −8u0)

+2ūλT
(−4λρη+η2 +4λ2)

+η2
(
(ū −2u0)e−2λT + ū

(
6e−λT −7

)
+2u0

)
+8λ2 (u0 − ū)

(
1−e−λT

))
w =0
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