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1 Introduction

Implied volatility is an important quantity in finance (e.g., option pricing and risk management), which represents
a specific measure of the future price uncertainty from the viewpoint of market practitioners. In the setting of
European options, a holder has the right (but not the obligation) to exercise the contract at the maturity time T ,
and the fair price V (t, S) can be determined by the Black-Scholes (BS) equation,
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with stock price S, risk-free interest rate r, volatility σ. Given the pay-off function at T , for instance, an European
put option HP (T, S) = max(K−S, 0), where K is the strike price, the analytic solution exists for European options.
Provided the option price V mkt observed in the market, the Black-Scholes implied volatility σ∗ is calculated by

BS(σ∗;S0,K, T − t0, r) = V mkt. (2)

where t0, S0, K are obtained from the financial contract and r is known. In other words, computing the implied
volatility is to search for a volatility for the Black-Scholes pricing model, so that the model can provide an option
price which exactly matches the observed option price.

A closed-form expression of the implied volatility in Eq. (2) is unavailable, and the paper [8] proposed a data-
driven numerical method for fast computation of implied volatility. In reality, the implied volatility also varies over
strike prices and time to maturity, see Figure 1, which forms so-called implied volatility surfaces σ∗ := σ∗(T −t,K).
Volatility surfaces are widely used for pricing financial derivatives, as well as hedging and risk management. These
surfaces have complex patterns, such as volatility smile/skew and term structure. Unfortunately, there are no
explicit formulas to describe such volatility surface.

Figure 1: Implied volatility surface, from [8]. Moneyness equals S/K.
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The approaches of modeling implied volatility surfaces generally fall into two categories. The first one is assuming
the underlying asset follows specific dynamics [3] (e.g., Heston stochastic volatility model), here called mathematical
modeling, which requires a calibration procedure [7] to recover the value of model parameters. The second approach
is the data-driven modeling [1, 2, 9], where deep learning methods are used to treat the volatility surfaces in a
non-parametric way. With the increasing complexity of volatility surfaces data (for example, Financial institutions
frequently hold a large number of derivatives with various underlying assets, such as FX, stock, commodities, and so
on), it has been becoming difficult to develop suitable assumption-based models, especially considering fast-moving
markets. On the other hand, the data-driven non-parametric technique can manage massive data of volatility
surfaces with flexibility and efficiency, but it lacks explainability and physical meanings.

This thesis will investigate a novel modeling approach to tackle the aforementioned challenge, i.e., data-driven
mathematical modeling of implied volatility surfaces. We will start with the data-driven approach, and employ
machine learning techniques (here generative models), without any assumptions, to extract as many as possible
features (volatility smile, term structure, etc) from volatility surfaces data available. Next we will look into the ways
to incorporate prior knowledge (e.g., arbitrage-free conditions) by combining the already learnt machine learning
model with mathematical models (e.g., differential equations). Eventually we hope to apply the developed method
for asset pricing and risk management, for example, generating synthetic volatility surfaces when data is missing.

2 Objectives

1. Literature review about modeling implied volatility surfaces and generative deep learning models, for instance,
Diffusion probabilistic models [5], Variational Autoencoders [6] or Generative Adversarial Networks [4].

2. Training generative models to learn implied volatility surfaces, tuning hyper-parameters, providing best prac-
tices, etc.

3. Introducing appropriate mathematical tools to guarantee financial constraints (e.g. no arbitrage) and proper
dynamics of volatility surfaces.

4. Exploring the interpretability of the developed data-driven mathematical models and generalizing the method-
ology (if feasible).

5. Application to option pricing and risk management, e.g., generating synthetic volatility surfaces, detecting
anomalies.
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