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Introduction	
Many	practical	engineering	problems	require	the	solution	of	very	large	but	sparse	linear	
systems	of	equations	stemming	from	the	discretization	of	partial	differential	equations	
(PDEs)	 by	 numerical	methods	 such	 as	 the	 Finite	Difference	Method	 (FDM),	 the	 Finite	
Volume	Method	(FVM),	or	the	Finite	Element	Method	(FEM).	The	direct	solution	of	these	
equations,	e.g.,	by	using	Gauss’	elimination	algorithm,	is	prohibitively	expensive	both	in	
terms	of	computing	times	and	memory	required	to	‘store’	the	inverse	of	the	matrix.	

Iterative	solution	algorithms	compute	a	sequence	of	approximations	 𝑥! !!!
! 	to	the	true	

solution	𝑥	of	the	problem	𝐴𝑥 = 𝑏	starting	from	an	initial	guess	𝑥!	until	the	iterated	solu-
tion	 has	 converged	 to	 the	 true	 one.	 Basic	 methods	 like	 the	 Jacobi	 and	 Gauss-Seidel	
method	are	quite	 effective	 in	quickly	 removing	 the	high	 frequency	 components	of	 the	
error	 in	 a	 few	 iterations	 but	 they	 reduce	 the	 low	 frequencies	 very	 slowly.	Geometric	
multigrid	solvers	 (GMG)	overcome	this	deficiency	by	employing	a	hierarchy	of	nested	
discretizations	 so	 that	 low	 frequency	 components	 on	 a	 fine	mesh	 become	 higher	 fre-
quencies	on	coarser	ones	and	can	thus	be	removed	very	efficiently.	

The	main	algorithmic	components	of	GMG	are	the	grid	transfer	operators,	the	smoothers	
(e.g.	of	Jacobi-	or	Gauss-Seidel-type)	and	the	solver	on	the	coarsest	grid.	Obviously,	the	
amount	of	computational	work	required	on	fine	grids	(e.g.,	with	1	million	grid	points)	is	
significantly	higher	 than	 that	on	coarser	grids	 (e.g.	100	grid	points).	Thus,	 large	prob-
lems	 clearly	benefit	 from	parallel	 computations,	whereas	 the	use	of	multiple	 compute	
units	may	even	increase	the	computing	time	if	the	problem	is	too	small.	A	recent	trend	in	
energy-efficient	parallel	multigrid	solvers	[Wl16]	is	to	utilize	all	available	compute	units	
(e.g.	cores	of	a	multi-core	CPU)	on	fine	grids	and	send	some	of	them	to	sleep	when	oper-
ating	on	coarser	grids	to	reduce	the	amount	of	energy	consumed	and	overall	runtime.	

Commodity	 hardware	 like	 multi-core	 CPUs	 only	 al-
lows	 for	 deactivating	 compute	 cores	 to	 save	 energy	
thus	leaving	a	large	part	of	the	chip’s	silicon	unused.	
Field	 Programmable	 Gate	 Arrays	 (FPGAs)	 make	 it	
possible	to	realize	the	solution	algorithm	directly	 ‘in	
hardware’,	 so	 that	 the	 available	 silicon	 can	 be	 split	
optimally	 between	 fine	 and	 coarse-grid	 operations.	
Maxeler	 Technologies	 Ltd.	 provides	 a	 high-
performance	 computing	 infrastructure	 based	 on	
FPGAs	that	adopts	the	dataflow-computing	paradigm.	



The	program	 source	 is	 transformed	 into	 a	 configuration	 file	 that	 describes	 the	 opera-
tions,	layout	and	connections	of	computational	units.	This	configuration	file	is	then	used	
to	realise	the	algorithm	on	the	FPGA.	In	contrast	to	the	traditional	computing	approach	
adopted	 in	 commodity	 CPUs,	 in	 dataflow	 computing	 the	 data	 is	 loaded	 once	 from	
memory	and	streamed	through	the	entire	chain	of	operations,	thereby	passing	interme-
diate	results	from	one	computational	unit	to	the	next	without	writing	them	back	to	off-
chip	memory.	

Problem	description	
The	aim	of	 this	project	 is	 to	develop	an	energy-efficient	geometric	multigrid	solver	 for	
Poisson’s	equation	on	Maxeler’s	dataflow	engines	[Max].	The	equations	in	two	and,	pos-
sibly,	 three	 dimensions	 are	 discretized	 by	 the	 Finite	Difference	Method,	which	 can	 be	
easily	accomplished	by	Maxeler’s	MaxGenFD	framework.	The	main	tasks	of	this	project	
are	 to	 realize	grid	 transfer	operators	 and	smoothers	 in	an	efficient,	 i.e.	most	probably	
matrix-free	manner	and	implement	a	coarse-grid	solver	(Gaussian	elimination	or	factor-
ization-based	 direct	 solvers)	 on	 Maxeler’s	 dataflow	 engines.	 Algorithmic	 components	
shall	 be	 designed	with	 scalability	 in	mind,	 that	 is,	 strategies	 to	 split	 the	 problem	 into	
smaller	ones	and	distribute	them	over	multiple	dataflow	engines	need	to	be	developed.	

Challenges	
The	challenges	of	this	project	are	formulated	in	the	following	research	questions:	
• How	to	realize	 the	algorithmic	components	of	a	geometric	multigrid	solver	effi-
ciently	on	dataflow	engines?	The	use	of	advanced	methods	for	the	(iterative)	solu-
tion	of	linear	systems	of	equations	on	dataflow	engines	is	in	its	infancy	[Bu14,	Bu15,	
Ch14].	The	main	challenge	here	is	to	develop	optimal	dataflow	graphs	that	maximize	
the	throughput	of	data	streaming	from	off-chip	memory	through	the	compute	chain.	
Matrix-free	 implementations	 of	 grid	 transfer	 operators,	 e.g.	 by	 using	 stencil-based	
prolongation/restriction	 have	 been	 developed	 in	 the	 context	 of	 high-performance	
CPU-	and	GPU-computing	and	need	to	be	extended	to	dataflow	computing.	

• How	 to	 split	 the	 available	 chip	 silicon	 between	 the	 algorithmic	 components	 to	
maximize	the	saving	of	energy?	The	second	goal	of	this	project	is	to	implement	a	ge-
ometric	multigrid	method	that	directly	realizes	the	concept	of	‘sending	compute	cores	
to	sleep	on	coarser	grids’	in	hardware.	This	is	equivalent	to	maximizing	the	problem	
size	 that	can	be	handled	efficiently	by	a	single	dataflow	engine	without	 the	need	 to	
communicate	with	other	dataflow	engines.	

Time	schedule	
The	following	tasks	are	foreseen:	
• Familiarization	with	Maxeler’s	data	flow	computing	technology	and	the	development	
tools	(MaxJ	programming	language,	MaxGenFD	library)	

• Literature	study	on	geometric	multigrid	methods	for	Poisson’s	equation	
• Development	of	a	reference	CPU	code	without	energy-saving	strategies	
• Development	of	the	same	approach	on	Maxeler’s	dataflow	engines	and	analysis	of	its	
performance	in	terms	of	total	computing	times	with	respect	to	the	baseline	code	

• Thesis	writing	



Further	information	
For	further	information	please	contact	Matthias	Möller	(m.moller@tudelft.nl)	or	Georgi	
Gaydadjiev	(g.n.gaydadjiev@tudelft.nl).	Access	to	a	dedicated	Maxeler	server	with	four	
MAX3	dataflow	engine	cards	will	be	granted.	Moreover,	Maxeler	Technologies	Ltd.	offers	
the	possibility	for	a	short	stay	at	its	headquarter	in	London,	UK	for	hands-on	training.	
Technical	support	from	Maxeler	experts	will	be	available	during	the	entire	project..	
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