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1
Introduction

Traffic congestion is a big problem for transportation networks. It is one of the main incentives for mod-
elling traffic, because good traffic models can help with pinpointing problems in the network. Over the
past 70 years the understanding of traffic has steadily increased and traffic models have become better
in modelling traffic in a realistic way, even though traffic will always be unpredictable to a certain level.
Modelling traffic requires a deep understanding of the behaviour of traffic flow in certain circumstances.

The fundamental relation has been the main focus of traffic flow analysis since the 1955 paper
of Lighthill and Whitham [13]. Their traffic model approached traffic as a continuous flow through a
network, with a positive real-valued density and speed on every point. Such a model is called a macro-
scopic traffic model, and the model developed in [13] is called the Lighthill-Whitham-Richards (LWR)
model. The LWR model consists of a few equations, where the fundamental relation has been a re-
search topic for numerous decades [20].

Estimating the fundamental relation poses significant challenges due to the complex and random
nature of traffic. Over the past few years, the Netherlands has greatly improved the amount and acces-
sibility of their traffic data, which contributes to researching these fundamental relations. Furthermore,
the in various fields like computer vision, natural language processing and different optimization prob-
lems. This achievement is also noticable in traffic model research [20].

In this paper, we propose a new approaccombination of historical data and different machine learn-
ing (ML) algorithms have shown great results in predictive traffic models [10, 1]. Using ML algorithms
to learn complex patterns from data has shown success h that combines the LWR traffic flow model
with ML algorithms to estimate the fundamental relation. We will build this macroscopic traffic model by
using a part of an existing implementation of the LWR model. The fundamental relations are estimated
using open historical traffic data, available through the web portal of Nationaal Dataportaal Wegverkeer
(NDW). The end goal of this project is predicting the traffic congestion for certain road work projects.
The traffic flow model should be able to model traffic in realistic work road scenarios, e.g. where one
lane on a highway is closed down.

This literature study is part of the master thesis project for the Master Applied Mathematics on the
Delft University of Technology, in collaboration with the Infrastructure and Asset Management Lab of
CGI Netherlands.
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2
Theoretical background

2.1. Introduction
Everyone is used to a weather forecast on the evening news, where high-end weather models utilize
measurements to predict the weather up to a week in the future. Why is there not such a forecast on
traffic congestion? Traffic is difficult to model for a few reasons. Small perturbations in traffic speeds
can have big effects, like the butterfly effect. Furthermore, even the best models can’t model the
stochastic nature of traffic itself, which is a result of random human influence in routing, lane-switching
and accidents [3, 12, 14]. Still, traffic is definitely not fully random and traffic models have improved a
lot through research over the past decades.

In 1955, M. J. Lighthill and G. W. Whitham wrote the first groundbreaking paper about kinematic
waves and its application in traffic models [13]. Around the same time, P. I. Richards investigated this
mathematical traffic model as well [17], and the set of equations was named the LWR model (after
Lighthill, Whitham and Richards). The LWR model approaches traffic as a continuous flow using a
few differential equations. This approach is also known as macroscopic traffic model. The knowledge
about traffic models has steadily increased until we can now distinguish three different types of traffic
models; macroscopic models, microscopic models, where each vehicle is modelled independantly, and
mesoscopic models, which uses ideas from the first two types [3]. In this master thesis, we will only
look at macroscopic traffic models, specifically at variations of the LWR model.

All traffic models rely on some basic concepts, which will be discussed in the following section.
Afterwards, amore in-depth description of the LWRmodel and theGudonov schemewill be given, which
is used for the numerical approximation. This chapter is concluded with the appropriate pseudocode
and some benchmark problems. In the next chapter, the results of our implementation of the Godunov
scheme will be discussed and we will explain how machine learning will be applied in the prediction of
fundamental relations.

2.2. Basic concepts in route choice algorithms
Traffic can be modelled in different ways, depending on the situation that should be modelled. Usually,
traffic models consist of a route choice algorithm and a simulation of traffic flow [3]. The route choice
algorithm aims to solve some traffic assignment problem, defined as follows:

Definition 1 (Origin-Destination matrix) An Origin-Destination (OD) matrix shows the number of ve-
hicles that want to travel from one destination (represented by the row) to some other destination
(represented by the column).

Definition 2 (Traffic Assignment) A Traffic Assignment (TA) problem is determining how demand traf-
fic, usually in the form of an OD matrix, is loaded onto the network. It provides a means for computing
traffic flows on the network links.

Definition 3 (Dynamic Traffic Assignment) ADynamic Traffic Assignment (DTA) problem is the time-
dependent extension of the traffic assignment problem, able to determine the time variations in link or
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2.3. Lighthill-Whitham-Richards model 3

path flows, and capable of describing how traffic flow patterns evolve in time and space in the network
[3].

Related to the Nash equilibruim in game theory, John Wardrop defined a state of equilibrium for
traffic models. This is known as Wardrop’s principle, Wardrop’s equilibrium or user equilibrium. Fur-
thermore, this equilibrium is a solution of the TA problem and also has a time-dependent version called
the dynamic user equilibrium. Other solutions to TA and DTA problems are other ways that the vehicles
complete their journey, but which are not in a user equilibrium.

Definition 4 (User Equilibrium) A User Equilibrium (UE) means that the journey times on all the used
routes are equal, and less than those which would be experienced by a single vehicle on an unused
route. It is a solution to the TA problem.

Definition 5 (Dynamic User Equilibrium) A DTA problem has a Dynamic User Equilibrium (DUE)
when the network has a UE at every moment. It is a solution to the DTA problem.

Traffic models usually consist of two components: a DTA problem and a simulation of the routes.
Finding a DUE in a traffic model is a difficult task and is sometimes impossible, but with macroscopic
traffic models it is often possible to find this DUE as it approaches flow continuously instead of discreetly
[5]. We will discuss this macroscopic traffic model further in the next section.

2.3. Lighthill-Whitham-Richards model
An example of a macroscopic traffic model is the Lighthill-Whitham-Richards model, or LWR model.
This LWR model assumes a positive real-valued density of vehicles q and vehicle velocity u at every
point in some network of roads. We can calculate the flux ϕ using the definition:

ϕ = qu. (2.1)

The second equation of the LWR model is the one-dimensional continuity equation, which describes
the transport of some conserved quantity. More precisely, it says that the change in vehicle density on
some part of a road only depends on the in- and outflux of vehicles:

∂q

∂t
+

∂ϕ

∂x
= 0, (2.2)

also often notated as qt+ϕx = 0. This equation defines the behaviour of a conserved quantity q, where
in general q : R× [0,∞)→ Rn is the conserved quantity and ϕ : Rn → Rn is the flux of this quantity [4].
In the case of a 1D traffic flow problem, n = 1. Integrating this equation on an interval [x1, x2] gives

d

dt

∫ x2

x1

q(x, t)dx = −
∫ x2

x1

dϕ(q(x, t))

dx
dx = ϕ(q(x1, t))− ϕ(q(x2, t)). (2.3)

Equation 2.3 shows that the temporal change in amount of q inside the interval [x1, x2] is equal to the
flow entering or exiting the interval at x1 and x2. Because this holds for any x1 and x2, equation 2.2
means that the amount of q (representing the amount of traffic) can only be created at the edges of the
network, and cannot be created or destroyed inside the network.

The third equation of the LWRmodel describes the velocity u as some function of the density q. This
allows for a substitution into 2.2 which leads to a differential equation solely depending on the density
q [3, 16]. The relation between u and q is called the fundamental relation (FR).

The idea of a fundamental relation is an important one. It relies on the assumption that the speed of
traffic on some location is only dependent on the density of traffic on that location. In the real world this
is of course not true. Differences in driving style and human errors can create different traffic situations,
even when the conditions are identical. In traffic models, this uncertainty will always be present [12, 14].
The LWR model looks at traffic in an aggregated form and approaches it as a uniform flow, averaging
over these differences.
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2.4. Different fundamental relations
The simplest example of a FR is the linear FR, where the speed of traffic scales down linearly with the
density. When the density is 0, the vehicles will drive at the maximum speed u0. When the density
reaches qj , the velocity will be 0 and traffic will come to a stop. In an equation, this reads:

ulinear(q) = u0(1−
q

qj
). (2.4)

Substituting this into 2.2 will lead to the differential equation

∂q

∂t
+ u0

∂(q(1− q
qj
))

∂x
= 0

which, given initial conditions and boundary conditions, can be solved numerically. Of course, this linear
FR is not the best representation of reality. At small densities, an increase in density will not decrease
the speed that much. And at high densities, the traffic speed will not immediately drop to zero, but it
will just stay very low. This has lead to a few different different FRs [3], for instance, Smulders’ and De
Romphs’ FRs, given by:

uSm(q) =

{
u0(1− q

qj
), for q < qc

γ( 1q −
1
qj
), for q > qc

(2.5)

uDR(q) =

{
u0(1− αq), for q < qc

γ( 1q −
1
qj
)β , for q > qc

(2.6)

In both of these cases, the γ is chosen such that u(q) is continuous. It can be seen that both of these
models use the constant qc, which is the congestion density. Densities lower than this threshold leave
enough space for cars to move around eachother, which means the average speed will stay relatively
constant in that density region. When the threshold has been reached, then the vehicles are stuck in a
traffic jam and the average speed will drop drastically [16].

These FRs can be shown in fundamental diagrams, which are usually plots showing the relation
between q and u or ϕ.. Figure 2.1 shows these three FRs in three plots, with the relations between
density ρ, velocity u and flux ϕ. There is not one FR applicable on every single piece of road, as the
relation between density and velocity is not globally the same. For example, this relation depends on
the surroundings, the behaviour of the average road user but also on the season and time of day. In
this master thesis, we will use machine learning algorithms and historical traffic data to find the best
FR for pieces of road. More about this can be found in chapter 3.

2.5. Numerical solutions of traffic flow
As we have seen in equation (2.2), the 1D traffic flow problem is a conservation problem. Conservation
problems are a type of Cauchy problems where ϕ represents the flux of q.

Definition 6 (Cauchy problem) The problem

qt + ϕ(q)x = 0, x ∈ R, t > 0,

q(x, 0) = q0(x), x ∈ R,

for some function ϕ : R → R is called a Cauchy problem [4]. In this context, Cauchy data represents
the initial conditions q0(x) from which a unique solution can be found.

According to [4, 18], it is possible to approximate the solution to this problem using a finite-difference
method. For example, set ϕ(q) as the linear fundamental relation (2.4): ϕ(q) = q(1− q). This gives the
following problem:

qt + (q − q2)x = 0, x ∈ R, t > 0, (2.7)
q(x, 0) = q0(x), x ∈ R, (2.8)
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Figure 2.1: Different fundamental diagrams for three relations: the linear relation, Smulders’ relation and De Romphs’ relation.
For simplicity in this example, u0 = qj = 1, and following [16] the other parameters have been set at a realistic value: α = 0.3,

β = 0.8, qc = 0.3.

We will use the following discretization:

xi = ih i ∈ Z, h > 0

tn = nk n ∈ N0, k > 0

q(xi, tn) = qni

Using this discretization, [4] uses a few finite difference schemes to approximate the solutions of a few
benchmark problems. A central, upwind, and Lax-Friedrichs scheme are applied, and the results are
compared against the exact solution of these benchmark problems. The central scheme and upwind
scheme both deviate from the exact solution around the shock. The Lax-Friedrichs scheme stays
closest to the exact solution, using the numerical scheme:

qn+1
i =

1

2
(qni+1 + qni−1)−

k

2h
(ϕ(qni+1)− ϕ(qni−1)) (2.9)

=
1

2
(qni+1 + qni−1)−

k

2h
((qni+1 − (qni+1)

2)− (qni−1 − (qni−1)
2)) (2.10)

There are some problems with a finite difference approximation of conservation problems [18]. This
discretization method has difficulties around shockwaves, where the shock will diffuse over time or
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where the shock speed is calculated wrong [4]. Furthermore, some finite difference schemes like the
upwind and central scheme don’t implicitly conserve q. A better approach would be to use a finite
volume approach like the Godunov method, introduced by Sergei Godunov in 1959 [6].

In finite volume, the area is devided into ”volumes” with interfaces between them [15]. For 1-
dimensional problems this means that the domain is devided into segments xi. The Godunov method
means keeping track of the amount of ”conserved quantity” in each segment, and finding the flux at
the segment boundaries every time step. The difficulty lies in finding this flux at every cell boundary.
Setting the conserved value qi constant in each cell gives a shock at every cell boundary. Each shock
can be seen as a Riemann problem:

Definition 7 (Riemann problem) A Cauchy problem with initial values

q0(x) =

{
ql for x < 0

qr for x ≥ 0
(2.11)

where ql, qr ∈ R is called a Riemann problem. [8]

The discontinuity at x = 0 is the main focus of research about Riemann problems. In [4] this problem
is solved by using the method of characteristics. They come to the conclusion that, if q(x, t) is a solution,
then q(αx, αt) for some α > 0 is a solution as well. By expressing q(x, t) = q(ξ), where ξ = x

t , a few
cases can be distinguished. In the light of the Godunov method, only ϕ(q(ξ = 0)) is needed.

1. ql = qr gives the constant solution q(x, t) = q0(x) and ϕ(q(0)) = 0.

2. ql < qr means that there is a higher density of traffic on the right than on the left. This higher
density on the right leads to lower speeds. As traffic moves from left to right, it follows that the
shockwave will stay a discontinuity. It is concluded that the solution has the form:

q(x, t) =

{
ql for x < st

qr for x ≥ st
(2.12)

where the shock speed s is found to be

s =
ϕ(ql)− ϕ(qr)

ql − qr
. (2.13)

This choice for s is called the Rankine-Hugoniot condition [4]. This means the value of ϕ(q(0))
depends on the value of s; if s > 0, then the shock moves to the right and q(0) = ql, while s < 0
yields q(0) = qr. s = 0 is impossible in this situation, as that implies ϕ(ql) = ϕ(qr) which is only
possible if ql = qr.

3. ql > qr has multiple weak solutions, but only one physically meaningful solution; the rarefraction
wave. This means the shock will not stay a discontinuity, but it will spread out. This type of
rarefraction wave is the correct solution in this situation as it satisfies the entropy condition as
defined in [4] and [8]. Mathematically, this looks like this:

q(x, t) =


ql for x < ϕ′(ql)t

(ϕ′)−1(xt ) for ϕ′(ql)t ≤ x ≤ ϕ′(qr)t

qr for x > ϕ′(qr)t

(2.14)

For the Godunov method, we will need ϕ(q(0)). This can be found from this equation:

q(0) =


ql if ϕ′(ql) > 0

(ϕ′)−1(0) if ϕ′(ql) ≤ 0 ≤ ϕ′(qr) < 0

qr if ϕ′(qr) < 0

(2.15)

In the case of traffic models, ϕ(q) is a concave function and (ϕ′)−1(0) is the unique solution to
ϕ′(q) = 0 which represents the point of maximum flux. [4, 8]



2.5. Numerical solutions of traffic flow 7

As we told before, in finite volume the domain is devided into sections xi with constant density qi.
On the interfaces between these sections is a Riemann problem. The Godunov scheme provides a
method to calculate the behaviour of these shockwaves. The size of the time-step k should be chosen
small enough such that the shock waves don’t interact with eachother within the time interval. After
the time-step, the flow is calculated between the sections and the density is again set to be constant in
each section. This method has proven to stay closer to the exact solution in benchmark problems than
finite-difference methods [6, 4].

2.5.1. Pseudocode
This pseudocode is the Godunov scheme for scalar conservation law problems [8].

Data: Some initial q0(x), a fundamental relation ϕ(q) with maximum flux ϕ(qmax), a domain x
and boundary values Qboundary point(t).

Result: An approximation of the traffic flow over time.
begin

Discretize t as tn size k, and x as xi size h

Discretize q0(x) as q0i = 1
h

∫ x+h
2

x−h
2

q0(x)dx

for n in timerange do
for all i do

We will find q∗i at the interface between xi and xi+1

if ϕ′(qni ) ≥ 0 and ϕ′(qni+1) ≥ 0 then q∗i ←− qni ;
if ϕ′(qni ) < 0 and ϕ′(qni+1) < 0 then q∗i ←− qni+1 ;
if ϕ′(qni ) ≥ 0 and ϕ′(qni+1) < 0 then

s←− ϕ(qni )−ϕ(qni+1)

qni −qni+1

if s ≥ 0 then q∗i ←− qni ;
if s < 0 then q∗i ←− qni+1;

if ϕ′(qni ) < 0 and ϕ′(qni+1) ≥ 0 then q∗i ←− qmax ;
for all interior i do

qn+1
i = qni − k

h (ϕ(q
∗
i )− ϕ(q∗i−1))

for all boundary points i do
qn+1
i = Qi(tn+1)

2.5.2. Benchmark problems
To test our own implementation of the Godunov scheme, we need some way to measure the perfor-
mance against other implementation and against the exact solution. In the literature there are multiple
benchmark problems that are often used to test the numerical scheme. Often they are Riemann prob-
lems with a piecewise constant initial density distribution and one initial discontinuity at x = 0. For
simple conservation law models, the exact numerical solution is known. This makes it easy to com-
pare different numerical schemes against eachother and against the exact solution. In [4], the first
benchmark problem is

q0(x) =

{
1
4 for x < 0
1
2 for x ≥ 0

(2.16)

where, using the linear FR (2.4), the shock will move to the right with shock speed 1
4 :

q(x, t) =

{
1
4 for x < 1

4 t
1
2 for x ≥ 1

4 t
(2.17)

The other benchmark problem is one with a rarefraction wave, with initial condition

q0(x) =

{
3
4 for x < 0
1
4 for x ≥ 0

(2.18)
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and for t > 0 and the linear FR (2.4), this gives:

q(x, t) =


1
4 for x < − 1

2 t
1
2 (1−

x
t ) for − 1

2 t ≤ x ≤ 1
2 t

1
2 for x > 1

2 t

(2.19)

In [4], the Godunov scheme is compared against a few finite difference methods (central scheme,
Lax-Friedrichs scheme and upwind scheme). It concludes that the Godunov stays closer to the exact
solution than the finite difference methods, as it can be seen in figure 2.2.

Figure 2.2: Godunov and Lax-Friedrichs scheme for a rarefraction solution with h = 0.001 (left) and h = 0.01 (right). k = 0.001
and Tend = 1. It can be seen that the Godunov scheme stays closer to the exact solution than the Lax-Friedrichs scheme. This

plot is taken from [4], page 37.



3
Combining machine learning and

fundamental relations

3.1. Implementation of the Godunov scheme
The Godunov scheme was implemented in Python following the pseudocode given in subsection 2.5.1.
The full code can be found in appendix A.1. Trying the given rarefraction benchmark problem, we get
the results from figure 3.1. This shows identical results to [4], which means that the implementation of
the algorithm was succesful and we are able to further use the written python code.

Figure 3.1: A rarefraction solution using a custom implementation of the Godunov scheme. It can be seen that the results are
the same as [4].

3.2. Finding the fundamental relation
Macroscopic traffic models heavily rely on the idea of a fundamental relation, or a relation ϕ(q) between
the traffic density q and the flux ϕ. It is also possible to find this relation by expressing the vehicle speed
u in terms of q.

Numerous FRs have been introduced in this literature study, which all rely on some set of variables.
For example, the Smulder’s FR (given in 2.1) relies on u0, qj and qc [3]. Finding the values of these
variables for a certain piece of road is nothing more than fitting the function on historical road data.
This type of historical road data is openly accessible online via the ”Nationaal Dataportaal Wegverkeer”
(NDW), which is the Dutch databank for traffic data [22]. Figure 3.2 shows the fitting of a FR based on
historical data.

In this research, we will start by fitting De Romphs’ FR as given in equation (2.6), and thereby fit the
parameters u0, α, β, qc and qj on different parts of a highway. We will use the De Romphs’ FR because
it has clear parameters, and its clear relation between vehicle speed and traffic density. If this method

9
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Figure 3.2: An example of a FR, fitted onto historical data. This image was taken from [7], page 249, and the FR was here
derived from a model of traffic flows at intersections.

yield bad results, then I will look into other FRs like the model introduced in [7], which derives a FR from
a model of traffic flows at intersections. [20] and [2] show an overview of FRs, and how they developed
over the years. The latest FR is one with varying capacity, developed by Kerner and Rehborn [9].

In this research, we will start with the Smulders FR. To fit the Smulders FR using pytorch, we have
to write it as a function of ReLU’s and other implemented functions. We know the fundamental relation
as:

uSm(q) =

{
u0(1− q

qj
), for q < qc

γ( 1q −
1
qj
), for q ≥ qc

There is some difficulty fitting this speed-density function, coming from the variable congestion density
and the 1/q in the bottom equation. That is why we will not fit the speed-density function, but the flux-
density function. We know from the definition of flux that f = qu. Furthermore, continuity in q = qc
means that γ = u0qc. This gives the following equation for flux:

fSm(q) =

{
u0q − u0

q2

qj
for q < qc

u0qc − u0qcq
qj

for q ≥ qc

We will try to rewrite this into one equation using the ReLU function.

ReLU(x) =

{
0 x < 0

x x ≥ 0

ReLU(x−A) =

{
0 x < A

x−A x ≥ A

ReLU(A− x) =

{
A− x x ≤ A

0 x > A
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Now we will rewrite both parts of fSm(q) as follows:

u0q −
u0q

2

qj
= u0(q − qc + qc)−

u0q(q − qc + qc)

qj

= u0qc − u0(qc − q)− u0qqc
qj

+
u0q(qc − q)

qj

= u0qc − u0(qc − q)− u0(q − qc + qc)qc
qj

+
u0q(qc − q)

qj

= u0qc − u0(qc − q)− u0q
2
c

qj
+

u0(qc − q)qc
qj

+
u0q(qc − q)

qj

= u0qc −
u0q

2
c

qj
+ (−u0 +

u0qc
qj

+
u0q

qj
)(qc − q)

= u0qc −
u0q

2
c

qj
+ (−u0 +

u0qc
qj

+
u0q

qj
)ReLU(qc − q) for q ≤ qc

u0qc −
u0qcq

qj
= u0qc −

u0qc(q − qc + qc)

qj

= u0qc −
u0q

2
c

qj
− u0qc

qj
(q − qc)

= u0qc −
u0q

2
c

qj
− u0qc

qj
ReLU(q − qc) for q ≥ qc

We can see that both parts of the flux-density relation of the Smulders FR consist of u0qc − u0q
2
c

qj
and

two ReLU terms which are zero in the opposite domain. This means that we can write the flux-density
relation of the Smulders FR in one equation as:

fSm(q) =
u0

qj
(qcqj − q2c + (qc + q − qj)ReLU(qc − q)− qcReLU(q − qc)) (3.1)

3.3. Machine learning
3.3.1. The usage of machine learning in traffic models
Examples of machine learning (ML) are function fitting, neural networks, clustering algorithms and
others. Over the past years, different ML applications have been in the center of research in different
fields, and modeling traffic has been no exception. In this research, we plan to use neural networks to
find the relation between the FR on some piece of road and the FR of that piece of road with a closed
lane. Furthermore, we will need some fitting technique to find the FR of some piece of road based on
historical data, as demonstrated in figure 3.2.

There is a lot of research that combines machine learning techniques with traffic modelling [21, 1].
For example, computer vision algorithms are used for self-driving cars or lane assisting. Other traffic
forecasting models with a longer time-frame can also use machine learning algorithms to find patterns
in historical traffic data, and use that to make predictions not unlike weather predictions. An example
can be found on the Keras website [10], which uses a Python implementation of an LSTM to predict the
traffic situation on a single road. Furthermore, [21] shows a big list of models that uses neural networks
to directly predict traffic.

3.3.2. Using machine learning techniques to predict the effect of road work
Almost all of the road work on highways in the Netherlands is planned months in advance, but for
the majority of this work, it is not clear how much effect this work will have on the traffic situation.
For example, there is no model (yet) that estimates how much total time will be lost because of these
adjustments. This research will be about some predictive model that can estimate the effect of highway
alterations like the closing of a lane, lowering the maximum speed or closing up whole roads.

There appears to be a research gap at the intersection of traffic modelling and the impact of road
work. While there have been enough studies about the effect of road work on the safety of roads [19]
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and on the total global warming gas emissions [11], we have not found any study that predicts the effect
of planned road work on traffic. Furthermore, there is enough research about different ways to model
traffic [21], but none that specifically look into the effect road alterations have.

Using historical traffic data and information about previous road alterations, we can study how a FR
changes when some alteration occurs. More precisely, we can study the way the parameters of FRs
may change when these road alterations occur, when given inputs that describe the road alteration.
Examples of these inputs can be the amount of lanes or the maximum speed before and after an
alteration. We can use historical data to train a neural network that can predict these changes in
parameters. This historical data should contain traffic speed data of pieces of road where alterations
have occured, before and during this alteration. This neural network is then applicable to other pieces
of road, so we can finally be able to predict the effect of an alteration on pieces of road where there
has never been such an alteration. A diagram of this algorithm is shown in figure 3.3.

Figure 3.3: This is a basic diagram showing how machine learning can be applied to predict the effect of road alterations. A
neural network is used to learn the way that the FR parameters change after a road alteration like a lane closing. This is

applied to another FR, which results in a predicted FR. In the last step, a macroscopic traffic model is run once with the normal
FR and once with the predicted FR. Finally, the results of these simulations are compared.

This approach to predicting the effect of alterations to the road situation is different from a normal
macroscopic traffic model because it uses machine learning to express the effect of the alterations
on the FR for that piece of road, while still using a macroscopic traffic model for an accurate traffic
model. Because of this, it is possible to quickly make rough predictions about the effect of alterations.
Eventually this should help planning road work in a more sophisticated way.

3.4. Research questions
The main objective of this research is to model the effect of alterations to the road situation using a
combination of traffic models and ML algorithms. Estimating the effect of these alterations will improve
the planning process of road work. This has lead to the research question:

How can mathematical models, specifically the combination of traffic models and machine
learning algorithms, be used to improve estimates of the effect of road work on traffic?
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To answer this question, I want to look into different subquestions.

1. What is a measure of performance of different traffic models and ML algorithms in terms of their
ability to accurately estimate the effects of road work on traffic?

2. How can macroscopic traffic models be used as a framework to estimate the effect of road work
on traffic using ML?

3. How can we use ML algorithms to identify and predict the impact of road work based on historical
data?

4. How can the insights gained from the traffic model be used to improve the efficiency of road work
planning processes?

By answering these questions, we aim to construct a functional model that can simulate basic changes
to the road situation of a normal Dutch highway. The required data consists of historical traffic data of
the NDW, and a list of road work activities.
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A
Python code for a Godunov scheme

A.1. godunovfunctions.py
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4

5

6 # functions
7 # Basic Fundamental Relation class
8 class FR:
9 def __init__(self) -> None:

10 self.q_max = 0
11 self.f_max = 0
12 pass
13

14 def f(self, q):
15 pass
16

17 def f_der(self, q):
18 pass
19

20 def find_max(self):
21 # Finds the unique solution u to f'(u) = 0
22 pass
23

24

25 # Linear fundamental relation
26 class Linear(FR):
27 def __init__(self) -> None:
28 self.qmax = 0.5
29 self.fmax = self.f(0.5)
30 pass
31

32 def f(self, q):
33 return q - q * q
34

35 def f_der(self, q):
36 return 1 - 2 * q
37

38

39 # Plot functions
40 def plot_density(x, q):
41 assert len(q) == len(x)
42 plt.plot(x, q)
43 plt.show()

16
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A.2. test.py
1 from godunovfunctions import *
2 from tqdm import tqdm
3

4 # Settings
5 dt = 0.01 # Also known as k
6 xmin = -30
7 xmax = 30
8 xlen = 500
9 T = 15

10 periodic_BC = False
11

12 # Set up variables
13 # x = np.arange(
14 # start= -1,
15 # stop= 1+dx,
16 # step= dx,
17 # )
18 x = np.linspace(start=xmin, stop=xmax, num=xlen)
19 dx = (xmax - xmin) / (xlen - 1) # Also known as h
20

21 q = np.zeros_like(x)
22

23 # Set initial values
24 q[: int(len(q) / 2)] = 0.5
25 q[int(len(q) / 2) :] = 0.25
26 # q = 0.25 + 0.25 * np.exp(-0.01 * x**2) # "Formation of a traffic jam"
27

28 # Choose FR
29 fr = Linear()
30

31 # Time loop
32 timesteps = int(T / dt)
33 for timestep in tqdm(range(timesteps)):
34 f = fr.f(q)
35 f_der = fr.f_der(q)
36

37 # Find all q* (or actually, find all f(q*))
38 f_q_star = np.zeros_like(q)
39 for i in range(xlen):
40 # When looking at q*[i], we need info from q[i] and q[i]+1
41 # Edge case at i_max: in this case, q[i_max] will be constant
42 # Four cases:
43 if f_der[i] >= 0 and f_der[(i + 1) % xlen] >= 0:
44 f_q_star[i] = f[i]
45 elif f_der[i] < 0 and f_der[(i + 1) % xlen] < 0:
46 f_q_star[i] = f[(i + 1) % xlen]
47 elif f_der[i] >= 0 and f_der[(i + 1) % xlen] < 0:
48 s = (f[(i + 1) % xlen] - f[i]) / (q[(i + 1) % xlen] - q[i])
49 if s >= 0:
50 f_q_star[i] = f[i]
51 else:
52 f_q_star[i] = f[(i + 1) % xlen]
53 elif f_der[i] < 0 and f_der[(i + 1) % xlen] >= 0:
54 f_q_star[i] = fr.fmax
55

56 # Now that q* is known, we can calculate the new q values
57 new_q = np.zeros_like(q)
58 if periodic_BC:
59 for i in range(xlen):
60 new_q[i] = q[i] - dt / dx * (f_q_star[i] - f_q_star[(i - 1) % xlen])
61 else:
62 new_q[0] = q[0]
63 new_q[-1] = q[-1]
64 for i in range(1, xlen - 1):
65 new_q[i] = q[i] - dt / dx * (f_q_star[i] - f_q_star[i - 1])
66

67 q = new_q
68

69 plot_density(x, q)
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