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Abstract

This thesis aims to develop an advanced numerical solver capable of efficiently computing the resonant
states of quantum mechanical two-body and three-body problems, thereby expanding our understand-
ing of these complex systems. The quantum three-body problems feature at least two dimensions,
which necessitates substantial computational efforts. Therefore, in order to tackle these challenging
computations, we need to seek assistance from supercomputers. By harnessing the capabilities of
high-performance computing, we can significantly reduce the amount of time spent waiting for pro-
grams to run for hours.

In this thesis, we first introduce some basic knowledge about quantum few-body problems and resonant
states, showing how the physical problem gives rise to a mathematical problem, the quadratic eigen-
value problem (QEP). Building upon the physical background, our journey in developing the method-
ology begins with two fundamental components: discretization and eigensolver. The pseudo-spectral
methods are introduced to represent the quadratic eigenvalue problem as a matrix problem, by which
we can solve the problem numerically through some eigensolvers. We describe a classical approach
called linearization for solving QEPs, which transforms the quadratic problem into a generalized eigen-
value problem. Following the linear transformation, we apply the Jacobi-Davidson QZ (JDQZ) method,
an iterative eigensolver, to solve the linearized problem. Alternatively, we could also use the Jacobi-
Davidson (JD) method to approximate the quadratic eigenvalue problem’s eigenpairs directly. In this
thesis, we provide an outline of the Jacobi-Davidson process for solving both linear and quadratic
problems. Two routes for solving QEPs are utilized and compared: linearization combined with the
Jacobi-Davidson QZ method, and the quadratic Jacobi-Davidson method. Through our research and
analysis, we demonstrate that the Jacobi-Davidson algorithm exhibits superior computational efficiency
when adapted to solve QEPs directly.

Another significant objective of this thesis is to parallelize the eigensolver on supercomputers. We im-
plement a hybrid distributed/shared memory parallelization of the Jacobi-Davidson algorithm to solve
quadratic eigenvalue problems that arise from one-dimensional three-body problems. We leverage the
tensor structure inherent in the three-body problem to optimize computational efficiency. Specifically,
we implement an efficient tensor product scheme for the application of the stiffness and damping op-
erators, which are realized as dense matrix-matrix products. By incorporating a preconditioner that
also preserves the tensor structure, we enhance the performance of our Jacobi-Davidson algorithm in
computing three-body resonance poles within an acceptable speed.
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1
Introduction

Quantum few-body problems, emerging as a captivating research field, offer us a unique insight into the
interaction of quantum particles. This introductory chapter gives an overview of the research of solving
quantum few-body problems and serves as the gateway to our exploration. The fundamental knowl-
edge of quantum few-body physics and resonant states will be provided. Following the introduction to
physics, we discuss some previous related work, encompassing some few-body systems which have
been studied and the tools employed in solving them. Based on the examination of previous work, we
can formulate several research questions that will guide our investigation throughout the entire thesis,
to find answers to these questions.

1.1. Physical background
To begin with, we would like to first provide a brief introduction to the physical background including the
basic model of quantum two-body and three-body systems, respectively. In addition, we will give a de-
tailed definition of resonant states of quantum systems, shedding light on their fundamental properties
and behavior.

1.1.1. Quantum few-body systems
A quantum few-body system refers to a system composed of several interacting particles. The parti-
cles can be atoms, electrons, or other subatomic particles, whose behavior is governed by quantum
mechanics. The study of quantum mechanical few-body problems such as electron atomic collisions
[5, 23] has been pursued for decades, cultivating various fields where few-body physics plays an impor-
tant role. The Efimov effect [21], which describes the emergence of an infinite sequence of universal
states of three bosonic particles with s-wave resonant pair interactions in three dimensions, is one of
the examples in which the few-body problem is involved.

The motion of all particles in a few-body system is governed by the Schrödinger equation. In the
research, we consider the two-body and three-body systems introduced by [14]. We first consider a
two-body system composed of a heavy particle of mass M and a light particle of mass m, giving the
stationary Schrödinger equation

[−1

2
∆x⃗ + V (x⃗)]ψ(x⃗) = Eψ(x⃗) (1.1)

for the wave function ψ(x⃗) and two-particle energy E, where ∆x⃗ denotes the Laplace operator with
respect to x⃗ and V (x⃗) stands for the interaction term. x⃗ denotes the relative coordinate of the light
particle concerning the heavy one. x⃗ can be reduced to a scalar x for a one-dimensional system.
Note that for convenience we omit the constant terms such as Planck’s constant in the equation. The
potential V (x⃗) is given by

V (x⃗) = −v0f(x⃗), (1.2)

1



1.1. Physical background 2

where v0 and f(x⃗) represent the interaction potential’s magnitude and shape, respectively. We assume
that f is symmetric, f(x⃗) = f(|x⃗|), and v0 > 0.

The potential V (x⃗) = −v0f(x⃗) depends on different mechanical systems. In physics, most two-body
potentials vanish either exponentially or polynomially as x → ∞. We consider both cases and focus
on the attractive potential of the Gaussian shape

fG(x) = exp(−x2) (1.3)

and potential whose shape

fL(x) =
1

(1 + x2)3
(1.4)

is determined by the cube of a Lorentzian.

In a three-body system with an additional heavy particle of mass M , an extra coordinate is re-
quired to describe the spatial relationships between the particles. Similar to two-body problems, the
mass-imbalanced three-body system can be described by the dimensionless form of the stationary
Schrödinger equation

[−αx

2
∆x⃗ − αy

2
∆y⃗ + V (x⃗, y⃗)]ψ(x⃗, y⃗) = Eψ(x⃗, y⃗) (1.5)

for the three-particle wave function ψ = ψ(x⃗, y⃗) corresponding to the three-particle energy E. ∆x⃗ and
∆y⃗ denote the Laplace operator concerning the relative coordinate vectors x⃗ and y⃗ respectively. As
illustrated in figure 1.1, x⃗ denotes the coordinate of the light particlem concerning the center of mass of
the two heavy particlesM . And y⃗ represents the relative coordinate between the two heavy particles.

Figure 1.1: Three-body system in (a) one and (b) two spatial dimensions. Only interactions between heavy and light particles
are considered. The center of mass of two heavy particles is denoted by C. Reproduced from Thies et al. (2022) [27].

The positive coefficients αx = 2/(1 + α) and αy = (1 + 2α)/(2 + 2α) are determined by the mass
ratio α ≡ M/m of the heavy and light particle. When there is no interaction between heavy particles,
the potential V (x⃗, y⃗) can be divided into two terms

V (x⃗, y⃗) = V (r⃗+) + V (r⃗−) = −v0f(|x⃗+
1

2
y⃗|)− v0f(|x⃗− 1

2
y⃗|), (1.6)

where |x⃗± y⃗/2| denotes the respective relative distance. The two terms model the interaction potential
between the light particle and each heavy one.

By solving the stationary Schrödinger equation (1.1)/(1.5), which is in principle a standard eigen-
value problem (SEP), we can derive the wave functions (eigenvectors) and the corresponding observ-
ables (eigenvalues). The behavior of a few-body system is determined by the wave function, which
describes the quantum state of the system. To study the behaviors of a few-body system more deeply,
people compute different states of the system, such as bound states, anti-bound states, and resonant
states. Section 1.2 will provide additional information regarding previous work on bound states, while
our research primarily focuses on the study of resonant states. In the following subsection, we will show
that to find resonant states one needs to impose some proper boundary conditions on the Schrödinger
equation.
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1.1.2. Resonant states
In this subsection, we begin the introduction to resonant states by presenting a quantum one-dimensional
model. While numerous studies have focused on bound or scattering states within quantum one-
dimensional models, there are also several works dedicated to exploring unstable quantum states,
with which resonances can be identified [9]. Resonance is a phenomenon that manifests across a
wide range of physics disciplines, spanning from classical mechanics to quantum mechanics. Mean-
while, the significance of the resonant phenomenon is growing, particularly in the realm of quantum
mechanics concerning mesoscopic devices [16].

The resonant state of the open quantum system is studied from the viewpoint of the outgoing mo-
mentum flux [9, 16]. Before defining resonances, let us first consider a one-dimensional Schrödinger
equation with compactly supported potentials on the real line

V (x) ∈ R, |V (x)| ≤ C, V (x) = 0 for |x| > L. (1.7)

The solutions of the Schrödinger equation outside the potential are plane waves given by

ψ(x) =

{
Aeikx +Be−ikx ,for x < −L,
Ceikx +De−ikx ,for x > L,

(1.8)

where k denotes the wave number related to the energy E dimensionless by

E =
1

2
k2. (1.9)

We define the scattering matrix (S matrix) that relates the asymptotically incoming wave function
with the asymptotically outgoing wave function [7]:[

B
C

]
=

[
S11 S12

S21 S22

] [
A
D

]
, (1.10)

where S11,12,21,22 are functions of the wave number k. The scattering matrix, denoted as the symbol
S, is a fundamental concept in quantum physics. It serves as a crucial tool for explaining how particles
or waves behave when they interact with and scatter off a potential. The S matrix connects the initial
state of incoming particles with the final state of outgoing particles, providing information about the
probabilities and amplitudes of different scattering events. The resonance is defined as a pole of the
S(k)matrix in the complex wave number plane. In complex analysis, the poles of a function are defined
as follows:

Definition 1. A point z0 is called a zero of order m for the function f(z) if f is analytic at z0 and f and
its first m− 1 derivatives vanish at z0, but f (m)(z0) ̸= 0.

Definition 2. A point z0 is called a pole of order m of f(z) if 1/f has a zero of order m at z0.

easily
Although in many textbooks, resonances are defined as poles of the S matrix, N. Hatano et al.

[15, 16] shows that this definition is equivalent to solving the stationary Schrödinger equation under
a certain boundary condition, known as the Siegert condition. Specifically, the Siegert condition is to
have outgoing waves only and no incoming waves, i.e.,

ψ(x) =

{
Be−ikx ,for x < −L,
Ceikx ,for x > L.

(1.11)

A square-well potential with the Siegert condition is illustrated in Fig. 1.2.

Therefore, we can establish a more convenient definition of the resonant state in the following way
presented in [16]:

Definition 3. A resonant state is a solution of the Schrödinger equation (an eigenfunction of the Hamil-
tonian) under the boundary conditions (1.11) that only the outgoing waves exist outside the potential
cutoff [−L,L].
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Figure 1.2: A square-well potential with the Siegert condition of outgoing waves only. Reproduced from N. Hatano et al. (2009)
[15].

In other words, if the support of V is contained in [−L,L], the resonance solutions can be computed
by the stationary Schrödinger equation given by

[−1

2

d2

dx2
+ V (x)− 1

2
k2]ψ(x) = 0 for x ∈ [−L,L], (1.12)

(
d
dx

+ ik)ψ(x) = 0 at x < −L,

(
d
dx

− ik)ψ(x) = 0 at x > L.

(1.13)

In our two/three-body problem, the potentials exhibit exponential or polynomial decay as x→ ∞. How-
ever, due to the impossibility of solving the problem over an infinite domain, it becomes necessary to
introduce a sufficiently large cutoff on the domain length. This cutoff ensures that the potentials ap-
proach approximately zero at the boundary points. We denote L as the cutoff length. Therefore, the
two-body Schrödinger equation holds within the interval [−L,L], and the Siegert conditions hold at the
two boundary points x = −L and x = L. In conclusion, the two-body resonant problem is formulated
as follows:

[−1

2

d2

dx2
+ V (x)− 1

2
k2]ψ(x) = 0 for x ∈ [−L,L], where V (x) ≈ 0 when |x| = L. (1.14)

(
d
dx

+ ik)ψ(x) = 0 at x = −L,

(
d
dx

− ik)ψ(x) = 0 at x = L.

(1.15)

Eq. (1.14) is a quadratic eigenvalue problem (QEP) in terms of k. A resonant state is a solution of the
Schrödinger equation (1.14) under the boundary conditions (1.15) that only the outgoing waves exist
outside the compact interval [−L,L].

Fig. 1.3a and 1.3b illustrate the numerical solutions k and E = k2/2 to Eqs. (1.14) with boundary
conditions (1.15) for a square-well potential in [−1, 1]. The dots on the positive and negative imaginary
k axis are the bound state and anti-bound state, respectively. The remaining dots represent resonant
states, symmetrically lying on the lower half of the complex momentum plane with respect to the imagi-
nary axis. In the energy plane, resonant states are located on the right half with respect to the imaginary
E axis, while two (anti)bound states are both on the negative real E axis.
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(a)

(b)

Figure 1.3: Solutions k and E for the square potential well (V (x) = −1 for x ∈ [−1, 1], V (x) = 0 for x /∈ [−1, 1]) with the
Siegert condition.

Up to this point, the one-dimensional model we have discussed can be regarded as the simplest
quantum two-body resonant model. After exploring two-body resonant systems, we can now shift our
focus to the formulation of three-body problems, which involve the interaction of three quantum parti-
cles. Our research specifically focuses on one-dimensional three-body problems, where three quantum
particles are confined to the same line. When considering a 1D three-body system, an additional coor-
dinate (dimension) is required to describe the spatial relationships between the particles, as discussed
in the introductory chapter. Therefore, the equations of the 1D three-body problem are given as follows:

[−αx

2

∂2

∂x2
− αy

2

∂2

∂y2
+ V (x, y)− 1

2
k2]ψ(x, y) = 0 for (x, y) ∈ [−Lx, Lx]× [−Ly, Ly], (1.16)

(
∂

∂x
+ ik)ψ(x, y) = 0 at x = −Lx, (

∂

∂x
− ik)ψ(x, y) = 0 at x = Lx,

(
∂

∂y
+ ik)ψ(x, y) = 0 at y = −Ly, (

∂

∂y
− ik)ψ(x, y) = 0 at y = Ly.

(1.17)

In the given equations, we use x and y to represent the coordinates between the particles instead of
vector quantities x⃗ and y⃗. Since all the particles are located on the same line, using scalars is sufficient
for describing the spatial relationship. Additionally, it is worth noting that V (x, y) can be split into two
parts: the potential between two heavy particles and the potential between the light particle and the
center of mass of the two heavy particles. The cutoffs Lx and Ly should be chosen such that each
potential component approximates zero at the respective boundaries. When there is no interaction, in
other words, no potential, between the heavy particles, the boundary conditions are only applicable in
the x direction.

In the present subsection, we have derived the equations to be solved in both the two-body case and
the one-dimensional three-body case. This formulation suggests that the characterization of resonant
states necessitates solving a quadratic eigenvalue problem. This realization serves as motivation to
explore solvers designed to tackle QEPs. In the later methodology chapters, namely, Chapter 2 and
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Chapter 3, we will demonstrate the necessary tools for discretizing and numerically solving the QEPs.
Nevertheless, instead of jumping right into the methodology, we will begin by exploring the existing
research pertaining to our topic in the following section.

1.2. Related work
Prior to commencing the actual investigation of the problem, it is essential to acquire a comprehensive
understanding of some previous work in solving quantum few-body problems. As indicated in Section
1.1, people are currently trying to compute different states, such as bound states, anti-bound states,
and resonant states, of the few-body systems. Several studies addressed to the analysis of bound
states are reviewed in [18]. A bound state appears when a particle is subjected to a potential that
restricts its movement, leading to localization in specific regions of space. In such states, the particle
is confined by the potential, preventing it from freely dispersing across a wider spatial range. In con-
trast to bound states, the resonant state of the open quantum system is studied from the viewpoint of
the outgoing momentum flux. The basic definition of the resonant state, as well as prior progress, are
reviewed in [16] and [22], respectively. In many textbooks, resonance is defined as a pole of the S
matrix. However, the article by N. Hatano et al. (2009) [15] states that it is more convenient to define
a resonant state as an eigenstate of the Schrödinger equation with the Siegert condition, providing a
probabilistic interpretation of resonant states.

Finding an analytic solution for bound or resonant states is usually impractical, except for some
specific quantum systems. In the realm of bound states of few-body systems, Thies et al. (2022) [27]
propose a computationally-efficient scheme for numerically computing bound states of two/three-body
problems. A pseudo-spectral method based on the rational Chebyshev polynomials is applied to build
a matrix representation of the Schrödinger equation. To solve the standard eigenvalue problem de-
rived from discretization, several iterative eigensolvers for approximating eigenpairs of the Hamiltonian
matrix, such as Krylov-Schur and the Jacobi-Davidson QR (JDQR) method with and without precon-
ditioning, are tried and compared. To address the three-body problem which is more than one dimen-
sional (1D), it is necessary to employ a Kronecker product structure when dealing with the associated
Hamiltonian operator. In [27], a novel tensor method is presented to analyze the quantum mechanical
three-body with local two-body interactions in 1D and 2D. The tensor method, referred to as the tensor
product scheme, leverages the inherent structure of the Kronecker product to avoid storing redundant
blocks. By exploiting the tensor product formulation, the method efficiently represents the Hamilto-
nian operator in higher dimensions while reducing the memory requirements. This approach allows for
significant savings in terms of storage space, enabling more efficient computations for systems with
large matrices. By developing a high-performance implementation of the tensor scheme which can
be used on current supercomputers, [27] has shown for the first time the universal behavior of the 2D
heavy-heavy-light three-body system when the ground-state energy of the heavy-light subsystems ap-
proaches zero. The method can be extended to studying resonant states of the three-body problems
in 1D and 2D. In our research, we closely adhere to the fundamental concept presented in [27], aiming
to identify resonant states by employing a similar methodology.

The field of numerically computing resonant states in quantum few-body systems is still relatively
unexplored. As we will demonstrate in the following chapters, the accurate and efficient computation
of resonant states poses unique challenges. Tolstikhin et al. (1998) [29] provide valuable inspiration
for numerically computing resonant states, in the context of computing Siegert pseudostates defined
as the outgoing wave solutions of the radial Schrödinger equation, specifically for systems with cut-
off potentials. The resonant system is reduced to a quadratic eigenvalue problem (QEP) through the
Galerkin discretization. To solve the derived quadratic eigenvalue problem, a conventional technique
known as linearization is employed. This method involves transforming the quadratic eigenvalue prob-
lem into an equivalent linear eigenvalue problem, which can be more easily solved using existing linear
eigenvalue solvers. Through [29], we can get a first impression that the resonant few-body systems
can be reduced to an algebraic quadratic eigenvalue problem which can be solved by linearization.
However, linearization is not the only way to solve quadratic eigenvalue problems. M.B. Van Gijzen’s
work in [12] sheds light on the limitations of linearization and proposes an alternative approach, known
as Jacobi-Davidson (JD) method, for solving QEPs derived from an acoustic problem with damping. It
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is demonstrated that the Jacobi-Davidson algorithm is efficient in approximating the smallest eigenpair
and also possesses good parallelization capabilities. In Chapter 3, we will discuss further details re-
garding the methodology for solving the quadratic eigenvalue problems.

For some specific potentials between two quantum particles, there are analytic solutions available
for the two-body system. The Pöschl-Teller potential stands as an exact example of this scenario. Cevik
et al. (2016) [9] analyze the one-dimensional scattering produced by all variations of the Pöschl-Teller
potential (see Eq. (1) in [9]), i.e., potential well, low, and high barriers. The analytic solutions for the
bound, antibound, and resonant states of the system governed by the Pöschl-Teller potential have
been demonstrated. These solutions provide explicit formulas for the eigenvalues and corresponding
wavefunctions of the Schrödinger equation, which can be compared against our numerical results. In
addition to [9], Moiseyev et al. (1998) [20] also present the analytic solutions to a specific potential, the
universal energy-independent complex absorbing potential (CAP). Table 1 presented in [20] shows the
bound state and resonance positions and widths obtained by using the universal energy-independent
flux-diffusion type CAP (see Eq. (8) in [20]). The analytic solutions can serve as valuable benchmarks
with which we can compare the numerical methods. In Subsection 5.1.1, we will compare our numer-
ical results with the analytic solutions of the Pöschl-Teller potential to validate the correctness of our
numerical algorithm.

1.3. Research questions
Having gained a foundational knowledge of computing resonant states of quantum few-body problems,
several research questions remain ambiguous and require further investigation for clarification. These
questions include:

1. Discretization of three-body equations

The whole process of spectral discretization of a two-body system has been shown by [29]. In
Chapter 2, we will delve deeper into the topic of discretization for the two-body system. However,
the discretization process for a three-body problem is not as straightforward as in the two-body
case due to the introduction of a new Jacobi coordinate y between two heavy particles. In the
absence of specified boundary conditions, [27] simplymakes use of the tensor product formulation
to derive the three-body Hamiltonian. However, the outgoing boundary conditions of resonances
make performing the tensor product more tricky. We need to answer if the discretization has
to be adapted to preserve the tensor structure of the Hamiltonian operator in the presence of
boundary conditions. Can the Kronecker product be simply applied to the Hamiltonian system
with boundary conditions?

2. Comparison of eigensolvers

The discretization of few-body resonant systems results in a quadratic eigenvalue problem. Two
prominent options for solving QEPs can be summarized through the literature review: lineariza-
tion and the Jacobi-Davidson method. The Jacobi-Davidson method is capable of directly solv-
ing the QEP, while the linearization approach requires collaboration with another generalized
eigensolver. Analogous to the work presented in [27], where JDQR is employed to solve stan-
dard eigenvalue problems, it is also possible to apply iterative solvers to address the generalized
eigenvalue equations resulting from the linearization process, for which we choose the Jacobi-
Davidson QZ (JDQZ) algorithm. Therefore, we will solve the QEPs by means of two approaches
respectively: the linearization method coupled with the Jacobi-Davidson QZ algorithm, and the
(quadratic) Jacobi-Davidson algorithm. To determine a better solver for some specific problem
sizes, our question is: Which one can converge faster? Which one has better scalability?

3. Preventing Repetition of Solutions

Later in Chapter 3, we will introduce another significant challenge faced by the Jacobi-Davidson
method, which is the search for multiple distinct eigenvalues. The Jacobi-Davidson method has
the chance to converge repeatedly to the same eigenvalue. This repetitive behavior raises the
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question: How can we ensure that each convergence of the Jacobi-Davidson algorithm leads to
a different eigenvalue?

4. Preconditioning

The iterative solvers from the Jacobi-Davidson family, such as JD, JDQR, and JDQZ, can achieve
improved convergence speed through the application of preconditioning. In Section 3.2, we will
demonstrate that the most computationally intensive part of the Jacobi-Davidson algorithm is
solving the correction equation in every iteration. To achieve a decent performance of the Jacobi-
Davidson algorithm, preconditioning of the correction equation becomes necessary. The selec-
tion of an appropriate preconditioner depends on the specific problems that need to be solved.
[27] proposes a shifted Hamiltonian without potential as a good preconditioner for JDQR when
computing few-body bound states. Can a preconditioner analogous to the one proposed for the
bound state computation in [27] be derived for the resonant state computation?

5. Parallelization

We will test our eigensolvers on quantum two-body systems. However, in the case of three-body
problems, the increase in dimension leads to a significantly larger number of grid points. The
enormous size of three-body problems necessitates extensive computational power to handle
the computational demands effectively. Therefore, another crucial task is the implementation of
the eigensolver on supercomputers, specifically the parallelization of the Jacobi-Davidson algo-
rithm. Our objective is to develop an optimal strategy for implementing the parallel JD algorithm to
leverage the computational power of supercomputers. After implementing the parallel algorithm,
we need to analyze its performance, such as speedup.

1.4. Thesis outline
This thesis is structured into several chapters to provide a comprehensive exploration of the research
topic. The contents of the following chapters are as follows:

2. Discretization
This chapter delves into the process commonly referred to as discretization, which involves con-
verting the equations derived from quantum physics into algebraic equations that can be solved
numerically. We will discuss and compare two approaches based on pseudo-spectral discretiza-
tion, namely the Galerkin method and the Chebyshev differentiation matrix, and choose one of
them to discretize the problem based on their performance in computational efficiency and ease
of implementation. In the final section, we will present the entire process of discretizing both the
two-body and one-dimensional three-body problems.

3. Quadratic Eigenvalue Problems
Chapter 3 provides the methodology employed to solve the quadratic eigenvalue problems that
arise from discretizing few-body problems. It covers a conventional approach known as lineariza-
tion and an iterative eigensolver called the Jacobi-Davidson method. We will introduce various ex-
tensions of the Jacobi-Davidson algorithm that can address standard, generalized, and quadratic
eigenvalue problems, respectively. We will delve into the underlying mathematics behind these
extensions, shedding light on their implementation.

4. Parallelization
In Chapter 4, we discuss the implementation details of hybrid distributed/shared memory paral-
lelization of the Jacobi-Davidson algorithm on supercomputers. The methodology for paralleliza-
tion, along with accompanying source code templates, will be provided. Based on the tensor
structure outlined in Chapter 2, we present an efficient tensor product scheme that facilitates the
high-performance application of stiffness and damping operators in three-body problems.

5. Numerical Results
In Chapter 5, we showcase the numerical results obtained from our eigensolvers. In the scenario
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of solving a two-body test problem, we compare the performance of the JD and JDQZ method
in terms of convergence speed and computational time. After analyzing the performance of the
Jacobi-Davidson method in solving two-body problems, we proceed to present its performance in
1D three-body problems and the resonance poles obtained. Research questions are addressed
within the context of computing resonant states of both two-body and three-body problems in this
chapter.

6. Discussion and Conclusion
The final chapter of the thesis serves as a conclusion and evaluation of the research. We con-
clude the answers to the research questions and address the limitations of our current research.
Furthermore, we briefly introduce the potential applications of our study and explore potential av-
enues for future improvements. The conclusion section summarizes the key contributions of the
study, highlighting the main accomplishments and advancements made in the field of numerical
solvers for quantum mechanical few-body problems.



2
Discretization

The discretization techniques enable us to transform the continuous problem into an algebraic form
that can be solved numerically. In this chapter, two discretization approaches derived from the pseudo-
spectral method are introduced and discussed. From these two methods, we will carefully select and
utilize one approach to discretize and formulate our two-body and three-body problems.

2.1. Pseudo-spectral methods
To reduce the equations to a discrete algebraic form, numerous numerical methods are available, such
as the finite difference method, the finite element method, the spectral method, and so on. Through-
out the research, we follow the discretizing procedure in [14] and [27], using a variant of the spectral
methods, the pseudo-spectral methods [8, 24, 30].

2.1.1. Comparison with FEM/FDM
The pseudo-spectral methods are closely related to the spectral methods. In fact, they can be consid-
ered spectral methods with a pseudo-spectral basis, which allows the representation of functions on a
quadrature grid. The idea of the spectral methods is to denote the solution of the differential equation
as a sum of certain basis functions and then to choose the coefficients in the sum in order to satisfy
the differential equation as well as possible. There is a wide range of choices for basis functions, such
as sinusoids or polynomial functions.

Spectral algorithms are in philosophy similar to finite element methods (FEM). The major differ-
ence is that finite elements chop the interval in x into several sub-intervals, and choose πn(x) to be
local functions which are polynomials of fixed degree which are non-zero only over a couple of sub-
intervals. In contrast, spectral methods use global basis functions in which πn(x) is a polynomial (or
trigonometric polynomial) of high degree which is non-zero, except at isolated points, over the entire
computational domain. Finite elements give rise to sparse systems which can be solved at a fraction of
the cost of problems of “full” matrices with similar size. In addition, in multi-dimensional problems, the
little sub-intervals become little triangles that can be fitted to irregularly-shaped bodies. However, the
disadvantage of the finite element method is also significant: the accuracy is low because each basis
function is a polynomial of a low degree. In contrast, spectral methods generate algebraic equations
with dense matrices, but in compensation, the high order of the basis functions gives high accuracy for
a given N. When fast matrix-solvers are used, spectral methods can be much more efficient than finite
element or finite difference methods for many classes of problems such as wave propagation problems
[19].

Compared with the finite difference method (FDM), spectral methods can perform more accurately
and save more memory [8]. Finite difference methods utilize a series of overlapping polynomials to
approximate the unknown function f(x) by interpolating it at various grid points. For a three-point

10
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central difference, the approximation to the derivative reads
df
dx

≈ f(x+ h)− f(x− h)

2h
+O(h2). (2.1)

Since the interval h is O(1/N), where N is the number of grid points, we can conclude that the error
is O[(1/N)2]. [8] analyzes that in pseudo-spectral methods, the order of error is not fixed but rather
varies with N , given by

Pseudo-spectral error ≈ O[(1/N)N ]. (2.2)

The error (2.2) is decreasing faster than any order of finite difference. To verify the argument, we
employ both pseudo-spectral methods and finite difference methods to solve a 1D Poisson’s equation
with Dirichlet boundary conditions

d2u
dx2

= e4x, x ∈ (−1, 1), (2.3)

u(−1) = u(1) = 0, (2.4)

the analytic solution of which is given by (e4x − (sinh 4)x − cosh 4)/16. Figure 2.1 depicts the l2 error
for both methods. An exponential convergence of the pseudo-spectral error can be observed, which is
significantly faster compared to the finite difference method.

Figure 2.1: l2 error of the pseudo-spectral and finite difference methods as a function of the number of grid points.

Following the discussion of various discretization methods, we are now embarking on our explo-
ration of how to utilize pseudo-spectral methods for discretizing our problem. We again consider a
one-dimensional wave function in a two-body system, expanded by basis as

ψ(x) =

N∑
n=1

cnπn(x), −L ≤ x ≤ L, (2.5)

where πn(x) are basis functions and cn are coefficients for every πn(x). By substituting ψ(x) with (2.5)
for Eq. (1.14), we can derive a stationary Schrödinger equation represented by basis functions with
coefficients. There are two directions to discretization: integration and differentiation. The boundary
conditions can be automatically incorporated into the equation by integrating the Schrödinger equation
over the domain, known as the Galerkin method. Another approach involves utilizing the Chebyshev
differentiation matrix, derived from the pseudo-spectral collocation method, to discretely represent the
derivative. In the subsequent subsections, we will discuss these two approaches and choose one of
them to discretize our problem.
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2.1.2. Galerkin method
In the present subsection we introduce a general derivation proposed by [29] which deduces a finite
basis representation from the continuous Schrödinger equation by integrating the equation over the
domain. We again apply a one-dimensional finite basis

πm(x), i = 1, · · · , N. (2.6)

By multiplying Eq. (1.14) by πm(x) and integrating over x ∈ [−L,L], under the boundary conditions
(1.15) we can derive ∫ L

−L

πm(x)[−1

2

d2

dx2
+ V (x)− 1

2
k2]ψ(x)dx = 0, (2.7)

which is equivalent to

− ik

2
[πm(L)ψ(L) + πm(−L)ψ(−L)] + 1

2

∫ L

−L

dπm(x)

dx
dψ(x)
dx

dx+∫ L

−L

πm(x)[V (x)− 1

2
k2]ψ(x)dx = 0.

(2.8)

By expanding ψ(x) in terms of the basis (2.6) and substituting the expansion into Eq. (2.8), the original
equation (2.8) is reduced to the matrix-represented quadratic eigenvalue equation

(K +
ik

2
C − k2

2
M)c = 0, (2.9)

where entries of K, C, andM are given by

Kmn =
1

2

∫ L

−L

dπm(x)

dx
dπn(x)
dx

dx+

∫ L

−L

πm(x)V (x)πn(x)dx, (2.10)

Cmn = πm(L)πn(L) + πm(−L)πn(−L), (2.11)

Mmn =

∫ L

−L

πm(x)πn(x)dx, (2.12)

and c is a vector whose entries are coefficients of the basis functions πn(x). If the basis πn(x) is or-
thonormal on the domain [−L,L], M is always the identity matrix. The quadratic eigenvalue equation
(2.9) is a projection of Eqs. (1.14) and (1.15) onto an N-dimensional Hilbert space spanned by the
basis πm(x).

The derivation above is exactly the idea of the Galerkin method. Given the formula of every en-
try of each matrix, we can compute K, C, M respectively and finally derive a matrix representation
of the quadratic eigenvalue equation. Although the Galerkin method is quite powerful, the integrals
required to construct the matrix elements can be prohibitively complicated, especially when some com-
plex basis functions are applied. We move forward to the pseudo-spectral methods to save us from
calculating such complex integrals analytically. The idea is that if {πn} is a polynomial basis, such as
the Chebyshev polynomial, then the inner products required by the Galerkin method can be accurately
approximated by Gaussian quadrature.

Definition 4. The Chebyshev polynomial of the first kind is given by

Tn(x) = cos(nθ), x = cos(θ), (2.13)

which is obtained from the recurrence relation

T0(x) = 1,

T1(x) = x,

Tn(x) = 2xTn−1 − Tn−2(x).
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Consider the set {Tn(x)} of orthogonal Chebyshev polynomials of the first kind on the interval [−1, 1].
Some lower-order Chebyshev polynomials are given by

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1. T5(x) = 16x5 − 20x3 + 5x.

With x = cos(θ), the Chebyshev polynomials are orthogonal in accordance with∫ 1

−1

1√
1− x2

Tm(x)Tn(x)dx = cn
π

2
δmn (2.14)

where

cn =

{
2, n = 0,

1, n ≥ 1.

The quadrature points of order N for the basis set are determined as the roots of cos(Nθi) = 0 given
by θi = (2i− 1)π/2N, i = 1, · · · , N .

Definition 5. The Gauss-Chebyshev quadrature points are given by

xi = cos[(2i− 1)
π

2N
], i = 1, 2, · · · , N. (2.15)

Noting the normalization of the Chebyshev polynomials, the quadrature weights are given by

wi = − π

TN+1(xi)T ′
N (xi)

, (2.16)

where

T ′
N (x) = N sin(Nθ)/ sin(θ),

TN+1(xi) = cos[(N + 1)θi] = − sin(θi).

With cos(Nθi) = 0 and sin(Nθi) = 1, we have TN+1(xi)T
′
N (xi) = −N . Thus we can rewrite the weights

in the quadrature (2.16) to

wi =
π

N
. (2.17)

With Eqs. (2.15), (2.16), we can derive the Gauss-Chebyshev quadrature.

Definition 6. The Gauss-Chebyshev quadrature is a Gaussian quadrature over the interval [−1, 1] with
weighting function w(x) = (1− x2)−1/2:∫ 1

−1

1√
1− x2

f(x)dx ≈
N∑
i=1

wif(xi). (2.18)

Note that so far the integral is limited in the interval [−1, 1]. To generalize Eq. (2.18) to an arbitrary
interval such as [−L,L], we need to apply linear transformation to x:

x̃ = Lx = L cos(θ), x̃ ∈ [−L,L].

Then we derive the Gauss-Chebyshev quadrature in the interval [−L,L].∫ 1

−1

1√
1− x2

f(x)dx =

∫ L

−L

1√
L2 − x̃2

f(
x̃

L
)dx̃ ≈

N∑
i=1

π

N
f(xi) (2.19)

With Eq. (2.19), we can now approximate the integrals in the formulas for K andM in Eq. (2.10) and
(2.12) using the following formulas:

Kmn =

N∑
i=1

π

N

√
L2 − x2i [

1

2
T ′
m(Lxi)T

′
n(Lxi) + Tm(Lxi)V (Lxi)Tn(Lxi)], (2.20)

Mmn =

N∑
i=1

π

N

√
L2 − x2iTm(Lxi)Tn(Lxi), (2.21)
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where xi = cos[(2i−1)π/2N ], i = 1, · · · , N . By means of the pseudo-spectral methods, we convert the
original integral (2.10), (2.12) into the sum of the functions evaluated at Gauss-Chebyshev quadrature
points. Nevertheless, computing such summation for every entry still requires much effort. In order to
avoid the computation of the summation, we can resort to an alternative direction of discretization, the
Chebyshev differentiation matrix.

2.1.3. Chebyshev differentiation matrix
The Chebyshev differentiation matrix [8, 30] that results from the high-order pseudo-spectral collocation
method is a matrix operator representing the derivative. We introduce the Gauss-Chebyshev-Lobatto
points (Chebyshev points for short), which are different from the Gauss-Chebyshev quadrature points
in the previous subsection, in x ∈ [−1, 1].

Definition 7. The Gauss-Chebyshev-Lobatto points are given by

xj = cos(jπ/N), j = 0, 1, · · · , N. (2.22)

In this subsection, we shall use these points to construct Chebyshev differentiation matrices and
apply these matrices to differentiate the wave function ψ. Given a grid function u defined on the Cheby-
shev points, we obtain a discrete derivative w in two steps:

· Let p be the unique polynomial of degree ≤ N with p(xj) = ψj , 0 ≤ j ≤ N .
· Set wj = p′(xj).

The operation is linear. Hence it can be represented by multiplication by an (N + 1)× (N + 1) matrix,
which we can denote by DN :

wi = (DN )ijψj , (2.23)

where N is an arbitrary positive integer and (DN )ij represents the (i, j) elements of the matrix DN . In
order to derive the differentiation matrix DN , one needs to consider the interpolation polynomial and
the interpolation coefficients. A detailed derivation will not be given here as it’s not the focus of the
research. We simply show the result of the first-order Chebyshev differentiation matrix given by [30]:

Theorem 1. For the grid (2.22) and each N > 1, let the rows and columns of the (N + 1) × (N + 1)
Chebyshev spectral differentiation DN be indexed from 0 to N . The entries of this matrix are:

(DN )00 =
2N2 + 1

6
, (DN )NN = −2N2 + 1

6
,

(DN )jj =
−xj

2(1− x2j )
, j = 1, · · · , N − 1,

(DN )ij =
γi
γj

(−1)i+j

(xi − xj)
, i ̸= j, i, j = 1, · · · , N − 1,

where

γi =

{
2, i = 0 or N

1, otherwise.

The whole pattern of the matrix is shown in figure 2.2. So far we have already defined the Cheby-
shev differentiation matrix DN which can represent the first-order derivative from the matrix side. But
recall that our problem contains not only the first-order derivative but also the second-order derivative
and the boundary conditions. To construct a matrix operator of d2/dx2, we can compute the square
of DN , D2

N . D2
N can be evaluated either by squaring DN , which costs O(N3) floating point opera-

tions or by explicit formula or recurrences. Applying explicit formulas or recurrences is computationally
cheaper, requiringO(N2) flops. Whether to use square or explicit formula depends on the problem size.

In practice, we usually do not compute DN exactly using the explicit formulas given by Theorem 1.
A small trick in the implementation of DN is to utilize explicit formulas for the off-diagonal entries but
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then obtain the diagonal entries from

(DN )ii = −
N∑

j=0,j ̸=i

(DN )ij . (2.24)

In [3], Baltensperger and Berrut propose that the application of Eq. 2.24 can provide a higher precision
by reducing the roundoff errors in comparison to the standard formula.

Figure 2.2: The whole pattern of the Chebyshev spectral differentiation matrix DN .

The utilization of the Chebyshev differentiation matrix is fairly easy. Assuming a grid comprising
N + 1 Chebyshev points denoted as x0, x1, . . . , xN on the x-axis, we can represent the first-order and
second-order derivatives of the wave function in Eq. (1.1) as follows:

d
dx
ψ(x) → DNψ,

∆xψ(x) → D2
Nψ,

where ψ = {ψ0, ψ1, · · · , ψN}T corresponds to the wave function ψ(x) evaluated at the grid points
x0, x1, · · · , xN . Compared with the Galerkin method, applying the Chebyshev differentiation matrix is
much easier from the programming side and also requires less computation. Our research chooses
to utilize the Chebyshev differentiation matrix to formulate the two-body and three-body problems, of
which more details about integrating two derivatives into one equation will be presented in the next
section.

2.2. Application to few-body problems
With the discretization method at our disposal, we are now capable of formulating the problem that will
be solved in our research. Subsection 2.2.1 presents a comprehensive pseudo-spectral discretization
procedure for formulating two-body test problems. Subsequently, in Subsection 2.2.2, we aim to answer
the first research question, extending the discretization methodology to three-body problems through
Kronecker products.

2.2.1. Two-body problems
With the Chebyshev differentiation matrix, we have only one step remaining to formulate the problem:
integrating the Schrödinger equation and boundary conditions into a single equation. For the boundary
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condition (1.15), we can proceed as follows: Consider a grid of Chebyshev points x0, · · · , xN and
the corresponding solution to the wave function ψ0, · · · , ψN . We take the interior Chebyshev points
x1, · · · , xN−1 as our computational grid computing the equation (1.14):

[−1

2

d2

dx2
+ V (x)− 1

2
k2]ψ(x) = 0

↓

[−1

2
D2

N + V − 1

2
k2I]ψ = 0, (2.25)

where V is the diagonal matrix whose entries are values of the potential V (x) evaluated at x1, · · · , xN−1

and I is the identity matrix. ψ is the vector that indicates the values of the wave function ψ(x) at grid
points x1, · · · , xN−1. Note that the order of Chebyshev grid points is reversed with respect to the real
axis [-1,1], i.e., [1,-1] in actual. And hence at two end points x0 and xN , we impose the boundary
condition (1.15) by means of the first-order Chebyshev differentiation matrix:

(DN )0,:ψ = ikψ0,

(DN )N,:ψ = −ikψN ,
(2.26)

where (DN )0,: and (DN )N,: denote the first row and the last row of the differentiation matrix respectively.
Note that the derivation above is based on the domain [−1, 1] and hence if we want to generalize the
problem to x ∈ [−L,L], a linear transformation to the coordinate is needed. We can easily extend Eq.
(2.27) to an arbitrary cutoff length L through a linear transformation:

Chebyshev grid x → Lx,

Differentiation matrix DN → DN/L.

By combining Eq. (2.25) and Eq. (2.26) together, we can include the boundary condition inside the
quadratic eigenvalue equation. The QEP for a two-body system is formulated as:

K(2b)ψ + kC(2b)ψ + k2M (2b)ψ = 0,

where (K(2b))0,: = (DN )0,:, (K(2b))N,: = −(DN )N,:, (K(2b))1:N−1,: = (
1

2
D2

N − V )1:N−1,:,

C(2b) is 0 everywhere except (C(2b))0,0 = (C(2b))N,N = −i,
M (2b) is a diagonal matrix with diagonal entries 0, 1/2, 1/2, · · · , 1/2, 1/2, 0.

(2.27)

Based on the equation (2.27), it can be observed that the matrix polynomialK(2b)+kC(2b)+k2M (2b)

is nonsingular, while both the mass matrixM and the damping matrix C are singular. The mass matrix
M is symmetric positive semi-definite. In the case where M is nonsingular, a quadratic eigenvalue
problem of size N yields 2N finite eigenvalues. However, ifM is singular, both finite and infinite eigen-
values are present. In the upcoming chapter, we will demonstrate that the singularity of matrix M
introduces certain constraints to the linearization procedure, which is an approach we will introduce
for solving QEPs. In Chapter 5, we will demonstrate how we utilize the two-body quadratic eigenvalue
problem given by equation (2.27) as a test problem to evaluate the performance of our eigensolvers.

2.2.2. Three-body problems
The discretization of the three-body equation (1.16) and the boundary conditions (1.17) corresponds to
our first research question. To address the multi-dimensional system, [27] applies the Kronecker prod-
uct to discretize the Schrödinger equation without boundary conditions. This approach is commonly
used to discretize higher-dimensional problems. Taking inspiration from the scenario of bound states
in [27], a natural idea is to utilize the Kronecker product for discretizing the three-body resonance as
well. According to our first research question, we need to answer if the discretization has to be adapted
to preserve the tensor structure of the Hamiltonian operator in the presence of boundary conditions.

Definition 8. If A is an m× n matrix and B is a p× q matrix, then the Kronecker product A⊗B is the
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pm× qn block matrix:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 . (2.28)

The Kronecker product represents a specialized form of the tensor product that extends from vectors
to matrices and provides the matrix of the tensor product linear transformation based on a standard
basis selection. It has the following useful properties:

(a) (A⊗B)(C ⊗D) = (AC ⊗BD) for matrices A, B, C, D of conforming dimensions,
(b) (A⊗B)T = AT ⊗BT ,
(c) (A⊗B)−1 = A−1 ⊗B−1, if both A and B are invertible.

The answer to the first research question is affirmative. It is worth noting that the application of
Kronecker products directly to two-body operators is not appropriate when boundary conditions are
present. Before proceeding with the discretization process, it is essential to know the specific equations
to which the wave function conforms within different regions of the domain. Figure 2.3 illustrates three
distinct spatial relationships that can arise between three particles within a square 2D domain [−L,L]2,
each exhibiting unique behaviors.

Figure 2.3: Three possible configurations of spatial coordinates (x, y).

A. PointA, located inside the domain [−L,L]2, adheres to the stationary Schrödinger equation stated
by Eq. 1.5

[−αx

2
∆x − αy

2
∆y + V (xA, yA)]ψ(xA, yA) =

1

2
k2ψ(xA, yA). (2.29)

B. Point B lies on the boundary line of the domain, and it also adheres to the stationary Schrödinger
equation 1.5. However, it is crucial to consider the outgoing boundary condition on the x-coordinate
as well. Therefore, the equations used to describe B are given by

[−αx

2
∆x − αy

2
∆y + V (xB , yB)]ψ(xB , yB) =

1

2
k2ψ(xB , yB), (2.30)

(
∂

∂x
− ik)ψ(xB , yB) = 0. (2.31)
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Through differentiation Eq. (2.31) can be reduced to

∆xψ(xB , yB) = ik
∂

∂x
ψ(xB , yB). (2.32)

By substituting Eq. (2.32) into Eq. (2.30), we can derive a unified equation

[−αx

2
(ik

∂

∂x
)− αy

2
∆y + V (xA, yA)]ψ(xA, yA) =

1

2
k2ψ(xA, yA) (2.33)

that satisfies both the Schrödinger equation (2.30) and the boundary condition (2.31).
C. Point C represents a corner point where both coordinates lie on the boundary of the domain.

Hence the point should satisfy the boundary conditions on both coordinates. The unified equation
can be obtained analogously to point B, yielding

[
αx

2
(ik

∂

∂x
)
αy

2
(ik

∂

∂y
) + V (xC , yC)]ψ(xC , yC) =

1

2
k2ψ(xC , yC). (2.34)

In the quadratic eigenvalue equations (2.29), (2.33), and (2.34), the coefficient of the quadratic
term remains unchanged. As a result, the mass matrix M in the three-body discretization remains
a diagonal matrix, with each entry equal to 1/2. Before applying the Kronecker product, let us first
express the stiffness matrix and damping matrix along the x dimension exclusively. The stiffness matrix
Kx represents the second-order partial derivative of the wave function evaluated at non-boundary grid
points on the x-axis. It is given by

(Kx)0,: = 0T , (Kx)N,: = 0T , (Kx)1,N−1: = −αx

2
(D2

Nx
)1:N−1,:, (2.35)

where 0T denotes the transpose of the zero vector and DNx
is the Chebyshev differentiation matrix

after linear transformation. The damping matrix Cx, standing for the coefficient of the first-degree term,
is obtained as follows

(Cx)0,: = −iαx

2
(DNx)0,:, (Cx)N,: = i

αx

2
(DNx)N,:, (Cx)1:N−1,: = O, (2.36)

where O denotes a zero matrix. The operatorsKy and Cy along the y-coordinate can be derived using
the same procedure as in Eq. (2.35) and (2.36). By applying the Kronecker product to Kx,y and Cx,y,
the quadratic eigenvalue equations of three-body discretization reads

K(3b)ψ + kC(3b)ψ + k2M (3b)ψ = 0, where

K(3b) = Kx ⊗ Iy + Ix ⊗Ky + V,

C(3b) = Cx ⊗ Iy + Ix ⊗ Cy,

M (3b) is a diagonal matrix with diagonal entries equal to − 1/2.

(2.37)

Eq. (2.37) formulates the QEP of 1D three-body problems to be solved by our research. The eigenvec-
tor

ψ = {ψ0,0, ψ0,1, · · · , ψ0,Ny , ψ1,0, · · · , ψNx,Ny}T . (2.38)

corresponds to the wave function ψ(x⃗, y⃗) in Eq. (1.5) evaluated at the grid points (x(i), y(j)), yielding
the entries ψi,j = ψ(x(i), y(j)) with i = 0, 1, · · · , Nx and j = 0, 1, · · · , Ny. Here V = v0(F+ + F−) is a
diagonal matrix resulting from evaluating the potential function f(|x⃗ ± y⃗/2|) at the corresponding grid
points. It is worth noting that on the domain boundary, no potential term should be considered. But
for simplicity, the situation of the potential on the boundary points is not taken into consideration when
evaluating f(|x⃗± y⃗/2|) in this context. This is because the potential function approximates zero on the
boundary points when the cutoff distance is sufficiently large.

Some remarks on the discretization of the three-body problem: The discretization we employ in this
subsection actually leads to an overdetermined problem. Indeed, the idea behind Eq. (2.33) and (2.34)
is that the three-body resonant system simultaneously satisfies both the Schrödinger equation and the
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Siegert boundary conditions on boundaries. The multiple constraints give rise to an overdetermined
problem. In this case, the mass matrixM is nonsingular, indicating that all eigenvalues of the QEP are
finite. The application of the Kronecker product transforms the dense problem of a two-body system
into a sparse problem, leading to a significant expansion in the problem size. This transformation
enables us to solve the higher dimensional problem, thereby increasing the computational complexity
and memory requirements for solving the problem. But things are not that bad. For two dense matrices
A ∈ Rn×m and B ∈ Rp×q, if T = A ⊗ B has a tensor structure, we only need to save A and B. This
only occupies

constant · (nm+ pq) bytes,

while storing the full matrix needs constant·(nmpq) bytes. In Chapter 4, we will further demonstrate how
to exploit the tensor structure of the operators to significantly reduce the computational complexity.



3
Quadratic Eigenvalue Problems

Our focus now turns to exploring strategies for solving the quadratic eigenvalue problems proposed
previously. A key goal of the research is to develop an efficient solver to solve the QEPs. We will
start by introducing a classical approach called linearization for solving QEPs, which transforms the
quadratic problem into a generalized eigenvalue problem. Following the linear transformation, we apply
the Jacobi-Davidsonmethod, an iterative eigensolver, to solve the linearized problem. As an alternative,
we could also use the Jacobi-Davidson method to approximate eigenpairs of the quadratic eigenvalue
problem directly. In this chapter, we provide an outline of the Jacobi-Davidson process for solving both
linear and quadratic problems.

3.1. Linearization
A quadratic eigenvalue problem is equivalent to a generalized eigenvalue problem or pencil, (A,B).
The equivalence transformation is called linearization [12, 32], which is a conventional approach to
compute quadratic eigenvalue problems. By means of linearization, we can transform the quadratic
eigenvalue problem to a linear eigenvalue problem. In this section we discuss more details about such
transformation including the basic scheme and its advantages and drawbacks.

Let’s consider a quadratic eigenvalue problem in the form of

λ2Mp+ λCp+Kp = 0 (3.1)

The quadratic eigenvalue problem (3.1) can be transformed to an equivalent generalized eigenvalue
problem

Ax = λBx. (3.2)

Such transformation is called linearization, the most common and direct way to solve a QEP. If a QEP
has some special structure, such as symmetry, the linearization can also have a related structure [32].
A standard linearization technique is shown below.

By considering [λp, p]⊤ as the eigenvector instead of p, Eq.(3.1) accompanied by the identity λp =
λp gives the system [

−C −K
I O

] [
λp
p

]
= λ

[
M O
O I

] [
λp
p

]
, (3.3)

where I and O denote the identity matrix and zero matrix respectively. If M is invertible, Eq.(3.3) can
be reduced to a standard eigenvalue problem[

M−1 O
O I

] [
−C −K
I O

] [
λp
p

]
= λ

[
λp
p

]
. (3.4)

20
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Eq.(3.3) has several different variants. One can multiply (3.3) by a matrix
[
I O
O −K

]
from left and derive

a symmetric formulation [
C K
K O

] [
λp
p

]
= λ

[
−M O
O K

] [
λp
p

]
. (3.5)

One can also move −C in Eq.(3.3) to the right side,[
O −K
I O

] [
λp
p

]
= λ

[
M C
O I

] [
λp
p

]
. (3.6)

The advantage of Eq.(3.5) is that ifK andC are symmetric, then (3.5) is symmetric pencils. Regrettably,
the formulations presented in (3.4), (3.5), and (3.6) do not apply to our problem. In Subsection 2.2.1,
we have demonstrated the singularity of the mass matrix, rendering it non-invertible. Consequently, it
is impossible to reduce our QEP to Eq. (3.4). Furthermore, the lack of symmetry in the stiffness matrix
prohibits the utilization of symmetric pencils (3.5) and (3.6). As a consequence, in our problem, we are
confined to utilizing the generalized linearization given by Eq. (3.3).

Implementing linearization such as Eq. (3.3) is easy, but has a significant drawback that doubles
the matrix size. When dealing with problem sizes that are not large, one can simply employ the QZ
decomposition method, such as utilizing the eig command in MATLAB, to effectively solve Eq. (3.3).
However, in situations where the problem size is large, employing iterative eigensolvers becomes more
efficient and preferable. Some Krylov-based iterative solvers, such as Arnoldi’s or Lanczos’s method
with a shift-and-invert strategy, exhibit decent performance when computing the exterior eigenvalues of
large systems, particularly for sparse systems. Besides the Arnoldi method (AR), there is another op-
tion for solving QEPs called the Jacobi-Davidson method. The Jacobi-Davidson method was originally
designed for solving standard eigenvalue problems but could be extended for solving generalized and
quadratic eigenvalue problems. [31] compared the running time of the JD method and the AR method
on different problem sizes and concluded that JD is globally more efficient than AR, especially when
the problem size is large and a small number of eigenpairs are sought for. Considering the size of our
problem and the limited number of desired eigenpairs, we have chosen to use the Jacobi-Davidson QZ
algorithm, a variant of the JDmethod, to approximate the eigenvalues of the linearized eigenvalue prob-
lem. Furthermore, besides JDQZ we will customize the JD method to solve the quadratic eigenvalue
problem directly without any reduction. In the next section, we will provide all the necessary ingredients
about the family of the Jacobi-Davidson method necessary for our research.

3.2. Jacobi-Davidson method
The Jacobi-Davidson method [2, 6, 26] is an iterative algorithm solving eigenvalue problems by iter-
atively approximating certain eigenvectors. The basic idea is to look for the best approximations to
the eigenvectors in some search space. An excellent merit of the JD algorithm is that no inverting
operations are involved and the computational cost of every single iteration is fairly small when the di-
mension of the search space is not big. This nature makes the JD method quite efficient in parallelism
and solving large eigenvalue problems.

The Jacobi-Davidson algorithm can be divided into two parts, the Davidson algorithm and the Ja-
cobi correction part, which will be introduced in the following Subsection 3.2.1 and 3.2.2 respectively.
Although the JD method was initially proposed to solve standard eigenvalue problems, some exten-
sions are addressing generalized and polynomial eigenvalue problems. JDQZ algorithm [11], one of
the variants essential for solving generalized eigenvalue problems, is introduced in Subsection 3.2.3.
Then in Subsection 3.2.4 we will show the possibility of using the JD algorithm to directly solve quadratic
eigenvalue problems. Towards the end, an additional technique called preconditioning is discussed as
a means to improve the convergence speed of the Jacobi-Davidson iteration.

3.2.1. The Davidson algorithm
Before quadratic eigenvalue problems, let’s first consider a standard eigenvalue problem

Ax = λx. (3.7)
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We Let v1, · · · , vm be a set of orthonormal vectors which spans the search space R(Vm) with Vm =
[v1, · · · , vm]. In the Davidson algorithm we desire some vectors s ∈ Cm satisfying

AVms− θVms ⊥ v1, · · · , vm. (3.8)

(3.8) is called the Galerkin condition, leading to a smaller eigenvalue problem

V ∗
mAVms = θV ∗

mVms. (3.9)

The solutions to Eq. (3.9), the eigenpairs (θ
(m)
j , s(m)

j ), j = 1, · · · ,m, are called Ritz pairs.

The Ritz value θ(m)
j , along with the corresponding Ritz vector uj = Vms(m)

j , can approximate the
true eigenpairs of Eq.(3.7). Usually, we are looking for the largest or smallest eigenvalue in which case
j = 1 or j = m respectively. To evaluate how well the approximation is, compute the residual

rj = Auj − θjuj . (3.10)

We always pursue a smaller residual norm ∥rj∥. Expanding the dimension of the search space is one
way. To determine the basis vector used for expanding Vm, one can compute a vector t from

(DA − θjI)t = rj , (3.11)

where DA is the diagonal of the matrix A. Vm+1 is obtained by orthogonalizing t against Vm. The
Davidson algorithm is given by following algorithm 1.

Algorithm 1 The Davidson algorithm
Input: initial vector v1 with ∥v1∥ = 1, V1 = [v1]
for j = 1, 2, · · · do

B = V ∗
j AVj

Compute the largest eigenvalue θ of B
and the corresponding eigenvector s with ∥s∥ = 1
u = Vjs
r = Au− θu
t = (DA − θI)−1r
t = t− VjV

∗
j t

vj+1 = t/∥t∥
Vj+1 = [Vj , vj+1]

end for

3.2.2. The Jacobi orthogonal component correction
The Davidson algorithm works very well in searching dominant eigenvalues of diagonally dominant
matrices. In addition to it, Jacobi gave a method for improving the eigenvector approximations. In [26],
an iterative projection method was developed by combining the Davidson method with the Jacobi im-
provement, by Sleijpen and van der Vorst. Here we provide a concise explanation of the fundamental
concept of the Jacobi component within the Jacobi-Davidson algorithm.

We again denote an approximation to the real eigenvector x of A by uj and let θj be the Ritz value
corresponding uj . We improve uj by a vector t orthogonal to uj such that

A(uj + t) = λ(uj + t). (3.12)

(3.12) is called the Jacobi orthogonal component correction. If ∥uj∥ = 1 and Eq.(3.12) can be split into
two parts:

parallel to uj : uju∗
jA(uj + t) = λuju∗

j (uj + t), (3.13)
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and

orthogonal to uj : (I − uju∗
j )A(uj + t) = λ(I − uju∗

j )(uj + t). (3.14)

Given θj = u∗
jAuj and u∗

juj = 1 one can rewrite Eq.(3.14) as

(I − uju∗
j )(At− λt) = (I − uju∗

j )(−Auj + λuj)

= −(I − uju∗
j )Auj = −(A− θjI)uj =: −rj .

λ, as the real eigenvalue of A, is of course unknown, so we replace λ by θj . As (I − uju∗
j )t = t, we

can derive the Jacobi-Davidson correction equation

(I − uju∗
j )(A− θjI)(I − uju∗

j )t = −rj = −(A− θjI)uj , t ⊥ uj . (3.15)

The correction equation (3.15) is by convention solved by iterative solvers such as the generalized
minimal residual method (GMRES) usually in low accuracy. Once we solve (3.15), we derive t as the
improvement of the Ritz pair (θj ,uj). In the Jacobi-Davidson method, the search space Vm which yields
the Ritz pair is expanded by t, the solution of the correction equation. The next Ritz pair is determined
by the expanded search space.

Algorithm 2 The Jacobi-Davidson algorithm computing a single eigenpair of A closest to a target value
τ

Input: initial vector t
V0 = [ ], V A

0 = [ ], m = 0
while stopping criterion not met do

for i = 1, · · · ,m− 1 do
t = t− (v∗i t)vi ▷ orthogonalization

end for
vm = t/∥t∥, vAm = Avm, Vm = [Vm−1, vm], V A

m = [V A
m−1, vAm]

for i = 1, · · · ,m do
Mi,m = v∗i vAm,Mm,i = v∗mvAi ▷ M = V ∗

mAVm
end for
Compute the eigenvalue θ ofM which is closest to the target τ
Compute the corresponding eigenvector s: Ms = θs, ∥s∥ = 1 ▷ Rayleigh-Ritz
u = Vms, uA = V A

ms, r = uA − θu
if ∥r∥ <tol then

return λ = θ, x = u
end if
if m = mmax then ▷ restart

Vmmin = VmS:,1:mmin , where S:,1:mmin is composed of mmin eigenvectors computed in
Rayleigh-Ritz step whose corresponding eigenvalues are closest to the target τ

end if
(Approximately) solve the correction equation for t
(I − uu∗)(A− θI)(I − uu∗)t = −r, t ⊥ u

end while

Algorithm 2 gives a basic framework of the Jacobi-Davidson algorithm. Note that in algorithm 2 we
introduce an operation called restart. Since the dimension of the search space Vm is larger and larger
with iterations, it is necessary to limit the dimension of Vm, otherwise, the consumption of computation
and memory resources could be extremely huge after many iterations. As long as the dimension m
reaches mmax, we replace Vm with a matrix composed of mmin Ritz vectors corresponding to the Ritz
values closest to the target τ .

Till now the whole Jacobi-Davidson process we’ve discussed can only compute a single eigenpair
of a standard eigenvalue problem. Different from Arnoldi, Jacobi-Davidson can converge very rapidly
to an eigenvalue closest to the target but on the other hand, can only find one eigenpair at a time. How-
ever, one is often interested not only in one but in several eigenpairs. A popular solution is to render
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converged eigenvectors harmless by deflation. To implement the deflation, we need to work with the
Schur decomposition.

Let’s consider an orthonormal basis v1, · · · , vm of the current search space Vm. Suppose there is
a matrix C given by

C = V ∗
mAVm,

and the Schur factorization of C is

CU = US, (3.16)

where U is an orthonormal matrix and S is an upper triangular matrix. By reordering S such that |sii−τ |
is non-increasing, the first diagonal entry of S represents the approximate eigenvalue closest to the tar-
get τ . And the corresponding columns of VmU span an approximation to the invariant subspace of A
corresponding to these eigenvectors. The decomposition (3.16), A(VmU) = (VmU)S, can be used in
a restart if one discards the columns of S and VmU corresponding to the undesired sii.

Now let’s work on expanding the search space. Assume that a partial Schur form AVm = VmRm is
known which we want to complement by a new column v such that

A
[
Vm v

]
=

[
Vm v

] [Rm s
0 λ

]
, Vm ⊥ v, (3.17)

which is equivalent with

AVm = VmRm,

Av = Vms+ λv, V ∗
mv = 0.

(3.18)

Multiplying the second equation of (3.18) with V ∗
m yields

V ∗
mAv = V ∗

mVms+ V ∗
mλv = s. (3.19)

Insert Eq.(3.19) into the second equation of (3.18), we get

Av = VmV
∗
mAv+ λv, (3.20)

that is

(A− λI)v = VmV
∗
mAv. (3.21)

From V ∗
mv = 0 we can write

(A− λI)VmV
∗
mv = 0, (3.22)

which leads to

(A− λI)(I − VmV
∗
m)v = VmV

∗
mAv. (3.23)

From Eq.(3.23), we can obtain

(I − VmV
∗
m)(A− λI)(I − VmV

∗
m)v = 0. (3.24)

Eq.(3.24) demonstrates that the new pair (v, λ) is an eigenpair of

Ã = (I − VmV
∗
m)A(I − VmV

∗
m), (3.25)

which can be determined by the Jacobi-Davidson algorithm again. With the deflation (3.25), the correc-
tion equation we need to solve for t is adapted to

(I − uu∗)(I − VmV
∗
m)(A− θI)(I − VmV

∗
m)(I − uu∗)t = −r, (3.26)
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where (θ,u) is the current Ritz pair.

So far we have gone through almost all necessary ingredients of the Jacobi-Davidson method for
our research. The algorithm scheme discussed above is the foundation of other variants aiming for
different kinds of eigenvalue problems. For generalized eigenvalue problems, we can apply one of the
variants called the JDQZ algorithm which computes a partial QZ decomposition through the JD process.
More complex nonlinear problems such as quadratic eigenvalue problems can also be addressed by
means of a variant of the JD method. In the following subsections, we will introduce these variants
separately.

3.2.3. JDQZ algorithm for generalized eigenvalue problems
There is a variant of Jacobi-Davidson called JDQZ [2, 11] that computes a partial QZ decomposition of
the stencil (A,B) for the generalized eigenvalue problem

Ax = λBx. (3.27)

Let λ = α/β for some α and β. The generalized eigenvalue equation (3.27) is equivalent to

(βA− αB)x = 0, (3.28)

where we can denote the eigenvalue of the matrix pair (A,B) as a pair of (α, β). Eq.(3.28) emphasizes
the symmetry of the roles of A and B.

A partial generalized Schur form (sometimes called QZ decomposition) [13] of dimension k for a
matrix pair (A,B) of size n is defined by the factorization:

AQk = ZkR
A
k , BQk = ZkR

B
k , (3.29)

where Qk and Zk are unitary n × k matrices (the complex analogue of orthogonal matrices) and RA
k

and RB
k are upper triangular k × k matrices. A column qi of Qk is referred to as a generalized Schur

vector, and we refer to a pair ((αi, βi),qi), with (αi, βi) = (RA
k (i, i), R

B
k (i, i)) as a generalized Schur

pair. It follows that if ((α, β), y) is generalized eigenpair of (RA
k , R

B
k ), then ((α, β), Qky) is a generalized

eigenpair of (A,B).

From the partial Schur decomposition (3.29) we can derive

βiAqi − αiBqi ⊥ zi.

After setting a Petrov-Galerkin condition to construct reduced systems, we choose the approximate
eigenvector u for each iteration from a j-dimensional search subspace span(Vj) = span{v1, · · · , vj}.
With the approximate eigenvector u and generalized pair (η, ζ), the residual ηAu− ζBu is required to
be orthogonal to some other well-chosen test subspace span(Wj) = span{w1, · · · ,wj},

ηAu− ζBu ⊥ span(Wj). (3.30)

This requirement leads to a projected generalized j × j eigenproblem

(ηW ∗
j AVj − ζW ∗

j BVj)s = 0. (3.31)

The j-dimensional pencil ηW ∗
j AVj−ζW ∗

j BVj can be reduced by the QZ algorithm to generalized Schur
form, which leads to orthogonal j × j matrices SR and SL and upper triangular j × j matrices TA and
TB such that

(SL)∗(W ∗
j AVj)S

R = TA,

(SL)∗(W ∗
j BVj)S

R = TB .
(3.32)

This decomposition can be reordered such that the first column of SR and the (1,1)-entries of TA and
TB represent the wanted Petrov solution. With s := sR1 := SRe1 and ζ := TA

1,1, η := TB
1,1, the Petrov

vector is defined as

u := Vjs = VjsR1 (3.33)
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for the associated generalized Petrov value (ζ, η). Similarly, we can define a left Petrov vector as

p :=WjsL1 , sL1 := SLe1. (3.34)

If Vj and Wj are unitary, then ∥sR∥2 = ∥sL∥2 = 1 implies ∥u∥2 = 1. With the decomposition in (3.32),
we construct an approximate partial generalized Schur form: VjSR approximates a Qk, and WjS

L ap-
proximates the associated Zj .

Now the choice of the test spaceWj is still not clear to us. ChooseWj such that span(Wj) coincides
with span(ν0AVj + µ0BVj) for some proper ν0 and µ0. With the weights ν0 and µ0 we can influence
the convergence of the Petrov values. If we want eigenpair approximations for eigenvalues λ close to
a target τ , then the choice

ν0 =
1√

1 + |τ |2
, µ0 = −τν0

is quite effective, especially when we desire eigenvalues in the interior of the spectrum of A−λB. The
Jacobi-Davidson correction for the component t ⊥ u for the pencil ηA− ζB is given by

(I − pp∗)(ηA− ζB)(I − pp∗)t = −r, r := (ηA− ζB)u. (3.35)

Similar to the original Jacobi-Davidson algorithm, the correction equation is typically solved with a
preconditioned iterative solver to obtain an approximate vector t. This vector is then utilized to expand
Vj , while ν0Av+µ0Bv is used to expandWj . And a modified Gram-Schmidt orthogonalization process
is applied to make sure the new columns are all orthonormal to the current basis. JDQZ algorithm
also possesses a restart process. Similar to the JD process, in order to reduce the dimension of the
subspaces to jmin < j, we impose such restart operation:

V = [V sR1 , · · · , V sRjmin
], W = [WsL1 , · · · ,WsLjmin

],

where V sR1 , · · · , V sRjmin
are the jmin most promising Petrov vectors.

Besides restart, in JDQZ the converged Petrov (analogy to Ritz for JD) can also be deflated. To
obtain the partial generalized Schur form, we proceed as follows. Suppose we have already computed
the partial generalized Schur form AQk−1 = Zk−1R

A
k−1 and BQk−1 = Zk−1R

B
k−1. We expand this

partial generalized Schur form with the new right Schur vector u and the left Schur vector p to

A
[
Qk−1u

]
=

[
Zk−1p

] [RA
k−1 a
0 α

]
(3.36)

and

A
[
Qk−1u

]
=

[
Zk−1p

] [RB
k−1 b
0 β

]
. (3.37)

The new generalized Schur pair ((α, β),u) satisfies

Q∗
k−1u = 0, (βA− αB)u− Zk−1(βa− αb) = 0.

Algorithm 3 illustrates the process of the Jacobi-Davidson algorithm computing a partial QZ decom-
position for a general matrix pencil (A,B). In the algorithm the generalized Schur pairs ((α, β),u), for
which the ratio β/α is closest to a target τ , is computed. The vectors a and b can be computed from

a = Z∗
k−1Au, b = Z∗

k−1Bu. (3.38)

The generalized Schur pair ((α, β),u) is an eigenpair of the deflated matrix pair

((I − Zk−1Z
∗
k−1)A(I −Qk−1Q

∗
k−1), (I − Zk−1Z

∗
k−1)B(I −Qk−1Q

∗
k−1)). (3.39)

This eigenproblem can be solved again with the JDQZ algorithm. With the deflated matrix pair (3.39),
we simplify the computation of the interaction matricesMA andMB :

MA =W ∗(I − Zk−1Z
∗
k−1)A(I −Qk−1Q

∗
k−1)V =W ∗AV,

MB =W ∗(I − Zk−1Z
∗
k−1)B(I −Qk−1Q

∗
k−1)V =W ∗BV.

(3.40)



3.2. Jacobi-Davidson method 27

Algorithm 3 The Jacobi-Davidson QZ algorithm computing kmax eigenvalues closest to a target value
τ for the generalized eigenvalue problem
This algorithm computes kmax eigenvalues of αAx = βBx closest to the target τ .
Input: initial vector v0
t = v0, k = 0, ν0 = 1/

√
1 + τ2, µ0 = −τµ0, m = 0

Q = [ ], Z = [ ], S = [ ], T = [ ]
while k < kmax do

t = t− VmV
∗
mt ▷ Orthogonalization

m = m+ 1, vm = t/∥t∥, vAm = Avm, vBm = Bvm, w = ν0vAm + µ0vBm
w = w− ZkZ

∗
kw ▷ Orthogonalization

w = w−Wm−1W
∗
m−1w ▷ Orthogonalization

wm = w/∥w∥

MA =

[
MA W ∗

m−1vAm
w∗

mV
A
m−1 w∗

mvAm

]
,MB =

[
MB W ∗

m−1vBm
w∗

mV
B
m−1 w∗

mvBm

]
Compute the QZ decompositionMASR = SLTA andMBSR = SLTB such that |TA

i,i/T
B
i,i − τ | ≤

|TA
i+1,i+1/T

B
i+1,i+1 − τ | ▷ Rayleigh-Ritz

u = V sR1 , p =WjsL1 , uA = V AsR1 , uB = V BsR1 , ζ = TA
1,1, η = TB

1,1

r = ηuA − ζuB , ã = Z∗uA, b̃ = Z∗uB , r̃ = r− Z(ηã− ζb̃)
while ∥r̃∥ < ϵ do

RA =

[
RA ã
0⊤ ζ

]
, RB =

[
RB b̃
0⊤ η

]
Q = [Q,u], Z = [Z,p], k = k + 1
if k = kmax then

return (Q,Z,RA, RB)
end if
m = m− 1
for i = 1, · · · ,m do

vi = V sRi+1, vAi = V AsRi+1, vBi = V BsRi+1, wi =WsLi+1, sRi = sLi = ei
end for
u = u1, p = w1, uA = vA1 , uB = vb1, ζTA

1,1, η = TB
1,1

r = ηuA − ζuB , ã = Z∗uA, b̃ = Z∗uB , r̃ = r− Z(ηã− ζb̃)
end while
if m ≥ mmax then

for i = 2, · · · ,mmin do
vi = V sRi , vAi = V AsRi , vBi = V BsRi , wi =WsLi

end for
v1 = u, vA1 = uA, vB1 = vB , w1 = p, m = mmin

end if
Q̃ = [Q,u], Z̃ = [Z,p]
Solve the correction equation for t: (I − Z̃Z̃∗)(ηA− ζB)(I − Q̃Q̃∗)t = −r

end while

3.2.4. JD algorithm for quadratic eigenvalue problems
Recall that the task of JDQZ in our research is to solve the generalized eigenvalue problem twice bigger
in size than the quadratic problem. Keeping this point in mind, one may ask if there is an alternative way
to solve the QEP directly without reducing the quadratic structure of the problem. Again, the Jacobi-
Davidson method provides us with such an opportunity. Here we introduce a variant of the JD algorithm
proposed in [12, 25] designed to search several eigenpairs of the quadratic eigenvalue problem.

In this thesis project, we will follow the idea of algorithm 4 to directly solve the quadratic eigenvalue
problem (2.27) by means of the JD method. Let us make a few comments on algorithm 4. As a starting
vector expanding the search space, t is at first normalized in M -norm, i.e. t∗M t = 1. If a proper
approximation of the desired eigenvector is known, we should take it as the initial vector. Otherwise,
we can make t a constant vector, of which all coefficients are equal to one. In the orthogonalization



3.2. Jacobi-Davidson method 28

step, rgs denotes repeated Gram–Schmidt orthogonalization which can stably compute an orthonormal
basis. Then in the Rayleigh-Ritz step, we compute the eigenpairs of the projected small QEP, θ2s +
θHCs + HKs = 0. We can apply the linearization approach discussed in Section 3.1 to solve the
equation. The size of the equation is equal to the dimension of the search space Vm. As the size is
not big, we can solve the projected QEP quickly. We usually regard the eigenpair with the smallest
eigenvalue or the nearest eigenvalue to the target as the most promising solution and take it as an
approximation to the real eigenpair.

Algorithm 4 The Jacobi-Davidson algorithm computing several eigenpairs of the quadratic eigenvalue
problem λ2Mp+ λCp+Kp = 0 closest to a target value τ
Input: initial vector t. Normalize t inM -norm
V0 = [ ], m = 0
while number of eigenvalues desired not met do

m = m+ 1, Vm = rgs(Vm−1, t) ▷ orthogonalization
Compute KVm, CVm,MVm
Compute the projected matrices HK = V ∗

mKVm,HC = V ∗
mCVm

Compute approximation to the desired eigenvalue θ and corresponding eigenvector
s of the projected problem θ2s+ θHCs+HKs = 0, ∥s∥ = 1 ▷ Rayleigh-Ritz
u = Vms
w = 2θMu+ Cu, r = θ2Mu+ θCu+Ku
if ∥r∥ <tol then

Accept the approximate eigenpair (θ,u)
Choose an approximation to the next eigenpair
Compute the residual r

end if
if m = mmax then ▷ restart

Vmmin
= VmS:,1:mmin

, where S:,1:mmin
is composed of mmin eigenvectors computed in

Rayleigh-Ritz step whose corresponding eigenvalues are closest to the target τ
end if
(Approximately) solve the correction equation for t (possibly with conditioner)
(I − (wu∗)/(u∗w))(θ2M + θC +K)(I − (uu∗)/(u∗u))t = −r, t ⊥ u ▷ correction

end while

As the subspace grows, solving the projected eigenvalue problem incurs higher storage and com-
putational cost, necessitating periodic restarts of the algorithm. The restarted search space consists of
the most promising solutions of the projected eigenvalue problem, i.e. the eigenvectors whose eigen-
values are closest to the target value. H. Voss (2007) [31] states that a restart destroys information
on the eigenvectors, particularly on the one the method aims at. To mitigate potential information loss,
[31] proposes a strategy of restarting only when a single eigenvector has converged while computing
several eigenpairs. However, in our algorithms, we maintain the approach of restarting regardless of
whether any eigenpair has converged. This is because it is not guaranteed that the algorithm can con-
verge to an eigenpair before running out of memory. This decision prioritizes reducing each iteration’s
computational burden and memory consumption over achieving faster convergence.

Once an eigenpair converges, we immediately choose another eigenpair as the next approximation.
A crucial problem the Jacobi-Davidson method faces when approximating multiple eigenvalues is how
to prevent the method from repeatedly converging to the same eigenvalue. Computing more than one
eigenvalue for large polynomial eigenproblems is a much harder task than for standard eigenvalue
problems. To avoid detecting eigenpairs that have been found by previous iterations, one effective
approach is to lock the detected eigenvectors within projectors, i.e. retain them in the search space.
The term ”locking” is employed to describe this technique later in the article. Later in the chapter
dedicated to numerical results, we will demonstrate the effectiveness of ”locking” in mitigating repetitive
convergence. Moreover, an alternative approach involves implementing a deflation strategy proposed
by [10]. Besides, one can filter the repeated eigenvalues by some special selection criterion [17].
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3.2.5. Preconditioning
The Jacobi-Davidson algorithm has a big disadvantage in that one has to solve the correction equa-
tion in every iteration. The efficiency of solving the correction equation (3.15)/(3.35) determines the
efficiency of searching good approximations of JD. Preconditioning of the correction equation can im-
prove the convergence speed of GMRES.

In the expansion of the search space, it is ensured that the Newton iterate is contained in the
expanded search space. Recall the correction equation of the quadratic Jacobi-Davidson algorithm

(I − wu∗

u∗w )T (θ)(I − uu∗

u∗u )t = −r = −T (θ)u, t ⊥ u, (3.41)

where

T (θ) = K + θC + θ2M.

Given t∗u = 0, the correction equation can be written as

T (θ)t− αw = −r, α =
u∗T (θ)t
u∗w .

By inserting T (θ)u = r into Eq. (3.42), we derive

t = −u+ αT (θ)−1w = −u+ αT (θ)−1T ′(θ)u. (3.42)

α is determined such that t ⊥ u. With this notation what we have to solve becomes T (θ)̃t = T ′(θ)u for
some t̃. From u = V s and t ⊥ u we can derive t̃ = T (θ)−1T ′(θ)u ∈ span{V, t}. Therefore, since in
the linear case the new search space span{V, t} contains the vector obtained by one step of inverse
iteration with shift θ and initial vector u, we can expect quadratic convergence of the resulting iterative
projection method if the correction equation is solved exactly [31].

However, when the problem size is large, it is infeasible to solve the correction equation exactly. As
indicated in [26], the equation does not need to be solved accurately. Instead, some iterative methods,
such as the generalized minimal residual method (GMRES), can be used to approximate the solution,
but the performance of the Jacobi Davidson algorithm depends highly on the convergence of the GM-
RES correction solver. In principle, to improve the rate of convergence of the GMRES algorithm, it
is useful to introduce a preconditioning matrix with a smaller condition number than the linear system
which is often performed through a matrix-free method. Considering the restriction to the orthogonal
complement of the current approximation u, usually we choose the preconditioner of the form

P̃ = (I − wu∗

u∗w )P (I − uu∗

u∗u ), P−1T (θ) ≈ I. (3.43)

In order to reduce the computational effort, P should possess easy invertibility. Consider a left precon-
ditioner P̃ , in every GMRES iteration we need to determine a vector z = P̃−1T̃w for some w where

T̃ = (I − wu∗

u∗w )T (θ)(I − uu∗

u∗u ).

Following u∗w = 0, T̃w is given by

T̃w = (I − wu∗

u∗w )T (θ)(I − uu∗

u∗u )w = y,

where y = (I − (wu∗)/(u∗w))T (θ)w. Computing z = P̃−1T̃w is equivalent to solving

P̃z = y. (3.44)

As z ⊥ u, z has to satisfy

(I − wu∗

u∗w )Pz = Pz− wu∗

u∗wPz = y, (3.45)
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The solution of Eq. (3.45) is given by

z = P−1y− αP−1w, where α = −u∗Pz
u∗w . (3.46)

With the constraint z∗u = 0, we can determine the scalar α by left-multiplying equation (3.46) with u∗.
Therefore,

α =
u∗P−1y
u∗P−1w .

Hence, in every step of the preconditioned GMRES we need to solve the linear system P ỹ = y. And
additionally we also have to solve the system P w̃ = w prior to the beginning of iteration. To conclude,
the workflow of approximating solution of the correction equation through preconditioned GMRES is as
follows:

1. Solve P w̃ = w for w̃ and compute µ = u∗w̃.
2. Solve P r̃ = r and set r̂ = r̃− u∗ r̃

µ w̃.
3. Apply GMRES solver with initial vector t0 = 0 to solve P̃−1T̃ t = −r̂. To perform preconditioning

in a matrix-free way, in each step determine z = P̃−1T̃p for any vector p according to

(a) y = (I − wu∗

u∗w )T (θ)p,
(b) solve P ỹ = y for ỹ,
(c) z = ỹ− u∗ỹ

µ w̃.

In order to solve the linear system P x̃ = x for x̃ exactly, P should be easily invertible in principle,
the choice of which depends on the problem T .



4
Parallelization

The linear algebra operations involved in the Jacobi-Davidson algorithm are highly suitable for paral-
lelization. The motivation for parallelization is primarily driven by the computational demands arising
from higher-dimensional problems. As three-body problems exhibit higher dimensions compared to
two-body problems, the size and complexity of the problem increase significantly. Consequently, it be-
comes beneficial to take advantage of parallel computing on supercomputers. In the present chapter,
we aim to showcase the intricate process of parallelizing the Jacobi-Davidson algorithm on supercom-
puters by explaining how we parallelize different linear algebra operations in the algorithm. We will
exploit the parallelism of the tensor formulation of three-body problems to implement an efficient oper-
ator application.

4.1. Implementation of parallelization
In Chapter 3, we have introduced two approaches to solving the quadratic eigenvalue problems: (1)
Linearization combined with some linear eigensolvers, such as Jacobi-Davidson QZ (Alg. 3). (2) The
nonlinear Jacobi-Davidson method (Alg. 4). However, we have argued that linearization doubles the
problem size and fails to preserve the tensor structure similar to the damping and stiffness matrices in
the linearized pencil. Therefore, we choose to parallelize the nonlinear Jacobi-Davidson algorithm to
solve the QEP arising from three-body problems.

The basic idea of parallelizing the algorithm involves dividing a computational task into smaller sub-
tasks, distributing them among multiple processing units, and executing them concurrently. Paralleliza-
tion aims to harness the collective processing power to solve the problem faster and more efficiently
than a sequential execution on a single processing unit. The clustering of processing units may share
the memory or use distributed memory. In our article, we will refer to the processing units using shared
memory as threads and those using distributed memory as processes separately. To leverage the
computational resource of multiple processes/threads, we need to utilize parallel computing libraries:

• Open Multi-Processing (OpenMP). OpenMP is an industry-standard API for shared-memory par-
allelism in multi-threaded programming. It allows developers to parallelize their code by adding
directives, pragmas, and function calls that enable automatic thread creation and management.
OpenMP simplifies parallel programming by providing a set of directives that indicate which parts
of the code should be executed in parallel.

• Message Passing Interface (MPI). MPI is a library interface for message-passing parallel comput-
ing. It enables the development of parallel applications that run on distributed-memory systems,
where multiple independent machines or processors are connected in a network. MPI supports
various communication primitives, collective operations, and synchronization mechanisms. With
MPI, programmers can create parallel applications by explicitly defining the communication pat-
terns and data exchanges between different processes.

easily

31
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We have developed a multi-processor, multi-threaded C++ implementation to enable efficient paral-
lelism for the three-body problem. In our program, multi-threaded computation is provided by OpenMP,
and multi-processor computation is facilitated by MPI. The source code of the implementation is avail-
able in the GitHub repository at https://github.com/MengZhaonan1998/q_3body_wave_hpc.git. We
employ the programming model of Single Program, Multiple Data (SPMD), a parallel programming
paradigm where a single program is executed by multiple processing units simultaneously, with each
processing unit operating on its own portion of the data. SPMD is commonly used in parallel computing
to achieve parallelism and exploit the computational power of multiple processors or compute nodes.
It leverages the inherent data-level parallelism in certain applications to improve performance by pro-
cessing multiple data elements in parallel.

In SPMD programming, the same instruction is executed simultaneously on different data elements
or separate domains. This approach is suitable for the Jacobi-Davidson method, where the same
operation needs to be applied to a large amount of independent data, specifically vectors or matrices.
More specifically, the primary focus for parallelization of the JD algorithm lies in parallelizing the linear
algebra operations, such as the initialization of the vector (init), the addition of scalar-vector product
(axpby), the scalar product (dot), matrix-vector multiplication (matvec), and so on. Following this idea,
during the program design phase, we extract the linear algebra operations as a library, facilitating
convenient parallelization of operations. The hierarchy of the whole program is illustrated by Fig. 4.1.

Figure 4.1: Architecture of the C++ implementation of the Jacobi-Davidson algorithm.

The arrow shown in Fig. 4.1 represents the dependencies between functions. We have a main func-
tion responsible for controlling the input arguments and output results, and it calls the Jacobi-Davidson
function. The Jacobi-Davidson algorithm, in turn, calls several other functions, such as GMRES or GS
orthogonalization. All these functions depend on a kernel library of linear algebra operations, which
includes all the necessary operations that can potentially be parallelized. In this way, we initially imple-
ment a sequential program. Subsequently, we can harness the power of parallel computing by making
modifications solely to the kernel library. By doing so, we can exploit parallelism without the need to
alter the overall structure of the program. This strategy allows for an efficient transition from a sequen-
tial implementation to one that fully capitalizes on the benefits of parallel processing.

Implementing parallelization of those linear algebra operations in shared memory environments is
relatively easy. For instance, to parallelize the loop of init, we simply add an OpenMP directive to enable
parallel execution:

1 #pragma omp parallel for
2 for (int i=0; i<n; i++)
3 x[i] = value;

Same for axpby:

https://github.com/MengZhaonan1998/q_3body_wave_hpc.git


4.2. Operator application for the 1D three-body problem 33

1 #pragma omp parallel for
2 for (int i=0; i<n; i++)
3 y[i] = (a * x[i] + b * y[i]);

When it comes to parallelism in distributed memory environments, the operations of init and axpby are
both automatically parallel among processors. That is because there is typically no need for data com-
munication among processors. Each processor can independently compute its portion of the operation
using its local data.

In contrast, when dealing with the scalar product operation, which involves the need to gather and
sum up the products from each processor/thread, an additional consideration called reduction arises.
Specifically, in the scenario of dot, it is necessary to perform a reduction operation in both shared
memory and distributed memory. To achieve this in shared memory, we can easily implement the
reduction operation using OpenMP’s reduction clause. On the other hand, in a distributed memory
environment, MPI provides a collective communication routine known as MPI_Allreduce.

1 #pragma omp parallel for reduction(+:local_res)
2 for (int i=0; i<n; i++)
3 local_res += x[i]*y[i];
4 MPI_Allreduce(&local_res, &global_res, 1, MPI_DOUBLE_COMPLEX, MPI_SUM, MPI_COMM_WORLD);

easily
The most challenging aspect of parallelizing the JD method lies in effectively implementing the

matvec operation, which involves the application of the stiffness matrix K, damping matrix C, and
mass matrix M to arbitrary vectors. This matvec operation is at the core of the implementation of the
Jacobi-Davidson algorithm, and its efficient parallelization is crucial for achieving significant speedup
and scalability. In the last subsection of Chapter 2, we have shown that in the 1D three-body problem,
M is a diagonal matrix, while K and C are sparse matrices possessing tensor structure. Therefore,
the application of M can be implemented through a simple scalar-vector product. However, applying
K and C is more intricate. In [27], a novel tensor product scheme is employed to minimize redun-
dant computations during the operator application for computing bound states of three-body problems.
The upcoming section will explore the feasibility of utilizing a similar tensor structure approach in our
operator application.

4.2. Operator application for the 1D three-body problem
Section 2.2.2 has demonstrated that the application of the Kronecker product transforms our problem
from a dense system to a sparse equation while preserving the tensor structure. The application of
Kronecker products allows us to avoid storing every entry of the sparsematrix and instead store only the
smaller dense matrices, which saves a significant amount of memory. In this section, we leverage the
tensor product to develop an efficient implementation of the operator application for the one-dimensional
three-body problem.

4.2.1. Tensor product scheme
The Kronecker product is utilized to formulate the three-body problem, resulting in sparse a stiffness
matrixK(3b) and a damping matrix C(3b) preserving a tensor structure. Based on the formulation of the
three-body problem discussed previously, our linear operator can be written in a general form

TV,a1,a2 = a1(B1 ⊗ I2) + a2(I1 ⊗B2) + V, (4.1)

where B1 and B2 correspond to the linear operators in the x and y coordinates, respectively, and V
is a diagonal matrix standing for potential (K(3b)) or zero (C(3b)). For example, in the context of the
stiffness matrix, B1 = Kx, B2 = Ky, and V is a diagonal matrix where its diagonal entries represent
the potential. The damping matrix can be obtained analogously, but note that there are no potential
terms V .

Thies et al. [27] propose an efficient implementation that utilizes dense matrix-matrix products to
apply the operator TV,a1,a2 to a vector w. This approach is highly recommended for us to adopt and
follow, as it offers a beneficial strategy for improving computational efficiency and saving memory. Let
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B1 ∈ RN1×N1 , B2 ∈ RN2×N2 , w ∈ RN1N2 , and W = reshape(w,N2, N1) denote the interpretation of w
as an N2 ×N1 matrix. We can then derive

TV,a1,a2 · w = reshape(a2B2 ·W + a1W ·BT
1 , N1N2, 1) + V · w, (4.2)

where the reshape operation is used to interpret the resulting N2 × N1 matrix as a vector of length
N1N2. It is worth noting that reshape does not involve any data movement. It is just a re-interpretation
of a vector as a matrix stored in column-major ordering and vice versa. If Nx = Ny = n, by adopting
a new approach, the storage requirement of the Hamiltonian operator in 1D is significantly reduced to
O(n2), which is a substantial improvement compared to the O(n3) storage requirement when utilizing
a sparse matrix format.

To parallelize the application of the linear operators, we use a column-wise distribution ofW from Eq.
(4.2) among the processes, while the dense matrices B1 and B2 are replicated on all processes. In our
codes, we first compute a2B2 ·W , followed by a1W ·BT

1 . Note that during the computation of a1W ·BT
1 ,

each processor has to access the entries ofW that are stored in other processors, resulting in the need
for data communication between the processors. We can avoid the idle time caused by communication
through the non-blocking operation. The computation steps carried out by each processor are as
follows:

1. Apply the potential to every local column ofW : V · w;
2. For each column ofWT , dispatch a non-blocking gather operation MPI_Iallgather;
3. Whenever a gather operation is finished for a local column ofWT , apply B2 to that column;
4. ComputeW ·BT

1 after the gather operation has been completed.

In our C++ implementation, the tensor product scheme discussed above is encapsulated as a mem-
ber function within an operator class. We instantiate the linear operators K and C with this operator
class, which contains various attributes, such as differentiation matrices and member functions for
operator application. The source code of the function of the parallel operator application is provided
below:

1 // y = Op*x = reshape(a1*C*X+a2*X*D', n*m,1)
2 void apply(const ST* v_in, ST* v_out)
3 {
4 int i,j,k;
5 ST ele;
6

7 // V*w
8 #pragma omp parallel for
9 for (i=0; i<loc_m*n_; i++) v_out[i] = V_[i] * v_in[i];
10

11 // non-blocking allgather operation
12 ST* vcol = new ST[m_*n_];
13 init(m_, vcol, 0.0);
14 MPI_Request request;
15 MPI_Iallgather(v_in, loc_m*n_, mpi_type, vcol, loc_m*n_, mpi_type, MPI_COMM_WORLD, &

request);
16

17 #pragma omp declare reduction(+:ST:omp_out+=omp_in) initializer (omp_priv=omp_orig)
18 #pragma omp parallel for reduction(+:ele)
19 for (i=0; i<loc_m; i++)
20 for (j=0; j<n_; j++)
21 for (k=0; k<n_; k++)
22 {
23 ele = a2_ * v_in[i*n_+k] * D_[j*n_+k];
24 v_out[i*n_+j] += ele;
25 }
26

27 MPI_Wait(&request, MPI_STATUS_IGNORE);
28

29 #pragma omp parallel for reduction(+:ele)
30 for (i=0; i<loc_m; i++)
31 for (j=0; j<n_; j++)
32 for (k=0; k<m_; k++)
33 {
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34 ele = a1_ * vcol[k*n_+j] * C_[(rank*loc_m+i)*m_+k];
35 v_out[i*n_+j] += ele;
36 }
37

38 delete [] vcol;
39 return;
40 }

easily
The provided source codes demonstrate that the original sparse matrix-vector product is decom-

posed into two dense general matrix-matrix products (gemm). However, to achieve better performance
and optimize the execution of the gemm, we can enhance our current implementation by replacing
it with the routines provided by highly optimized mathematical computing libraries. In most cases,
our naïve implementation of the matrix-matrix multiplication exhibits slower performance compared to
BLAS (Basic Linear Algebra Subprograms), which is a highly optimized mathematical computing library
widely used for efficient matrix operations. BLAS leverages specialized algorithms and optimizations
to maximize computational efficiency and take advantage of hardware-specific features, resulting in
faster matrix computations. Therefore, we choose to replace our trivial nested loop implementation of
matrix-matrix products with the more efficient ?gemm function provided by the BLAS library, where the
choice of ? depends on the data type. For example, sgemm is used for single precision (float), dgemm
for double-precision, and cgemm for complex single precision. In our case, when we are dealing with
complex double precision, we will utilize the zgemm function to ensure accurate and efficient matrix
computations. The adaptation of our original implementation is as follows:

1 // y = Op*x = reshape(a1*C*X+a2*X*D', n*m,1)
2 void apply(const ST* v_in, ST* v_out)
3 {
4 int i,j,k;
5 ST ele;
6

7 // V*w
8 #pragma omp parallel for
9 for (i=0; i<loc_m*n_; i++) v_out[i] = V_[i] * v_in[i];
10

11 // non-blocking allgather operation
12 ST* vcol = new ST[m_*n_];
13 init(m_, vcol, 0.0);
14 MPI_Request request;
15 MPI_Iallgather(v_in, loc_m*n_, mpi_type, vcol, loc_m*n_, mpi_type, MPI_COMM_WORLD, &

request);
16

17 cblas_zgemm(101, 111, 112, loc_m, n_, n_,
18 a2_, v_in, loc_m, D_, n_, 1.0,
19 v_out, loc_m);
20 MPI_Wait(&request, MPI_STATUS_IGNORE);
21 cblas_zgemm(101, 111, 111, loc_m, n_, m_,
22 a1_, C_+(rank*loc_m)*m_, loc_m, v_in, m_, 1.0,
23 v_out, loc_m);
24

25 delete [] vcol;
26 return;
27 }

easily
The tensor product scheme introduced in this subsection offers an efficient implementation for the

operator application. Beyond its benefits for operator application, the tensor structure can also be ex-
ploited for preconditioning. Recalling Subsection 3.2.5, it has been demonstrated that preconditioning
entails solving the linear system P w̃ = w, where P should approximate T (θ). In the upcoming subsec-
tion, we will show that when P ≈ T (θ) also possesses the tensor structure, an efficient algorithm can
be used to solve the linear system P w̃ = w.

4.2.2. Preconditioning for tensor operators
It is also possible to exploit the tensor structure in the implementation of preconditioning. In the last
subsection of Chapter 3, we introduce that the application of preconditioner P involves solving the
linear system P w̃ = w. P should be chosen such that it approximately matches T (θ) and ensures easy
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invertibility so that w̃ = P−1w can be computed easily. In the 1D three-body system, for some small
values of the potential depth v0, the stiffness matrixK can be approximated by Eq. (4.1) neglecting the
potential term v0(F+ + F−):

T0,a1,a2
= a1(B1 ⊗ I2) + a2(I1 ⊗B2), (4.3)

where B1 = Ky and B2 = Kx. T0,a1,a2 possesses the same tensor structure with the damping oper-
ator C(3b). We are able to preserve this tensor structure while adding stiffness and damping matrices
together with the diagonal mass matrix due to the bilinearity and associativity of the Kronecker product.
The resulting tensor provides an excellent approximation to T (θ). However, to lessen the computational
burden, we refrain from summing all matrices together to approximate T (θ) with P . Instead, we only
make P ≈ T (τ), where τ is the target value for the JD approximation. The rationale behind this choice
will be explained later in this subsection. If τ is set to 0, then T0,a1,a2 given by Eq. (4.3) corresponds
exactly to our preconditioner.

Once we have a preconditioner P in the formula of Eq. (4.3), the next step is to solve the linear
system with T0,a1,a2

and some right-hand side w. To improve the stability, some shift σ can be intro-
duced. For some scalar σ, the linear system (T0,a1,a2

− σI)w̃ = w can be solved through the Sylvester
equation

(B1 − σ1I)W +W (B2 − σ2I)T = B, (4.4)

whereB = reshape(b,Ny, Nx) and σ = σ1+σ2. The investigation of an optimal value for σ is beyond the
scope of our research study. To solve Eq. (4.4), we can employ the Bartels–Stewart algorithm (Alg. 5)
[4], a direct method for solving the Sylvester equation. It requires a Schur decomposition of the shifted
matrices B1,2 − σ1,2I, a combination of two dense matrix-matrix products, and a forward/backward
substitution with the Schur factors.

Algorithm 5 The Bartels–Stewart algorithm computing AX +XB = C

Input: A ∈ Rm×m, B ∈ Rn×n, C ∈ Rm×n

Output: X ∈ Rm×n

Compute the real Schur decompositions: R = UTAU , S = V TBTV
Set F = UTCV
Solve the system RY − Y ST = F , where T = UTXV using forward substitution on the blocks.
Set X = UY V T

Fortunately, we do not need to implement Alg. 5 by ourselves. In MATLAB, we can simply utilize
the built-in command sylvester to solve Eq. 4.4, which greatly simplifies the process and saves us time
and effort. In our C++ implementation, we take advantage of LAPACK (Linear Algebra Package) to
efficiently solve the Sylvester equation. LAPACK is a widely-used mathematical computing library that
provides a comprehensive set of routines for solving linear algebra problems. It is designed to efficiently
handle various numerical computations involving matrices, vectors, and linear equations. LAPACK
provides the ?trsyl routine (the ? represents either s for real single-precision, d for real double-precision,
c for complex single-precision, or z for complex double-precision) to solve the Sylvester equation for
real quasi-triangular or complex triangular matrices.

1 // approximate inverse operation, y = Op\b
2 void invapply(ST* b, ST* v_out)
3 {
4 lapack_int info;
5 double scale=1.0;
6 double* pscale = &scale;
7 vec_update(n_*m_, scale, b, v_out);
8 info = LAPACKE_ztrsyl(101, 'N', 'C', 1, m_, n_, C_, m_, D_, n_, v_out, m_, pscale);
9 }

ztrsyl requires the triangular matrices as inputs. We employ Schur decomposition to obtain the Schur
forms of B1,2 − σ1,2I. These Schur forms are then passed to ztrsyl. Now we can explain we only
make the preconditioner P approximate T (τ) instead of T (θ). Given that T (θ) depends on the Ritz
value θ, which varies with each JD iteration, it is necessary to compute the Schur decomposition in
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every iteration. However, by fixing the value at τ , the decomposition only needs to be computed once,
leading to significant computational savings.

4.3. Some remarks
It is worth noting that the parallel Jacobi-Davidson algorithm we have implemented exhibits a degree of
parallelism, but it is not entirely parallel throughout the entire iteration process. According to Algorithm
4, throughout the entire process of the Jacobi-Davidson iteration, each compute core is tasked with
solving the projected eigenvalue problem. Consequently, the linearization operation, as well as the
utilization of mathematical computing libraries to solve the linearized problem, are performed sequen-
tially by all compute cores. However, the impact of this sequential computation is mitigated due to the
relatively small size of the projected eigenvalue problem, which typically remains below the maximum
restart dimension. Consequently, the computational overhead incurred by the sequential computation
of solving projected QEPs is relatively modest.

Another significant computational aspect worth noting arises from the process of preconditioning.
As introduced in Subsection 4.2.2, the preconditioning step involves solving the Sylvester equation by
calling the LAPACK routine ?trsyl. In contrast to the projected QEP-solving process, where the prob-
lem size remains quite small, the preconditioning step involves much more computations. The need for
each compute core to call the LAPACK routine ?trsyl can indeed result in considerable computational
overhead, particularly because preconditioning is performed at each application of the linear operator
during the GMRES iterations. The application of the operator with preconditioning takes significantly
more time than the one without preconditioning. Therefore, one may question whether it is worthwhile
to perform preconditioning, considering the great amount of sequential computation involved. We are
now confronted with a trade-off between convergence speed and computational speed. It is notewor-
thy that the reduction of preconditioning’s computational time is attainable through the utilization of
OpenMP parallelism in LAPACK routines on shared memory machines. Regrettably, we have not har-
nessed the parallelism of ?trsyl until the completion of this thesis. Nevertheless, in Chapter 5, we will
show that sequential preconditioning remains advantageous as it helps reduce computational time by
expediting convergence significantly.

The numerical experiments of the parallel Jacobi-Davidson algorithm were performed on the Delft-
Blue supercomputer at TU Delft [1]. Each compute node of DelftBlue consists of two Intel-Xeon E5-
6248R processors with 24 cores and has 192 GB of RAM. Later in the second section of Chapter 5, we
will demonstrate that in our 1D three-body problem, we utilize up to 256 grid points individually along
both the x and y coordinates. That is to say, the size of each vector is 256×256, requiring exactly

256× 256× 16 Bytes (complex double)
1024× 1024

= 1 MB

of memory. It is obvious that we can fit thousands of vectors on a single compute node of DelftBlue.
Similarly, with respect to the efficiency of gemm operations, the operation is significantly far from be-
ing compute-bound on a single compute node. As a consequence, attempting to scale beyond one
compute node would yield limited benefits, despite the fact that the algorithm supports both shared and
distributed memory architectures.
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Numerical Results

The chapter on numerical results serves as a crucial part, presenting all outcomes derived from our
algorithms and addressing the research questions. We will showcase the numerical results obtained
from computing both quantum two-body and three-body problems, respectively. When addressing the
computation of two-body systems, we first introduce a special case, the Pöschl-Teller potential, as a
benchmark to meticulously verify the correctness of the numerical algorithm. Subsequently, we will
make use of a two-body test problem to evaluate the performance of our Jacobi-Davidson eigensolver.
After addressing the two-body problems, our focus shifts to the section dedicated to one-dimensional
three-body problems. The parallel Jacobi-Davidson algorithm introduced in Chapter 4 is utilized for
computing the resonant states of three-body problems.

5.1. Two-body problems
We commence by investigating quantum two-body problems, which are easier to address compared
with three-body systems. We formulate the quadratic eigenvalue equations following the process in-
troduced in Subsection 2.2.1. In Subsection 5.1.1, a two-body system featuring a special potential
called the Pöschl-Teller potential is introduced. This potential possesses analytical solutions for bound
states and resonant states [9], allowing us to compare them with our numerical results. This compar-
ison serves as a validation step to ensure the correctness of our numerical method. After verifying
the correctness, we extend our analysis to two-body systems with arbitrary Gaussian potentials. We
will discuss the research questions regarding the performance of eigensolvers in scenarios involving
Gaussian potentials in Subsection 5.1.2 and 5.1.3.

5.1.1. A nice benchmark: Pöschl-Teller potential
Typically, solving the stationary Schrödinger equation for two-body systems analytically is a challenging
task. However, the Pöschl-Teller potential stands as an exceptional case. Cevik et al. [9] demonstrates
that the Hamiltonian featuring the Pöschl-Teller potential exhibits a remarkable property: all the poles
of the S matrix associated with the purely outgoing boundary conditions, which reveal the energies and
momenta of bound, antibound, and resonance states, can be derived analytically and with absolute
precision. This is a very exceptional outcome since these poles can only be obtained by numerical
methods for the vast majority of worked potentials. As a result, the Pöschl-Teller potential can serve
as an ideal benchmark against which we can validate the accuracy of our numerical results.

The real hyperbolic Pöschl-Teller potential is given by

Vpt = − ℏ2

2m

α2λ(λ− 1)

cosh2 αx
, (5.1)

where α is a fixed constant while λ is a parameter. In the following analysis, we neglect the term ℏ2/2m
and focus solely on the dimensionless form of (5.1). There are three possibilities for λ each one giving
a different shape for the potential:

38
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• λ > 1, potential well,
• 1

2 ≤ λ < 1, low barrier,
• λ = 1

2 + il; l > 0, high barrier.

The justification for the assigned names comes from their shapes shown in Fig. 5.1. For the value
λ = 1 the potential vanishes. For integer values of λ, greater than one, it is well known that the
resulting potential is reflectionless.

Figure 5.1: Plot of the Pöschl-Teller potential for different values of λ: λ = 3.5 (well), λ = 0.6 (low barrier), λ = 0.5 + 2i (high
barrier).

The property of Hamiltonian with different λ has been well studied by [9]. It is shown that when
λ > 1, where λ is not an integer, there exists an infinite number of antibound poles, all of which are
situated in the negative region of the imaginary axis. A few bound states can be found in the positive
portion of the axis. When λ = 3.5, there are three bound states on the positive imaginary axis: 0.5i, 1.5i,
and 2.5i. Fig. 5.2a shows that the numerical solutions of our discretization can successfully converge
to the bound states. And the wave functions corresponding to the bound states are illustrated in Fig.
5.2b.
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(a)

(b)

Figure 5.2: (a) Absolute error between the numerical results and analytical solutions for three bound poles when λ = 3.5. (b)
Wave functions of three bound states.

It is shown in [9] that for the case of a low barrier, where 1
2 ≤ λ < 1, no bound states exist; instead,

anti-bound states can be detected. For λ = 0.75, the series of the anti-bound states is given by −0.25i,
−1.25i,−2.25i, · · · . Fig. 5.3a demonstrates the convergence of the numerical solution to the anti-bound
state −0.25i. On the other hand, the resonance poles only appear in the high barrier, when λ = 1

2 + il.
The S matrix has an infinite number of resonance poles that appear in pairs symmetrically located with
respect to the negative part of the imaginary axis. Assuming that l > 0, both series of pole solutions
can be written as:

k1(n) = l − i(n+
1

2
), k2(n) = −l − i(n+

1

2
), (5.2)
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where n = 0, 1, 2, · · · . For each value of n, solutions k1(n) and k2(n) give a pair of resonance poles.
Fig. 5.3b illustrates the convergence of the resonance poles towards ±2− 0.5i (k1,2(0)) as the number
of grid points increases, given λ = 1

2 + 2i.

(a)

(b)

Figure 5.3: (a) Absolute error between the numerical results and analytical solutions for the anti-bound pole −0.25i when
λ = 0.75. (b) Absolute error between the numerical results and analytical solutions for the resonance poles 2± 0.5i when
λ = 1

2
+ 2i.

Thus far, we can justify the capability of our numerical algorithms to identify resonance poles and
bound poles, as evidenced by the overlap between the analytic and numerical solutions of the Pöschl-
Teller two-body system. However, as indicated in Chapter 1, it is common for the majority of few-body
potentials to decay either exponentially (Gaussian shape) or polynomially (Lorentzian shape) as x→ ∞.
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The Pöschl-Teller potential, along with the square potential discussed in the beginning, is atypical and
uncommon for few-body potentials. As a result, in the following subsections, we will substitute the
potential with a Gaussian shape. To evaluate the performance of eigensolvers, we will utilize a two-
body problem featuring a Gaussian potential as a test case.

5.1.2. Answer to the research question: Comparison of eigensolvers
Now we extend our analysis from the investigation of the Pöschl-Teller potential to a more practical
two-body potential. We now consider two quantum particles bound by Gaussian potential given by

V (x) = −v0 exp(−x2). (5.3)

v0 represents the depth of the potential, the determination of which is beyond the scope of this article.
To test our eigensolvers, we simply make use of the value used by [27], v0 = 0.34459535 corresponding
to the two-body binding energy E(2)

0 = 10−1. In this two-body problem, we keep the implementation in
MATLAB. We have developed MATLAB implementations for two eigensolvers: linearization combined
with the Jacobi-Davidson QZ algorithm, and the nonlinear (quadratic) Jacobi-Davidson algorithm. To
compare the convergence speed and scalability of the two solvers, we apply both solvers to increas-
ingly larger problem sizes, with the maximum size reaching 2048. The performance comparison within
50 iterations is illustrated by Fig. 5.4 and 5.5. In addition to comparing JDQZ and JD, we also analyze
the performance difference between using preconditioning and not using preconditioning for separate
solvers. The preconditioner, which is analogous to the shifted Hamiltonian without potential employed
in [27], is the stiffness matrix K with some shifts ignoring the potential component. Preconditioning is
necessary, as shown in Fig. 5.4 and 5.5, particularly for JDQZ. Without the application of precondi-
tioning, JDQZ fails to converge entirely during the initial 50 iterations. Similarly, although the quadratic
Jacobi-Davidson algorithm may exhibit very slow convergence, it also fails to decrease the residual
norm when dealing with large problem sizes.

Some remarks regarding the settings of JDQZ and JD solvers are as follows: The tolerance to the
residual norm ∥r∥2 is set to 10−8. Considering that the correction equation does not require to be solved
very accurately, the maximum number of iterations for the GMRES solver is set to 30. To mitigate an
excessively large search space, we impose a restart restriction on the subspace dimension, limiting it
to a range between 10 and 30. The target for the approximation is set to 0 + 1i, the selection of which
is determined based on the pre-information obtained from the coarse grid. We employ MATLAB’s eig
command to solve a small quadratic eigenvalue problem obtained from the coarse grid. This allows us
to gain a first impression of the distribution of resonance poles. The position 0 + 1i is considered an
optimal location where resonance poles concentrate.

Problem size Number of eigenvalues detected
prec-JD prec-JDQZ

128 9 18
256 13 7
512 10 7
1024 9 6
2048 0 1

Table 5.1: Number of eigenvalues detected by 50 iterations of preconditioned JD and JDQZ.

Table 5.1 shows a comparison of the number of eigenvalues found below the tolerance by 50 itera-
tions of two solvers. We observe that for relatively smaller problem sizes, such as 128 grid points, the
JDQZ algorithm proves to be a favorable choice. However, as the problem size increases, on average,
the Jacobi-Davidson method is able to discover more eigenvalues within 50 iterations. Both solvers
require more than 50 iterations to converge when the number of grid points reaches 2048. When com-
paring the convergence rates of JD and JDQZ, determining the superior performer proves challenging.
Thus, we can only conclude that preconditioning remains essential for both quadratic JD and JDQZ in
terms of convergence speed. Nevertheless, the disparity in convergence speed between quadratic JD
and JDQZ diminishes when addressing large problem sizes. To further evaluate their performance, we
measure the computational time of both methods to assess if there is a significant difference.
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Figure 5.4: Convergence history of the quadratic Jacobi-Davidson method with and without preconditioning varying as the
problem size increases.
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Figure 5.5: Convergence history of the Jacobi-Davidson QZ method with and without preconditioning varying as the problem
size increases.
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Figure 5.6 illustrates the noticeable gap in computational time between preconditioned JD and
JDQZ. It is evident that JDQZ requires significantly more time to complete 50 iterations. The result
is not surprising since the generalized eigenvalue problem solved by JDQZ is twice the size of the
problem handled by JD, due to linearization. Moreover, JDQZ entails more operations, resulting in
a longer running time for a single iteration in comparison to JD, even when the problem sizes are
identical. Therefore, we can infer that the combination of linearization and the Jacobi-Davidson QZ
method is not efficient for solving the large-scale quadratic eigenvalue problem when contrasted with
the quadratic Jacobi-Davidson method. Note that our current focus has been on two-body problems.
Another fatal drawback of linearization is the infeasibility of leveraging the efficient tensor product of
the three-body problems. This is because the process of linearization reduces the order of the original
problem, destroying the tensor structure present in the stiffness and damping operators. As a result,
when tackling three-body problems, the preferred approach is to directly apply the Jacobi-Davidson
method to quadratic eigenvalue problems. As discussed in Chapter 4, our research solely focuses on
utilizing the Jacobi-Davidson method and investigating its parallelism for three-body problems.

Figure 5.6: The running times of JD and JDQZ computing 10 eigenvalues as a function of the grid size Nx.

In conclusion, the response to research question 2 is as follows: The convergence speeds of the
two eigensolvers, quadratic JD and JDQZ do not differ so much, making it challenging to definitively
determine the superior method. However, the difference in computational time between the solvers sug-
gests that the quadratic Jacobi-Davidson algorithm is a preferable choice, particularly for addressing
three-body problems. Furthermore, this subsection provides a partial answer to the research question
regarding preconditioning. Preconditioning proves essential for both solvers in accelerating the conver-
gence process. A more detailed examination of preconditioning in the context of three-body problems
will be presented in Section 5.2. The subsequent subsection will address research question 3: How
can the repeated detection of eigenvalues in the quadratic Jacobi-Davidson algorithm be mitigated?

5.1.3. Answer to the research question: Preventing repetition of eigenpairs
In Chapter 3, we discussed the potential risk of converging to the same eigenvalue multiple times dur-
ing the Jacobi-Davidson iterations. Several works aimed at solving this problem were referenced in
that chapter. In our JD algorithm, we have opted to employ a technique known as ”locking”, i.e. putting
already converged eigenvectors into the search space.

We compare the count of distinct eigenvalues found by a specific number of Jacobi-Davidson iter-
ations with both ”locking” and ”non-locking” techniques. The results of this comparison are outlined
in Tab. 5.2. Based on the table, it is evident that ”locking” proves beneficial in preventing repeated
convergence. As the problem size increases, all eigenvalues identified by ”locking” JD are distinct. Fur-
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thermore, it’s noteworthy that ”locking” also influences the total number of eigenvalues discovered. For
instance, when dealing with a problem size of 256, the ”locking” JD discovers 6 eigenvalues, whereas
the ”non-locking” JD finds 5, indicating 1 fewer eigenvalue compared to the ”locking” JD with the same
number of iterations.

Problem size
(Number of distinct eigenvalues)
(Number of eigenvalues detected)
locking non-locking

128 7/10 5/10
256 6/6 4/5
512 4/4 2/4

Table 5.2: Number of distinct eigenvalues detected by JD with ”locking” and ”non-locking” for various problem sizes.

The ”locking” technique has demonstrated its efficacy in preventing the convergence to the same
eigenvalue multiple times during JD iterations. In addition to ”locking”, we have also attempted to filter
out repeated eigenvalues using a specific selection criterion proposed by [17]. However, regrettably,
our implementation of this selection criterion did not lead to an improvement in the ratio of the number
of distinct eigenvalues to the total number of eigenvalues detected. For detailed information regarding
the implementation of the selection criterion, please refer to Appendix A.

5.1.4. Resonant states of arbitrary Gaussian potentials
While assessing the performance of the eigensolvers on the test problems, we concurrently obtain the
outcomes of converged eigenvalues. These eigenvalues hold physical interpretations, representing
resonance poles in the context of our study. Now we employ a sequence of grid sizes Nx to assess
the convergence of the eigenvalues. Figure 5.7 illustrates the convergence of the relative spatial dis-
cretization error

δE =
|E(Nx1)− E(2Nx1)|

|E(Nx1
)|

(5.4)

for four eigenvalues. The relative difference of the computed eigenvalues on successive grids continues
to decrease until it reaches a threshold of 10−8. Figure 5.7 displays two bound poles (0.4470i,−0.9402i)
and two pairs of resonance poles (±1.0899 − 1.6329i, ±1.6311 − 2.0835i) of a two-body system (v0 =
0.34459535). It is worth noting that the positions of these states depend on the potential depth v0. As
shown in Fig. 5.8, the eigenvalues exhibit an upward shift as the potential depth v0 transitions from 0
to 1. This observation highlights the sensitivity of the pole positions to variations in v0.

Figure 5.7: Relative spectral discretization error δE as the function of the grid size Nx.
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Figure 5.8: Motion of the states(eigenvalues) depending on v0.

5.2. Three-body problems in 1D
Now we shift our focus towards 1D three-body problems. We consider a test problem involving two
non-interacting heavy particles and a light particle with a mass ratio of α = M/m = 20, where the po-
tential exhibits a Gaussian shape. As discussed in the preceding sections, the computational resource
required for solving three-body problems experiences a rocket-up as a consequence of the increased
spatial dimensions involved. Therefore, we need to exploit parallel computing introduced in Chapter
4 to speed up the Jacobi-Davidson algorithm. This section aims to show the results of computing the
1D three-body problem on supercomputers and the performance of the parallel algorithm. We will ad-
dress research questions 4 and 5 separately in Subsection 5.2.1 and 5.2.2. Finally, we will present the
converged resonance poles of the 1D three-body test problems.

5.2.1. Answer to the research question: Preconditioning
For a coarse grid, it is usually easy for the Jacobi-Davidson algorithm to converge to several eigenval-
ues. However, when dealing with a much finer grid, such as (Nx, Ny) = (128, 128) or (256, 256), the
Jacobi-Davidson algorithmmay require hundreds of iterations to converge to one eigenvalue, especially
when the preconditioner is absent. Fig. 5.9 shows the convergence history of the Jacobi-Davidson
method on a (128, 128) grid. The algorithm takes 400 iterations to successfully detect two eigenvalues.
Therefore, in order to enhance the convergence of JD, we employ the approach outlined in Subsection
4.2.2, leveraging the Bartels-Stewart algorithm for preconditioning the correction equation within JD.
The preconditioner P is initially set to approximate K(3b) + σC(3b) + σ2M (3b), given by

P = (Kx + σCx)⊗ Iy + Ix ⊗ (Ky + σCy), (5.5)

where Kx and Cx are shifted slightly. Due to the lack of tensor structures in the mass operator M
and potential V , including both of them in our approximation can indeed be problematic and potentially
introduce complications. However, in practice, the approximation still proves to be effective and yields
satisfactory results. By fixing the approximation at the target value σ, we eliminate the need to compute
the Schur decomposition, which is required by the Bartels-Stewart algorithm, for varying matrices in
each JD iteration. This significant reduction in computational time leads to substantial time savings.
However, the effectiveness of P ≈ K(3b) + σC(3b) + σ2M (3b) diminishes as the number of iterations
increases. This fixed preconditioner fails to yield much acceleration for GMRES once a certain number
of eigenvalues have been converged. Therefore, when such a case arises, it becomes necessary to
replace σ in Eq. (5.5) with θ, representing the Ritz value in the current JD iteration. The new precondi-
tioner should be utilized for a certain number of iterations until it is no longer effective. By employing
this approach, we save computational time by avoiding the computation of the Schur decomposition for
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every operator application, while consistently achieving an effective preconditioner that ensures fast
convergence.

Figure 5.9: Convergence history of the Jacobi-Davidson algorithm on a (128, 128) grid.

Figure 5.10: Convergence history of 50 Jacobi-Davidson iterations with and without preconditioning on a (128, 128) grid.

In Chapter 4, we discussed the feasibility of harnessing shared-memory parallelism while utilizing
LAPACK for applying the preconditioner in our parallel JD implementation. However, regrettably, our
current implementation of the preconditioner application remains sequential and computationally inten-
sive. As a result, we appear to be faced with a trade-off between achieving shorter computational
times per JD iteration and achieving faster overall convergence. However, our practical experience
has demonstrated that despite the preconditioner increasing the running time of a single iteration, it ulti-
mately saves computational time by significantly reducing the number of iterations required to converge.
Fig. 5.10 illustrates the significant improvement in the convergence of JD achieved through precondi-
tioning. In contrast to the hundreds of iterations required for the non-preconditioned Jacobi-Davidson
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method to converge to a single eigenvalue, the application of preconditioning enables convergence to
several eigenvalues in just 50 iterations. In conclusion, the preconditioner inspired by the approach
outlined in [27] is highly effective in increasing the convergence speed and reducing the required com-
putational time. This result addresses research question 4.

5.2.2. Answer to the research question: Performance of parallelization
The numerical experiments of the parallel Jacobi-Davidson algorithm were performed on the DelftBlue
supercomputer at TU Delft [1] with up to 64 CPU cores. Each compute node of DelftBlue consists
of 48 cores, so the program is at most run on two compute nodes with separate memory. In order
to investigate the convergence behavior of eigenvalues, we run the program separately on a grid of
different dimensions, including (Nx, Ny) = (32, 32), (64, 64), (128, 128), and (256, 256). Figure 5.11
displays how the running time of 50 parallel Jacobi-Davidson iterations depends on the number of
compute cores for various problem sizes.

Figure 5.11: Running time of 50 parallel Jacobi-Davidson iterations as a function of the number of compute cores for various
problem sizes.

Figure 5.11 proves a statement discussed in Chapter 4: The utilization of parallel computing does
not always yield advantages in terms of reducing computational time. When dealing with small problem
sizes, such as (Nx, Ny) = (32, 32) or (64, 64), the problem becomes highly memory-bound. The over-
head resulting from excessive memory traffic due to an abundance of compute cores outweighs the
benefits of reduced computational complexity per individual compute core. Consequently, as shown
in Fig. 5.11, the running time increases when an excessive number of compute cores are utilized for
(Nx, Ny) = (32, 32) or (64, 64).
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Figure 5.12: Speedup rate of the parallel Jacobi-Davidson algorithm for various problem sizes.

In the chapter on parallelization, we argued that the small size of a single vector allows us to fit
thousands of vectors on a single compute node of DelftBlue. As a consequence, the operation is sig-
nificantly far from being compute-bound and using more compute nodes yields limited performance
increases or even slower speeds. To provide a more direct illustration, we employ the concept of
speedup. Speedup in high-performance computing can be defined as the ratio of the time taken by se-
rial execution and the time taken for parallel execution. Figure 5.12 illustrates a decline in the speedup
rate when an excessive number of compute cores are employed for (Nx, Ny) = (32, 32) or (64, 64).
Additionally, we can anticipate that for (Nx, Ny) = (128, 128) or (256, 256), the speedup improvement
will gradually diminish as the number of compute cores surpasses 64.

5.2.3. Convergence of resonant states
Drawing inspiration from our previous endeavors in two-body problems, we utilize a series of grid sizes
(Nx, Ny) to evaluate the convergence behavior of the eigenvalues. We observe that the relative dis-
cretization error of three eigenvalues converges to a level within the tolerance of the eigensolver, set
at 10−6. This convergence implies that as the grid size increases, the numerical approximation of the
eigenvalues approaches the true values with a high degree of accuracy, satisfying the desired precision
criterion defined by the eigensolver’s tolerance.

Fig. 5.13 illustrates the convergence of three eigenvalues, which can be identified as the resonance
poles of the 1D three-body system. It’s important to note that the 1D three-body system we are address-
ing is not associated with any real physical model. Given that the primary focus of this thesis project
is the mathematical solver, an in-depth exploration of the physics underlying the three-body resonant
model has not yet been undertaken. Nonetheless, the convergence depicted in Fig. 5.13 highlights
the efficacy of our parallel Jacobi-Davidson algorithm in detecting resonant states within arbitrary 1D
three-body systems.
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Figure 5.13: Relative spectral discretization error δE as the function of the grid size (Nx, Ny).



6
Discussion and Conclusion

As we approach the culmination of our thesis project, we embark on the final chapter, which entails
a review and summary of the entire undertaking. This concluding chapter is divided into two main
sections: the discussion and the conclusion. The discussion section critically examines the outcomes
and shortcomings of our research, delves into the potential applications of the project, and explores
what can be done in the future. And then as the conclusion of this master’s thesis, we draw our final
remarks. With the final conclusion, we mark the end of our journey through this thesis project while
anticipating the new horizons that lie ahead.

6.1. Discussion
In this section, we engage in a comprehensive discussion that encompasses diverse facets of our re-
search, including the conclusion of research questions, limitations, potential applications, and avenues
for future exploration. This discussion section serves as a critical reflection on the outcomes of our
research.

6.1.1. Answers to research questions
Wehave successfully addressed all five research questions through the preceding chapters on research
methodology and numerical results. We now proceed to summarize the conclusions for each of the
questions:

1. Discretization of three-body equations

In Chapter 2, we presented the pseudo-spectral discretization method and demonstrated its appli-
cation in extending the two-body problem to the three-body problem using the Kronecker product.
However, due to the inclusion of the Siegert boundary conditions, a straightforward application
of the Kronecker product to the two-body discretization, as proposed in [27], is not feasible. Sub-
section 2.2.2 showed it necessary to adjust the discretization approach in order to maintain the
tensor structure of the operators while accommodating the boundary conditions.

2. Comparison of eigensolvers

In Subsection 5.1.2, we conducted a performance comparison between two eigensolvers: the
Jacobi-Davidson QZ algorithm and the quadratic Jacobi-Davidson algorithm. The JDQZ ap-
proach is utilized for solving the linearized eigenvalue problem, while the quadratic JD algorithm
directly addresses the QEP. Our numerical results demonstrate that although JDQZ and quadratic
JD exhibit similar convergence speeds and scalability, the computational time required by JDQZ
is significantly longer. Furthermore, the linearization technique applied to the three-body problem
disrupts the tensor structure of the operators, rendering the exploitation of the tensor product
scheme challenging during parallelization. Consequently, the quadratic Jacobi-Davidson algo-
rithm emerges as a more suitable method for addressing three-body problems.

52
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3. Preventing Repetition of Solutions

In order to circumvent the repetition of convergence to the same eigenpairs within the Jacobi-
Davidson iterations, we employed a strategy of incorporating all the converged eigenvectors into
the search space, which we term ”locking”. Our numerical results have validated the efficacy
of the ”locking” technique. Additionally, besides the ”locking” approach, we introduced a selec-
tion criterion proposed by [17] in Appendix A. This criterion is designed to selectively filter out
converged eigenpairs among all potential candidates.

4. Preconditioning

In the context of addressing three-body problems, we devised a preconditioning technique for
enhancing the convergence speed of the quadratic Jacobi-Davidson method. The preconditioner
draws inspiration from the one employed by [27]. The preconditioner is composed of the shifted
stiffness and damping matrices, both of which retain the tensor structure. This tensor structure en-
ables us to efficiently perform preconditioning by solving the Sylvester equation. As demonstrated
in Subsection 4.2.2, our preconditioning method is highly effective in significantly accelerating the
convergence speed of the Jacobi-Davidson iterations, resulting in substantial time savings.

5. Parallelization

To tackle the great computational demands inherent in three-body problems, we developed a par-
allel Jacobi-Davidson algorithm on the supercomputer DelftBlue. Chapter 4 provides an overview
of the conceptual framework behind the implementation of the parallel JD algorithm. The adoption
of a tensor product scheme serves to reduce the computational complexity of operator applica-
tion. Our numerical experiments were restricted to a maximum of 64 compute cores, given that
the problem dimensions remained relatively modest, and thus the problem remained distant from
being compute-bound. Subsection 5.2.2 delves into an analysis of the speedup achieved by the
parallel program. Our findings affirm that, for smaller problem sizes, employing an excessive
number of compute cores does not yield discernible benefits in terms of reducing computational
time.

6.1.2. Limitations
While our findings have yielded promising results, it is crucial to acknowledge that no research endeavor
is without its constraints. In the previous chapter, we presented a demonstration of the convergence
behavior of the absolute/relative error of resonance poles in two/three-body problems. It is also intuitive
that both the absolute error and the relative spectral error drop as the number of grid points increases.
However, we have never yet addressed another critical factor that can significantly impact the accuracy
of the numerical results: the cutoff.

Indeed, besides the grid points, the domain length can also influence the accuracy of numerical
results. As discussed in the introductory chapter, when computing resonant states, it is crucial to im-
pose a sufficiently large cutoff on the domain. This ensures that the potentials approach approximately
zero at the boundary points. However, a longer cutoff does not necessarily guarantee higher precision.
To prove the statement, we again conducted a numerical experiment on the high-barrier Pöschl-Teller
two-body system. The numerical results shown in Fig. 6.1 provide straightforward evidence. We com-
pare the numerical solutions with the analytic resonance poles 2 ± 0.5i in the case of a high barrier
(λ = 1

2 +2i). It can be observed from Fig. 6.1 that the algorithm achieves the lowest error with a cutoff
length of 15 when the grid is finer. Neither excessively long nor too short cutoff lengths result in better
accuracy. Similar observation also applies to more general two/three-body problems, such as those
involving Gaussian potentials.

Now the question remains: What is the optimal length for the cutoff? Additionally, what is the best
combination of the number of grid points and cutoff length for achieving the highest accuracy? Unfor-
tunately, our research has not encompassed this study due to the limited scope of our investigation.
However, exploring the influence of cutoff lengths and grid points on the accuracy of numerical results
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in the context of more general two/three-body problems with Gaussian or Lorentzian potentials could
be a promising avenue for future research.

Figure 6.1: Absolute error between the numerical results and analytical solutions for the resonance poles 2± 0.5i with varying
cutoff lengths.

Another noteworthy aspect of the research relates to parallelization. The most noteworthy instance
is the preconditioning step. We employ the ?trsyl function from LAPACK for preconditioning, which
inherently operates sequentially. Consequently, every preconditioner application within our parallel
Jacobi-Davidson program is executed sequentially. Notably, it is indeed viable to harness shared-
memory parallelism within LAPACK. However, as of the completion of this thesis, the parallel capabil-
ities of ?trsyl have not been exploited, which is a regrettable circumstance. We intend to rectify this
limitation by updating the parallel LAPACK function after the conclusion of this article.

The final deficiency pertains to the numerical experiments of parallel JD. In the final subsection of
Chapter 4, it was discussed that our parallel program supports both shared and distributed memory
paradigms through the utilization of OpenMP and MPI. However, the benefits of using more than one
compute node on multiple distributed memory are limited. This limitation arises from the relatively small
vector size, allowing thousands of vectors to be accommodated within the memory of a single compute
node in DelftBlue. As a result, the 1D three-body problem solved in this study remains significantly
below the compute-bound. Indeed, in our numerical experiments, we limit the number of grid points to
only 256 along both the x and y coordinates. Due to this relatively small size of the problem, the total
computational effort required by the 1D three-body problems in our experiments is a memory-bound
problem and does not necessitate nor yield significant benefits from utilizing supercomputing resources.
When our study is extended to higher dimensions, such as 2D three-body problems, the utilization of
supercomputing becomes more essential and potent.

6.1.3. Applications
The primary objective of this thesis is to develop an eigensolver capable of efficiently solving the
quadratic eigenvalue equations arising from quantum two/three-body problems. Throughout the pre-
ceding chapters, we have presented comprehensive evidence supporting the convergence capabilities
of our Jacobi-Davidson algorithm as the grid resolution is successively increased when applied to the
QEPs derived from pseudo-spectral discretization of few-body problems. In this thesis, our focus has
been on utilizing Gaussian potentials to describe the interactions between quantum particles when
assessing and testing our eigensolvers. However, the numerical algorithm we have developed is of
course not limited to Gaussian potentials alone. It possesses the capability to handle various other
potential options, including Lorentz potentials and even more complex potential forms, such as the
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Pöschl-Teller potential.

The versatility of the Jacobi-Davidson method extends beyond its application in computing resonant
states of quantum few-body systems with various potential terms. It can also be employed in a wide
range of other fields that involve quadratic eigenvalue problems. Quadratic eigenvalue problems arise
in diverse scientific and engineering disciplines, including the dynamic analysis of structural mechani-
cal and acoustic systems, electrical circuit simulation, fluid mechanics, and modeling microelectronic
mechanical systems [28]. The ability of our eigensolver to tackle such problems opens up possibilities
for its utilization in these domains. In particular, when the objective is to obtain only a limited number of
specific eigenvalues, our Jacobi-Davidson algorithm has demonstrated superior efficiency compared
to the conventional combination of linearization and linear eigensolvers.

Our C++ implementation of the parallel Jacobi-Davidson algorithm provides the opportunity to solve
large-scale quadratic eigenvalue problems on supercomputers with multi-core CPUs. Although our pro-
gram was initially designed for solving QEPs specifically arising from 1D three-body resonant problems,
it can be extended beyond this domain. The tensor product scheme we introduced can be extended to
tackle even higher-dimensional few-body problems, such as 2D three-body problems. By furnishing an
application programming interface to input stiffness, damping, and mass operators, our implementation
can be adapted to their solution. Our vision is to mold our parallel JD into a comprehensive computa-
tional toolkit, providing ease of use for researchers and practitioners in the field of quantum physics to
proficiently address large-scale eigenvalue problems stemming from few-body phenomena.

6.1.4. Future work
The whole project is developed under the context of a physical problem: the computation of resonant
states of quantum few-body systems. However, the emphasis lies on the development of the solver
rather than delving into physics. The thesis does not entail an exploration of specific physics models.
Instead, we furnish a comprehensive methodology and toolset geared toward solving challenges in
few-body resonance problems. Consequently, our forthcoming endeavors can be structured around
applying our algorithm to address actual few-body models. This progression could potentially lead us
to uncover novel phenomena in the realm of quantum physics.

Our current work has focused on computing resonances of quantum two-body and 1D three-body
systems, where the quantum particles are confined to a single line. However, there is potential for fu-
ture extensions of this research to encompass two-dimensional three-body problems, where the three
particles are located on the same plane. In two-dimensional three-body problems, there are a total
of four coordinates (or dimensions), where x⃗ and y⃗ each have two dimensions. We can extend our
problem to higher (more than 2) dimensions by utilizing Kronecker products again, as demonstrated in
the work of [27]. However, it is worth noting that the discretization of three-body problems in two spatial
dimensions needs to be carefully checked due to the presence of boundary conditions. Apart from the
resonant states investigated in this article and the bound states studied by [27] in few-body problems
of low dimension, the methodology developed can be further extended to explore additional states of
three-body problems in 1D and 2D. This includes virtual states and bound states that are embedded
within the continuum.

In addition to the study of quantum few-body problems, our next step involves expanding the al-
gorithm we have developed thus far to serve a broader range of purposes. The current focus of our
high-performance implementation of the QEP solver that we have developed is on computing quan-
tum few-body problems exclusively. However, as indicated in Subsection 6.1.3, quadratic eigenvalue
problems have been observed to arise in various fields. By simply modifying the input operators K, C,
and M , our solver can be adapted to address QEPs derived from other problem domains. Moreover,
at present, our program exclusively supports parallelism on multi-core CPU systems with shared or
distributed memory architecture. There is potential for enhancing our program’s functionality to encom-
pass heterogeneous computing platforms, such as GPUs.
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6.2. Conclusion
The title of this master’s thesis, ”Computing Resonant States of a Quantum Mechanical Three-body
Problem on Supercomputers,” may appear to be primarily focused on a physical topic. However, it is
important to clarify that the project’s main emphasis lies in the development of a robust mathematical
methodology within the context of the quantum three-body problem. While the subject matter may
have physical implications, the primary goal is to advance the numerical methods involved in studying
resonant states in this quantum mechanical system with the help of high-performance computing.

Throughout the development of the numerical solver, which includes both discretization and the
quadratic eigensolver, we have diligently addressed the research questions that were initially proposed
during the literature review stage. In Chapter 2, we provide insights into formulating test problems by
studying pseudo-spectral discretization. Through a thorough exploration of implementing the Kronecker
product within the framework of pseudo-spectral discretization, we have successfully addressed the ini-
tial research question concerning the discretization of three-body problems. In Chapters 3 and 5, we
address questions related to the eigensolvers (questions 2, 3, and 4), where we introduce the mathe-
matical aspects of the eigensolvers and analyze their performance, respectively. Furthermore, the final
research question, regarding the parallelization of the JD algorithm, is comprehensively examined in
Chapter 4 and is specifically discussed in Subsection 5.2.2. In these sections, we provide an intricate
account of the employed parallelization methodologies, along with presenting the numerical outcomes
illustrating the performance enhancements achieved through parallel processing.

Throughout the entire project, we have meticulously developed a comprehensive algorithmic toolkit
based on the Jacobi-Davidson eigensolver. This toolkit is adept at solving the quadratic eigenvalue
problem arising from the two/three-body resonant systems. The numerical results presented in this
study demonstrate the effectiveness of our JD algorithm in successfully converging to several reso-
nance poles of quantum two/three-body problems. However, it is important to note that the few-body
problems we have addressed thus far have not been directly applied to any real physical model. As
the primary focus of this project lies in the development of the computational methodology, we have
not delved extensively into the physical implications of the results.

It is promising to state that a parallel quadratic Jacobi-Davidson eigensolver has been successfully
developed to solve the quantum 1D three-body problems. However, the study does not conclude
here. In the future, the next step is to apply the solver to a real physical model, producing results that
hold genuine physical meaning. Furthermore, we can expand the scope of research to encompass
2D three-body problems, which involve four dimensions. 2D three-body problems introduce novel
challenges and raise pertinent questions including discretization, preconditioning, parallelization, and
so on. Furthermore, from a software engineering perspective, we aspire to augment the hybrid nature
of our parallelization approach, enabling our algorithm to efficiently leverage heterogeneous computing
platforms, such as GPUs.
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A
Selection Criterion of the
Jacobi-Davidson Method

M.E. Hochstenbach and B. Plestenjak introduce a special selection criterion [17] for the computation
of multiple eigenvalues of nonlinear eigenvalue problems. While our research did not yield successful
results in utilizing selection to prevent recurring convergence of eigenvalues, the methodology remains
noteworthy. Before presenting the selection criterion, let’s first define the divided difference for the
polynomial T (λ) = K + λC + λ2M :

Definition 9. The divided difference for T (λ) is defined as

T [λ, µ] :=


T (λ)− T (µ)

λ− µ
, λ ̸= µ

T ′(λ) , λ = µ.

Apart from the divided difference, another essential ingredient for the selection process is obtaining
the left eigenvectors corresponding to the converged eigenvalues. To compute the left eigenvectors,
we employ an iterative algorithm designed to solve T (λ)∗q = 0 for q.

Algorithm 6 An iterative algorithm for computing a null vector of a singular matrix
Input: Singular matrix A, (random) nonzero starting vector q0.
Output: An approximate null vector q of A with ∥Aq∥ ≤ tol.
Compute b = Aq0/∥Aq0∥
Solve approximately Ax = b with an iterative method
Set q = (x− q0)/∥x− q0∥

In the context of the Jacobi-Davidson algorithm, we assume that we have already computed d
eigenvalues and corresponding right and left eigenvectors (λ1,p1,q1), · · · , (λd,pd,qd). Suppose that
(θ,u) is a candidate approximation for the next eigenpair. The selection rule is given by

max
i=1,··· ,d

|q∗
i T [λi, θ]u|

|q∗
i T

′(λi)pi|
< η, (A.1)

where 0 < η < 1 is a fixed constant which controls the strictness of the selection. With the selection
criterion (A.1), we present a modified version of the algorithm 4 denoted as algorithm 7.

Algorithm 7 does not introduce significantly greater complexity in its implementation when compared
to algorithm 4. In contrast to ”locking”, it is not necessary to keep converged eigenvectors in the search
space, so that the entire search space may be devoted to new information. During the selection pro-
cess, there is a possibility that none of the Ritz vectors meet the selection criterion. In such an event,
we proceed by selecting the best Ritz pair based on the target eigenvalue, disregarding the selection
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criteria. Furthermore, to prevent the method from rediscovering the same eigenpair, the step of check-
ing whether the residual norm is smaller than the tolerance is skipped. The underlying concept behind
this approach lies in the expansion of the subspace, where Ritz approximations for other eigenvalues
are expected to emerge during the extraction process.

Algorithm 7 The Jacobi-Davidson algorithm for computing several eigenpairs of the quadratic eigen-
value problem λ2Mp+ λCp+Kp = 0 using selection
Input: initial vector t. Normalize t inM -norm
V0 = [ ], m = 0
while number of eigenvalues desired not met do

m = m+ 1, Vm = rgs(Vm−1, t) ▷ orthogonalization
Compute KVm, CVm,MVm
Compute the projected matrices HK = V ∗

mKVm,HC = V ∗
mCVm

Compute approximation to the desired eigenvalue θ and corresponding eigenvector
s of the projected problem θ2s+ θHCs+HKs = 0, ∥s∥ = 1 ▷ Rayleigh-Ritz
u = Vms
Select the best pair (θ,u) among pairs satisfying criterion (A.1) ▷ selection
w = 2θMu+ Cu, r = θ2Mu+ θCu+Ku
if ∥r∥ <tol and (A.1) satisfied then

Accept the approximate eigenpair (θ,u)
Choose the next-best candidate pair (θ,u) satisfying (A.1)
Compute the residual r

end if
if m = mmax then ▷ restart

Vmmin
= VmS:,1:mmin

, where S:,1:mmin
is composed of mmin eigenvectors computed in

Rayleigh-Ritz step whose corresponding eigenvalues are closest to the target τ and satisfy criterion
(A.1).

end if
(Approximately) solve the correction equation for t (possibly with conditioner)
(I − (wu∗)/(u∗w))(θ2M + θC +K)(I − (uu∗)/(u∗u))t = −r, t ⊥ u ▷ correction

end while
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