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ABSTRACT

Barrier options, although highly liquid financial derivatives, present notable pricing chal-
lenges. In this thesis, we present a novel pricing approach for valuing continuously-
monitored knock-out barrier option within the framework of stochastic volatility mod-
els.

The underlying process is firstly modelled under geometric Brownian motion and,
subsequently, under Heston’s stochastic volatility model. A key insight is that the value
of a barrier option can be expressed as a single-dimensional integral, whereby the inte-
grand involves the so-called survival density function, which captures the barrier-brea-
ching information. Therefore, the option can be valued using the one-dimensional COS
method for European options, once the Fourier series coefficients of the survival density
are obtained.

The coefficients of the sine series expansion of the survival density function are in
fact a continuous function, which is closely related to the characteristic function of the
density. This motivates us to directly recover that function, which we refer to as the target
function herewith, by selecting an appropriate series expansion for it. Thereafter, we
insert this series expansion into the partial differential equation (PDE) that the target
function should satisfy, which can be derived from the pricing PDE. This results in a
linear system, solving which we obtain the coefficients needed to reconstruct the target
function. Notably, this approach is particularly advantageous when the reference values
of option prices are limited or unavailable, as it relies solely on the PDE to calibrate the
series coefficients.

Our choice of series expansion is driven by the need for precise global and local ap-
proximations. Our research shows that a proper expansion for the target function can
be built up from integrating a two-dimensional Fourier series of its first derivative with
respect to time, marking our second pivotal insight. That results in a trigonometric ex-
pansion that significantly enhances the accuracy compared to a direct Fourier series ex-
pansion on the target function. Finally, our third pivotal insight: applying a change of
variables further improves error convergence.

Extensive testing results suggest that, for similar accuracy levels, our approach greatly
outperforms Monte Carlo simulations in terms of computation time. It also demon-
strates superior computational efficiency and accuracy compared to other advanced nu-
merical methods in the existing literature. The benefits of this method become even
more prominent when pricing a large number of options simultaneously.

Numerical tests reveal algebraic convergence for the series expansion reconstruc-
tion. For the option price, theoretical error analysis aligns with our findings, also pre-
dicting algebraic convergence.

Keywords. Barrier option, Geometric Brownian Motion model, Heston’s model, Pricing
PDE, COS method, Fourier series, Monte Carlo simulation.
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1
INTRODUCTION

One of the most important issues in quantitative finance is that of pricing derivative
instruments. The valuation of options, in particular, takes a pivotal role in effective
risk management and portfolio optimization. However, under certain underlying asset
models, closed-form solutions do not exist, and thus, multiple numerical methods have
been proposed and studied in the literature, aiming to obtain accurate option prices ef-
ficiently.

There are different types of options, such as European options, American options
and exotic options. Among the last category, one finds Asian options, Bermudan options,
and Barrier options. Specifically, barrier options are path-dependent options whose pay-
off is contingent on whether the underlying price breaches a predetermined level - the
barrier -, during the lifetime of the option contract.

Barrier options are one of the most liquid exotic derivatives - especially in the for-
eign exchange (FX) markets. Their popularity can be attributed to the fact that they are
cheaper than European options, as the payoff opportunities are more limited. In fact,
barrier options were created to offer hedging capabilities at a lower premium cost, typi-
cally appealing to purchasers with very precise speculations on the market’s moving.

An important feature of barrier options is whether the barrier-crossing is monitored
in continuous or discrete time. Barrier option contracts that assume continuous moni-
toring require a continuous verification on whether the barrier is breached at any time
before the expiration date. One of the most liquid barrier options in FX markets are
continuously-monitored calls and puts (see e.g. [1]–[4]). For that reason, in this thesis,
we shall focus on continuously-monitored barrier options. Alternatively, one can con-
sider just daily/weekly/monthly monitoring which makes the barrier option more ex-
pensive because chances of the barrier getting breached are smaller (cf. [4]). A detailed
discussion of the valuation of discrete barriers can be found in [5].

Despite the high liquidity, a closed-form pricing formula for continuously-monitored
barrier options is not available unless we assume a Geometric Brownian Motion (GBM)
process for the underlying asset, as proposed by Black and Scholes [6]. Under the GBM
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framework, analytical formulae have been developed by, for example, Merton [7], Hey-
nen and Kat [8] and Kunitomo and Ikeda [9].

However, the Black-Scholes (BS) framework does not sufficiently capture the lep-
tokurtic features observed in financial market data, and subsequently more advanced
models have been developed to better reflect the volatility smiles and skews implied in
market traded options. One type of such models are the so-called stochastic volatil-
ity models, which assume that the volatility evolves stochastically. The most promi-
nent stochastic volatility models include the square-root process introduced by Hes-
ton [10], the stochastic volatility model developed by Hull and White [11], the model
proposed by Stein and Stein [12], under which the volatility follows an arithmetic Orn-
stein–Uhlenbeck process, and the SABR model by Hagan et al. [13]. However, Heston’s
model is a popular model adopted in the industry, and as such, it is one of the model
choices of this thesis.

As opposed to the BS framework, not so many analytical results have been obtained
in the literature for barrier option pricing under stochastic volatility models. Section 1.1
is devoted to a literature review on the most recent research on this topic.

1.1. LITERATURE REVIEW
Existing numerical methods for option pricing include Monte Carlo (MC) simulation,
finite difference schemes that directly solve the corresponding pricing PDE [14], tree-
based methods such as [15] and [16], Fourier-based methods including the COS method
in [17] and [18] and other FFT-based methods (on the basis of Fast Gauss or the Hilbert
Transform) [19]–[21]. On top of this, there have been recent efforts in using machine
learning to directly approximate the valuation formulas.

MC simulation methods are often used for the valuation of financial products which
exhibit some form of path dependency in practice. Notice, however, that it is too slow
for the trading environment due to the slow error convergence rate. That is, one usu-
ally needs a large number of sample paths. Moreover, in the context of continuously-
monitored barrier options, a large number of time steps is also required, leading to no-
table computational inefficiencies.

A different and a very efficient approach to computing option values involves the
use of Fourier techniques. One of the most popular methods of this type is the COS
method, which was introduced by Fang and Oosterlee in [22] to price European op-
tions. The essence of the method lies in recovering the probability density function
(pdf) through its Fourier pair, i.e. the characteristic function (ch.f.), semi-analytically.
It has been applied to pricing barrier options under Heston’s model in [17]. It con-
sists of a one-dimensional method that relies on the pdf of the log-variance at current
time, conditioned on the log-variance at a past time, for which a closed-form solution
is available. However, our testing results indicate that for certain parameter sets this
method exhibits significant pricing difficulties. An alternative, the two-dimensional COS
method introduced by Ruijter and Oosterlee [18], employs a similar approach but uses
the two-dimensional ch.f.. Nevertheless, its scope of application is even narrower, as
it is designed for variance rather than log-variance, particularly challenging due to the
skewed nature of the variance density function. Moreover, both methods are developed
for discretely-monitored barrier options and the computational speed is not optimal for
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weekly- and daily-monitored barrier options.
All the methods presented thus far directly address the computation of the expecta-

tion within the valuation formula for a barrier option. Simultaneously, the Feynman-Kac
theorem provides a connection between the expectation of the option’s payoff value and
the solution of the corresponding pricing Partial Differential Equation (PDE). Therefore,
another way to compute option values is to solve the corresponding pricing PDE numer-
ically, using, for instance, the finite difference method. The main benefit of this approach
is that the option’s value can be generated for the entire discretization range of the un-
derlying stock values simultaneously. However, it requires a large number of discretiza-
tion steps for an accurate outcome for path-dependent derivatives. Plus, the difficulties
mentioned for the COS methods are also present in the finite difference scheme.

Lastly, existing machine learning techniques for option pricing in the literature rely
on given reference values for the training step, which can only be computed via the
aforementioned numerical methods. Furthermore, for neural networks, there can be
concerns related to interpretability, as they often operate as "black-box" algorithms, pre-
venting a full understanding of the process.

In summary, the majority of the previous methods are more suitable for discretely-
monitored barrier options. The reason is that, in continuous time, the derivation of the
first hitting time (of the barrier level) for stochastic volatility models poses a mathemat-
ically challenging problem.

Under Heston’s model, the availability of analytical results is very limited, but they
exist in two cases. The first case involves zero drift and zero correlation between the vari-
ance and the underlying price. The barrier option price, conditioned on the integrated
variance, is determined by a one-dimensional integration. This conditional expectation
must then be further solved to yield the unconditional expectation, by integrating with
the density of the integrated variance, as seen in previous works [2], [3].

When the correlation is non-zero, closed-form formulas are not available and pertur-
bation methods are often employed. Perturbation methods consider a small parameter
ϵ, allowing for an asymptotic solution constructed through a series expansion in ϵ. This
approach has been explored in various studies, namely [3], [23]–[26].

A more recent paper from 2022 develops a methodology that is different from the
ones mentioned above. For one-dimensional diffusion models, the classical reflection
principle (cf. [27]) is used to derive the barrier option pricing formulas under the BS
model [28]; He and Lin [29] have explored this idea in the context of Heston’s model to
obtain a pricing formula that needs to be solved via numerical integration.

Their procedure can be split in two steps. First, they reduce the dimensionality of
the problem by assuming that all the future information of the volatility is known at the
current time. Under this assumption, the Heston’s model becomes a time-dependent
BS model through a series of variable transformations. Using the reflection principle,
an analytical approximation for the barrier option price M(hT , vT ) := V (t , x|FT ) is de-
rived, where hT = ∫ T

t vS d s. In the second step, they regard the target barrier option
price as the expectation of the obtained conditional price with respect to the volatility,
V (t , x, v) = E[M(hT , vT )|vt ]. They recur to the COS method to recover an approximation
for the density function in V (t , x, v) = ∫ +∞

0 M(hT , vT ) f (hT |vt , vT )dhT . In the end, the
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option pricing formula depends on an integral that needs to be numerically computed,
thereby leading to an increased computational time.

1.2. THESIS OBJECTIVE AND OUTLINE
This thesis contributes to the existing literature with a novel approach to pricing conti-
nuously-monitored barrier options recurring to the pricing PDE. This method comprises
three main components: determining the most suitable expansion form for getting the
survival ch.f. of a knock-out option; finding the coefficients of this expansion via insert-
ing it in the PDE to yield a linear system; and applying the one-dimensional COS method
for pricing the respective option.

The central theoretical foundation of our method is that the barrier-hitting probabil-
ity can be incorporated into the so-called survival density function. This enables us to
employ the one-dimensional COS formula by Fang and Oosterlee [22], typically used for
pricing European options, to value barrier options.

As a result, we focus on recovering the survival pdf and determining the coefficients
of its sine series expansion. These coefficients are, in fact, a continuous function, which
is closely related to the survival ch.f.. Building on this insight and inspired by prior re-
search conducted at FF Quant [30], we are driven to directly reconstruct that function,
which we refer to as the target function herewith, using another series expansion. In our
case, a proper expansion for the target function is a trigonometric expansion, which we
build up step by step and it is a result of integrating a two-dimensional Fourier series
expansion of its first derivative with respect to time. This leads to another key insight:
accuracy of a Fourier series approximation can be enhanced by expanding the deriva-
tive of the target function rather than the function itself. Additionally, error convergence
speed of the trigonometric expansion can be further improved by applying a change of
variables to the target function, so that the skewness is reduced.

Finally, the main idea behind this method is to obtain the coefficients of the trigono-
metric expansion directly from the PDE it satisfies, instead of by training on a set of ref-
erence values. This is achieved by evaluating the PDE at various training points. Once
we obtain the coefficients of the trigonometric expansion, we have a series expansion-
based approximation of the coefficients of the survival pdf’s series. Lastly, using the COS
method, we compute the price of a barrier option.

The outline of this thesis is as follows. Chapter 2 lays the essential mathematical
framework for formulating and understanding our approach. Chapter 3 presents a pre-
liminary analysis for the Heat equation, a simpler PDE for which there are known solu-
tions. This forms the foundation of our later derivations regarding more complex pricing
PDEs. Our methodology is developed step by step in Chapter 4, under the assumption
that the underlying asset price follows a GBM. Subsequently, in Chapter 5 we extend our
method to Heston’s model, addressing challenges that arise from the additional dimen-
sion of the stochastic variance. Both Chapters 4 and 5 include numerical results, wherein
we evaluate the accuracy of our approach by comparing it to the closed-form solution
for GBM in Chapter 4 and to a MC simulation for Heston’s model in Chapter 5. Chapter 6
is dedicated to further performance improvements of our approach. Moreover, Chapter
7 provides a final comparison between our method and other existing methods in the
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literature for pricing barrier options. The error is analysed from a theoretical perspec-
tive in Chapter 8. Finally, Chapter 9 summarizes all the findings, draws a conclusion on
merits and demerits of our approach, and suggests future research directions.





2
MATHEMATICAL FRAMEWORK

In this chapter, all the relevant mathematical tools are presented to formulate, model
and solve the option pricing problem.

2.1. STOCHASTIC CALCULUS
The purpose of this section is to introduce relevant definitions and theorems from the
field of stochastic calculus. The contents of this section are based on [31] and [32].

Definition 2.1.1 (Filtration). Let (Ω,F ,P) be a probability space. A filtration on (Ω,F ,P)
is a family of sub σ-fields {Ft , t ≥ 0} of F indexed by t ∈ [0,∞), such that Fs ⊂ Ft for
every s ≤ t ≤∞.

Definition 2.1.2 (Adapted process). A process X = {X t , t ≥ 0} is said to be adapted to a
filtration {Ft , t ≥ 0} if for all t ≥ 0, X t is Ft measurable.

Definition 2.1.3 (Martingale). Let M := {Mt , t ≥ 0} be a process defined on the probability
space (Ω,F ,P) equipped with a filtration {Ft , t ≥ 0}. Then M is said to be a martingale if

• M is an adapted process.

• For all t ≥ 0, Mt is integrable.

• M satisfies the martingale property,

E[Mt |Fs ] = Ms , ∀ 0 ≤ s < t .

Definition 2.1.4 (Brownian Motion). A real-valued process {Wt , t ≥ 0} is called a Brown-
ian motion if

• W0 = 0.

• Normally distributed increments: For all 0 ≤ s < t , Wt −Ws ≃ N (0, t − s).

7
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• Independent increments: For 0 ≤ t0 < t1 < ·· · < tn , the random variables Yi :=
Wti −Wti−1 , i = 1, . . . ,n are independent.

• All sample paths are continuous: The map t 7→Wt is continuous.

Definition 2.1.5 (Stopping time). A stopping time τ is a function fromΩ to {0,1,2, . . . , }∪
{∞} such that {τ= t } ∈Ft ,∀t <∞.

Definition 2.1.6 (Local Martingale). An right continuous with left limits adapted process
L is said to be a local martingale if there exist stopping times τn ↑∞ such that for each n,
the process M n defined by M n

t := Lt∧τn is a martingale.

Definition 2.1.7 (Semimartingale). A stochastic process X = {X t , t ≥ 0} is called a semi-
martingale if it can be decomposed as follows

X = X0 +M + A,

where the random variable X0 is finite and F0-measurable, the stochastic process M is a
local martingale and the stochastic process A has finite variation.

Definition 2.1.8 (Itô Integral). For any square-integrable adapted process Yt with contin-
uous sample paths, the Itô integral is given by

I (T ) =
∫ T

0
Yt dWt := lim

m→∞ Im(T ), in L2.

Here, Im(T ) = ∫ T
0 Y m

t dWt for some elementary process Y m
t =∑n−1

j=0 η j1[t j ,t j+1), satisfying

lim
m→∞E

[∫ T

0
(Y m

t −Yt )2d t

]
= 0,

where η j is Ft j measurable for all j = 0,1, . . . ,n −1 and square-integrable.

Theorem 2.1.1 (Itô Isometry). For any stochastic process Yt , satisfying the usual regular-
ity conditions, the following equality holds,

E

[(∫ T

0
Yt dWt

)2
]
=

∫ T

0
E[(Yt )2]d t .

Theorem 2.1.2 (Itô’s Formula). Let f ∈C 2(R) and consider a continuous semimartingale
X with decomposition X = M + A. Then, the stochastic process ( f (X t ))t≥0 is also a semi-
martingale and holds

f (X t ) = f (X0)+
∫ t

0

∂ f

∂x
(Xu)d Xu + 1

2

∫ t

0

∂2 f

∂x2 (Xu)d [X ]u ,

with [X ] denotes the quadratic variation of the process (X t )t≥0.

Itô’s formula is often expressed in differential form,

d f (X t ) = ∂ f

∂x
(X t )d X t + 1

2

∂2 f

∂x2 (X t )d [X ]t .
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2.2. OPTION BASICS
This section presents the basic concepts used in the context of option pricing, which will
be used throughout this thesis. The definitions, prepositions and explanations presented
are based on [31], [33] and [34].

An option is a financial contract which gives its holder the right (but not the obliga-
tion) to purchase from the writer a certain asset for a predetermined price at a future
time.

Options trading represents a significant portion of overall trading activity in many
financial markets as they are extremely attractive to investors, both for speculation and
hedging. The European call and put options are the most basic option which can be
traded, and their formal definitions are presented below.

Definition 2.2.1 (European Call Option). A European call option is a contract signed be-
tween two parties at some time t , from which the right arises, to buy an asset S (underly-
ing), for a pre-defined price K (strike), at a certain time in the future T > 0 (maturity).

Definition 2.2.2 (European Put Option). A European call option is a contract signed be-
tween two parties at some time t , from which the right arises, to sell an asset S (underly-
ing), for a pre-defined price K (strike), at a certain time in the future T > 0 (maturity).

At maturity time T , the holder of the option can either exercise or can choose to not
trade in the asset. Therefore, the payoffs of a European call and put option at maturity,
T , are given by

Vcal l (T,S) := (ST −K )+,

Vput (T,S) := (K −ST )+,

where ST denotes the value of the underlying asset at maturity time and K the strike
price.

There also exist more complicated types of options, as for instance, exotic options.
These are called exotic due to the presence of exotic features in their payoff structure,
such as path-dependent attributes, where the final payoff depends the trajectory of the
underlying asset’s price over the option’s lifespan. Furthermore, exotic options may in-
volve multiple underlying assets. These options are exclusively traded in the over-the-
counter (OTC) market, since they are customized by financial institutions to meet the
specific needs and preferences of their clients. These types of options cannot be repli-
cated by a finite combination of standard products (like European call and put options,
future contracts, etc.). One example of such options are barrier options.

Barrier options can be classified in knock-in options, which only become active in
the event that the predetermined barrier price is reached, otherwise they expire worth-
less; or knock-out options, where the right to exercise the option ceases to exist in the
event that the predetermined barrier price is breached. Using this classification, we can
distinguish four main types of barrier options:

• Up-and-out: spot price starts below the barrier level and has to move up for the
option to be knocked out.
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• Down-and-out: spot price starts above the barrier level and has to move down for
the option to become null and void.

• Up-and-in: spot price starts below the barrier level and has to move up for the
option to become activated.

• Down-and-in: spot price starts above the barrier level and has to move down for
the option to become activated.

In this thesis, we focus on up-and-out barrier options. Let τ := inf{t̃ ≥ t : S t̃ ≤ B} be
the first time that the process St breaches the barrier, B . Then, the payoffs of an up-and-
out barrier call and put option at maturity T are given by

V B
cal l (T,S) := (ST −K )+1{τ<T },

V B
put (T,S) := (K −ST )+1{τ<T }.

Notice that if the barrier is not crossed, then the payoff becomes that of a European
option.

The generalization of the this definition to other barrier types is trivial. In particular,
given a formula for a up-and-out option, the corresponding down-and-out option can
be found from the relation: in + out = European.

2.2.1. UNDERLYING PROCESS DYNAMICS

The asset price is not a deterministic value, but rather a continuous stochastic process.
Therefore, it is not known at future time points, and has to be modelled according to
a suitable stochastic process. This thesis will consider two different models for repre-
senting asset price dynamics, namely GBM and Heston’s stochastic volatility model. The
former is most commonly used asset price process in finance, while the later is one of
the most popular models within the class of stochastic volatility models. For that reason,
this section is dedicated to introducing these models.

GEOMETRIC BROWNIAN MOTION

A process St is said to follow a GBM process, when it satisfies the following Stochastic
Differential Equation (SDE),

dSt =µSt d t +σSt dW P
t ,

where µ denotes the drift parameter, i.e. a constant deterministic growth rate of the
stock, and σ is the (constant) volatility parameter. The amount by which an asset price
differs from its expected value is determined by σ. The above SDE is defined under the
real-world probability measure P.

Definition 2.2.3 (Risk-neutral measure). A probability measure Q on (Ω,F ) is called a
martingale measure or risk-neutral measure if the discounted asset price process is a Q-
martingale, i.e. St is an adapted process and EQ[e−r∆t St+1 |Ft ] = St , for all t ≥ 0.
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Under the risk-neutral measure Q, the underlying stock price is assumed to follow a
GBM, given by

dSt = r St d t +σSt dW Q
t ,

where µ= r , the risk-free interest rate. Note that throughout this thesis we assume con-
stant interest rate, r .

HESTON’S MODEL

In order to deal with the non-constant implied volatility observed in the market, Heston
proposed a stochastic volatility model [10], wherein the instantaneous variance process
follows a mean-reverting square root process. We consider two SDEs, one for the under-
lying asset price St , and the other for the variance process vt , as follows{

dSt = r St d t +p
vt St dW Q

1 ,

d vt = κ(v̄ − vt )d t +γpvt dW Q
2 ,

with correlation ρ between the Brownian motions, i.e. dW Q
1 dW Q

2 = ρd t . Parameters
κ≥ 0, v̄ ≥ 0 and γ> 0 are called the speed of mean reversion, the long-term mean of the
variance process and the volatility of the volatility, respectively. The SDEs are described
under the risk-neutral measureQ.

The dynamics can also be expressed in terms of two independent Brownian motions,

W̃ Q
1 and W̃ Q

2 , as follows{
dSt = r St d t +p

vt St dW̃ Q
1 ,

d vt = κ(v̄ − vt )d t +γpvt

(
ρdW̃ Q

1 +
√

1−ρ2dW̃ Q
2

)
.

(2.1)

Notice that, to avoid negative volatilities, the asset’s variance is modeled by a so-
called CIR process [35]. This process can be recognized as a mean reverting square-
root process, which prevents negative values for vt . If vt reaches zero it subsequently
becomes positive. It is the Feller condition, 2κv̄ ≥ γ2, which guarantees that vt stays
positive; otherwise, if the Feller condition is not satisfied, vt may reach zero [36].

2.2.2. OPTION VALUATION

In the field quantitative finance, a lot of research is devoted to finding the fair value of
an option before expiry time t < T . The price should be “fair” in the sense that it is
acceptable by both the buyer and the seller of the derivative. One of the key principles
on which option valuation theory rests is the no-arbitrage principle, which states that
in an efficient market there should be no gain without risk. The concept of arbitrage is
formally presented in the following definition.

Definition 2.2.4 (Arbitrage). An investment strategy is called an arbitrage if the value
process V of the strategy satisfies the following:

• V0 ≤ 0 (zero initial cost) ,

• P (VT > (1+ r )V0) > 0 ,
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• P (VT ≥ (1+ r )V0) = 1,

where r denotes the risk-free interest rate in a money-savings account and T the maturity.

In other words, the no-arbitrage principle assures that there is never an opportunity
to make a risk-free profit that gives a greater return than that provided by the interest
from a bank deposit.

One of the most important results in option value theory is the derivation of the PDE
by Black and Scholes for the valuation of European options [6]. Based on the assump-
tion of a GBM process for the asset price St , the value of an European option can be
represented as the solution of the following PDE, with appropriate terminal conditions,

∂V

∂t
+ r S

∂V

∂S
+ 1

2
σ2S2 ∂

2V

∂S2 − r V = 0. (2.2)

The derivation of the BS PDE can be done via a replication portfolio or martingale ap-
proach. The concept of the replicating portfolio is to create a portfolio of the underlying
asset and a risk-free asset that replicates the payoff of the option. In other words, by ad-
justing the amount of the underlying asset and the risk-free asset in the portfolio, one
can create a combination of these two assets that has the same value as the option at
any point in time. By the no-arbitrage principle, two portfolios with identical cash flows
in the future must have the same value as of the valuation date. Therefore, the value of
the option must be equal to the value of the replicating portfolio at any point in time.
Using the replication strategy, Black and Scholes were able to derive the pricing PDE for
European options.

An alternative approach to derive the pricing PDE is to apply the theory of martin-
gales. By the First Fundamental Theorem of Asset Pricing (cf. [34]), there exists an equiv-
alent martingale measure in case the no-arbitrage principle holds. Thus, this second
approach involves the construction of a risk neutral probability measureQ, according to
which we have

V (t ,S) = EQ [
e−r (T−t )V (T,S)

∣∣Ft
]

= EQ [
e−r (T−t ) f (T,S)

∣∣St = s
]

, (2.3)

where f (T,S) denotes the payoff function of the option.
In particular, for an up-and-out barrier option, let τB := inf{t̃ ≥ t : S t̃ ≥ B} be the first

time that the process St hits the upper barrier B . Then, the value of such option at time
t < T can be written as

V (t , s) = e−r (T−t )E
[

f (T,S)1{τB>T }|St = s
]

. (2.4)

The value of the option can be derived either by solving the pricing PDE (2.2), or
by evaluating the discounted expected payoff obtained from (2.3). By the no-arbitrage
principle, these approaches should then lead to the same value. The equivalence of both
approaches is proved in the famous Feynman-Kac theorem, which takes the discounted
expectation as the closed-form solution to the BS PDE. We are particularly interested in
the solution via the Feynman-Kac formula, and for that reason, we present the formula-
tion for the BS model below.
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Proposition 2.2.1 (Feynman-Kac formula for BS model). Let V (t ,S) be a sufficiently dif-
ferentiable function of time t and stock price St . Suppose that V (t ,S) satisfies the following
PDE, with constant interest rate r , and volatility σ,

∂V

∂t
+ r S

∂V

∂S
+ 1

2
σ2S2 ∂

2V

∂S2 − r V = 0,

with a final condition given by V (T,S) = f (T,S). The solution V (t ,S) at any time t < T is
then provided by

V (t ,S) = e−r (T−t )EQ[ f (T,S) |Ft ],

where the expectation is taken under the measure Q, with respect to a process St , which is
defined by

dSt = r St d t +σSt dW Q
t .

Under the GBM model for the underlying, an analytical formula for the option value
can be obtained by solving the BS PDE with appropriate final time and boundary condi-
tions. From [33], the formula for the value of an up-and-out call with initial value S0 at
time t = 0, barrier level B , strike K , maturity T , interest rate r and volatility σ is given by

V (t ,S) = S

(
Φ(d1)−Φ(e1)−

(
B

S

)1+2r /σ2

(Φ( f2)−Φ(g2))

)

−K e−r (T−t )

(
Φ(d2)−Φ(e2)−

(
B

S

)−1+2r /σ2

(Φ( f1)−Φ(g1))

)
,

(2.5)

where Φ(·) stands for the cumulative distribution function of a standard normal distri-
bution and

d1 =
ln(S/K )+ (r + 1

2σ
2)(T − t )

σ
p

T − t
,

d2 =
ln(S/K )+ (r − 1

2σ
2)(T − t )

σ
p

T − t
,

e1 =
ln(S/B)+ (r + 1

2σ
2)(T − t )

σ
p

T − t
,

e2 =
ln(S/B)+ (r − 1

2σ
2)(T − t )

σ
p

T − t
,

f1 =
ln(S/B)− (r − 1

2σ
2)(T − t )

σ
p

T − t
,

f2 =
ln(S/B)− (r + 1

2σ
2)(T − t )

σ
p

T − t
,

g1 =
ln(SK /B 2)− (r − 1

2σ
2)(T − t )

σ
p

T − t
,

g2 =
ln(SK /B 2)− (r + 1

2σ
2)(T − t )

σ
p

T − t
.
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Identically, Heston derived a pricing PDE for when the asset price process is mod-
elled according to his stochastic volatility model [10]. The value of an European option
can be represented as the solution of the following PDE, with appropriate terminal con-
ditions,

∂V

∂t
+ r S

∂V

∂S
+κ(v̄ − v)

∂V

∂v
+ργvS

∂2V

∂S∂v
+ 1

2
vS2 ∂

2V

∂S2 + 1

2
γ2v

∂2V

∂v2 − r V = 0. (2.6)

For the Heston’s model, there is unfortunately no closed-form solution to the respec-
tive pricing PDE.

GREEKS

The Greeks of an option measure the sensitivity of the value of a derivative product or a
financial portfolio to changes in a certain parameter value while holding the other pa-
rameters fixed.

The most common Greek is the Delta of an option, widely used for hedging purposes.
The Delta for an option measures the sensitivity of the option value V to small changes in
the asset price S, denoted by ∆ := ∂V

∂S . The Gamma corresponds to the second derivative

with respect to S and it is denoted Γ := ∂2V
∂S2 , where V is the value of the option. For

instance, according to the BS model, for an European call option,

∆call =Φ(d1),

∆put =Φ(d1)−1,

where

d1 =
ln(S/K )+ (r + σ2

2 )T

σ
p

T
and d2 = d1 −σ

p
T .

2.3. FOURIER SERIES EXPANSIONS
The contents of this section are modified from the paper [37].

Given a piecewise smooth function, it is possible to construct a global expansion us-
ing orthogonal basis functions, such as cosine and sine functions in the Fourier series
expansion. Nevertheless, it is not generally true that, for an arbitrary function f , the
Fourier series will converge at each particular point x to the value f (x). To ensure that
convergence does hold it is necessary to impose extra constraints on f , namely Dirich-
let conditions: A piecewise function f must be periodic with at most a finite number of
discontinuities, and/or a finite number of minima or maxima within one period. In ad-
dition,

∫ T
0 | f (x)|d x <∞. [38]. Consequently, regarding continuity and differentiability,

the weakest condition for a function to be represented by a Fourier series is that it is
piecewise continuous.

Suppose that f is smooth on [0,π], then there are three ways in which f may be
represented by a Fourier series. These are the half-range Fourier-cosine series, the half-
range Fourier-sine series and the full-range Fourier series, represented respectively as
follows:
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f (θ) =
∞∑

k=0

′Ak cos(kθ) , (2.7)

f (θ) =
∞∑

k=1
Bk sin(kθ) , (2.8)

f (θ) = A0

2
+

∞∑
k=1

Ak cos(2kθ)+Bk sin(2kθ)

=
+∞∑

k=−∞
ck e i 2kθ( in exponential format), (2.9)

where c0 = A0,ck = (Ak − i Bk )/2 for k > 0 and (A−k + i B−k )/2 for k < 0.
∑ ′ indicates that

the first term is multiplied by half.
The use of the term "half-range" refers to the fact that the function f , although de-

fined in [0,π], has been extended into the interval [−π,π] as an even-valued function
in the case of the half-range cosine series (so that sine contributions vanish) and as an
odd-valued function in the case of the half-range sine series (so that the constant and
cosine contributions vanish). Therefore, the approximation of the function is obtained
by periodically repeating f with period 2π. We shall refer to the half-range series as
Fourier-cosine and -sine series from here onward.

The best trigonometric approximation in the L2-norm is the Fourier truncated series,
as described in Theorem 2.3.1. This result also applies to the Fourier-sine and -cosine
series.

Theorem 2.3.1. The truncated Fourier series at level N, SN f , is the best approximation of
f in LN

1 in the L2-norm on [0,π], i.e.∥∥ f −SN f
∥∥

2 = min
g∈LN

∥ f − g∥2.

Proof. Consider SN f = ∑N
k=−N ck e i 2kθ to be the truncated Fourier series and PN f =∑N

k=−N ĉk e i 2kθ to be a general trigonometric approximation for f . The norm of the ap-
proximation error is given by

∥∥ f −PN f
∥∥2

2 =
∥∥∥∥∥ N∑

k=−N
(ck − ĉk )e i 2kθ+

∞∑
|k|=N+1

ck e i 2kθ

∥∥∥∥∥
2

2

=π
(

N∑
k=−N

|ck − ĉk |2 +
∞∑

|k|=N+1

|ck |2
)

,

which is minimized by setting ĉk = ck for |k| ≤ N .

For functions supported on any other finite interval [a,b] ∈ R, the series expansion
can easily be obtained via a change of variables,

θ := x −a

b −a
π, x = b −a

π
θ+a.

1LN is the linear space of trigonometric polynomials with degree ≤ N .



2

16 2. MATHEMATICAL FRAMEWORK

Then, one period will correspond to the interval [2a−b,b] and the series expansions
for f in [a,b] read

f (x) =
∞∑

k=0

′Ak cos
(
kπ

x −a

b −a

)
, (2.10)

f (x) =
∞∑

k=1
Bk sin

(
kπ

x −a

b −a

)
, (2.11)

f (x) = A0

2
+

∞∑
k=1

Ak cos
(
2kπ

x −a

b −a

)
+Bk sin

(
2kπ

x −a

b −a

)
. (2.12)

These expansions exist for any real function with finite support and the coefficients
Ak and Bk , in (2.10), (2.11) and (2.12), are provided by

for cosine series: Ak = 2

b −a

∫ b

a
f (x)cos

(
kπ

x −a

b −a

)
d x,k ≥ 0, (2.13)

for sine series: Bk = 2

b −a

∫ b

a
f (x)sin

(
kπ

x −a

b −a

)
d x,k ≥ 1, (2.14)

for Fourier series:

{
Ak = 1

b−a

∫ b
a f (y)cos

(
2kπ y−a

b−a

)
d y,k ≥ 0,

Bk = 1
b−a

∫ b
a f (y)sin

(
2kπ y−a

b−a

)
d y,k ≥ 1.

(2.15)

2.3.1. CONVERGENCE OF FOURIER SERIES
This section contains some general theory on the convergence of Fourier-series, mostly
taken from [39]. Theorems on pointwise convergence, differentiation and integration of
Fourier series are presented. Plus, the different types of convergence rates are discussed,
together with the corresponding series truncation error. The main result is then found
in proposition 2.3.7, which shows the convergence rate of the Fourier-cosine series for
different classes of functions.

Theorem 2.3.2 (Pointwise convergence of Fourier series). Take SN f (x) to be the Fourier
sum approximation of function f truncated at level N . Suppose that f (x) is continuous
with a continuous derivative except at perhaps a finite number of points (in a period). Let
c be a discontinuity point, then SN f (c) → 1

2 (limx→c− f (x)+ limx→c+ f (x)) as N →∞.

Theorem 2.3.3 (Differentiation of Fourier series). If f is a piecewise smooth function on
[0,π] and it is also continuous, then the Fourier series of f can be differentiated term by
term provided that f (0) = f (π) [40].

Theorem 2.3.4 (Integration of Fourier series). A Fourier series of a piecewise smooth func-
tion f can always be integrated term by term and the result is a convergent infinite series
that always converges to the integral of f for x ∈ [0,π] [40].

The two theorems above are also valid for Fourier-cosine and -sine series, only that
the relevant interval is [−π,π], where the function f is evenly or oddly extended, respec-
tively.
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Definition 2.3.1 (Algebraic Index of Convergence). The algebraic index of convergence
n(≥ 0) is the largest number for which

lim
k→∞

|Ak |kn <∞, k >> 1,

where the Ak are the coefficients of the series. An alternative definition is that if the coeffi-
cients of a series, Ak , decay asymptotically as

Ak ∼O

(
1

kn

)
, k >> 1,

then n is the algebraic index of convergence.

Definition 2.3.2 (Exponential Index of Convergence). If the algebraic index of conver-
gence n(≥ 0) is unbounded – in other words, if the coefficients, Ak , decrease faster than
1/kn for any finite n – the series is said to have exponential convergence. Alternatively, if

Ak ∼O
(
e−γkr

)
, k >> 1,

with γ, constant, the ‘asymptotic rate of convergence’, for some r > 0, then the series shows
exponential convergence. The exponent r is the index of convergence.
For r < 1, the convergence is called subgeometric.
For r = 1, the convergence is either called supergeometric with

Ak ∼O
(
k−ne−(k/ j ) ln(k)

)
,

(for some j > 0), or geometric with

Ak ∼O
(
k−ne−γk

)
. (2.16)

Proposition 2.3.5 (Series truncation error of algebraically converging series). It can be
shown that the series truncation error of an algebraically converging series behaves like

∞∑
k=K

1

kn ∼ 1

(n −1)(K −1)n−1 .

The proof can be found in [41].

Proposition 2.3.6 (Series truncation error of geometrically converging series). If a se-
ries has geometrical convergence, then the error after truncation of the expansion after K
terms, ET (K −1), reads

ET (K −1) ∼ P∗e−(K−1)ν.

Here, constant ν> 0 is called the asymptotic rate of convergence of the series, which satis-
fies

ν= lim
n→∞(− log |ET (n)|/n),

and P∗ > 0 denotes a factor which varies less than exponentially with K −1 .
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Proposition 2.3.7 (Convergence of Fourier-cosine series). If g (x) ∈ C∞([a,b] ⊂ R), then
its Fourier-cosine series expansion on [a,b] has geometric convergence. The constant γ in
2.16 is determined by the location in the complex plane of the singularities nearest to the
expansion interval. Exponent n is determined by the type and strength of the singularity.
If a function g (x), or any of its derivatives, is discontinuous, its Fourier-cosine series coef-
ficients show algebraic convergence. Integration-by-parts shows that the algebraic index
of convergence, n, is at least as large as n’, with the n’-th derivative of g (x) integrable.

References to the proof of this proposition are available in [39].

2.3.2. FILTERS
When discussing Fourier series, it is natural to address the case in which the existence
of discontinuities destroys the convergence of the global approximation, even in regions
for which the underlying function is analytic. In this context, filters can be applied. This
section is modified from [42]–[44] and it presents relevant definitions and concepts re-
lated to filters.

As a result of discontinuities, the Fourier partial sums oscillate in value near the
jumps at the discontinuity points and feature non-uniform convergence. This charac-
teristic behavior is called the Gibbs phenomenon. But the Gibbs phenomenon has a
global effect on top of the already described local effect. Even though the error between
the approximation and the actual function decays as we move away from the jumps, the
decay rate is limited to first-order [43]. Thus, the existence of one or more discontinuities
slows down the convergence rate throughout the domain. In short, spectral accuracy is
lost.

Nevertheless, there are two interchangeable processes available for recovering the
rapid convergence in the piecewise smooth case. These are mollification, carried out in
the physical space, and filtering, carried out in the Fourier space.

Filtering accelerates convergence when pre-multiplying the Fourier coefficients by a
rapidly decreasing functionϕ(k/N ) as k ↑ N . This function, called the filter is continuous
and only modifies high frequency modes, not the low modes.

Filtering may remove the Gibbs phenomenon from a discontinuity, but the error
depends on the distance to the discontinuity. If the filter is well-chosen, the conver-
gence rate away from the discontinuity will improve. Since the approximation will be
smoothed, convergence very close to the jump will not improve.

The order of a filter determines the rate at which the error produced by the filtering
decays. Thus, its accuracy is described by its order.

Definition 2.3.3. A filter is of order m if for any fixed k > 0

ϕ

(
k

N

)
∼O

(
1

N m

)
, for N →∞.

Equivalently a filter is m-order accurate if it satisfies

ϕ(k)(0) = δk0 for k = 0,1, . . . ,m.

One example of a order 1 filter is the Lanczos filter, defined as

ϕ(η) = sin(πη)

πη
.
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Another example is the exponential filter of order m, ϕ(η) = e−αη
m

Note that ϕ(1) =
e−α, and thus, formally the exponential filter does not satisfy the definition of the filter.
However, in practice a large α is often sufficient to restore that property.

On the one hand, for an already analytic function (such that its spectral series is con-
verging exponentially), it is desirable to use a filter of high order to keep the advantages
of having a high order spectral method when computing smooth solutions. Hence, one
needs a filter of order m to make sure the filtered spectral series converges at order m,
i.e. that the errors produced by the filtering are O (1/N m).

On the other hand, for a function that is not smooth (such that its unfiltered spectral
series converges only at algebraic rate), one can recover the true solution with O (1/N m)
accuracy at any fixed point away from the discontinuities by using a filter of order m [44].

2.3.3. OPTION PRICING VIA FOURIER-COSINE (SINE) SERIES
This section replicates the works of [22] and derives the COS (and sine counterpart) for-
mula for European-style options by replacing the density function by its Fourier-cosine
(sine) series.

Suppose that f is a transitional pdf with known ch.f., φ. Since the density function
forms a Fourier pair with its ch.f., the latter is defined formally by the equation

φ(ω) =
∫
R

f (y)e iωy d y. (2.17)

Following the steps of [22], we recover f through the respective ch.f.. Consider the
cosine series expansion of f ,

f (y |x) =
∞∑

k=0

′Ak (x)cos
(
kπ

y −a

b −a

)
,

where Ak is computed as in (2.13). For the sine series expansion of f , we have

f (y |x) =
∞∑

k=1
Bk (x)sin

(
kπ

y −a

b −a

)
,

where Bk is computed as in (2.14).
Due to the conditions for the existence of a Fourier transform, the integrands in (2.17)

have to decay to zero at ±∞ and we can truncate the integration range in a proper way
without losing accuracy.

Suppose [a,b] ⊂ R is chosen such that the truncated integral approximates the infi-
nite counterpart very well, i.e.

φ1(ω; x) =
∫ b

a
f (y |x)e iωy d y ≈

∫
R

f (y |x)e iωy d y =φ(ω; x). (2.18)

Then, the coefficients are given, respectively, by

Ak (x) = 2

b −a
Re

{
φ1

(
kπ

b −a
; x

)
exp

(
−i kπ

a

b −a

)}
, (2.19)

Bk (x) = 2

b −a
Im

{
φ1

(
kπ

b −a
; x

)
exp

(
−i kπ

a

b −a

)}
. (2.20)
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It then follows from (2.18) that Ak ≈ Fk and Bk ≈Gk with

Fk (x) = 2

b −a
Re

{
φ

(
kπ

b −a
; x

)
exp

(
−i kπ

a

b −a

)}
, (2.21)

Gk (x) = 2

b −a
Im

{
φ

(
kπ

b −a
; x

)
exp

(
−i kπ

a

b −a

)}
. (2.22)

We now replace Ak by Fk in the series expansion of f on [a,b] (and proceed in the
same way for Bk ), i.e.

f1(y |x) =
∞∑

k=0

′Fk (x)cos
(
kπ

y −a

b −a

)
, (2.23)

f1(y |x) =
∞∑

k=1
Gk (x)sin

(
kπ

y −a

b −a

)
, (2.24)

and truncate the series summation such that

f2(y |x) =
N−1∑
k=0

′Fk (x)cos
(
kπ

y −a

b −a

)
, (2.25)

f2(y |x) =
N∑

k=1
Gk (x)sin

(
kπ

y −a

b −a

)
. (2.26)

In this way, we are able to recover the transitional pdf from the respective ch.f.. Now,
recall that the value of an option is given by

V (x, t ) = e−r (T−t )E[V (y,T )|Ft ] = e−r (T−t )E[V (y,T )|x] = e−r (T−t )
∫
R

V (y,T ) f (y |x)d y.

(2.27)
Since the density rapidly decays to zero as y →±∞, we truncate the infinite integra-

tion range without losing significant accuracy to [a,b] ⊂R, and we obtain approximation
V1,

V1(x, t ) = e−r (T−t )
∫ b

a
V (y,T ) f (y |x)d y. (2.28)

By plugging in the cosine series approximation for the transitional density function,
we obtain

V2(x, t ) = e−r (T−t )
∫ b

a
V (y,T )

N−1∑
k=0

′Fk (x)cos
(
kπ

y −a

b −a

)
d y

= e−r (T−t )
∫ b

a
V (y,T )

N−1∑
k=0

′ 2

b −a
Re

{
φ

(
kπ

b −a
; x

)
e−i kπ a

b−a

}
cos

(
kπ

y −a

b −a

)
d y.

(2.29)

Define Vk := 2
b−a

∫ b
a V (y,T )cos

(
kπ y−a

b−a

)
d y , then the value of the option can be writ-

ten as

V2(x, t ) = e−r (T−t )
N−1∑
k=0

′Re

{
φ

(
kπ

b −a
; x

)
e−i kπ a

b−a

}
Vk . (2.30)
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Alternatively, for the sine series, we have

V2(x, t ) = e−r (T−t )
∫ b

a
V (y,T )

N∑
k=1

Gk (x)sin
(
kπ

y −a

b −a

)
d y

= e−r (T−t )
∫ b

a
V (y,T )

N∑
k=1

2

b −a
Im

{
φ

(
kπ

b −a
; x

)
e−i kπ a

b−a

}
sin

(
kπ

y −a

b −a

)
d y.

(2.31)

Plus, we define Vk := 2
b−a

∫ b
a V (y,T )sin

(
kπ y−a

b−a

)
d y accordingly, and thus the value of

the option can be written as

V2(x, t ) = e−r (T−t )
N∑

k=1
Im

{
φ

(
kπ

b −a
; x

)
e−i kπ a

b−a

}
Vk . (2.32)

The formulas above can be understood as the combination of two parts: firstly, the
inner product of two sets of Fourier-cosine (sine) coefficients, one for density and the
other for payoff; and secondly, the Fourier-cosine (sine) coefficients for density can be
approximated by the respective ch.f.. Moreover, the coefficients for the payoff, Vk , can
be obtained analytically for both European call or put options (cf. [22]).

2.4. COLLOCATION METHODS
The explanations in this section are adapted from [45] and [46].

A collocation method is a numerical method for solving integral and differential equa-
tions. Collocation is a further continuation of interpolation. While collocation sets the
constraint that the function must satisfy a differential equation at certain points in the
domain called collocation points, normal interpolation sets constraints on the value of
the function itself.

Given a differential equation, assume it can be written in the form L (u) = 0, where
L is the differential equation operator and u is the solution function. For example, the
BS pricing PDE operator is such that

LBS (u) = ∂u

∂t
+ r S

∂u

∂S
+ 1

2
σ2S2 ∂

2u

∂S2 − r u.

Similarly to interpolation, we approximate the solution to the PDE by a function uh

of the form

uh(x) =
N∑

n=1
cnuh

n (x), (2.33)

where uh
n (·) denote the basis functions. Hence, the PDE now reads L (uh) ≈ 0.

The goal is to find a solution to the PDE by determining the N coefficients, cn . For
that reason, we choose a finite number of collocation points, xi , with i = 1, . . . , M . The
solution is determined from the condition that equation (2.33) is satisfied at the colloca-
tion points.

Expanding uh for each constraint results in a system of equations with M equations.
To ensure existence and uniqueness of the solution, we prescribe that the number of
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degrees of freedom N equals the number of constraints M . We are left with an uniquely
determined linear system that needs to be solved for the coefficients cn . Note that, if
the PDE contains initial or boundary conditions, these should be accounted for in the
constraints.

For many cases in the literature, polynomials, such as Legendre, Laguerre, and Cheby-
shev polynomials, are a natural choice for the basis functions. Other choices for basis
functions include non-polynomial basis functions, such as the Fourier series. Also, an
usual approach involves selecting collocation points in a manner that aligns with the
roots of orthogonal polynomials, similar to the process employed in Gauss quadrature.

2.5. TENSORS

This section introduces basic concepts in tensor calculus that will play a crucial role in
the explanation of our approach in Chapter 5. The material presented here draws from
the work of [47].

A tensor is a multi-dimensional array. The number of dimensions of a tensor is de-
nominated order. For example, a first-order tensor is a vector, a second-order tensor is
a matrix, and tensors of order three or higher are called higher-order tensors. An N th-
order tensor A has N sets of indices {in}n=1,··· ,N and in = 1, · · · , In to indicate one specific
element. Hence, A ∈ RI1×···×IN . For example, for a third-order tensor A ∈ RI1×I2×I3 , the
elements are denoted A [i1, i2, i3] = Ai1,i2,i3 .

Another relevant concept for higher-order tensors is that of tensor fibers. Fibers are
the higher-order analogue of matrix rows and columns. A fiber is defined by fixing every
index but one. When extracted from the tensor, fibers are always assumed to be oriented
as column vectors. For example, a matrix column is a one-dimensional fiber and a matrix
row is a two-dimensional fiber. Third-order tensors have column, row, and tube fibers,
as is illustrated in Figure 2.1.

Figure 2.1: Fibers and slices of a third-order tensor [48].

In this thesis, we will only go as far as third-order tensors. For the operations that will
be performed, it is of relevance to transform tensors into a vector, on which well-studied
matrix-vector operations can be applied. Reordering the elements of a N th-order tensor
array into a vector is called vectorization. There exists different ways of vectorizing a
tensor, but the ordering of the elements is not important as long as it is consistent across
related calculations. As an example, consider a tensor A ∈R4×3×2 which can be arranged
as a 24-element vector by stacking up all the tube fibers vertically in order as follows
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vec (A ) =



a111

a112

a121

a122

a131

a132

a211
...

a411

a412

a421

a422

a431

a432


On top of this, a few matrix products will be of importance in the sections that follow,

and their definitions are introduced below.

Definition 2.5.1 (Kronecker Product). The Kronecker product of matrices A ∈ RI×J and
B ∈RK×L is denoted with A⊗B ∈RI K×JL , and is defined by

A⊗B =


a11B a12B · · · a1J B
a21B a22B · · · a2J B

...
...

. . .
...

aI 1B aI 2B · · · aI J B


Let a,b ∈R be column vectors, then an important result that shall be used later is that

vec(ab⊤) = b⊗a, where vec(·) is the vectorization operator. This operator is linear.

2.6. OTHER RELEVANT THEOREMS
Theorem 2.6.1 (First Fundamental Theorem of Calculus (FTC)). Let f be a continuous
real-valued function defined on a closed interval [a,b]. Let F be the function defined, for
all x ∈ [a,b], by

F (x) =
∫ x

a
f (t )d t .

Then F is uniformly continuous on [a,b] and differentiable on the open interval (a,b),
and

F ′(x) = f (x),

for all x ∈ (a,b) so F is an antiderivative of f .

Corollary 2.6.1.1. If f is a real-valued continuous function on [a,b] and F is an an-
tiderivative of f ∈ [a,b] then ∫ b

a
f (t )d t = F (b)−F (a).





3
PRELIMINARY ANALYSIS: HEAT

EQUATION

In this chapter, we focus on the Heat equation. The relevance of such PDE lies in the ex-
istence of a well-established solution represented as a series expansion [49]. This allows
us to gain more understanding and insights into Fourier methods within the context of
PDEs, which will subsequently be applied to build up our own approach to solve more
complex PDEs.

3.1. SOLVING THE HEAT EQUATION
Let us consider the 1D Heat equation, for which there is only one spatial variable. We
consider a metal bar with a length 2π (and negligible thickness), and we take x as the
variable that indicates the distance of a point on the bar. Let u(t , x) be a function that in-
dicates the temperature at distance x and at time t . The heat transfer in the rod satisfies
the following PDE with boundary conditions,

∂u

∂t
= 1

2

∂2u

∂x2 for 0 < x < 2π,0 < t ,

u(t ,0) = 0,

u(t ,2π) = 0,

u(0, x) = f (x).

(3.1)

The two conditions following the equation are called the Dirichlet conditions. It means
that the bar boundaries are kept at zero temperature. The last condition states that the
initial distribution of temperatures (that is, when t = 0) is given by function f .

Without the constraints of the initial and boundary conditions, there are infinitely
many solutions to the Heat equation. The above PDE can be solved by applying the
method of separation of variables, meaning that we assume solutions of the form u(x, t ) =

25
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X (x)T (t ). Notice this is not the only possible type of solution. From this assumption, it
follows that

X (x)T ′(t ) = 1

2
X ′′(x)T (t ) =⇒ T ′(t )

1
2 T (t )

= X ′′(x)

X (x)
.

Note that we are looking for non-trivial solutions, hence, it should hold that X (x) ̸= 0
and T (t ) ̸= 0. The boundary condition u(t ,0) = 0 leads to X (0) = 0, and u(t ,2π) = 0
implies that X (2π) = 0. The initial condition u(0, x) = f (x) leads to X (x) = f (x) and
T (0) = 1.

Notice that each side depends only on one variable, which means that we can write
that each side is equal to a constant −λ ∈R, i.e.

T ′(t )
1
2 T (t )

= X ′′(x)

X (x)
=−λ,

which yields {
X ′′(x)+λX (x) = 0,

T ′(t )+ 1
2λT (t ) = 0.

(3.2)

The second equation in (3.2) has solution T (t ) = ce−
1
2λt . Accounting for the initial

condition T (0) = 1, we conclude that T (t ) = e−
1
2λt .

For the first equation in (3.2), for λ ≤ 0, we obtain only the trivial solution X (x) = 0;
for λ> 0, the general solution is of the form X (x) = c1 cos(

p
λx)+ c2 sin(

p
λx). Using the

boundary conditions, we have that{
X (0) = c1 cos(

p
λ0)+ c2 sin(

p
λ0) = 0

X (2π) = c1 cos(
p
λ2π)+ c2 sin(

p
λ2π) = 0

=⇒
{

c1 = 0,

c2 sin(
p
λ2π) = 0.

To yield a non-trivial solution, we need that c2 ̸= 0 and sin(
p
λ2π) = 0, which implies

that
p
λ2π= kπ, or equivalently, λ=

(
k
2

)2
, with k ∈Z.

Because the Heat equation is linear, any linear combination of solutions is also a
solution. Thus, by the superposition principle, the desired solution is of the following
form

u(t , x) =
∞∑

k=1
Bk e

− 1
2

(
k
2

)2
t

sin
(
kπ

x

2π

)
=

∞∑
k=1

Bk e−k2t/8 sin(kx/2). (3.3)

It can be seen that when t = 0, u(0, x) reduces to a Fourier-sine series. It then follows
that Bk are the sine series coefficients of u(0, x) = f (x), i.e.

Bk = 2

2π

∫ 2π

0
f (y)sin(k y/2)d y, (3.4)

which, inserting to (3.3) and interchanging the summation and the integration, leads to

u(t , x) = 1

π

∫ 2π

0
f (y)

∞∑
k=1

e−k2t/8 sin(kx/2)sin(k y/2)d y. (3.5)
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3.2. APPROXIMATION USING 2D FOURIER SERIES
Equation (3.3) shows that the solution u(t , x) can be written in the form of a series of
sine functions of x with coefficients decaying exponentially in time. To be able to recover
the solution function of more complicated PDEs, we now consider approximating u(t , x)
using a 2D Fourier series for the variables x and t . We start by constructing the expansion

for the t-dimension, i.e. analysing how to properly expand e−k2t/8 via a Fourier-cosine
or -sine series.

3.2.1. t -DIMENSION

First consider a cosine series expansion to approximate the function e−k2t/8 on a finite
interval, such as [0,1]. Note that a Fourier-cosine series expansion is obtained by apply-
ing Fourier series expansion to an even extension of the original function, in our case on
the interval [−1,1], i.e.

g (t ) =
{

ek2t/8 if −1 ≤ t < 0,

e−k2t/8 if 0 ≤ t ≤ 1.

For a given k, the respective cosine expansion in [0,1] reads

e−k2t/8 ≈
N−1∑
n=0

′βk,n cos(nπt ) ,

where βk,n are the Fourier-cosine series coefficients.

Figure 3.1: Cosine series expansion of e−k2t/8 in the interval [0,1], for k = 10.

Since we will eventually insert the expansion into the Heat equation - which requires
the first order derivative with respect to time -, we need to check the convergence be-
havior of the time-dimension derivative of the series expansion. From Theorem 2.3.3,

we can take the derivative of the cosine series expansion of e−k2t/8. For a given k, the
derivative in [0,1] reads

−k2/8e−k2t/8 ≈−
N−1∑
n=0

′βk,nnπsin(nπt ) ,

which is a sine expansion. Recall that a Fourier-sine series expansion is obtained by
applying Fourier series expansion to an odd extension of the original function. In our
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case, the function is −k2/8e−k2t/8 and the odd extension is performed on the interval
[−1,1] as follows

g ′(t ) =
{

k2/8ek2t/8 if −1 ≤ t < 0,

−k2/8e−k2t/8 if 0 ≤ t ≤ 1.

Notice that there is a discontinuity at t = 0 and it can be seen in Figure 3.2a that there
is Gibbs phenomenon at the discontinuity.

Theorem 2.3.2 indicates that if f (t ) is continuous at a then the left and right hand
limits are equal and we have SN (a) → f (a), but if f (t ) has a jump at a then SN (a) con-
verges to the average of the left and right hand limits. This latter case is confirmed by
Figure 3.2b, wherein the sine series at the discontinuity converges to 1

2 (g ′(0−)+g ′(0+)) =
1
2 (k2/8−k2/8) = 0.

(a) Interval [0,1]. (b) Interval [−1,1].

Figure 3.2: Derivative of the cosine expansion of e−k2t/8 against actual function g ′(t ), for k = 10.

One way to circumvent the issue of Gibbs phenomenon at t = 0 is to construct a
cosine series on a wider interval [0−ε,1+ε], for ε > 0 big enough, while the domain of
interest for time is still [0,1]. That is, for a given k, we have

e−k2t/8 ≈
N−1∑
n=0

′βk,n cos

(
nπ

t −ε
1+2ε

)
,0 ≤ t ≤ 1, (3.6)

where βk,n are the Fourier-cosine series coefficients.

However, recall that the Gibbs phenomenon entails not only failure in convergence
at a discontinuity but also a slowed convergence rate in regions distant from the discon-
tinuity. In fact, even away from the new discontinuity (t =−ε), oscillations persist. This
is illustrated in Figure 3.3.
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Figure 3.3: Sine expansion of the derivative of e−k2t/8 in the interval [−ε,1+ε], for k = 10, ε= 0.1.

In addition to this, there is another, larger issue. So far, the example we analysed
was for fixed k. Let us pay close attention to the form of the coefficients βk,n of the
approximation for the exponential function,

βk,n = 16k2(1+2ε)
ek2ε/8 −e−k2(1+ε)/8 cos(kπ)

(1+2ε)2k4 +64n2π2 .

Notice that they also depend on the expansion terms for the x-dimension, given by
the index k. For a big value of k, the coefficients eventually explode due to the fact that
the lower endpoint of the expansion is negative, since −ε< 0. Because of this issue, the

cosine expansion is not a good choice to approximate e−k2t/8.

If we were to alternatively consider a Fourier-sine series expansion of e−k2t/8 in [0,1],
there would be the limitation that for the endpoints of the interval, the function has value

0. Given the setting of our problem, it is not realistic to have e−k2t/8 ≈ 0 at points t = 0
and t = 1.

Hence, we take a different approach. Since the aforementioned issues arise in the
time-derivative of the approximation of the function, one idea is to directly approximate
the derivative with respect to time by a Fourier series. Subsequently, by integrating, we

can obtain an approximation for the original function. The derivative of e−k2t/8 is a con-
tinuous function and, thus, Theorem 2.3.4 can be applied.

For a given k, the cosine expansion of the respective derivative in [0,1] reads

−k2/8e−k2t/8 ≈
N−1∑
n=0

′αk,n cos(nπt ) =
N−1∑
n=0

′2k4 e−k2/8 cos(nπ)−1

k4 +64n2π2 cos(nπt ) ,

whereby the coefficients αk,n are solved analytically from the definition.

By taking the integral of the cosine expansion and applying the FTC, we obtain
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e−k2t/8 −1 =
∫ t

0
−k2/8e−k2s/8d s

⇐⇒e−k2t/8 −1 ≈
N−1∑
n=1

αk,n

∫ t

0
cos(nπs)d s + 1

2
αk,0

∫ t

0
1d s

=⇒ e−k2t/8 ≈
N−1∑
n=1

αk,n
1

nπ
sin(nπt )+ 1

2
tαk,0 +1.

(3.7)

Notice that equation (3.7) is no longer a Fourier series for e−k2t/8 due to the t-dependent
term. We shall refer to this construction as a trigonometric expansion from here onward.

(a) Cosine expansion of the derivative of e−k2 t/8 in the
interval [0,1], for k = 10.

(b) e−k2 t/8 in the interval [0,1] as the integral of the co-
sine expansion of the derivative, for k = 10.

By taking this approach, we are obtaining an approximation which is now continu-
ous and differentiable at the point t = 0. This is because the actual expanded function,

−k2/8e−k2t/8, is at least continuous, and so taking its integral leads to a function which
is differentiable and continuous.

Moreover, this is a global approximation for e−k2t/8 (suitable for any t ), and in par-
ticular, it is exact at point t = 0. The latter comes from the fact that we know the value of
the function at initial time, and that information is used upon integration by using FTC.

Numerical tests show that our construction with the integral approximates the origi-
nal exponential function well. In Figure 3.5, we present the convergence of the L∞-norm

error between the exact function e−k2t/8 and the approximation (3.7) in the interval [0,1],
for different value of k.
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Figure 3.5: L∞-norm error between integral approximation and the exact function e−k2t/8, for different values
of k.

The results indicate an algebraic convergence rate of the constructed trigonomet-

ric expansion. Furthermore, as the value of parameter k increases, the function e−k2t/8

exhibits steeper behavior, leading to less precise approximations: even with N = 128
expansion terms, the approximation can only attain an accuracy of O (10−2) for k = 20.
We conclude that achieving a reasonable approximation of an exponential function de-
mands a substantial number of expansion terms.

Recall that how fast the series expansion converges is solely determined by how smooth
the periodic extension of the function is. The weakest condition that guarantees conver-
gence of a Fourier series is that the function is of class C 0 (continuous but not differ-
entiable). When we first expand the derivative and then integrate that expansion, the
smoothness of the expanded function has been improved by order 1. This is confirmed
by numerical tests: if we would have taken a cosine series to directly approximate the
exponential function,

e−k2t/8 ≈
N−1∑
n=0

′16k2 1−e−k2/8 cos(nπ)

k4 +64n2π2 cos(nπt ),

the convergence would have been worse, as depicted in Figure 3.6.
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Figure 3.6: L∞-norm error between cosine series approximation and the exact function e−k2t/8, for different
values of k.

3.2.2. TRIGONOMETRIC EXPANSION
Let us now consider the following particular problem for the Heat equation,

∂up

∂t = 1
2
∂2up

∂x2 , for 0 < x < 2π and 0 < t ≤ 1,

up (t ,0) = 0,

up (t ,2π) = 0,

up (0, x) = sin(px/2).

(3.8)

Knowing, by Section 3.1, that a possible solution for this problem is of the form

up (t , x) =
∞∑

k=1
Bk e−k2t/8 sin(kx/2) = e−p2t/8 sin(px/2),

where Bk = 0 for k ̸= p and Bp = 1, we approximate up using a 2D series expansion. As
discussed in Section 3.2.1, we shall consider

∂up

∂t
=

∞∑
k=1

∞∑
n=0

′αk,n cos(nπt )sin(kx/2) , (3.9)

which yields

up =
∞∑

k=1

( ∞∑
n=1

αk,n
1

nπ
sin(nπt )+ 1

2
tαk,0

)
sin(kx/2)+ sin(px/2)

=⇒ up =
( ∞∑

n=1
αp,n

1

nπ
sin(nπt )+ 1

2
tαp,0 +1

)
sin(px/2), since αk,n = 0 for k ̸= p,

(3.10)

where αk,n denote the coefficients, analytically determined by

αk,n =−2
∫ 1

0
k2/8e−k2t/8 cos(nπt )d t = 2k4 e−k2/8 cos(nπ)−1

k4 +64n2π2 . (3.11)

One particularity of this construction is that the boundary conditions up (t , a) = up (t ,b)
= 0 are automatically fulfilled for any coefficients αk,n , and the same holds for the initial
condition. Plus, it allows us to recover a global approximation for up , suitable for any t
and x in the PDE domain.
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DETERMINING THE COEFFICIENTS

Let us now assume that the coefficients are in fact unknown, which is the case for later
chapters wherein we solve more complicated PDEs. Truncating the series (3.10) by N , it
yields

up ≈
N∑

k=1

(
N−1∑
n=1

Ak,n
1

nπ
sin(nπt )+ 1

2
t Ak,0

)
sin(kx/2)+ sin(px/2), (3.12)

where Ak,n denote the unknown coefficients. We shall refer to this construction as 2D
trigonometric expansion for the function up , since the coefficients are unknown and the
basis functions involved are trigonometric functions.

The coefficients Ak,n can be stored as a second-order tensor (or matrix) as follows

A =


A1,0 A1,1 ... A1,N−1

A2,0 A2,1 ... A2,N−1
...

...
AN ,0 ... ... AN ,N−1

 .

Pluggling construction (3.12) into the PDE (3.8) leads to

∂up

∂t
= 1

2

∂2up

∂x2

⇐⇒
N∑

k=1

N−1∑
n=0

′Ak,n cos(nπt )sin(kx/2)

+ 1

2

N∑
k=1

(
N−1∑
n=1

Ak,n
1

nπ
sin(nπt )+ 1

2
t Ak,0

)(
k

2

)2

sin(kx/2) =−1

2

( p

2

)2
sin

(
px/2

)
.

(3.13)

By evaluating equation (3.13) at a specific data point x ∈ [0,2π] and t ∈ [0,1], we are
left with an equation that needs to be solved for N 2 unknowns, the coefficients Ak,n .

With this in mind, we define a grid of training points with possible value combina-
tions of x and t , through which we can build a linear system to solve the coefficients. The
number of training data points per dimension is denoted with M . For the remainder of
the analysis that follows, we will assume M different training values for both x and t , i.e.
data points xm , with m = 1, . . . , M and tℓ, with ℓ= 0, . . . , M −1.

CHOICE OF N AND M
Regarding N and M , there are three different choices when solving the linear system:
N < M , N > M and N = M . Observe that N 2 can be viewed as the degree of "flexibility"
the model has in minimizing the misfit with the training data. At the same time, M 2

represents the level of "constraint" within the model, as the model tries to match these
training data points when solving the system of equations.

Figure 3.7, which distinguishes between the accuracy for training and non-training
data, shows the L∞-norm between the left-hand side (LHS) and the right-hand side
(RHS) of (3.13), for p = 1. The error in the coefficients is determined by ||Ak,n −αk,n ||∞.
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The accuracy of the output for the non-training data is fully determined by the computed
coefficients and hence these two error plots exhibit the same behaviour.

Figure 3.7: L∞-norm error for for (non-)training data and the coefficients. M = 64 training points were used,
for both dimensions, to determine the coefficients Ak,n .

• N < M . In this case, there are more training points than unknown coefficients.
This is an overdetermined linear system and, therefore, there is no solution to this
problem. The model can only minimize the distance between the RHS and the
LHS of equation (3.13). However, the trigonometric expansion is a global approx-
imation, thus the optimizer still returns coefficients that lead to an accurate ap-
proximation for non-training data. In this scenario, all three errors converge only
algebraically with increasing N . The accuracy of the fitted function is limited by
the series truncation error at level N .

• N > M . We are in the presence of an underdetermined linear system, for which
there are infinite solutions. On the one hand, there is enough flexibility to accu-
rately fit all of the training data. On the other hand, this gives room for overfitting,
i.e. the training points are overly-fitted to, leading to a large deviation between the
true coefficients of the global decomposition and the fitted ones. As a result, the
error in the coefficients and in the non-training data increases significantly (as de-
picted in Figure 3.7), while the fitted function achieves machine precision for the
training data.

• N = M . In this case, we have a uniquely determined linear system, for which there
is a unique solution. This is because the degree of flexibility in the model corre-
sponds to the degree of constraint, resulting in a fit that aligns with all training data
points while providing an overall accurate approximation.

According to these results, we conclude that the optimal parameter choice is to take
N = M and directly solve a linear system to find the coefficients without recurring to
minimization or optimization procedures.

Subsequently, we need to decide the number of training data points M for a satis-
factory level of accuracy. For that, we tested the L∞-norm error between the LHS and
the RHS of (3.13), for p = 1. The results are shown in Figure 3.8, which unsurprisingly
indicate that the higher the value of N = M , the better the accuracy.
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Figure 3.8: L∞-norm error for (non-)training data and the coefficients. M = N expansion terms and training
points were used for both dimensions, to determine the coefficients Ak,n .

The LHS computed with the approximated coefficients Ak,n can exactly match the
RHS for all of the training data points, which results in a horizontal line close to machine
precision for these points. The error in the non-training data and in the coefficients is
determined by the series truncation error at level N . As N increases, the series truncation
error decreases and there is an error decrease in the coefficients and in the non-training
data. However, we see a very slow convergence rate as N and M increase. In fact, if we
analyse the error in the coefficients for different values of p, we see an algebraic error
convergence (cf. Figure 3.9).

Figure 3.9: L∞-norm error of the coefficients for different p, using M = N expansion terms and training points.
This is computed for different values of p.

Finally, we compute the L∞-norm error between the exact function up and the ap-
proximation (3.12) whose coefficients are obtained via the PDE. Both are evaluated at
the training points and the results are illustrated in Figure 3.10. Once again, we see a
very slow convergence rate as N and M increase, and the minimum error attainable is of
order O (10−6) for p = 1, and only O (10−1) for p = 20, by setting N = M = 128.
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Figure 3.10: L∞-norm error of approximation (3.12) against exact solution up , using M = N for different values
of p.

Finally, notice that the exact formulation for up (3.10) satisfies the Heat equation.
However, we are assuming that up can be approximated by a trigonometric expansion of
the form (3.12), which means that, once that approximation is plugged into the PDE, the
value we obtain for the coefficients Ak,n will make up for the fact that the approximation
is truncated at level N . Even if that does not correspond to the analytical value,αk,n . As a
result, the L∞-norm error is smaller for the approximation of up than for the coefficients.
This will be further discussed in Chapter 8.
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OUR APPROACH: PRICING BARRIER

OPTIONS VIA TRIGONOMETRIC

EXPANSION UNDER GBM MODEL

In this chapter, we consider the case whereby the underlying process dynamics can be
described by the GBM model. We start this research with the GBM model due to the
availability of an analytical solution for the price of a barrier option. This choice allows us
to readily benchmark and evaluate the effectiveness of our method while also acquiring
valuable insights in order to extend it to more complex models.

The primary objective of this chapter is to introduce our novel approach for pricing
up-and-out barrier options. To achieve this, we will begin with deriving a formula for
the valuation of a barrier option in terms of a one-dimensional integral. Its integrand
involves a density function that captures the barrier condition, which we refer to as the
survival density function. This constitutes one of the key insights of this thesis and en-
ables the direct application of the COS pricing method by Fang and Oosterlee [22].

Following this, we proceed to estimate the sine series coefficients of the survival pdf,
which are closely related to the survival ch.f., via another series expansion. The choice
of basis functions for this second approximation series is of utmost importance, and
will be analysed in detail, taking into account the specific constraints of the problem
at hand. The respective series coefficients are obtained from solving the correspond-
ing PDE, which, in turn, is derived from the pricing PDE under the GBM model. Note
that approximating the coefficients of the survival pdf’s series and not the price directly
allows us to obtain a fast pricing method through the application of the COS pricing for-
mula.

Additionally, we derive an alternative formulation for the survival ch.f., capitalizing
on the fact that the GBM pricing PDE can be reduced to the Heat equation, for which a
solution exists in the form of a series.

Finally, numerical results are presented in the last section, where we benchmark the
sine series coefficients of the survival pdf obtained via our approach against the alter-
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native series formulation. We also compare the resulting option prices with their estab-
lished closed-form solutions and compute the options’ Greeks.

4.1. THE PRICING PDE
Let St be a stochastic process describing the asset price at time t , which will be the un-
derlying for the financial derivative contract. V (t ,S) is the value of the contract at time
t . Under the BS model, the underlying stock price is assumed to follow a GBM and its
dynamics are given by

dSt = r St d t +σSt dW Q
t ,

under the risk-neutral measure Q, where r is the risk-free interest rate and σ the volatil-
ity.

Recall that the price of an option is given by the discounted expected payoff at time
t < T (maturity),

V (t ,S) = e−r (T−t )EQ (V (T,S)|Ft ) .

Then, using the Feynman-Kac theorem, the value of the option is the solution of the
following pricing PDE, {

∂V
∂t + r S ∂V

∂S + 1
2σ

2S2 ∂2V
∂S2 − r V = 0,

V (T,S) = f (ST ),
(4.1)

where 0 ≤ t ≤ T and f (·) stands for the payoff function of the option (either call, put
or even other option types). The BS PDE is a parabolic PDE and its derivation was pre-
viously explained in Chapter 2. It is a well-posed PDE when accompanied by a final
condition.

Performing a change of variable St 7→ X t := lnSt , such that now we have the log-asset
price, the resulting pricing PDE reads{

∂V
∂t + (

r − 1
2σ

2
)
∂V
∂X + 1

2σ
2 ∂2V
∂X 2 − r V = 0,

V (T, X ) = f (XT ),
(4.2)

where 0 ≤ t ≤ T .

4.1.1. VALUATION OF BARRIER OPTIONS
Up-and-out barrier options payoff only when the process St of the underlying asset price
does not breach an agreed knock-out value, B , before the expiration of the option. This
applies when the initial asset price, S0, is less than B . In that case, the option’s payoff
mirrors that of a European option.

Let τB := inf{t̃ ≥ t : S t̃ ≥ B ⇔ X t̃ ≥ b}, with b = lnB , be the first time that the process
St hits the barrier level B . The payoff of an up-and-out barrier option is then given by
f (XT )1{τB>T }, where f (·) is the payoff function of an European option.

Pricing an European option starts from the risk-neutral valuation formula, which is
in essence an integration of the product of the probability density and the payoff func-
tion. Following the same reasoning as [50], the value of an up-and-out barrier option
can be written in a similar format1,
1Making use of the tower property of conditional expectations, i.e. E(X Y ) = E[E(X Y |Y )].
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V (t , x) = e−r (T−t )EQ
(

f (XT )1{τB>T }|Ft
)

= e−r (T−t )EQ
(

f (XT )1{τB>T }|X t = x
)

= e−r (T−t )EQ
[
EQ

(
f (XT )1{τB>T }|X t = x,1{τB>T }

)]
= 0 ·P(τB ≤ T |X t = x)+e−r (T−t )EQ[ f (XT )|X t = x,τB > T ] ·P(τB > T |X t = x)

= e−r (T−t )
(∫
R

f (y)p(y |x,τB > T )d y

)
·P(τB > T |x)

= e−r (T−t )
∫
R

f (y)

(∫ ∞

T
p(y |x,τB ) ·P(τB |x)dτB

)
d y

= e−r (T−t )
∫
R

f (y)

(∫ ∞

T
p(y,τB |x)dτB

)
d y

= e−r (T−t )
∫
R

f (y)p(y,τB > T |x)d y,

(4.3)

where p(y,τB > T |x) is the joint transition density function such that the realized path
does not cross the barrier B (from below) before maturity T . We shall call this the survival
density function. The corresponding ch.f. shall be denoted survival ch.f..

As a result of the derivations outlined in (4.3), the barrier condition can be absorbed
into the transitional pdf, and thereby into the respective ch.f. as well. This is a key insight
from our approach.

One of the primary advantages of this derivation is that the COS pricing formula from
[22] can be directly applied to barrier options, once the survival ch.f. is available. Fur-
thermore, since the payoff function is identical to that of a European option, the payoff
coefficients for the COS pricing formula remain the same, and a closed-form formula
exists.

THE PRICING PDE FOR BARRIER OPTIONS

Notice that the expectation in (4.3) is evaluated only on the event that the barrier is not
breached. A "localized" version of the Feynman-Kac theorem can be applied to such ex-
pectation [51]. Let b = lnB and choose a as low as possible, such that X can be consid-
ered close enough to −∞ (i.e. S ≈ 0). The option value V (t , x), defined by the discounted
expectation, satisfies a PDE of the same type as (4.2), but only in the domain whereby
the payoff has a non-zero value, i.e. in a compact interval [a,b] in which X can take val-
ues. In addition, boundary conditions for V can be established at the knock-out points.
Then, under the GBM model, the theorem reads as follows.

Theorem 4.1.1 (Localized Feynman-Kac for GBM). Consider a process X t whose dynam-
ics are ruled by a GBM and take τa∨b := inf{t̃ ≥ t : X t̃ ≤ a ∨X t̃ ≥ b} to be the first time that
the process X t exits the interval (a,b). Let f : [a,b] → R be a continuous payoff function
with a compact support. Then,

V (t , x) =e−r (T−t )EQ[ f (XT )1{τa∨b>T }|Ft ]

=e−r (T−t )EQ[ f (XT )1{τa∨b>T }|X t = x]
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is the unique, bounded solution of the BS pricing PDE

∂V

∂t
+

(
r − 1

2
σ2

)
∂V

∂X
+ 1

2
σ2 ∂

2V

∂X 2 − r V = 0, for a < X < b,0 ≤ t ≤ T,

with boundary and terminal conditions

V (t , a) = 0, for 0 ≤ t ≤ T,

V (t ,b) = 0, for 0 ≤ t ≤ T,

V (T, X ) = f (XT ), for a < XT < b.

Proof. We follow [52] and prove first the solution’s uniqueness. Hence, assume that
u(t , x) is the solution of the above PDE and consider for 0 ≤ t < T the process M :=
{Mt , t ≥ 0} such that

Mt := e−r t u(t , X )

Using Itô’s formula, we see that M is a (Q,F)-martingale, where F := {Ft , t ≥ 0},

d Mt =
(
e−r t ∂u

∂t
− r e−r t u(t , x)+

(
r − 1

2
σ2

)
e−r t ∂u

∂X
+ 1

2
σ2e−r t ∂

2u

∂X 2

)
d t +σe−r t ∂u

∂X
dWt

=σe−r t ∂u

∂X
dWt

since it does not contain any d t-terms.
M is bounded and, therefore, integrable. Hence,

Mt = EQ[MT |Ft ] = EQ[e−r T f (XT )1{τa∨b>T }|Ft ]

= e−r tEQ[e−r (T−t ) f (XT )1{τa∨b>T }|Ft ],

which gives (uniquely) u(t , X ) =V (t , X ).
Now we show that V is indeed a solution of the PDE. Clearly it satisfies the boundary

and terminal conditions. Further, for t < T , e−r t V (t , X t ) is a (Q,F)-martingale since

EQ[e−r T V (T, X )|Ft ] = e−r tEQ[e−r (T−t ) f (XT )1{τa∨b>T }|Ft ] = e−r t V (t , X ).

It can be proved that V (t , X ) is smooth and, consequently, using Itô’s formula we
deduce that V (t , X ) satisfies the PDE.

This theorem is the result of an argument followed by [53] and [54] as well.
Lastly, notice that the above theorem can also be applied to double-barrier and down-

and-out barrier options. That only depends on the appropriate choice of the interval
[a,b].
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4.2. BENCHMARK SOLUTION: SOLVING THE PDE THROUGH THE

HEAT EQUATION
In this section, the pricing PDE is reduced to the a simpler PDE for which an analytical
solution can be established. Our ultimate goal is to derive a formula for the survival ch.f.,
which will serve as a benchmark for our approach.

Following similar steps as [55], we start by transforming the differential equation into
the Heat equation, for which there are known solutions [49]. Consider the following ini-
tial boundary value problem (IVBP),

∂V
∂t + (

r − 1
2σ

2
)
∂V
∂X + 1

2σ
2 ∂2V
∂X 2 − r V = 0,

V (t , a) = 0, for 0 ≤ t ≤ T,

V (t ,b) = 0, for 0 ≤ t ≤ T,

V (T, X ) = f (XT ), for a < XT < b.

Step 1: Let us start by performing a change of variables, such that t 7→ τ := 1
2σ

2(T − t )
and x 7→ z := x −a. Then, the PDE becomes

∂V

∂τ
=

(
2r

σ2 −1

)
∂V

∂z
+ ∂2V

∂z2 − 2r

σ2 V. (4.4)

Setting κ= 2r
σ2 , leads to

∂V
∂τ = (κ−1) ∂V

∂z + ∂2V
∂z2 −κV for 0 < z < b −a,

V (τ,0) = 0,

V (τ,b −a) = 0,

V (0, z) = f (z +a).

(4.5)

One more change of variables is needed in order to eliminate the last two terms on
the RHS of the last equation. To this end, we set V (τ, z) = eα(z+a)+βτU (τ, z). Computing
the partial derivatives of V in terms of z and τ, it holds that

∂V

∂τ
=βeα(z+a)+βτU +eα(z+a)+βτ ∂U

∂τ
,

∂V

∂z
=αeα(z+a)+βτU +eα(z+a)+βτ ∂U

∂z
,

∂2V

∂z2 =α2eα(z+a)+βτU +2αeα(z+a)+βτ ∂U

∂z
+eα(z+a)+βτ ∂2U

∂z2 .

(4.6)

Plugging these expressions into the PDE, and setting α=− 1
2 (κ−1) = 1

2 − r
σ2 and β=

−α2 −κ=−
(
σ2+2r

2σ2

)2
, we have

∂U
∂τ = ∂2U

∂z2 ,0 < z < b −a,

U (τ,0) = 0,

U (τ,b −a) = 0,

U (0, z) = e−α(z+a) f (z +a).

(4.7)
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Notice that this corresponds to the Heat equation for variables 0 ≤ z ≤ b − a and
0 ≤ τ≤ 1

2σ
2T .

Step 2: To solve the Heat equation (4.7), we will use the method of separation of
variables. That is, we assume solutions of the form U (z,τ) = Z (z)T (τ). Following the

same steps as in Chapter 3, we arrive at Zk (z) = Bk sin
(
kπ z

b−a

)
, and Tk (τ) = e

−
(

kπ
b−a

)2
τ

, for
k ∈Z.

Step 3: Because the Heat equation is linear, any linear combination of eligible solu-
tions is also a solution. Then, the solution for the IVBP can be written as a linear com-
bination of the separate solutions Uk (τ, z) = Xk (z)Tk (τ), leading to a series expansion
formulation. Hence, by the superposition principle, the desired solution is of the form

U (τ, z) =
∞∑

k=1
Bk e

−
(

kπ
b−a

)2
τ

sin
(
kπ

z

b −a

)
,0 < z < b −a, 0 ≤ τ≤ 1

2
σ2T

=⇒U (τ, x) =
∞∑

k=1
Bk e

−
(

kπ
b−a

)2
τ

sin
(
kπ

x −a

b −a

)
, a < x < b.

(4.8)

When τ= 0, U (0, x) is also a Fourier-sine series expansion. It then follows that Bk are
the sine series coefficients of e−αx f (x), defined as follows

Bk = 2

b −a

∫ b

a
e−αy f (y)sin

(
kπ

y −a

b −a

)
d y. (4.9)

This implies that

U (τ, x) =
∞∑

k=1
Bk e

−
(

kπ
b−a

)2
τ

sin
(
kπ

x −a

b −a

)
=⇒ V (τ, x) =eαx+βτ ∞∑

k=1
Bk e

−
(

kπ
b−a

)2
τ

sin
(
kπ

x −a

b −a

)
=⇒ V (t , x) =e−r (T−t )

∞∑
k=1

Bk e
− 1

2σ
2(T−t )

((
kπ

b−a

)2+α2
)
eαx sin

(
kπ

x −a

b −a

)
⇐⇒V (t , x) =e−r (T−t )

∫ b

a
e−αy f (y)︸ ︷︷ ︸

payoff

2

b −a

∞∑
k=1

e
− 1

2σ
2(T−t )

((
kπ

b−a

)2+α2
)
eαx sin

(
kπ

x −a

b −a

)
e−αy sin

(
kπ

y −a

b −a

)
︸ ︷︷ ︸

p(y,τa∨b>t |x)

d y.

(4.10)

The formula for the survival density function p(y,τa∨b > t |x) is confirmed by [56],
which derives it via the Kolmogorov backward equation for the pdf.
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Step 4: Since the survival pdf forms a Fourier pair with the survival ch.f., we get

φ(ω; t , x) =
∞∑

k=1
e
− 1

2σ
2(T−t )

((
kπ

b−a

)2+α2
)
eαx sin

(
kπ

x −a

b −a

)(
2

b −a

∫ +∞

−∞
e iωy e−αy sin

(
kπ

y −a

b −a

)
d y

)

≈
∞∑

k=1
e
− 1

2σ
2(T−t )

((
kπ

b−a

)2+α2
)
eαx sin

(
kπ

x −a

b −a

)(
2

b −a

∫ b

a
e iωy e−αy sin

(
kπ

y −a

b −a

)
d y

)
.

(4.11)

This result will be used for comparison of the results obtained with our approach,
later in Section 4.5.

4.3. THE PDE FOR THE SURVIVAL CH.F.
From (4.3) and the sine formulation for the option price (2.32), we conclude that the
price of a barrier option can be approximated by

V (t , x) ≈ e−r (T−t )
N∑

p=1
Im

{
φ

( pπ

b −a
, t ; x

)
e−i pπ a

b−a

}
Vp , (4.12)

where φ is the survival ch.f. corresponding to p(y,τB > T |x). The coefficients Vp for
European (and barrier) options are provided by

Vp := 2

b −a

∫ b

a
V (T, y)sin

(
pπ

y −a

b −a

)
d y, (4.13)

where V (T, y) is the option value at maturity T , i.e. the payoff function. For a call option,
we have V (y,T ) = (e y −K )+, for instance.

Let us denote by φ̂p (t , x) := Im
{
φ

( pπ
b−a , t ; x

)
e−i pπ a

b−a

}
the coefficients for the survival

pdf. Plugging formula (4.12) into the pricing PDE, we obtain

∂V

∂t
+

(
r − 1

2
σ2

)
∂V

∂X
+ 1

2
σ2 ∂

2V

∂X 2 − r V = 0

⇐⇒r V +e−r (T−t )
N∑

p=1

∂φ̂p

∂t
Vp +

(
r − 1

2
σ2

)
e−r (T−t )

N∑
p=1

∂φ̂p

∂X
Vp + 1

2
σ2e−r (T−t )

N∑
p=1

∂2φ̂p

∂X 2 Vp − r V = 0

⇐⇒
N∑

p=1

(
∂φ̂p

∂t
+

(
r − 1

2
σ2

)
∂φ̂p

∂X
+ 1

2
σ2 ∂

2φ̂p

∂X 2

)
Vp = 0, for every p ∈N.

(4.14)

Notice that this is an inner product between a vector v with components Vp and a

vector u with components
∂φ̂p

∂t + (
r − 1

2σ
2
) ∂φ̂p

∂X + 1
2σ

2 ∂
2φ̂p

∂X 2 , for p = 1, . . . , N , which is equal
to zero. This means that the two vectors are orthogonal to each other, or one of them
contains zero values. Since the formula for the coefficients Vp applies to any payoff func-
tion V (T, y), for any possible vector v, it can only be the case that u = 0. That is, for every
p ∈N, we conclude that

∂φ̂p

∂t
+

(
r − 1

2
σ2

)
∂φ̂p

∂X
+ 1

2
σ2 ∂

2φ̂p

∂X 2 = 0. (4.15)
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From the Feynman-Kac theorem 4.1.1, we have that V (t , a) = V (t ,b) = 0, which im-
plies that φ̂p (t , a) = φ̂p (t ,b) = 0. For the terminal condition,

∑N
p=1 φ̂p (T, x)Vp corre-

sponds to the sine series expansion of V (T, x), i.e. V (T, x) =∑N
p=1 sin

(
pπ x−a

b−a

)
Vp . Thus, it

implies that φ̂p should correspond to the basis functions of the expansion, i.e. φ̂p (T, x) =
sin

(
pπ x−a

b−a

)
.

Following a common practice, we set τ := T − t . Then, the terminal condition for φ̂p

becomes an initial condition, φ̂p (0, x) = sin
(
pπ x−a

b−a

)
and

∂φ̂p

∂t =− ∂φ̂p

∂τ .
To sum up, now we have to solve the following IVBP

−∂φ̂p

∂τ
+ (

r − 1
2σ

2
) ∂φ̂p

∂X
+ 1

2
σ2

∂2φ̂p

∂X 2 = 0, a < X < b,

φ̂p (τ, a) = 0,

φ̂p (τ,b) = 0,

φ̂p (0, x) = sin
(
pπ x−a

b−a

)
,

(4.16)

with φ̂p a function of τ and x, i.e. φ̂p (τ, x) := Im
{
φ

( pπ
b−a ,τ; x

)
e−i pπ a

b−a

}
.

Having derived the PDE for φ̂p which will be solved in the following sections, we can
now motivate the choice of computing the sine formula for the option price instead of
the usual cosine formula. At the terminal time T (i.e. τ = 0), the ch.f. φ equals e iωXT ,
which implies that

φ
( pπ

b −a
,T ; x

)
e−i pπ a

b−a = e i pπ x−a
b−a .

Hence, using the sine pricing formula (2.32), it follows that

V (T, x) =
N∑

p=1
sin

(
pπ

x −a

b −a

)
Vp =⇒ V (T, a) =V (T,b) = 0,

as desired. On the other hand, at the terminal time, the cosine pricing formula (2.30)
does not capture V (T, a) = V (T,b) = 0, because neither the coefficients Vp will be 0 at
x = a and x = b nor the cosine basis functions. Moreover, there is nothing that guar-
antees orthogonality between the basis functions evaluated at x = a and x = b and the
coefficients Vp . Thus, the value of the option would not be 0 at the boundaries x = a
and x = b for the final time t = T , unless the following conditions were imposed when
solving the PDE,

N∑
p=0

′1 ·Vp = 0 ,
N∑

p=0

′(−1)p ·Vp = 0.

Imposing such conditions would add one dimension to the problem, as we are now
working with φ̂p directly and not with the option price V .

Furthermore, the choice to solve the PDE for φ̂p instead of the pricing PDE directly
is motivated by the fact that solving the PDE for φ̂p enables the subsequent fast compu-
tation of option prices for multiple strike prices simultaneously, by taking advantage of
the sine pricing formula (4.12).
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4.4. APPROXIMATION FOR THE SURVIVAL CH.F.
A closed-form solution for φ̂p does not exist. Therefore, our goal is to find a formula for
φ̂p by solving the respective PDE.

Previous work done in FF Quant [30] has indicated that the survival ch.f. can be
recovered accurately from its Fourier series expansion. Building upon this insight, we
came up with the idea of approximating φ̂p as a series expansion and insert it into the
PDE (4.16) to yield a linear system where the unknowns are the coefficients of that expan-
sion. This idea coincides with that of a collocation method, which is briefly explained in
Section 2.4. However, there are a few distinct differences, which we will highlight as we
develop the method step by step.

It is worth noting that in the context of PDE solving, the success of the method of sep-
aration of variables depends not only on the fact that a PDE is linear and homogeneous,
but also on the boundary conditions being linear and homogeneous [57]. In (4.16), we
encounter an IVBP with these characteristics. Hence, it is natural to consider an approx-
imation for φ̂p featuring independent basis functions for each variable, mirroring the
principle of separation of variables.

Furthermore, the initial condition in (4.16) suggests the use of a trigonometric basis
function. Since the chosen approximation formula for φ̂p will be plugged in the PDE,
it is important to guarantee the differentiability of the basis functions with respect to x
and τ. This choice is in accordance with the need for differentiability, as sine and cosine
functions are infinitely differentiable and form an orthogonal basis.

Additionally, Fourier series are global decompositions, providing optimal approxi-
mations on a finite support [39]. Recall that Fourier series is an example of a trigono-
metric series, but not all trigonometric series are Fourier series. Particularly, the trun-
cated Fourier series provides the best approximation in the L2-norm among all truncated
trigonometric series (see Theorem 2.3.1).

For these reasons, we explore the idea of employing a 2D Fourier series expansion as
an approximation for φ̂p . We will consider the x− and τ−dimension separately in order
to determine the most suitable approximation for each.

4.4.1. x-DIMENSION
Regarding the x-dimension, notice that we impose Dirichlet boundary conditions for
x in (4.16). Therefore, it is intuitive to consider a sine expansion to approximate the x-
dimension. This choice guarantees that the function takes on a value of 0 at the extremes
x = a and x = b.

This is corroborated by literature on the reflection method used to solve boundary
value problems on a finite interval (0,L) (see e.g. [57]). In the reflection method, one
takes an odd extension of the data in the case of Dirichlet boundary conditions. Then,
the resulting extended data is odd on the symmetric interval (−L,L), and is extended to
be periodic with period 2L to the rest of the real line. This is similar to the approximation
produced by a sine series, as described in Section 2.3. Conversely, in the case of an even
extension, whereby the solution is expressed as a cosine series, the solution to the PDE
naturally satisfies Neumann boundary conditions.

To better visualize the idea of approximating the x-dimension with a sine series, let
us isolate this dimension by writing it as function f1 of x. Let SN f1(x) denote the sine
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expansion of f1 truncated at level N on the domain [a1,b1], then

f1(x) ≈ SN f1(x) =
N∑

k1=1
Ak1 sin

(
k1π

x −a1

b1 −a1

)
, (4.17)

where a1 and b1 are appropriate bounds for the sine expansion, i.e. a1 = a and b1 = b.

4.4.2. τ-DIMENSION

Intuitively, one could now consider a sine or cosine expansion for φ̂p . However, these
particular formulations are not suitable for τ. As described in Section 4.2, we expect
the τ-dimension to be described by an exponential function, with a dependency on the
index of the series expansion for the x-dimension. Plus, from the analysis in Section 3.1,
using sine or cosine series is not appropriate in such context. Thus, for the τ-dimension,
we consider that the derivative with respect to τ is a cosine expansion and, thus, the
original function is the integral of that cosine series. This has been tested in Chapter 3 to
have a better convergence rate than applying a direct expansion of the function itself.

To illustrate the idea, we isolate what happens on this dimension by writing it as
function f2 of τ. Let SN f ′

2(τ) denote the cosine expansion of f ′
2 truncated at level N −1

on the domain [a2,b2]. Then, we have that

f ′
2(τ) ≈ SN f ′

2(τ) =
N−1∑
k2=0

′Ak2 cos

(
k2π

τ−a2

b2 −a2

)

=⇒ TN f2(τ) =
N−1∑
k2=1

Ak2

b2 −a2

k2π
sin

(
k2π

τ−a2

b2 −a2

)
+ 1

2
Ak,0(τ−a2)+ f2(a2),

(4.18)

where the FTC was used, and a2 and b2 are appropriate bounds for the cosine expansion.
Notice that this is not a sine series due to the presence of the term 1

2 Ak,0(τ−a2). For that
reason, we shall refer to the approximation of f2 as trigonometric expansion, denoted
TN f2(x).

4.4.3. TRIGONOMETRIC EXPANSION
Taking into account the aforementioned reasoning, we choose to expand the partial
derivative of φ̂p with respect to τ as follows

∂φ̂p

∂τ
(τ, x) ≈

N∑
k=1

N−1∑
k2=0

′Ak1,k2 cos

(
k2π

τ−a2

b2 −a2

)
sin

(
k1π

x −a1

b1 −a1

)
, (4.19)

where a1 = a, b1 = b and a2 ≥ 0 since that is the minimum value that the time to maturity
τ can assume. Then,

φ̂p (τ, x) ≈ TN φ̂p (τ, x) =
∫ τ

a2

∂φ̂p

∂s
(s, x)d s + φ̂p (a2, x) by the FTC

=
N∑

k1=1

N−1∑
k2=1

Ak1,k2

b2 −a2

k2π
sin

(
k2π

τ−a2

b2 −a2

)
sin

(
k1π

x −a1

b1 −a1

)

+
N∑

k1=1

1

2
Ak1,0(τ−a2)sin

(
k1π

x −a1

b1 −a1

)
+ φ̂p (a2, x) .

(4.20)
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Since φ̂p (a2, x) is only known at initial time (τ= 0), we must have a2 = 0, and thus,

TN φ̂p =
N∑

k1=1

N−1∑
k2=1

Ak1,k2

b2 −a2

k2π
sin

(
k2π

τ−a2

b2 −a2

)
sin

(
k1π

x −a1

b1 −a1

)

+
N∑

k1=1
Ak1,0

1

2
τsin

(
k1π

x −a1

b1 −a1

)
+ sin

(
pπ

x −a1

b1 −a1

)
, with a2 = 0.

(4.21)

While we start with a 2D Fourier series representation of
∂φ̂p

∂τ , we do not have a Fourier
series expansion for φ̂p . We will refer to this construction TN φ̂p in (4.21) as a 2D trigono-
metric expansion for the function φ̂p , since the basis functions involved are trigonomet-
ric functions. It is worth noting that, this is not a simple application of Fourier basis in
the context of collocation methods. Instead, we expand the derivative of the original
function using a Fourier series and obtain the original function upon integration while
taking into account the boundary conditions.

Notice that the boundary conditions φ̂p (τ, a1) = φ̂p (τ,b1) = 0 are automatically ful-
filled for any coefficients Ak1,k2 and the same for the initial condition. In fact, consid-
ering this specific structure for approximating φ̂p allows us to recover a global approxi-
mation suitable for any τ and x, and in particular, it is possible to obtain accurate local
approximations for the boundaries and initial time.

Furthermore, the coefficients are now defined by the two-dimensional integrals. They
can be stored as a second-order tensor (or matrix)

A =


A1,0 A1,1 ... A1,N−1

A2,0 A2,1 ... A2,N−1
...

...
AN ,0 ... ... AN ,N−1


To ultimately find φ̂p , we can plug in formula (4.21) in the PDE and obtain the fol-

lowing expression in terms of matrix-vector product

− ∂φ̂p

∂τ
+

(
r − 1

2
σ2

)
∂φ̂p

∂X
+ 1

2
σ2 ∂

2φ̂p

∂X 2 = 0

=⇒ −v1 Az⊤2 +
(
r − 1

2
σ2

)
z1 Av⊤2 − 1

2
σ2z3 Av⊤2 +

(
r − 1

2
σ2

)
pπ

b −a
cos

(
pπ

x −a1

b1 −a1

)
− 1

2
σ2

( pπ

b −a

)2
sin

(
pπ

x −a1

b1 −a1

)
= 0

⇐⇒v1 Az⊤2 −
((

r − 1

2
σ2

)
z1 − 1

2
σ2z3

)
Av⊤2 =

(
r − 1

2
σ2

)
pπ

b −a
cos

(
pπ

x −a1

b1 −a1

)
− 1

2
σ2

( pπ

b −a

)2
sin

(
pπ

x −a1

b1 −a1

)
,

(4.22)



4

48
4. OUR APPROACH: PRICING BARRIER OPTIONS VIA TRIGONOMETRIC EXPANSION UNDER

GBM MODEL

where the vectors are given by

v1 =
(

sin
(
π x−a1

b1−a1

)
· · · sin

(
Nπ x−a1

b1−a1

) )
,

v2 =
(

1/2τ b2−a2
π sin

(
π τ−a2

b2−a2

)
· · · b2−a2

(N−1)π sin
(
(N −1)π τ−a2

b2−a2

) )
,

z1 =
(

π
b1−a1

cos
(
π x−a1

b1−a1

)
· · · Nπ

b1−a1
cos

(
Nπ x−a1

b1−a1

) )
,

z2 =
(

1/2 cos
(
π τ−a2

b2−a2

)
· · · cos

(
(N −1)π τ−a2

b2−a2

) )
,

z3 =
( (

π
b1−a1

)2
sin

(
π x−a1

b1−a1

)
· · ·

(
Nπ

b1−a1

)2
sin

(
Nπ x−a1

b1−a1

) )
.

Given the above formula, we wish to solve it in order to find the matrix A (containing
the unknown coefficients) that satisfies the equation. In order to do that, a grid with
combinations of values of x and τ needs to be defined. We choose M×M training points,
with M = N to prevent overfitting, as discussed in Chapter 3. This means that we assume
M training points for each dimension. Let xm be the m-th training point in the log-asset
dimension, for m = 1, ..., M , and τℓ the ℓ-th training point in the time dimension, for
l = 0, ..., M −1.

Subsequently, we define matrices out of the vectors previously defined, with M rows,
one for each training point, and N columns, as follows

V1[m, :] =
(

sin
(
π xm−a1

b1−a1

)
· · · sin

(
Nπ xm−a1

b1−a1

) )
,

and equivalently for matrices V2,Z1,Z2,Z3. Here V1[m, :] stands for the m-th row of ma-
trix V1.

Then, the pricing PDE evaluated at point (xm ,τℓ) becomes

V1[m, :]AZ2[ℓ, :]⊤−
((

r − 1

2
σ2

)
Z1[m, :]− 1

2
σ2Z3[m, :]

)
AV2[ℓ, :]⊤

=
(
r − 1

2
σ2

)
pπ

b1 −a1
cos

(
pπ

xm −a1

b1 −a1

)
− 1

2
σ2

(
pπ

b1 −a1

)2

sin

(
pπ

xm −a1

b1 −a1

)
.

(4.23)

Before solving the linear system for A, note that (4.23) is not a standard linear system
of the form M y = b, which has to be solved for the unknown vector y . Instead, the system
can be seen as a matrix equation, in which the unknown matrix A has to be solved. A
previous thesis done at FF Quant [58] showed how to transform (4.23) into a equation of

the form M y = b by vectorizing the matrix A ∈RN×N into a vector vec(A) ∈RN 2
. We shall

consider the vectorization which stacks all the columns of A vertically in order,

vec(A) =


A[:,1]
A[:,2]

...
A[:, N ]


N 2×1

(4.24)

Now, consider the matrix-vector products in (4.23), where V1[m, :] ∈R1×N , A ∈RN×N ,
Z2[ℓ, :]⊤ ∈RN×1, and thus,
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V1[m, :]AZ2[ℓ, :]⊤ =
N∑

k1=1

N−1∑
n=0

V1[m,k]A[k,n]Z2[n,ℓ] . (4.25)

Applying vec(abT ) = b⊗a, where ⊗ denotes the Kronecker product, and the linearity
of the vec(·) operator, we have

vec(V1[m, :]AZ2[ℓ, :]⊤) =
N∑

k1=1

N−1∑
n=0

A[k,n]Z2[ℓ, :](:,n)⊗V1[m, :](:,k)

= (Z2[ℓ, :]⊗V1[m, :])vec(A) .

(4.26)

In this way, we are able to represent (4.23) in vectorized format,

[
(Z2[ℓ, :]⊗V1[m, :])−

(
V2[ℓ, :]⊗

((
r − 1

2
σ2

)
Z1[m, :]− 1

2
σ2Z3[m, :]

))]
vec(A)

=
(
r − 1

2
σ2

)
pπ

b −a
cos

(
pπ

xm −a

b −a

)
− 1

2
σ2

( pπ

b −a

)2
sin

(
pπ

xm −a

b −a

)
, for fixed p.

(4.27)

Thus, we construct a matrix whose rows are given by

Z2[ℓ, :]⊗V1[m, :]−V2[ℓ, :]⊗
((

r − 1

2
σ2

)
Z1[m, :]− 1

2
σ2Z3[m, :]

)
,

and the elements of the RHS vector are given by

(
r − 1

2
σ2

)
pπ

b1 −a1
cos

(
pπ

xm −a1

b1 −a1

)
− 1

2
σ2

(
pπ

b1 −a1

)2

sin

(
pπ

xm −a1

b1 −a1

)
,

for each pair (xm ,τℓ).

For a more intuitive visualization, consider the following representation of the matrix

(τ0, x1) :
(τ0, x2) :

...
(τ0, xM ) :
(τ1, x1) :

...
(τM−1, xM ) :



Z2[:,0]⊗V1[:,1]−V2[:,0]⊗ ((
r − 1

2σ
2
)

Z1[:,1]− 1
2σ

2Z3[:,1]
)

Z2[:,0]⊗V1[:,2]−V2[:,0]⊗ ((
r − 1

2σ
2
)

Z1[:,2]− 1
2σ

2Z3[:,2]
)

...
Z2[:,0]⊗V1[:, M ]−V2[:,0]⊗ ((

r − 1
2σ

2
)

Z1[:, M ]− 1
2σ

2Z3[:, M ]
)

Z2[:,1]⊗V1[:,1]−V2[:,1]⊗ ((
r − 1

2σ
2
)

Z1[:,1]− 1
2σ

2Z3[:,1]
)

...
Z2[:, M −1]⊗V1[:, M ]−V2[:, M −1]⊗ ((

r − 1
2σ

2
)

Z1[:, M ]− 1
2σ

2Z3[:, M ]
)


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and for the RHS vector,

(τ0, x1) :
(τ0, x2) :

...
(τ0, xM ) :
(τ1, x1) :

...
(τM−1, xM ) :



(
r − 1

2σ
2
) pπ

b−a cos
(
pπ x1−a

b−a

)− 1
2σ

2
( pπ

b−a

)2
sin

(
pπ x1−a

b−a

)(
r − 1

2σ
2
) pπ

b−a cos
(
pπ x2−a

b−a

)− 1
2σ

2
( pπ

b−a

)2
sin

(
pπ x2−a

b−a

)
...(

r − 1
2σ

2
) pπ

b−a cos
(
pπ xM−a

b−a

)− 1
2σ

2
( pπ

b−a

)2
sin

(
pπ xM−a

b−a

)(
r − 1

2σ
2
) pπ

b−a cos
(
pπ x1−a

b−a

)− 1
2σ

2
( pπ

b−a

)2
sin

(
pπ x1−a

b−a

)
...(

r − 1
2σ

2
) pπ

b−a cos
(
pπ xM−a

b−a

)− 1
2σ

2
( pπ

b−a

)2
sin

(
pπ xM−a

b−a

)


CHOICE OF TRAINING POINTS

The accuracy of the solution improves with a greater number of expansion terms. In our
case, since N = M , it is necessary to select a high number of training points. However,
from the analysis in Chapter 3, we were unable to determine the optimal number of
training points.

When pinpointing the best location of the training points, two distinct factors must
be accounted for: representativeness of the training points and the limitations arising
from directly solving the linear system. The representativeness of the training points
refers to choosing the best point allocation by taking into account areas of the domain
where the function might exhibit bigger fluctuations (e.g. larger absolute gradient val-
ues). Intuitively one would concentrate more points in those areas (namely closer to the
barrier level) to produce an accurate approximation. But we also need to consider that
the location of the training points can significantly impact the stiffness of the resulting
system of equations.

Numerical tests seemed to suggest that the optimal choice is an equidistant grid. For
unevenly distributed points, the matrix can become ill-conditioned, which leads to in-
accurate solutions by directly solving the linear system. On the other hand, however,
numerical tests conducted on equally-spaced points with random perturbations yielded
results that closely align with those obtained using strictly equally-spaced points, show-
ing only minor disparities. This means that there is potential for improving the trade-off
between the system stability and best point allocation. Even though we will use equally-
spaced training points, there is room for future research on this matter.

By the formula for TN φ̂p , the boundary conditions and the initial condition are ful-
filled regardless of the value of the coefficients Ak1,k2 . Hence, including the points x =
a1, x = b1 and τ = a2 = 0 in the set of training will not bring any new information to the
system. Therefore, we define x1 > a1, xM < b1, τ0 > a2 and τM−1 = b2. Since the PDE is
valid for any 0 < τ< T , we can choose any maturity T ≡ b2 that is adequate for the type
of options that we wish to price.

Consider, for instance, a scenario with M = 64 evenly-distributed training points for
each dimension. The matrix generated by this setup is visually depicted in Figure 4.1.
Unfortunately, no regularity pattern nor interesting properties such as symmetry and
positive definiteness were identified in the resulting matrix. This is mainly due to the
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fact that we consider a trigonometric expansion for φ̂p that contains a τ-term for Ak1,0

(i.e. when k2 = 0), instead of a Fourier series.
As a result, we opted for a direct solver built in Python to solve the linear system. The

direct solver we use is scipy.linalg.solve(). The manual reads that the computa-
tional complexity is O (n3), for a matrix of size n×n. However, testing results suggest that
is of order O (n2). In our case, dealing with a matrix of size N 2 ×N 2, where N represents
the number of expansion terms per dimension, the computational complexity for solv-
ing the linear system can escalate to O (N 4). With increasing values of N , this leads to
greater CPU time.

Figure 4.1: Visual representation of the matrix values for N = M = 64 expansion terms and training points in
all dimensions.

Note that there are values well above 2 and well below -2, but for a better visualization
of the values overall in the matrix, this was the chosen range for the color scale.

4.5. RESULTS
This section presents some illustrative examples of the accuracy of the approach devel-
oped in previous sections for pricing up-and-out barrier options. Namely, we compare
φ̂p to the benchmark established in Section 4.2, compare the resulting price to the an-
alytical solution provided by equation (2.5), and also calculate the option’s Greeks with
respect to the asset price.

However, before we delve into that, it is important to acknowledge a fundamental
assumption made when we choose a trigonometric expansion (4.21) to approximate φ̂p .
We assume that this approximation perfectly describes the function φ̂p and its partial
derivatives. Therefore, we assume that the original functions are smooth and continu-
ous in the entire domain. As a consequence, the coefficients we obtain from this PDE
approach represent those of a perfect replication of an entire smooth function.

As a result, φ̂p and its partial derivatives, computed with the approximated coeffi-
cients via our PDE approach, do not exhibit discontinuities or Dirac deltas. This will be
reflected in the results for the option price and its Greeks.
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4.5.1. SURVIVAL CH.F.

Using the results derived in Section 4.2, we are able to benchmark φ̂p obtained via our
approach. Notice that the benchmark itself is also a series approximation, meaning that
its accuracy will not be as good as that of a closed-form solution. One should keep that
in mind when comparing the results for φ̂p under our approach against that benchmark.

Since we anticipate the τ-dimension to be expressed as an exponential-type func-
tion, it is reasonable to expect that, as p increases, the approximations for φ̂p will worsen,
taking into account the analysis performed in Section 3.2.1.

In Figure 4.2, we plot the relative error between φ̂p obtained via the alternative series
formulation from Section 4.2 (the benchmark) and via our approach, for N = M = 64 and
different values of p. We use use the set of training points to compute the error and for
benchmark values below 10−5, the absolute error is computed instead.

Figure 4.2: Relative error of φ̂p obtained via benchmark vs. our approach, for p between 1 and 64.
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Notice that for higher values of p, there is an evident error increase closer to the
extremes of the asset price domain S ∈ [40,120].

Table 4.1 below evidences the convergence regarding the error of φ̂p , for S = 110,
varying time to maturity values τ and distinct values of p. In addition, Figure 4.3 shows
the L∞-norm error between the approximated φ̂p and the benchmark, computed for the
set of training points. Note that the results demonstrate once again that the error tends
to increase as the value of p becomes larger.

Number of expansion terms (N )
16 32 64 128

τ p abs error % error abs error % error abs error % error abs error % error
1 1 5.26e-03 6.55 1.27e-03 1.58 3.10e-04 0.39 7.64e-05 0.09

5 2.09e-02 10.39 4.91e-03 2.44 1.117e-03 0.58 2.89e-04 0.14
10 2.68e-02 38.32 5.08e-03 7.26 1.17e-03 1.68 2.86e-04 0.40
15 3.26e-02 168.61 3.93e-03 20.34 8.55e-04 4.43 2.05e-04 1.06

0.5 1 5.11e-03 3.78 1.28e-03 0.95 3.103-04 0.23 7.65e-05 0.06
5 2.38e-02 5.76 5.72e-03 1.38 1.37e-03 0.33 3.37e-04 0.08

10 4.05e-02 20.32 8.21e-03 4.12 1.903-03 0.95 4.64e-04 0.23
15 6.27e-02 122.50 7.94e-03 15.51 1.74e-03 3.39 4.18e-04 0.82

0.25 1 2.59e-03 1.43 7.13e-04 0.39 1.69e-04 0.09 4.20e-05 0.02
5 1.32e-02 2.10 3.48e-03 0.55 8.21e-04 0.13 2.04e-04 0.03

10 2.42e-02 6.50 5.98e-03 1.60 1.37e-03 0.37 3.37e-04 0.09
15 3.79e-02 60.37 6.28e-03 10.02 1.37e-03 2.18 3.30e-04 0.52

Table 4.1: Absolute and relative error convergence for φ̂p obtained via our approach vs. alternative series
formulation (benchmark), for S = 110 and different values of τ.

Figure 4.3: L∞-norm error for φ̂p using our approach vs. alternative series formulation (benchmark), for dif-
ferent values of p.

4.5.2. OPTION PRICES

Now we compute the price of an up-and-out call option with parameters (r,σ,K ,B) =
(0.1,0.1,90,120). To obtain the value of the option via our approach, N = 64 expansion
terms were used. The respective result is benchmarked against the closed-form solution
from equation (2.5) and the results are depicted in Figure 4.4.
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(a) Payoff at maturity level (τ= 0) alongside the absolute and relative errors.

(b) Price, absolute and relative errors for τ= 0.1.

(c) Price, absolute and relative errors for τ= 0.25.

(d) Price, absolute and relative errors for τ= 0.5.

(e) Price, absolute and relative errors for τ= 1.

Figure 4.4: Price and respective errors for different values of τ, using our approach vs. closed-form solution.



4.5. RESULTS

4

55

For an option at maturity level (τ = 0), its value is just the payoff function, which
exhibits a sharp corner at the strike level K , and a jump at the barrier level B . For that
reason, the value of the option as approximated by (4.12), exhibits Gibbs phenomenon.
That is, there are oscillations in the whole domain and, particularly, in those points.

However, as the maturity increases, the value function becomes smoother and, hence,
formula (4.12) is able to recover better the true shape of this function, as shown in the
plots above.

To better understand the error level for the price of all training points (τℓ, xm) against
a set of non-training points, we compare the respective errors in Figure 4.5 below. There
the relative error is computed for both sets of points separately. The possible values for
τ are set above 0.01. This is because lower values tend to yield larger errors, due to the
previously discussed limitation of the sine pricing formula.

Overall the relative error exhibits very similar behaviour in the two sets, since we are
using a global approximation formulation for φ̂p . Nonetheless, the error is lower for the
training points as these were used to recover the coefficients of TN φ̂p .

(a) Set of training points. (b) Set of non-training points.

Figure 4.5: Relative error between the closed-form price and the approximated option price using our ap-
proach, for multiple asset prices and maturities.

Notice that for both sets of points, the error is bigger for smaller maturities and closer
to the barrier level, B = 120. The reason for both these phenomena lies on the fact that
very close to the barrier level, the price function exhibits steep skew (as a function of
x), especially for smaller maturities. To exemplify this, we plot in Figure 4.6 the pricing
function of an up-and-out call option for τ= 0.1 and τ= 1. Notice that for values of x in
[4.6,4.8], the price function decreases by 10, when τ= 1. When τ= 0.1,the price function
decreases by 20 for x in [4.7,4.8].

Therefore, the results observed in Figures 4.4 and 4.5 come as no surprise, since we
have seen in Chapter 3 - when analysing the best series approximation for an exponen-
tial function - that cosine or sine series have the limitation that a very high number of
expansion terms is needed for a converging approximation to a steep smooth function.
Consequently, the relative error is bigger for smaller maturities and closer to the barrier
level. In light of this, some improvements to the method will be introduced in Chapter 6.
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Figure 4.6: Option prices as a function of x for τ= 0.1 (left) and τ= 1 (right), using the closed-form solution.

Finally, table 4.2 presents convergence test results for a fixed asset price of S = 110
and different values of τ. All other parameters remain consistent with previous settings.
Even though the error decreases as N increases, a very slow convergence rate is observed.

Number of expansion terms (N )
16 32 64 128

τ abs error % error abs error % error abs error % error abs error % error
1 7.16e-01 14.62 1.86e-01 3.80 4.66e-02 0.95 1.17e-02 0.24

0.5 9.54e-01 8.79 2.96e-01 2.73 7.72e-02 0.71 1.97e-02 0.18
0.25 5.00e-01 2.94 2.23e-01 1.31 6.48e-02 0.38 1.74e-02 0.10
0.1 8.80e-01 4.29 1.67e-02 0.08 5.16e-03 0.03 7.48e-04 0.003

Table 4.2: Absolute and relative error convergence for the option price obtained via our approach vs. closed-
form solution, for S = 110 and different values of τ.

4.5.3. OPTION DELTA AND GAMMA
The Delta of a barrier option can jump near the barrier, producing a discontinuity at
the barrier level, as illustrated by the example in Figure 4.7. Hence, near the barrier, the
Gamma can be very large and at the barrier level it turns into a Dirac delta. On top of
this, Gamma can actually change sign around the barrier.

(a) Delta. (b) Gamma.

Figure 4.7: Example of Greeks’ profile of an up-and-out call option, for r = 0.1, σ = 0.1, K = 90, B = 120 and
different maturities.
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From equation (4.12), the Delta and Gamma of a barrier option can be computed
using the derivatives of φ̂p through the following equations

∂V

∂S
= 1

S

∂V

∂X
= e−r (T−t )

N∑
p=1

∂φ̂p

∂X
(t , x)

Vp

S
= e−r (T−t )

N∑
p=1

Im

{
∂φ

∂X

( pπ

b −a
, t ; x

)
e−i pπ a

b−a

}
Vp

S
,

(4.28)

∂2V

∂S2 = 1

S2

(
∂2V

∂X 2 − ∂V

∂X

)
= e−r (T−t )

N∑
p=1

(
∂2φ̂p

∂X 2 (t , x)− ∂φ̂p

∂X
(t , x)

)
Vp

S2

= e−r (T−t )
N∑

p=1
Im

{[
∂2φ

∂X 2

( pπ

b −a
, t ; x

)
− ∂φ

∂X

( pπ

b −a
, t ; x

)]
e−i pπ a

b−a

}
Vp

S2 ,

(4.29)

which means that the derivative of V with respect to X is passed onto the derivative of φ̂p

with respect to X and the same for the second order derivative. In turn, the derivatives
of φ̂p are passed onto the derivatives of the survival ch.f., and thus, of the respective
survival pdf.

Given that the Delta and Gamma of an option can be obtained as in equation (4.28)
and (4.29), respectively, another benefit of our approach is also clear: we are able to
retrieve the Delta and Gamma of a barrier option easily in series format, once we obtain
the approximation for φ̂p from formula (4.21). Figures 4.8-4.10 illustrate these Greeks
obtained for different maturities using TN φ̂p with N = 64 expansion terms.

Figure 4.8: Greeks computed using our approach for maturity τ= 0.25.
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Figure 4.9: Greeks computed using our approach for maturity τ= 0.5.

Figure 4.10: Greeks computed using our approach for maturity τ= 1.

Notice that, in the benchmark plots, the sudden peak for Gamma at x = a is a Dirac
delta.

As mentioned in the beginning of this section, this approach does not inherently ac-
count for ∂V

∂X (a) = ∂V
∂X (b) = 0, as this only happens because there is a discontinuity at

those points. The approximation obtained for
∂φ̂p

∂X is continuous at those points, im-

plying that ∂V
∂X is also continuous at those points (refer to Figures 4.8, 4.9 and 4.10). To

enforce a Delta value of 0 at x = a and b, we could include constraints on the first deriva-
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tive of φ̂p in the system, but that would lead to a Delta function that continuously ap-
proaches 0 at x = a and x = b nonetheless.

Finally, our approximation of Gamma fails to capture the Dirac delta at the barrier

level. This discrepancy arises because
∂2φ̂p

∂X 2 is also continuous in the entire domain [a,b].





5
OUR APPROACH: PRICING BARRIER

OPTIONS VIA TRIGONOMETRIC

EXPANSION UNDER HESTON’S

MODEL

In this chapter, we introduce our novel approach for pricing up-and-out barrier options,
under the Heston’s stochastic volatility model. Following the same steps as in the GBM
case, we start by deriving a formula for the valuation of a barrier option that contains
a one-dimensional integral. Its integrand involves a density function that captures the
barrier condition, which we refer to as the survival density function. This constitutes
one of the key insights of this thesis, facilitating the direct application of the COS pricing
method by Fang and Oosterlee [22].

Thereafter, we approximate the sine series coefficients of the survival pdf using a
second series expansion. The selection of basis functions in the approximation series is
pivotal, and will be analysed in detail, taking into consideration the specific constraints
of our research problem. The coefficients of this series are computed from solving the
corresponding PDE, derived from the pricing PDE under the Heston’s model.

Finally, numerical results are presented in the last section, whereby we compare the
resulting option prices with MC simulations.

5.1. THE PRICING PDE
Let St be a stochastic process describing the asset price at time t , which will be the un-
derlying for the financial derivative contract. V (t ,S) is the value of the contract at time
t . Recall that under the risk-neutral measure Q, the stock dynamics and the variance

61
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process vt are described by the following SDEs, in the Heston’s model,{
dSt = r St d t +p

vt St dW̃ Q
1 ,

d vt = κ(v̄ − vt )d t +γpvt

(
ρdW̃ Q

1 +
√

1−ρ2dW̃ Q
2

)
,

(5.1)

with W̃ Q
1 and W̃ Q

2 being two independent Brownian motions. Parameters ρ, κ, v̄ and γ

correspond to the correlation, the speed of mean reversion, the long-term mean of the
variance process and the volatility of the volatility, respectively.

The price of an option is given by the discounted expected payoff at time t < T (ma-
turity), i.e.

V (t ,S, v) = e−r (T−t )E(V (T, v,S)|Ft ).

Applying the Feynman-Kac theorem, it can be shown that the value of the option is
the solution to the following pricing PDE:{

∂V
∂t + r S ∂V

∂S +κ(v̄ − v) ∂V
∂v + 1

2 vS2 ∂2V
∂S2 +ργSv ∂2V

∂S∂v + 1
2γ

2v ∂2V
∂v2 − r V = 0,

V (T,S, v) = f (ST ),
(5.2)

where 0 ≤ t ≤ T and f (·) stands for the payoff function. The derivation of this pricing
PDE can be done using a martingale approach or a replication and hedging approach,
following exactly the same rationale as in Section 2.2 for the BS equation.

Applying a log-transformation of the asset price, St 7→ X t := lnSt , the resulting PDE
reads{

∂V
∂t + (

r − 1
2 v

)
∂V
∂X +κ(v̄ − v) ∂V

∂v + 1
2 v ∂2V

∂X 2 +ργv ∂2V
∂X∂v + 1

2γ
2v ∂2V

∂v2 − r V = 0,

V (T, X , v) = f (XT ),
(5.3)

where 0 ≤ t ≤ T .

5.1.1. VALUATION OF BARRIER OPTIONS
Let us consider once again an up-and-out barrier option, where τB := inf{t̃ ≥ t : S t̃ ≥ B ⇔
X t̃ ≥ b}, with b = lnB , is the first time that the process St hits the upper boundary B . The
payoff of an up-and-out barrier option is then given by f (XT )1{τB>T }, where f (·) is the
payoff function of an European option. The value of such an option can be written as

V (t , x, v) = e−r (T−t )EQ
(

f (XT )1{τB>T }|Ft
)

= e−r (T−t )EQ
(

f (XT )1{τB>T }|X t = x, vt = v
)

= e−r (T−t )EQ
[
EQ

(
f (XT )1{τB>T }|X t = x, vt = v,1{τB>T }

)]
= 0 ·P(τB ≤ T |X t = x, vt = v)

+e−r (T−t )EQ[ f (XT )|X t = x, vt = v,τB > T ] ·P(τB > T |X t = x, vt = v)

= e−r (T−t )
(∫
R

f (y)p(y |x, v,τB > T )d y

)
·P(τB > T |x, v)

= e−r (T−t )
∫
R

f (y) p(y,τB > T |x, v)︸ ︷︷ ︸
=∫ ∞

0 p(y,u,τB>T |x,v)du

d y,

(5.4)
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where p(y,τB > T |x, v) is the joint transition density function such that the realized path
does not cross the barrier B (from below) before maturity T .

Just as in the GBM case, the derivations in (5.4) show that the value of the option
can be represented by a one-dimensional expectation, where the density function cap-
tures the barrier condition. For that reason, the COS pricing formula from [22] can be
directly applied under the Heston’s model for barrier options as well, once the survival
ch.f. is available. Furthermore, since the payoff function is identical to that of a Euro-
pean option, the payoff coefficients for the COS pricing formula remain the same, and a
closed-form formula exists.

THE PRICING PDE FOR BARRIER OPTIONS

We proceed as in the GBM case. Take b = lnB and a as low as possible, such that X t

can be considered close enough to −∞. For the Heston’s model, we need to consider the
multivariate version of the localized Feynman-Kac theorem.

Theorem 5.1.1 (Localized Feynman-Kac for Heston’s model). Consider processes (X t , vt )
whose dynamics are ruled by the Heston’s model and take τa∨b := inf{t̃ ≥ t : X t̃ ≤ a ∨ X t̃ ≥
b} to be the first time that the process X t exits the interval (a,b). Let f : [a,b]×[0,+∞) →R

be a continuous payoff function. It follows that

V (t , x, v) = e−r (T−t )EQ[ f (XT )1{τa∨b>T }|Ft ]

= e−r (T−t )EQ[ f (XT )1{τa∨b>T }|X t = x, vt = v]

is the unique, bounded solution of the Heston pricing PDE

∂V

∂t
+

(
r − 1

2
v

)
∂V

∂X
+κ(v̄ − v)

∂V

∂v
+ 1

2
v
∂2V

∂X 2 +ργv
∂2V

∂X∂v
+ 1

2
γ2v

∂2V

∂v2 − r V = 0, for a < X < b,

(5.5)

with boundary and terminal conditions

V (t , a, v) = 0, for 0 ≤ t ≤ T,0 < v <+∞,

V (t ,b, v) = 0, for 0 ≤ t ≤ T,0 < v <+∞,

∂V

∂t

∣∣∣
v=0

+ r
∂V

∂X

∣∣∣
v=0

+κv̄
∂V

∂v

∣∣∣
v=0

− r V
∣∣∣

v=0
= 0, for 0 ≤ t ≤ T, a < X < b,

V (T, X , v) = f (XT ), for a < XT < b,0 < v <+∞.

Proof. Same as for GBM but applied to the Heston pricing PDE.

The boundary conditions for x = a and x = b are the same as for the GBM case. As
for the boundary condition when v = 0, it was established according to Heston’s original
paper [10], where he substitutes v = 0 in the original PDE.

5.2. THE PDE FOR THE SURVIVAL CH.F.
Again we employ the sine formulation for the price of a barrier option (2.32),

V (t , x, v) ≈ e−r (T−t )
N∑

p=1
Im

{
φ

( pπ

b −a
, t ; x, v

)
e−i pπ a

b−a

}
Vp , (5.6)
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where φ is the survival ch.f. corresponding to p(y,u,τB > T |x, v) and the series coeffi-
cients Vp for European (and barrier) options are provided by

Vp := 2

b −a

∫ b

a
V (T, y)sin

(
pπ

y −a

b −a

)
d y, (5.7)

where V (T, y) is the value at maturity T , i.e. the payoff function.

Let us denote by φ̂p (t , x, v) := Im
{
φ

( pπ
b−a , t ; x, v

)
e−i pπ a

b−a

}
the sine series coefficients

for the survival pdf. Plugging formula (5.6) into the pricing PDE, we obtain

∂V

∂t
+

(
r − 1

2
v

)
∂V

∂X
+κ(v̄ − v)

∂V

∂v
+ 1

2
v
∂2V

∂X 2 +ργv
∂2V

∂X∂v
+ 1

2
γ2v

∂2V

∂v2 − r V = 0

⇐⇒r V +e−r (T−t )
N∑

p=1

∂φ̂p

∂t
Vp +

(
r − 1

2
v

)
e−r (T−t )

N∑
p=1

∂φ̂p

∂X
Vp

+κ(v̄ − v)e−r (T−t )
N∑

p=1

∂φ̂p

∂v
Vp + 1

2
ve−r (T−t )

N∑
p=1

∂2φ̂p

∂X 2 Vp

+ργve−r (T−t )
N∑

p=1

∂2φ̂p

∂X∂v
Vp + 1

2
γ2ve−r (T−t )

N∑
p=1

∂2φ̂p

∂v2 Vp − r V = 0

⇐⇒
N∑

p=1

(
∂φ̂p

∂t
+

(
r − 1

2
v

)
∂φ̂p

∂X
+κ(v̄ − v)

∂φ̂p

∂v
+ 1

2
v
∂2φ̂p

∂X 2 +ργv
∂2φ̂p

∂X∂v
+ 1

2
γ2v

∂2φ̂p

∂v2

)
Vp = 0

=⇒ ∂φ̂p

∂t
+

(
r − 1

2
v

)
∂φ̂p

∂X
+κ(v̄ − v)

∂φ̂p

∂v
+ 1

2
v
∂2φ̂p

∂X 2 +ργv
∂2φ̂p

∂X∂v
+ 1

2
γ2v

∂2φ̂p

∂v2 = 0,

(5.8)

for every p ∈ N, whereby the last equation follows from the same reasoning as in the
GBM case.

The Feynman-Kac formula 5.1.1 states that V (t , a, v) = V (t ,b, v) = 0, which yields
φ̂p (t , a, v) = φ̂p (t ,b, v) = 0. For the terminal condition, we have that

∑N
p=1 φ̂p (T, x, v)Vp

corresponds to the sine series expansion of V (T, x, v),
∑N

p=1 sin
(
pπ x−a

b−a

)
Vp . Hence, it

follows that φ̂p (T, x, v) = sin
(
pπ x−a

b−a

)
.

Finally, let us set τ := T −t , such that the terminal condition for φ̂p becomes an initial

condition, i.e. φ̂p (0, x, v) = sin
(
pπ x−a

b−a

)
and

∂φ̂p

∂t =− ∂φ̂p

∂τ .
To sum up, now we have formulated the following IVBP for the barrier option price

under Heston’s model
−∂φ̂p

∂τ
+ (

r − 1
2 v

) ∂φ̂p

∂X
+κ(v̄ − v)

∂φ̂p

∂v
+ 1

2
v
∂2φ̂p

∂X 2 +ργv
∂2φ̂p

∂X∂v
+ 1

2
γ2v

∂2φ̂p

∂v2 = 0, a < X < b,

φ̂p (τ, a, v) = 0,

φ̂p (τ,b, v) = 0,

φ̂p (0, x, v) = sin
(
pπ x−a

b−a

)
.

(5.9)
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5.3. APPROXIMATION FOR SURVIVAL CH.F.
A closed-form solution for φ̂p does not exist. Therefore, our goal is to find a formula for
φ̂p by solving the respective PDE.

The PDE (5.9) shares the characteristics of linearity and homogeneity, similar to the
conditions we encountered in Chapter 4. Following the same reasoning as before, we opt
to approximate φ̂p using a series expansion based on trigonometric basis functions. φ̂p

is now a function of x, τ, and v , and thus, we employ the same expansion construction
as in the GBM case for x and τ. Thus, our focus for Heston’s model lies in determining
the most suitable expansion choice for the v-dimension.

5.3.1. v -DIMENSION

Regarding the v-dimension, notice that assuming a sine series expansion on an interval
[a3,b3] is not suitable: it would imply that φ̂p (τ, x, v) = 0 for v = a3 and v = b3, with a3 = 0
and b3 sufficiently big (such that the density function value at b3 is of a very small mag-
nitude), whereas it is not true that φ̂p is exactly zero on the two boundaries. Additionally,
Heston’s paper [10] does not provide the option valuation formula for v = 0. Since some
extra efforts are needed to find this boundary condition, we opt to assume that value of
an option for v = 0 is not known, and hence, the value of φ̂p at those points also cannot
be extrapolated from the respective option value.

It is not a good choice to employ cosine series expansion, either. The reason is that
it forces the first derivative with respect to v to be equal to 0 on the boundaries of the
interval [a3,b3], and we do not know anything about the derivative evaluated on those
points.

One idea to circumvent this issue is to use a cosine series expansion on a wider inter-
val, i.e. [a3−ε,b3+ε], instead of [a3,b3], for ε> 0 big enough. We have seen in Chapter 3
that this does not work for the τ-dimension because the coefficients of the function with
respect to τ depend on the expansion terms for x. However, the Heat equation obtained
from applying changes of variables on the Heston pricing PDE in [59] suggests that the
function with respect to v does not have any dependencies on the expansion terms for
x.

To better visualize this idea, let us emphasize on this dimension by expressing it as a
function of v , f3(v) . Let SN f3(v) denote the cosine series expansion of f3 truncated at
level N −1 with basis functions defined on the domain [a3 −ε,b3 +ε]. That is,

f3(v) ≈ SN f3(v) =
N−1∑
k3=0

′Ak3 cos

(
k3π

v −a3 +ε
b3 −a3 +2ε

)
, with a3 ≤ v ≤ b3

=⇒ (SN f3)′(v) =−
N−1∑
k3=0

′Ak3

k3π

b3 −a3 +2ε
sin

(
k3π

v −a3 +ε
b3 −a3 +2ε

)
.

(5.10)

This way, the derivative on the extremes a3−ε and b3+ε is 0, but not on points v = a3

and v = b3.
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5.3.2. TRIGONOMETRIC EXPANSION
Following the same reasoning as for the GBM case, we choose to expand the partial
derivative of φ̂p with respect to τ as a 3D Fourier series, i.e.

∂φ̂p

∂τ
(τ, x, v) ≈

N∑
k1=1

N−1∑
k2=0

′ N−1∑
k3=0

′Ak1,k2,k3 sin

(
k1π

x −a1

b1 −a1

)
cos

(
k2π

τ−a2

b2 −a2

)
cos

(
k3π

v −a3 +ε
b3 −a4 +2ε

)
,

(5.11)
where a1 = a, b1 = b, a2 = 0 and a3 = 0 since 0 is the minimum value that the variance v
can take in the settings of our IVBP (5.9). Then, by integrating with respect to time, we
obtain a trigonometric expansion for φ̂p ,

φ̂p (τ, x, v) ≈TN φ̂p (τ, x, v)

=
∫ τ

0

∂φ̂p

∂s
(s, x, v)d s + φ̂p (0, x, v) by the FTC

=
N∑

k1=1

N−1∑
k2=1

N−1∑
k3=0

′Ak1,k2,k3 sin

(
k1π

x −a1

b1 −a1

)
b2 −a2

k2π
sin

(
k2π

τ−a2

b2 −a2

)
cos

(
k3π

v −a3 +ε
b3 −a3 +2ε

)

+
N∑

k=1

N−1∑
k3=0

′ 1

2
Ak1,0,k3τsin

(
k1π

x −a1

b1 −a1

)
cos

(
k3π

v −a3 +ε
b3 −a3 +2ε

)
+ sin

(
pπ

x −a1

b1 −a1

)
.

(5.12)

In other words, we start with a 3D Fourier series representation of
∂φ̂p

∂τ , not a Fourier
series expansion for φ̂p . We will refer to this construction TN φ̂p as a 3D trigonometric
expansion for the function φ̂p , since the end result is a linear combination of cosine and
since functions but not in the format of a Fourier series expansion.

The boundary conditions φ̂p (τ, a, v) = φ̂p (τ,b, v) = 0 are automatically fulfilled for
any coefficients Ak1,k2,k3 and, thanks to our construction of the trigonometric expan-
sion, the same for the initial condition. Worth noting that, this construction is a global
decomposition of φ̂p , thus suitable for any τ, x and v , and in particular, we obtain accu-
rate local approximations for the boundaries and initial time.

Furthermore, the coefficients are now defined by three-dimensional integrals. They
can be stored as a three-order tensor A ∈RN×N×N with elements given by A [k1,k2,k3] =
Ak1,k2,k3 . In this thesis, we shall consider that the index k1 is relative to the row fibers, k2

to the column fibers and k3 to the tube fibers (see Section 2.5).
After the determination of the expansion form, we insert formula (5.12) evaluated at

different training points into the PDE (5.9). Unlike the 2D case, we cannot represent the
resulting system as a matrix-vector product. Nonetheless, the underlying concept re-
mains the same, and our goal is to solve the resulting system to determine the unknown
coefficients, i.e. the elements of the tensor A .

To achieve this, we define a set with combinations of values of x, τ and v , in which
the PDE will be evaluated. To be more precise, we choose M × M × M training points,
with M = N to prevent overfitting, as discussed in Chapter 3. Let xm be the m-th training
point in the log-asset dimension, for m = 1, ..., M , τℓ the ℓ-th training point in the time
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dimension, for l = 0, ..., M −1 and vn the n-th training point in the variance dimension,
for n = 0, . . . , M −1.

Subsequently, we define matrices with M rows and N columns that contain the basis
functions evaluated at the training points. Matrices V1,V2,Z1,Z2 and Z3 are defined as in
Chapter 4. We need to define new matrices V3,Z4 and Z5 as follows

V3[n, :] =
(

1/2 cos
(
π vn−a3+ε

b3−a3+2ε

)
· · · cos

(
(N −1)π vn−a3+ε

b3−a3+2ε

) )
,

Z4[n, :] =
(

0 − π
b3−a3+2ε sin

(
π vn−a3+ε

b3−a3+2ε

)
· · · − (N−1)π

b3−a3+2ε sin
(
(N −1)π vn−a3+ε

b3−a3+2ε

) )
,

Z5[n, :] =
(

0 −
(

π
b3−a3+2ε

)2
cos

(
π vn−a3+ε

b3−a3+2ε

)
· · · −

(
(N−1)π

b3−a3+2ε

)2
cos

(
(N −1)π vn−a3+ε

b3−a3+2ε

) )
,

where V3[n, :] stands for the n-th row of matrix V3, with a similar notation for the other
matrices.

Just like in the GBM case, the goal is to derive a linear system where the unknowns
are the elements of A . To that end, we first vectorize the tensor A ∈RN×N×N by stacking
up all the tube fibers of A vertically in order, as previously illustrated in Section 2.5.

Applying vec(abT ) = b⊗a, where ⊗ denotes the Kronecker product, and the linearity
of the vec(·) operator, we have

N∑
k1=1

N−1∑
k2=0

N−1∑
k3=0

A [k1,k2,k3](Z2[ℓ, :](:,k2)⊗V3[n, :](:,k3)⊗V1[m, :](:,k1))

= (Z2[ℓ, :]⊗V3[n, :]⊗V1[m, :])vec(A ).

(5.13)

Then the pricing PDE evaluated at point (τℓ, xm , vn) leads to

(Z2[ℓ, :]⊗V3[n, :]⊗V1[m, :])vec(A )−
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2
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, for fixed p.

(5.14)
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CHOICE OF TRAINING POINTS

The range of possible values for v , denoted as [a3,b3], corresponds to the specific inter-
val within which we wish to obtain an accurate approximation for the function φ̂p , but
not the interval on which we construct the series expansion (recall Section 5.3.1). The
intervals [a1,b1] and [a2,b2] must adhere to specific boundary conditions (with [a1,b1]
being equal to [a,b] and a2 set at 0 due to the initial condition), [a3,b3], however, is not
constrained by the necessity to satisfy (boundary) conditions of the PDE.

By the formula for TN φ̂p , the boundary conditions and the initial condition are ful-
filled regardless of the value of the coefficients Ak1,k2,k3 . Hence, including the points
x = a1, x = b1 and τ= a2 = 0 in the grid will not bring any new information to the system.
Therefore, we define x1 > a1, xM < b1, τ0 > a2, τM−1 = b2, v0 = a3 = 0 and vM−1 = b3.
Since the PDE is valid for any 0 < τ< T , we can choose any maturity T ≡ b2 that is ade-
quate for the type of options that we wish to price. The same rationale holds for b3.

CHOICE FOR PARAMETER ε

There is one free parameter at our disposal, ε. To determine what is the value of ε that
minimizes the error, we proceed as follows. We vary the range [a3 −ε,b3 +ε] for a3 = 0,
b3 = 0.5 and different values of ε. We fix N = M = 32 for all dimensions in our approach.
The set used to compute the errors consists of barrier option values for the training
points. The time to maturity is fixed at τ= 1.

To compute the error we use a MC simulation with 100,000 paths and 1,000 time
steps as a benchmark. The number of paths was set due to time constraints, as more
paths would require longer computational times. Since we are dealing with continuously-
monitored barrier options, we deemed as most important to keep the number of time
steps high to the detriment of the number of paths. If we consider the configuration
of 1,000,000 paths and 1,000 time steps as the one yielding the most accurate results,
then 100,000 paths and 1,000 time steps produce results closer to that configuration than
1,000,000 paths and 250 time steps1.

Taking into account the purpose intended in this section, the choice of number of
paths and time steps is deemed enough. In Chapter 7, where comparisons between dif-
ferent models are performed, we chose a larger number of paths for a more accurate
comparison.

We adopted multiple metrics for measuring the error, namely L2-norm, L∞-norm
and mean relative error, with the latter being computed as follows

mean relative error = 1

M 2

M∑
m=1

M∑
n=1

∣∣∣∣Vapprox(τℓ, xm , vn)−Vbench(τℓ, xm , vn)

Vbench(τℓ, xm , vn)

∣∣∣∣ ,

where (τℓ, xm , vn) stand for training points and ℓ is fixed.

1250 time steps coincides with a daily monitored barrier option.
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Figure 5.1: Comparison of three error metrics for our approach applied to all training points, while varying ε.

Figure 5.1 indicates that the L2-norm and the mean relative error are minimized for
ε= 0.25. Since these two error metrics take into account the errors at all points and both
indicate the same optimal ε, we choose to follow this indication and determine ε in the
following way: we set ε as half the length of the support [a3,b3], i.e.

ε := b3 −a3

2
,

such that the series expansion domain [a3 −ε,b3 +ε] is double the size of the support of
interest [a3,b3] for v .

Unfortunately, no regular pattern nor interesting properties such as symmetry and
positive definiteness can be identified in the matrix at hand (cf. Figure 5.2). Hence, we
recur to a direct solver built in Python to solve the linear system. Since the matrix has
size N 3×N 3, for larger values of N , this corresponds to a significant increase in CPU time
and can lead to memory allocation problems.

Figure 5.2: Visual representation of the matrix values for N = M = 32 expansion terms and training points in
all dimensions.
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Note that there are values above 2 and below -2, but for a better visualization of the
values overall in the matrix, this was the chosen range for the color scale.

5.4. MEMORY AND STABILITY ISSUES
MEMORY ISSUES

The memory requirement to build a N 3 × N 3 matrix and the complexity of the linear
system increase substantially with N . This makes the solution computation inadequate
for big N on a standard computer.

To tackle these problems, we applied a block iterative method. However, the itera-
tion matrix does not satisfy the condition for convergence of the iterative method [60],
regardless of whether we consider Jacobi, Gauss-Seidel or Successive Over-Relaxation.
For that reason, the results presented in this thesis are obtained via a direct solver and
the tests only go up to N = M = 32 for all 3 dimensions. We will focus on improving the
results via a different route later in this chapter and in Chapter 6.

STABILITY ISSUES

Numerical computations suggest that as the number of training points increases, the se-
ries expansion becomes prone to numerical instability. This issue appears to be intrinsic
to our approach, stemming from directly solving a linear system to compute the coeffi-
cients. As we increase the number of points along the v-dimension within a fixed interval
[a3,b3], the training points can approach each other closely. This proximity causes the
basis functions to produce similar values, resulting in rows highly similar to each other.
For instance, for [a3,b3] = [0,0.5], the condition number of the matrix is of order O (1017),
which makes the matrix very ill-conditioned and can lead to inaccurate results.

We employ filters to restore the stability. Let us denote the trigonometric expansion
of φ̂p with a spectral filter by Tϕ

N φ̂p , then

Tϕ
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k3=0

′Ak1,k2,k3ϕ

(
k3

N −1

)
sin

(
k1π

x −a1

b1 −a1

)
b2 −a2

k2π
sin

(
k2π

τ−a2

b2 −a2

)
cos

(
k3π

v −a3 +ε
b3 −a3 +2ε

)
+

N∑
k=1

N−1∑
k3=0

′ 1

2
Ak1,0,k3ϕ

(
k3

N −1

)
τsin

(
k1π

x −a1

b1 −a1

)
cos

(
k3π

v −a3 +ε
b3 −a3 +2ε

)
+ sin

(
pπ

x −a1

b1 −a1

)
,

(5.15)

where ϕ(·) is the filter of order m.
As discussed in Section 2.3.2, the spectral filter works on the spectral domain, which

means that it has influence over the coefficients Ak1,k2,k3 . In practice, in our approach,
when we insert formula (5.15) into the PDE, the filter will actually go alongside the basis
functions in the matrix of the linear system and, consequently, the coefficients we obtain

are just Ak1,k2,k3 scaled by a factor of ϕ
(

k3
N−1

)
.
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This scaling of the elements of the matrix actually affects the condition number of the
matrix2. Numerical tests suggest that applying a filter can reduce the condition number
by a factor of 10.

Notice that filtering here is not applied for the usual purpose of alleviating the Gibbs
phenomenon, since our approach assumes that the solution function is a smooth func-
tion (thus, with no discontinuities). It is used as a computationally fast and inexpensive
way to precondition the matrix of the linear system in order to improve numerical sta-
bility.

Alternative preconditioning methods have been considered. However, it is important
to note that the matrix in question is not symmetric positive-definite, making certain
preconditioning techniques unsuitable. One alternative is incomplete Cholesky decom-
position, but it can be computationally expensive and specially time-consuming. Given
that the linear system must be solved for different possible combinations of parameters
(r,γ, v̄ ,κ,ρ,B), it is crucial to minimize computational time. Diagonal scaling has been
tested and found to be ineffective, primarily due to the characteristics of the matrix.

5.5. LOG-VARIANCE
In addition to applying a filter, the numerical stability issue is solved by a transformation
from the variance domain to the log-variance domain.

Consider, for example, training points for the v-dimension within the interval [0.001,0.5].
Taking the log-transformation of the variance, the training points for this dimension are
now in the interval [ln0.001, ln0.5] = [−6.91,−0.69], which consists of a bigger range of
values. For an increasing number of training points in this interval, the points will not be
as close as in the original interval [0.001,0.5]. As a result, the value of the basis functions
evaluated at those new training points are also not as close to each other (or even ap-
proximately equal), which leads to a better conditioned matrix. In its turn, this produces
a more numerically stable linear system. In fact, numerical testing has shown that tak-
ing the log-transformation alone allows to reduce the condition number from O (1017) to
O (107). Another benefit of changing to the log-variance domain is a higher convergence
speed of the series expansion, since the marginal distribution of the variance is highly
skewed whereas that of the log-variance is much more closer to Gaussian. This has been
explained and tested in the paper by Fang and Oosterlee [17].

2A common way of preconditioning a matrix is through diagonal scaling [60], for example.
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5.5.1. APPROXIMATION WITH LOG-VARIANCE
Let us follow the same derivation steps as before, but now we apply one final change of
variable vt 7→ ut := ln vt , and the pricing PDE reads
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(5.16)

The final step was taken in order to cancel out the term e−u present in the first for-
mulation of the PDE, since for very small values of the variance v (v ≈ 0), we have that
e−u approches +∞. The presence of terms eu and e2u in the final formulation of the PDE
are reasonable because the values for the variance (and thus, for u) are never too big.

From this new pricing PDE, and following the same steps as in Section 5.2, we obtain
the following problem that φ̂p must satisfy
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(5.17)

To approximate φ̂p , we construct the same trigonometric expansion as before, only
now we have a cosine expansion for u that ranges between [ln a3 − ε̃, lnb3 + ε̃].

CHOICE OF PARAMETER ε̃

Recall that for the variance, we had to choose a free parameter ε. Now that we are work-
ing in the log-domain we need to justify the choice of parameter ε̃ as well. Applying
the same reasoning as before, and choosing ε̃ such that [ln a3 − ε̃, lnb3 + ε̃] is double the
length of [ln a3, lnb3] has been proven not to work through numerical tests, thus, we ex-
plore another approach. Consider the following

b3 +ε= e lnb3+ε̃⇐⇒ ln

(
b3 + b3 −a3

2

)
= lnb3 + ε̃

⇐⇒ε̃= ln

(
b3 + b3−a3

2

b3

)
⇐⇒ε̃= ln(1+0.5), since a3 = 0

⇐⇒ε̃≈ 0.4.
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Recall that for a3 = 0, the left-end of the domain [a3 − ε,b3 + ε] is negative. Once
we move to the log-domain it is no longer possible to consider negative values. As a
consequence, an accurate extension of left-end side of the support [ln a3, lnb3] is not
available. Consequently, the results for a smaller log-variance will be not as accurate as
the results for a bigger value of the log-variance. This is illustrated in Section 5.6.

5.6. RESULTS
For the Heston’s model, no benchmark survival ch.f. is available. In fact, we explored
the possibility of transforming the pricing PDE into the second-order Heat equation,
for which there are known solutions (see [49]), in order to ultimately find a benchmark
survival ch.f. like in the GBM case. This has been previously done by Dell’Era in [59] and
considering all the changes of variables involved, finding an easy and straightforward
solution for the resulting second-order Heat equation is not feasible. In particular, to
obtain a solution, one would need to constrain the variance domain to a closed interval
and know the value of the option at the boundaries of that domain, which, unfortunately,
we do not know. Consequently, this approach has proven itself unsuccessful for attaining
the desired results. This means that we will not have a survival ch.f. to benchmark our
procedure against for the Heston’s model case. Therefore, we focus on the testing results
for the price of an up-and-out call option only.

5.6.1. OPTION PRICES
We compute the price of an up-and-out call option with parameters (r,γ, v̄ ,κ,ρ,K ,B) =
(0.1,0.1,0.02,2.0,−0.5,90,120). To obtain the value of the option via our approach (5.6),
N = 32 expansion terms were used for all dimensions. The respective result is bench-
marked against a MC simulation with 100,000 paths and 1,000 time steps, for the same
reason as in Section 5.3.2.

For an option at maturity level (τ = 0), its value is just the payoff function, which
exhibits a sharp corner at the strike level K , and a jump at the barrier level B . For that
reason, the value of the option as approximated by (5.6), exhibits Gibbs phenomenon.
Thus, the approximated value is not perfect and there are oscillations in the whole do-
main and particularly in those points.

Figure 5.3: Payoff at maturity level (τ= 0) and respective errors, using our approach vs. MC simulation.
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However, as the maturity increases, the value function exhibits a smoother graph
and, hence, formula (5.6) is able to better match the true shape of this function, as shown
in Figures 5.4 and 5.5.

(a) Price, absolute and relative errors for τ= 0.1.

(b) Price, absolute and relative errors for τ= 0.25.

(c) Price, absolute and relative errors for τ= 0.5.

(d) Price, absolute and relative errors for τ= 1.

Figure 5.4: Price and respective errors for v = 0.01 (volatility σ = 0.1) and different values of τ, using our ap-
proach vs. MC simulation.
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(a) Price, absolute and relative errors for τ= 0.1.

(b) Price, absolute and relative errors for τ= 0.25.

(c) Price, absolute and relative errors for τ= 0.5.

(d) Price, absolute and relative errors for τ= 1.

Figure 5.5: Price and respective errors for v = 0.09 (volatility σ = 0.3) and different values of τ, using our ap-
proach vs. MC simulation.

Next, the error level for the price of all training points (τℓ, xm , vn) is compared with
that for a set of non-training points (see Figure 5.6 below). There the relative error is
computed for both sets of points separately.

We observe that overall the relative error exhibits very similar behaviour in the two
sets, confirming an uniform level of accuracy for the constructed global approximation
of φ̂p . Nonetheless, the error is lower for the training points, which is also intuitive.
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(a) Set of training points. (b) Set of non-training points.

Figure 5.6: Relative error between the MC simulation price and the approximated option price using our ap-
proach, for fixed time to maturity τ= 1, multiple asset prices and variances.

Also notice the line between S = 40 and S = 80 that faintly seems to be separating the
colormap in two distinct regions. This is because for benchmark values below 10−1, the
absolute error is computed instead, which means that to the left of that line, the absolute
error is computed instead of the relative error.

Moreover, just like in the GBM case, the error is bigger closer to the barrier level,
B = 120. The reason lies on the fact that very close to the barrier level, the price function
exhibits steep skew (as a function of x) and the sine series has trouble approximating
this well with only N = 32 expansion terms. More expansion terms are needed for a
more accurate approximation. This is particularly true for smaller variance values and
smaller maturities, which is in accordance with Figures 4.5 and 5.6.

Based on the testing results and the discussion above, some improvements to the
method will be made in Chapter 6.



6
IMPROVEMENTS TO OUR APPROACH

In light of the results obtained in Chapters 4 and 5, there is room for improvement in
the described approach. More specifically, without the need to increase the number
of training points and expansion terms, we aim to obtain more accurate prices for the
options. That can be achieved by using the asset price process St directly, instead of
using the log-asset X t := lnSt . The specific motivation is presented below.

Just as for any machine learning method, the representativeness of the training points
is the key to a fast training procedure. That is, we wish to use the best grid possible that
captures the "full information" of the survival pdf (and of φ̂p ) when the number of grid
points is fixed. This means that we must have enough points to cover the parts of the
function that are more skewed. For an up-and-out barrier, there is a bigger concentra-
tion of probability mass closer to the barrier level (see e.g. Figure 6.1).

Figure 6.1: Example of probability mass for an up-and-out call option with B = 120 (lnB = 4.79), computed
using the paths of a MC simulation.

Consider, as an example, M = 32 training points in the x-dimension, such that they
are evenly spaced between the lower barrier level a and the upper barrier level b. In
the log-asset domain, the points are equally spaced, but in the asset domain those exact
points will be more concentrated on the left-end of the domain. This means that for
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the right-end of the domain, there are not enough points to cover the concentration of
density mass and the steep descent of the pdf close to the barrier level.

(a) x-domain. (b) s-domain.

Figure 6.2: Equally-spaced training points, xm , in the x-domain for M = 32, and respective points in the s-
domain.

One could consider allocating more points closer to the barrier level in the log-asset
domain. However, an increase in the number of training points closer to the barrier is
only possible when we increase the number of points in the entire log-asset domain, as
we need to keep the training points at an equal distance (see Chapter 4). In light of this,
a viable option seems to be to work on the asset domain directly instead of the log-asset
domain. This is sustained by the grid of points in Figure 6.3: in the range S ∈ [90,120],
where the density is more concentrated, the number of training points is 10, as opposed
to 4 for the equally-spaced points in the log-asset domain in Figure 6.2.

Figure 6.3: Equally-spaced training points, sm , in the s-domain for M = 32.

6.1. APPLICATION TO GBM MODEL
We depart from the pricing PDE for the asset price,{

∂V
∂t + r S ∂V

∂S + 1
2σ

2S2 ∂2V
∂S2 − r V = 0,

V (T,S) = f (ST ),
(6.1)

and applying the same derivation steps as in Chapter 4, we arrive at an IVBP that needs
to be solved for φ̂p . Only now, φ̂p is a function of τ and s.
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
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(6.2)

where a is an appropriate lower bound close to 0 but not equal to 0 (otherwise the PDE
is degenerate in that boundary 1), and b = B , the barrier level. The trigonometric expan-
sion for φ̂p reads
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(6.3)

with b1 = b, a1 = a and a2 = 0.

Once the coefficients are computed, we obtain an approximation of φ̂p and that can
be used to price a barrier option using the following sine pricing formula

V (t , s) ≈ e−r (T−t )
N∑
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where the coefficients Vp are defined by

Vp := 2

b −a

∫ b

a
V (y,T )sin

(
pπ

y −a

b −a

)
d y, (6.5)

with V (y,T ) = (y −K )+ in the case of a call option, for instance.

6.1.1. RESULTS

Now we compute the price of an up-and-out call option using exactly the same param-
eters as before. For the same number of expansion terms (and training points) N = M =
64, we see in Figure 6.4 an improvement in the errors for the price against those of Chap-
ter 4.

1The BS PDE is degenerated when the stock price approaches zero (see [61]). This degeneracy may affect the
accuracy of the numerical method used.
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(a) Price, absolute and relative errors for τ= 0.1.

(b) Price, absolute and relative errors for τ= 0.25.

(c) Price, absolute and relative errors for τ= 0.5.

(d) Price, absolute and relative errors for τ= 1.

Figure 6.4: Price and respective errors for different values of τ, using our approach vs. closed-form solution.

As previously mentioned, when the maturity level is set to τ= 0, the presence of the
Gibbs phenomenon is a direct result of the inherent characteristics of the payoff func-
tion. To mitigate this issue, we apply an order 1 filter to the pricing formula (6.4), with the
purpose of eliminating this phenomenon. This filtering process is reflected in the out-
comes displayed in Figure 6.5, according to which the oscillations away from the sharp
corner S = K and the discontinuity S = B are significantly improved.
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(a) Without filter.

(b) With filter.

Figure 6.5: Price and respective errors for maturity (τ= 0), using our approach vs. closed-form solution.

To better understand the error level for the price of all training points (τℓ, sm) against
a set of non-training points, we compute the relative error for both sets of points sepa-
rately, in Figure 4.5. Overall the relative error exhibits very similar behaviour to what we
have seen in Chapter 4. The set of non-training points is the same as before, but now we
observe an improvement in the accuracy.

(a) Set of training points. (b) Set of non-training points.

Figure 6.6: Relative error between the closed-form price and the approximated option price using our ap-
proach, for multiple asset prices and maturities.

Table 6.1 presents convergence test results regarding the error in option prices for a
fixed asset price of S = 110 and different times to maturity values τ. All other parameters
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are as in previous settings. While the error diminishes with higher values of N , the rate of
convergence is relatively slow. Nonetheless, overall the results exhibit greater accuracy
for the same N when compared to those presented in Table 4.2.

N
16 32 64 128

τ abs error % error abs error % error abs error % error abs error % error
1 2.97e-01 6.08 7.40e-02 1.52 1.85e-02 0.38 4.64e-03 0.09

0.5 4.77e-01 2.20 1.24e-01 1.14 3.15e-02 0.29 7.93e-03 0.07
0.25 3.06e-01 1.80 1.02e-01 0.60 2.69e-02 0.16 6.88e-03 0.04
0.1 3.68e-01 1.80 4.74e-02 0.23 1.13e-02 0.05 2.67e-03 0.01

Table 6.1: Absolute and relative error convergence for the option price obtained via our approach vs. closed-
form solution, for S = 110 and different values of τ.

6.2. APPLICATION TO HESTON’S MODEL
Similar to the GBM case in Section 6.1, we depart from the pricing PDE for the asset
price,{
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and applying the same derivation steps as in Chapter 5, we arrive at an IVBP that needs
to be solved for φ̂p . Only now, φ̂p is a function of τ, s and u := ln v .
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where a is an appropriate lower bound close to 0, and b = B . Take b1 = b, a1 = a, a2 = 0,
a4 := ln a3 − ε̃ and b4 := lnb3 + ε̃, then the constructed trigonometric expansion reads
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(6.8)

Once the coefficients are computed, we obtain an approximation of φ̂p and that can
be used to price a barrier option using the sine version of the one-dimensional COS for-
mula, with the payoff coefficients Vp given in equation (6.5).
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6.2.1. RESULTS

Now we compute the price of an up-and-out call option using the exact same parameters
as in Chapter 5. Figures 6.7 and 6.8 show that, for the same number of expansion terms
(and training points) N = M = 32, there is an improvement in the pricing errors against
those of Chapter 5, particularly for a smaller variance.

(a) Price, absolute and relative errors for τ= 0.1.

(b) Price, absolute and relative errors for τ= 0.25.

(c) Price, absolute and relative errors for τ= 0.5.

(d) Price, absolute and relative errors for τ= 1.

Figure 6.7: Price and respective errors for v = 0.01 (volatility σ = 0.1) and different values of τ, using our ap-
proach vs. MC simulation.
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(a) Price, absolute and relative errors for τ= 0.1.

(b) Price, absolute and relative errors for τ= 0.25.

(c) Price, absolute and relative errors for τ= 0.5.

(d) Price, absolute and relative errors for τ= 1.

Figure 6.8: Price and respective errors for v = 0.09 (volatility σ = 0.3) and different values of τ, using our ap-
proach vs. MC simulation.

At maturity level (τ = 0), the Gibbs phenomenon arises due to the characteristics of
the payoff function. To address this, we apply a order 1 filter to the pricing formula,
which greatly improves the results away from the sharp corner S = K and the disconti-
nuity S = B . The comparative results are depicted in Figure 6.9 below. Closer to S = K
and S = B , the error can be improved by increasing the number of the expansion terms.
However, due to memory constraints, it is not done in this thesis but will be tackled in
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follow-up theses at FF Quant.

(a) Without filter.

(b) With filter.

Figure 6.9: Price and respective errors for maturity (τ= 0), using our approach vs. MC simulation.

In Figure 6.10, the relative error is ploted for the price of all training points (τℓ, xm , vn)
and a set of non-training points, which aligns with the one used in Section 5.6.

(a) Set of training points. (b) Set of non-training points.

Figure 6.10: Relative error between the MC simulation price and the approximated option price using our
approach, for fixed time to maturity τ= 1, multiple asset prices and variances.

Once again, the error is bigger closer to the barrier level, B = 120, due to the fact that
very close to the barrier level, the price function exhibits steep behaviour and the sine
series has trouble approximating this well with only N = 32 expansion terms. More ex-
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pansion terms are needed for a more accurate approximation. Nonetheless, we already
see a substantial improvement in the accuracy for the set of non-training points as com-
pared to the results in 5.6. For the set of training points, there is no difference compared
to what we have seen before, since the error for this set is the intrinsic error associated
with our approach. A theoretical discussion on the error is presented in Chapter 8.

Notice that the parameters we used so far satisfy the Feller condition, 2κv̄ ≥ γ2. How-
ever, when the Feller condition is not met, the cumulative distribution of the variance
exhibits a near-singular behavior near the origin, i.e. there is an accumulation of prob-
ability mass around 0. For q := 2κv̄/γ2 − 1 >> 0 the density values tend towards zero
in both tails. For q smaller and approaching 0, the decay rate of the left-side tail slows
down. Near q = 0, the left tail stays almost flat. For q ∈ [−1,0], the left tail increases
drastically in value. For a visual illustration of these observations, we refer to [17].

When the Feller condition is not met, more training points closer to v = 0 are needed
for a better accuracy. Therefore, for each specific parameter set, the interval [ln a3, lnb3]
of possible values of ln v needs to accurately reflect the domain in which the survival ch.f.
can take values. Tuning the interval accordingly, our approach also works for the cases
where the Feller condition is not satisfied. In Table 6.2, the valuation error is computed
for different sets of parameters:

• case 1, where q >> 0: (r,γ, v̄ ,κ,ρ) = (0.1,0.1,0.02,2.0,−0.5)

• case 2, where q ≈ 0: (r,γ, v̄ ,κ,ρ) = (0.1,0.25,0.21,0.15,−0.5)

• case 3, where q < 0: (r,γ, v̄ ,κ,ρ) = (0.1,0.35,0.1,0.5,−0.9)

• case 4, where q ≈−1: (r,γ, v̄ ,κ,ρ) = (0.1,0.5,0.05,0.1,0.1)

In all of the cases, we take K = 90,B = 120,S = 110 and v = 0.01.

case 1 case 2 case 3 case 4
τ abs error % error abs error % error abs error % error abs error % error

1.0 0.0666 1.87 0.0113 0.46 0.0426 2.81 0.8349 13.05
0.5 0.0013 0.01 0.1706 1.96 0.9592 14.22 0.4389 2.82

0.25 0.0903 0.55 0.1197 0.71 0.2686 1.41 0.1000 0.55
0.1 0.0277 0.13 0.0013 0.01 0.1237 0.59 0.2285 1.15

Table 6.2: Absolute and relative error for the option price obtained via our approach vs. MC simulation, for
different parameter sets and different values of τ.

Our approach is easily applicable to down-and-out and double barrier options as
well. For additional results showcasing the accuracy of the our approach for other types
of knock-out barrier, please refer to Appendix A.

Due to the improvement in accuracy by using St instead of X t , we will use construc-
tion (6.8) to compare the accuracy of our approach against other existing methods in the
literature, in Chapter 7.



7
COMPARISON WITH EXISTING

METHODS

In this chapter, we will assess the accuracy of our approach, as described in Chapter 6, by
comparing its results and computational efficiency with other existing methods to price
barrier options under the Heston’s model. These methods can be categorized into two
groups: those designed for pricing discretely-monitored barrier options and those for
continuously-monitored barrier options.

For the former, a considerably high number of time steps needs to be employed such
that the corresponding price converges to the continuous-monitoring case. The COS
method for barrier options developed by Fang and Oosterlee [17] falls into this category.
In the other category, we find the method developed by He and Lin [29], which provides
the price of down-and-out barrier options. Consequently, we will apply our approach
with all parameters unchanged, except for the range [a,b] of possible values for the asset
price. For this comparison, we set a = B , where B < S is the barrier level, and b high
enough to be considered close to +∞.

We benchmark these alternative methods and our approach against a MC simulation
with 1,000,000 paths, a number consistent with the study by [29]. Although they use
10,000 time steps, our computational resources only allow us to use 1,000 time steps
for this assessment, a difference driven by memory allocation constraints. Contrary to
previous chapters, we can increase the number of time steps here, given that we will be
evaluating the barrier option price for a relatively small number of options.

7.1. METHOD FOR DISCRETELY-MONITORED BARRIER OPTIONS
We start by introducing the COS method for discretely-monitored barrier options by
Fang and Oosterlee [17] briefly. Consider the underlying log-asset price process and vari-
ance process (St , vt ), whose dynamics are under the Heston’s model.

Take the log-asset X t := lnSt and the log-variance process ut := ln vt . It is assumed
that a barrier option is discretely monitored at a fixed set of M times t0 < t1 < . . . tm <
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. . . < tM = T , with ∆t := tm+1 − tm . The pricing of an up-and-out discretely-monitored
barrier option problem, with barrier B , is solved backwards in time, with

V
(
xtm ,utm , tm

)={
0 when knocked-out,

c
(
xtm ,utm , tm

)
otherwise,

(7.1)

V
(
xtM ,utM , tM

)={
0 when knocked-out,

f (xtM ,utM , tM ) otherwise,
(7.2)

with f (·) being the payoff function at final time and c
(
xtm ,utm , tm

)
the continuation

value at time tm . The continuation value is given by

c
(
xtm ,utm , tm

)= e−r∆tE
Q
tm

[v (xm+1,um+1, tm+1)] , (7.3)

which can be written as

c
(
xtm ,utm , tm

)=e−r∆t ·∫
R

∫
R

v (xm+1,um+1, tm+1) px,ln v
(
xm+1,um+1 | xtm ,utm

)
dum+1d xm+1

=e−r∆t
∫
R

[∫
R

v (xm+1,um+1, tm+1) px| ln v
(
xm+1 | um+1, xtm ,utm

)
d xm+1

]
pln v

(
um+1 | utm

)
dum+1

≈e−r∆t
∫ bv

av

[∫ b

a
v (xm+1,um+1, tm+1) px| ln v

(
xm+1 | um+1, xtm ,utm

)
d xm+1

]
pln v

(
um+1 | utm

)
dum+1,

(7.4)

where we truncated the integration region by [av ,bv ]× [a,b]. For more details on how
this double integral is computed, we refer to [17].

The inner integral above equals the pricing formula for European options defined
between tm and tm+1, provided that the variance value at the future time point is known.
Thus, this method considers at every time interval [tm , tm+1] a European option with
maturity ∆t , while checking if the barrier was knocked-out.

Before proceeding with the comparison between this method and our approach, it is
important to highlight the differences that make their comparison less straightforward.

Firstly, as mentioned before, this method was developed for discretely-monitored
barrier options. Therefore, a substantial number of time points must be considered to
enable a meaningful comparison between the two methods. Simultaneously, it is es-
sential to keep in mind that an extremely narrow monitoring interval leads to a highly
peaked pdf, resulting in less accurate results. For instance, for a 1-year maturity, the
number of monitoring dates is set to 250, which corresponds to daily monitoring.

Secondly, direct comparison of CPU time is not feasible. The COS method computes
the price of a barrier option on-the-spot, while our approach involves an initial "offline"
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training step to find the coefficients of φ̂p , followed by the computation of option prices
for any strike, maturity, variance, and asset price within the domain used in the com-
putation of the coefficients. Furthermore, it is worth noting that the COS method is im-
plemented in MATLAB whereas our approach is implemented in Python1. Hence, we
choose to only compare the respective errors, as displayed in Table 7.12.

The price corresponds to an up-and-out call option with parameters (r,γ, v̄ ,κ,ρ,S, v,
K ,B) = (0.1,0.1,0.02,2.0,−0.5,100,0.01,90,120). The ultimate benchmark is the MC sim-
ulation with 95% confidence interval. The COS method uses 128 expansion terms and
our approach uses 32 expansion terms for all dimensions.

MC COS method our approach
τ price price abs error % error price abs error % error
1 7.9965 (±0.017) 8.1101 0.1136 1.42 7.9074 0.0891 1.13

0.8 9.9261 (±0.017) 10.0347 0.1086 1.09 9.8742 0.0519 0.52
0.6 11.9640 (±0.016) 11.7236 0.0051 0.04 11.8850 0.0790 0.66
0.5 12.6225 (±0.015) 12.6671 0.0446 0.35 12.6110 0.0115 0.09
0.3 12.5753 (±0.012) — — — 12.5639 0.0114 0.09
0.1 10.8969 (±0.006) — — — 10.8720 0.0249 0.23

Table 7.1: Comparison of price for an up-and-out barrier option, using MC simulation with 95% confidence
interval, COS method for barrier options and our approach. Different times to maturity τ are considered while
the other parameters remain unchanged.

Our approach is proven to be more accurate than the COS method for barrier op-
tions. This makes sense since the latter was developed for discretely-monitored barrier
options. Additionally, the fact that the COS method does not work for any combination
of parameters - as demonstrated for example in Table 7.1 -, makes it impractical for a
broad application. This limitation is attributed to the method’s reliance on the pdf of
the variance at current time conditioned on the variance at a previous time. Such a pdf
exhibits extreme skewness, namely when the Feller condition is not met.

7.2. METHOD FOR CONTINUOUSLY-MONITORED BARRIER OP-
TIONS

The method developed by He and Lin [29] provides a formula that needs to be solved
via numerical integration for pricing barrier options. In order to perform a comparison
between our approach and this method, we shall first briefly introduce the latter. Ac-
cording to this method, the price of a down-and-out barrier option is given by

1The results from our approach are generated with a Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz (8 CPU
cores), with the code written in Python 3.8.10.

2The entries on the table containing "—" correspond to options for which we were not able to compute the
price using the respective method.



7

90 7. COMPARISON WITH EXISTING METHODS

V (t , x, v) =
∫ +∞

0
V (t , x, v |vT )p(vT |vt )d vT

=
∫ +∞

0

(
1

2
A0(vt , vT )v +

∞∑
k=1

Ak (vt , vT )Vk

)
p(vt |vT )d vT ,

(7.5)

with

Vk =
∫ b

a
V (t , x|FT )cos

(
kπ

hT −a

b −a

)
dhT ,

Ak (vt , vT ) = 2

b −a
Re

{
g

(
kπ

b −a

∣∣∣vt , vT

)
e−i akπ

b−a

}
,

hT =
∫ T

t
vs d s,

(7.6)

where g (·|vt , vT ) is the ch.f. of hT and V (t , x|FT ) is the analytical approximation for
barrier option price conditional on knowing the variance at future time T . The analytical
expression for p(vt |vT ) is known. For more details on how this expression is derived, we
refer to [29].

Notice that the integral in equation (7.5) does not have an analytical formulation,
and for that reason, we need to recur to a numerical integration technique to obtain the
price of the option. We use the Clenshaw-Curtis rule with 64 quadrature points. This
was deemed as sufficient since our results mirror the paper.

Once again, the CPU time cannot be directly compared since formula (7.5) computes
the price of a barrier option on-the-spot, while our approach requires an anterior "of-
fline" training step. Plus, the CPU time of that anterior training step depends strongly on
the number of expansion terms used to approximate φ̂p .

Nonetheless, the results of the comparison are presented in Table 7.2, where the CPU
time for our approach refers to the time required to perform the price computation pos-
terior to the computation of the coefficients. The price corresponds to that of a down-
and-out call option with parameters (r,γ, v̄ ,κ,ρ,S, v,K ,B) = (0.1,0.1,0.02,2.0,−0.5,100,
0.01,100,90). The ultimate benchmark is the MC simulation with 95% confidence in-
terval. Using formula (7.5), we take 50 expansion terms (as in the paper) and, in our
approach, we employ 32 expansion terms for all dimensions.

MC He and Lin’s approach our approach
τ price price time (s) abs error % error price time (s) abs error % error
1 10.7151 (±0.017) 10.9392 78.42 0.2241 2.09 10.7165 0.01344 0.0014 0.0127

0.8 9.0357 (±0.017) 9.1609 78.68 0.1252 1.39 9.0432 0.00047 0.0078 0.0830
0.6 7.2400 (±0.016) 7.2735 78.52 0.0335 0.46 7.2316 0.00063 0.0084 0.1158
0.5 6.2650 (±0.015) 6.2846 78.28 0.0196 0.31 6.2578 0.00047 0.0002 0.0039
0.3 4.1958 (±0.012) 4.2013 78.57 0.0055 0.13 4.1964 0.00069 0.0006 0.0137
0.1 1.8786 (±0.006) 1.8787 78.44 0.0001 0.01 1.9366 0.00050 0.0580 3.0876

Table 7.2: Comparison of price and CPU time for an down-and-out barrier option, using MC simulation with
95% confidence interval, He and Lin’s approach and our approach. Different times to maturity τ are considered
while the other parameters remain unchanged.
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Except for very small maturities, our approach has proven itself consistently more ac-
curate than formula (7.5). Moreover, the step for computing the price, after obtaining the
coefficients, showcases superior computational speed compared to the other approach.
Our method enables the simultaneous computation of multiple option prices for a vec-
tor of different maturities, variances, asset prices and strikes, with minimal impact on
CPU time usage (cf. Table 7.3). In contrast, the approach by He and Lin takes on average
78 seconds to compute one price only.

vector of prices 10,000 prices 1,000 prices 100 prices 10 prices 1 price
CPU time (ms) 108.44 10.27 2.28 1.00 0.94

Table 7.3: CPU time (in ms) for computing multiple option prices at the same time using our approach.





8
ERROR ANALYSIS

This chapter is devoted to analysing, from a theoretical point of view, the error conver-
gence behavior and upper bound within the framework outlined in Chapter 4. These
results can be readily extended to the approaches described in Chapter 5 and 6. Our
analysis commences by identifying the various sources of error, and whenever feasible,
we establish theoretical bounds for these errors.

8.1. ERROR SOURCES
In the derivation of our approximation formula for the price of a barrier option, three
steps introduce errors: the truncation of the integration range in the risk-neutral valu-
ation formula, the substitution of the survival density by its series expansion truncated
on a finite interval and the reconstruction of the truncated trigonometric expansion of
φ̂p . Therefore, the overall error consists of three parts:

1. The truncation of the integration range,

V1(t , x) = e−r (T−t )
∫ b

a
v(y,T )p(y,τB > T | x) d y,

leads to the error

ϵ1 :=V (t , x)−V1 (t , x) = e−r (T−t )
∫ a

−∞
v(y,T )p(y,τB > T | x)d y.

Since, for an up-and-out barrier option, the survival probability above the barrier
level b is 0, i.e.

V (t , x) = e−r (T−t )
∫ b

−∞
v(y,T )p(y,τB > T | x) d y,

the integration range truncation error depends solely on the choice of the lower
barrier level a.
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2. The series truncation,

V2(t , x) = e−r (T−t )
N∑

p=1
Im

{
φ

( pπ

b −a
, t ; x

)
e−i pπ a

b−a

}
Vp ,

leads to the error

ϵ2 :=V1 (t , x)−V2 (t , x)

= e−r (T−t )
+∞∑

p=N+1
Im

{
φ

( pπ

b −a
, t ; x

)
e−i pπ a

b−a

}
Vp

= e−r (T−t )
+∞∑

p=N+1
φ̂p ·Vp ,

where φ is the survival ch.f. on range [a,b], i.e. φ(ω) = ∫ b
a e iωy p(y,τB > T | x)d y,

and Vp are the Fourier series coefficients of the payoff function, as defined in for-
mula (4.13).

3. The last error comes from approximating φ̂p using a trigonometric expansion trun-
cated at level N , for which the coefficients are obtained via solving the linear sys-
tem resulting from the corresponding PDE. If we assume that φ̂p has a spectral
series representation, T φ̂p , given by

φ̂p ≈ T φ̂p (τ, x) =
∞∑

k1=1

∞∑
k2=1

αk1,k2 sin

(
k1π

x −a1

b1 −a1

)
b2 −a2

k2π
sin

(
k2π

τ−a2

b2 −a2

)
+

∞∑
k=1

1

2
αk1,0τsin

(
k1π

x −a1

b1 −a1

)
+ sin

(
pπ

x −a1

b1 −a1

)
,with τ := T − t ,

(8.1)

then, in practice, we assume that φ̂p can be approximated by a trigonometric ex-
pansion truncated at level N , TN φ̂p , of the following form

TN φ̂p (τ, x) =
N∑

k1=1

N−1∑
k2=1

Ak1,k2 sin

(
k1π

x −a1

b1 −a1

)
b2 −a2

k2π
sin

(
k2π

τ−a2

b2 −a2

)

+
N∑

k=1

1

2
Ak1,0τsin

(
k1π

x −a1

b1 −a1

)
+ sin

(
pπ

x −a1

b1 −a1

)
.

(8.2)

This will be inserted into the PDE to find the respective coefficients. As a conse-
quence, the error reads,

ϵ3 := φ̂p (τ, x)−TN φ̂p (τ, x)

= φ̂p (τ, x)−
N∑

k1=1

N−1∑
k2=1

Ak1,k2 sin

(
k1π

x −a1

b1 −a1

)
b2 −a2

k2π
sin

(
k2π

τ−a2

b2 −a2

)

−
N∑

k=1

1

2
Ak1,0τsin

(
k1π

x −a1

b1 −a1

)
− sin

(
pπ

x −a

b −a

)
.

It is worth noting that the coefficients Vp are derived analytically, and thus, no error
is involved.
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8.2. THEORETICAL ERROR BOUNDS

The first two error components are well studied in literature, including the original paper
of the COS method [22]. The key to bound the errors lies in the decay rate of the series
coefficients, while the convergence rate of the Fourier series depends on the properties
of the target-function on the expansion interval.

Error ϵ2 depends on both φ̂p and Vp , i.e. the series coefficients of the survival pdf
and those of the payoff, respectively. In finance, we assume that the density is typically
smoother than the payoff functions and that φ̂p decays faster than Vp . As a consequence,
the product of φ̂p and Vp converges faster than either φ̂p or Vp , and we can establish an
upper bound for this product as follows:

∣∣∣∣∣ ∞∑
p=N+1

φ̂p ·Vp

∣∣∣∣∣≤C
∞∑

p=N+1

∣∣φ̂p
∣∣ ,

with C some constant. Hence, error ϵ2 is dominated by the series truncation error of the
survival pdf.

To bound the series truncation error ϵ2, we can use the theory from Section 2.3.1
to assert that the error converges exponentially in N for a class C∞([a1,b1] × [a2,b2])
survival pdf. This results in a upper bound for ϵ2 given by

|ϵ2| < Pe−Nν,

withν> 0 and P > 0 a term that varies less than exponentially with N . In case the survival
pdf has a discontinuity in one of its derivatives, there is algebraic convergence of the
Fourier series expansion, for which the error can be bounded as follows:

|ϵ2| < P

Nβ−1
,

with P being a positive constant and β ≥ n ≥ 1(n the algebraic index of convergence of
Vp , as defined in Definition 2.3.1). Note that β ≥ n because the pdf is usually smoother
than a payoff function.

The Delta of a barrier option exhibits discontinuities at x = a and x = b and, from
equation (4.28), the first derivative of the survival pdf is discontinuous on those points as
well. In light of this, from a theoretical point of view, we expect an algebraic convergence
of the series for the survival pdf.

In practice, the series approximating the survival pdf in our approach demonstrates
algebraic convergence. This is due to the algebraic decay of the series coefficients, φ̂p , as
depicted in Figure 8.1, which suggests that the second error bound should be employed.
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Figure 8.1: Example of log-log plot for |φ̂p (τ, x)|, where x = ln100 and τ= 0.5.

Finally, we turn our attention to error ϵ3, arising from the determination of coeffi-
cients for TN φ̂p through the evaluation of the PDE (4.15) at different training points.
As discussed in Section 3.2.2, it is optimal to set the number of training points equal to
the number of unknown parameters (the coefficients) for each dimension. This ensures
the uniqueness of the linear system, which is subsequently solved using a direct solver,
eliminating errors associated with this step.

However, error ϵ3 inherently comprises three components: the assumption of a trigono-
metric expansion series for φ̂p , denoted as T φ̂p , that belongs to the class C∞; the trun-
cation of this series at level N , represented as TN φ̂p ; and the determination of the co-
efficients through the PDE approach rather than utilizing reference values. To conduct
a comprehensive analysis of this error, it is necessary to revisit certain assumptions that
we have implicitly or explicitly made.

Recall that there exists no closed-form solution for φ̂p . However, we have shown
that in the context of barrier options, the first derivative of the survival pdf with respect
to the variable x exhibits discontinuities at x = a and x = b. This implies that the first
derivative of φ̂p should also possess such discontinuities. Our approach is built upon
the assumption that φ̂p can be effectively approximated using a trigonometric series
expansion, denoted as T φ̂p , which retains smoothness up to class C∞. Thus, T φ̂p fails
to capture these singularities at x = a and x = b. Consequently, within this framework,
as the truncation level N approaches infinity, the value derived for TN φ̂p using the PDE
approach converges more rapidly towards T φ̂p than towards φ̂p .

The series truncation error, i.e. T φ̂p −TN φ̂p , cannot be dissociated from the use of
the PDE to calibrate the coefficients of TN φ̂p . The values for the calibrated coefficients
Ak1,k2 computed via this approach compensate for the truncation of the series at level
N . For T φ̂p , the coefficients values αk1,k2 decrease as the number of terms increases,
yet they remain non-zero for relatively high indices (k1 > N ,k2 > N − 1). This means
that for higher-frequency modes within the Fourier series expansion, the amplitudes are
non-zero.

Conversely, for TN φ̂p , the higher-frequency modes (k1 > N ,k2 > N −1) demonstrate
zero amplitudes, while the lower-frequency modes possess larger amplitudes to com-
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pensate for this fact. The source of error lies in the fact that emphasizing the lower-
frequency modes fails to entirely offset the accuracy loss in the higher-frequency modes.
Essentially, the truncation of the series results in a reduction of spectral accuracy for
TN φ̂p when compared to the infinite expansion, T φ̂p . It is worth noting, however, that
as the number of expansion terms N increases, Ak1,k2 progressively converges towards
αk1,k2 .

In the scenario where, instead of employing the PDE approach, we were to utilize
reference values and a minimization process to ascertain the coefficients of TN φ̂p that
yield the most accurate approximation, this compensation phenomenon from the lower
modes would not come into play.

Additionally, error ϵ3 is challenging to quantify as it strongly depends on the index p.
The results of the numerical tests presented in Figures 3.10 (for Heat equation) and 4.3
(for GBM) suggest that there is an algebraic error convergence of the truncated approx-
imation TN φ̂p with respect to the benchmark value for φ̂p . Nevertheless, these are only
a numerical tests and further analysis is necessary to confirm the type of convergence of
ϵ3.





9
CONCLUSIONS AND FUTURE

RESEARCH

In this thesis, we have formulated, tested and analyzed a novel approach for pricing
continuously-monitored barrier options, relying solely on the pricing PDE. This method
comprises three main components: determining the most suitable expansion form for
getting the survival ch.f. of a knock-out option; determining the coefficients of this ex-
pansion through solving a linear system derived from the PDE it satisfies; and applying
the one-dimensional COS method for pricing the respective option.

While our primary focus has been the application of this novel approach to up-and-
out barrier options, this method is equally applicable to down-and-out or double barrier
options. Furthermore, we have applied our methodology to two distinct models, starting
with the GBM model, and subsequently Heston’s model. Theoretically, this approach is
general and can cope with other model dynamics.

The first key insight from this thesis is that the barrier-hitting probability can be ab-
sorbed into the so-called survival density function. This result allowed us to leverage on
the one-dimensional COS formula, traditionally employed for pricing European options,
to value barrier options. Consequently, our main focus was on recovering this survival
pdf, specifically aiming the determination of the coefficients of the sine series expansion

of the survival pdf, denoted as φ̂p := Im
{
φ

( pπ
b−a

)
e−i pπ a

b−a

}
.

Our approach was inspired by the findings of supervised machine learning research
conducted at FF Quant [30], which indicated that the Fourier transform of the survival
density function, i.e. the survival ch.f., can again be accurately approximated by a Fourier
series expansion. Also, the coefficients for this expansion can be derived from a training
dataset. Throughout the development of our new method, we gained deeper under-
standing of the Fourier theory, which led to the second insight: expanding the derivative
of the function φ̂p into cosine or sine series, rather than the function itself, can signifi-
cantly enhance the accuracy of the original function approximation. As a result, we con-
cluded that an effective approximation arises from applying a two-dimensional Fourier
series expansion to the first-order derivative of φ̂p with respect to time. When integrated,
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this choice yields a trigonometric series expansion with an additional term alongside the
conventional Fourier series, which results in a better fit to φ̂p than the Fourier series ex-
pansion.

Furthermore, the third pivotal insight of this thesis lies in the fact that applying a
change of variables to the solution function can improve convergence by altering the
shape of the function to be approximated. We have shown the greater accuracy of ex-
pressing φ̂p as a function of asset price, maturity, and log-variance.

The main idea underpinning the methodology developed in this thesis revolved around
obtaining the coefficients of the trigonometric series expansion of φ̂p from the PDE it
satisfies, by evaluating it at different training points. In turn, this PDE is derived from the
pricing PDE for a barrier option, which contains Dirichlet boundary conditions at the
barrier levels. Hence, this approach is particularly advantageous in situations whereby
accurate reference values are difficult to obtain or unavailable, as it relies solely on the
pricing PDE to produce option prices.

It is noteworthy that the calibration of the coefficients of the series for φ̂p can be done
"offline" in advance. As long as the model parameters of the underlying do not change,
the trained coefficients can be reused. Particularly, since the series expansion provides a
global approximation, it is possible to price a large number of options simultaneously for
different strikes, maturities, asset prices and variances - all using the same coefficients.
The coefficients only need to be updated in the next re-calibration of the underlying
process model.

Numerical tests and analyses were performed to verify the robustness and efficiency
of this method for different parameter sets. For similar accuracy levels, our approach’s
computational time greatly outperforms that of MC simulations. Plus, this method has
superior computational efficiency and accuracy as compared to other existing methods
in the literature.

Nonetheless, there are certain challenges, which stem from the method’s depen-
dence on a linear system created through the evaluation of the PDE at specific training
points. Further investigations into optimizing the allocation of these training points is
pivotal for a successful and broad application of this approach. Additional research may
also delve into optimizing the choice of the interval [a3,b3] for the v-dimension, partic-
ularly when the Feller condition is not met, as larger maturities have exhibited results of
varying accuracy.

In summary, this thesis lays the foundation for enhanced pricing accuracy and effi-
ciency in the context of knock-out barrier options under stochastic volatility models. A
future research focus could be to extend this approach to other stochastic models, par-
ticularly the SABR model, where accurate reference values are often unavailable. Lastly,
the method developed in this thesis can also be combined with tensor calculus, such as
Canonical Polyadic Decomposition, to free up contract parameters as function variables
and reduce computational complexity.
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A
ADDITIONAL RESULTS

This appendix contains additional results showcasing the accuracy of the approach in
Chapter 5 for other types of knock-out barrier options. In fact, as discussed before, our
approach can be applied to the valuation of double barrier options, up-and-out and
down-and-out barrier options. It is only necessary to change the range [a,b] of the pos-
sible values assumed by the asset price process St accordingly. Moreover, since infor-
mation about the type of option is only contained in the payoff coefficients Vp , these
can easily be changed to provide the payoff coefficients of a put option, instead of a call
option, as done in previous chapters.

Figure A.1 displays the price and error of an down-and-out put option for parameters
(r,γ, v̄ ,κ,ρ, v,K ,B) = (0.1,0.1,0.02,2.0,−0.5,0.01,100,70), using N = M = 32. This means
that a = B and b should be chosen big enough. For put options, the payoff coefficients
are given by

Vp =
∫ b

a
(K − y)+ sin

(
pπ

y −a

b −a

)
d y,

for which there is a closed-form expression.
Figure A.2 shows the price and error of an double barrier call option with lower bar-

rier level Bl and upper barrier level Bu . The option is computed for parameters (r,γ, v̄ ,κ,
ρ, v,K ,Bl ,Bu) = (0.1,0.1,0.02,2.0,−0.5,0.01,90,80,120), using N = M = 32. This means
that a = Bl and b = Bu .

In both cases, the respective result is benchmarked against a Monte Carlo simulation
with 100,000 paths and 1,000 time steps.
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(a) Price, absolute and relative errors for τ= 0.1.

(b) Price, absolute and relative errors for τ= 0.25.

(c) Price, absolute and relative errors for τ= 0.5.

(d) Price, absolute and relative errors for τ= 1.

Figure A.1: Price and respective errors of a down-and-out put option for τ, using our approach vs. MC formu-
lation.
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(a) Price, absolute and relative errors for τ= 0.1.

(b) Price, absolute and relative errors for τ= 0.25.

(c) Price, absolute and relative errors for τ= 0.5.

(d) Price, absolute and relative errors for τ= 1.

Figure A.2: Price and respective errors of a a double barrier call option for different values of τ, using our
approach vs. MC formulation.
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