
Towards Robust
Numerical Solvers for
Nuclear Fusion
Simulations Using
JOREK
Alexander Quinlan
Supervisor: Vandana Dwarka, PhD

Towards Robust Numerical Solvers for
Nuclear Fusion Simulations Using

JOREK

MSc Thesis report

by

Alexander Quinlan
to obtain the degree of Master of Science

at the Delft University of Technology
to be defended publicly on September 29, 2023 at 13:00.

Part of this thesis was written into an article on Arxiv and
can be found at https://doi.org/10.48550/arXiv.2308.16124.

An electronic version of this thesis is available at
http://repository.tudelft.nl/

Thesis committee:
Chair: Dr. Kees Vuik
Supervisors: Dr. Vandana Dwarka
External examiner: Dr. Hai Xiang Ling
Place: EEMCS, Delft
Project Duration: November, 2022 - September, 2023
Student number: 5563275

Faculty of Electrical Engineering,
Mathematics, and Computer Science · Delft University of Technology

https://doi.org/10.48550/arXiv.2308.16124
http://repository.tudelft.nl/

Abstract

One of the most well-established codes for modeling non-linear Magnetohydrodynamics (MHD) for
tokamak reactors is JOREK, which solves these equations with a Bézier surface based finite element
method. This code produces a highly sparse but also very large linear system. The main solver
behind the code uses the Generalized Minimum Residual Method (GMRES) with a physics-based
preconditioner. Even with the preconditioner there are issues with memory and computation costs and
the solver doesn’t always converge well. This work contains the first thorough study of the mathematical
properties of the underlying linear system, enabling us to diagnose and pinpoint the cause of hampered
convergence. In particular, analyzing the spectral properties of the matrix and the preconditioned
system with numerical linear algebra techniques will open the door to research and investigate more
performant solver strategies, such as projection methods.

i

Contents

1 Introduction 1

2 Plasma Physics and Magnetohydrodynamics 2
2.1 Introduction . 2
2.2 Tokamak Dynamics . 2
2.3 MHD Derivation . 3
2.4 Reduced MHD . 4
2.5 Model Extensions . 5

3 Finite Element Methods 6
3.1 Background and Derivation . 6
3.2 Bézier Surfaces . 7

4 Numerical Solution Methods 9
4.1 Condition Number . 9
4.2 Direct Methods . 10
4.3 Iterative Methods . 10
4.4 Krylov subspace methods . 10
4.5 Preconditioning . 11
4.6 Arnoldi Method . 12
4.7 GMRES . 12
4.8 BiCGSTAB . 13
4.9 Convergence . 13

4.9.1 GMRES Convergence . 14
4.9.2 BiCGSTAB Convergence . 15

4.10 Preconditioners for MHD Models . 16
4.10.1 Time Discretization . 16

4.11 Eigenvalue Solvers . 16
4.11.1 Krylov-Schur . 17

5 The JOREK Code 18
5.1 Motivation . 18
5.2 Weak Form of Equations . 18

5.2.1 Boundary Conditions . 19
5.3 Model Geometry . 19
5.4 The JOREK Solver and Preconditioner . 19
5.5 Recent Preconditioner Improvements . 20
5.6 Relevant Problem Size . 21

6 Research Plan 22
6.1 Research Plan . 22
6.2 Model Problems . 22
6.3 Solver Code . 22
6.4 Hardware . 23
6.5 Preconditioner Operator . 23
6.6 Spectral Analysis . 23

7 Simple Tearing Mode Case in Limiter Geometry 25
7.1 Solver Behavior . 26
7.2 Spectral Analysis . 26

ii

Contents iii

8 Ballooning Mode Case in X-Point Geometry 28
8.1 Solver Behavior . 29
8.2 Spectral Analysis . 29
8.3 Parameter Studies . 32

8.3.1 Stale Preconditioner . 32
8.3.2 Parallel Thermal Conductivity . 33
8.3.3 GMRES Restart . 33
8.3.4 32-Bit Preconditioners . 35

8.4 Conclusion . 36

9 Future Work 37

10 Failed Attempts 38
10.1 Python Implementation . 38
10.2 Explicit Preconditioner . 38
10.3 Nested GMRES . 39

A Code 44
A.1 Helper functions . 44
A.2 Loading our system . 53
A.3 Solver . 54
A.4 Preconditioned spectra . 57

1
Introduction

Extreme global warming and turbulent geopolitics have made it clear that our society needs new clean
energy sources. One approach under active development is controlled nuclear fusion. In this approach,
magnetic fields confine a super-hot plasma, mimicking to some extent the conditions that power stars.
However, the inherent chaos of plasma dynamics and the high cost of reactor construction underscore
the need for robust numerical modeling of plasma dynamics and reactor behavior.

The leading design for controlled fusion is the tokamak, which is a torus lined with superconducting
magnets that drive a toroidal magnetic field. Fuseable elements such as hydrogen and deuterium are
injected into the device and heated until ionization occurs, forming a plasma. The magnetic field then
confines these elements within the walls of the device, where at sufficient temperatures and pressures,
they can fuse into larger elements and release energy that can be captured.

ITER, the world’s most expensive science experiment currently being built, is a 30-meter tall tokamak
fusion reactor that aims to demonstrate a significant energy release from the fusion process and
spur a generation of commercializable fusion power plants. Its design and analysis require immense
computational resources, and one of the codes used to model plasma physics inside ITER is JOREK,
developed by an international community including the Max Planck Institute for Plasma Physics (IPP)
in Garching, Germany.

JOREK is an advanced and widely-established code used to simulate plasma behavior in tokamaks.
It is designed to model plasma instabilities that can shut down a plasma or damage the walls of reactors.
JOREK uses a finite element model over Bézier surfaces and a toroidal Fourier decomposition to model
toroidal plasmas. It produces a very large system of equations, and has several approaches to solve
these efficiently. However, a lot of work still remains to be done to improve the solver efficiency, as the
nonlinear model converges slowly. The purpose of this project is to analyze this system of equations
with respect to the physics of the model, and to develop ways to improve solver convergence. Primarily,
we intend to build on JOREK’s preconditioner, and to develop heuristics by which alternative solvers or
alternative models could be suggested to the user.

Figure 1.1: Plasma pressure during an edge-localized-mode in the Joint European Torus plasma. [Futatani et al., 2019])

1

2
Plasma Physics and

Magnetohydrodynamics

2.1. Introduction
Plasmas are the most abundant form of matter in the universe. From our sun, to the interstellar medium,
lightning and even the glow of neon signs, plasmas are everywhere. Better understanding of them is key
to our understanding of all these phenomena. Plasmas are fluids of conducting particles that create and
interact with electromagnetic fields. The strong interaction between the plasma and electromagnetic
fields means that they are significantly more complicated to understand and model than ordinary liquids
and gasses. There are many mathematical models used to study plasmas, but the most well-known of
them is Magnetohydrodynamics, often shortened to MHD.

MHD is a set of equations describing the mechanics of electrically conducting fluids such as plasmas
or liquid metals. As opposed to particle-based “kinetic” plasma models, MHD is a fluid-flow model
that ignores individual particle behavior, instead focusing on the fluid in aggregate. It is similar to the
famous Navier-Stokes Equations for fluid flow, but with additional terms for electromagnetic effects.
Though less complicated than other plasma models such as Vlasov or the two-fluid model, MHD models
are especially well-suited to situations where magnetic forces confine the plasma, such as our usecase in
tokamak fusion reactors [Bellan, 2006].

2.2. Tokamak Dynamics
The leading candidate for fusion power generation is the tokamak design, which is a magnetic
confinement device designed to confine a plasma in the shape of a torus. The basic idea behind
magnetic-confinement fusion is to confine the charged particles of a plasma at high temperature for the
duration necessary to have a high fusion probablility before a particle escapes the system. To achieve
this, a strong magnetic field is applied to the plasma. Charged particles traveling in a magnetic field will
curve and rotate around magnetic field lines due to the Lorentz force that acts perpendicular to both
the magnetic field and the particle’s direction of motion. The stronger the field, the tighter the radius
of these circles (known as the “cyclotron radius”).[Bellan, 2006, Freidberg et al., 2015]. Early plasma
confinement devices were linear, but since linear confinements did not prevent particles from escaping
out of the ends of the device, the linear configuration was abandoned in favor of a closed torus. For
topological reasons (proven by Poincaré in 1885), a vector field such as a magnetic field cannot "comb" a
sphere flat without points of 0-field at the poles. So in order to prevent particles escaping at the poles, a
toroidal design is used.

In a simple toroidal magnetic field, the lines circle the device, which keeps charged particles
somewhat confined. Since magnetic field lines always connect back to each other, the circular geometry
of the device means that the magnetic field will be stronger towards the inside of the torus and weaker
on the outside. This gradient in the magnetic field causes charged particles to slowly drift laterally,
leaving the device. In the tokamak design, currents are added that twist the magnetic field lines helically
around the torus, which leads the particle drift to cancel itself out[Wesson, 1999].

2

2.3. MHD Derivation 3

2.3. MHD Derivation
When neglecting certain particle effects and collisionality, plasmas can be described as a fluid. Therefore,
to start the derivation, we can start with physical properties of fluids. The easiest place to start is with
quantities that will be conserved: mass, momentum, energy, and magnetic flux.

Plasmas conserve mass, so the amount of mass within a volume can only change due to a flux of the
mass through the volume. This leads us to the continuity equation:

𝜕𝑡𝜌 + ∇ · (𝜌V) = 0 (2.1)

Where V is fluid flow and 𝜌 is mass density.
Particles in a plasma also conserve momentum, so we adopt the momentum balance equation from

Navier Stokes, but with an additional J × B component from the Lorentz force. Here, 𝑝 is pressure:

𝜌𝜕𝑡V = J × B − ∇𝑝 − V · ∇V (2.2)

The current comes from moving current, which itself induces a magnetic field

𝜌V = J = 1
�0

∇ × B (2.3)

Taking the cross product of the current and the magnetic field yields

J × B =
1
�0

(∇ × B) × B

= − 1
2�0

∇B2 + 1
�0

(B · ∇)B
(2.4)

From here, the similarities to fluid equations start to diverge. Charged particles are influenced by
the Lorentz force,

F = 𝜌𝑒E + 𝜌𝑒V × B (2.5)

Where 𝜌𝑖 is the ion charge density, 𝜌𝑒 is the electron charge density, and 𝜌 is the total charge density.
Similarly for pressure:

𝜌 = 𝜌𝑖 − 𝜌𝑒

𝑝 = 𝑝𝑖 + 𝑝𝑒
(2.6)

From the ideal gas law, pressure relates to density and pressure as 𝑝 = 𝜌𝑇 with a constant term (�0)
that drops out due to normalization.

In the stationary case where pressure is balanced by electric current, what follows is a generalized
Ohm’s law, where � is the electrical resistivity [Krebs, 2012].

E + V × B = �J + 1
𝑒𝑛

(J × B − ∇𝑝) − 𝑚𝑒

𝑒

𝑑u
𝑑𝑡

(2.7)

Additional terms come from Maxwell’s Equations
∇ · E = 𝜌/𝜖0
∇ × E = −𝜕𝑡B
∇ × B = �0 (J + 𝜖0𝜕𝑡E)
∇ · B = 0

(2.8)

One can take certain assumptions if one is only interested in phenomona larger than certain plasma
phenomena such as the Debye length (the length scale at which electric fields are screened) and slower
than certain frequencies such as the electron cyclotron and plasma frequencies (respectively related to
the speed at which electrons orbit magnetic field lines and screen out electric fields). For this "Ideal
MHD" model, one makes a number of assumptions. If one assumes that the plasma is quasi-neutral on
macroscopic scales and that electrons can quickly displace to balance out charge inequalities, Gauss’s
Law can be ignored. The resistivity term � drops out, as does the whole right side of the generalized
Ohm’s law, ending up with E+V×B = 0. Since electrons shield electric fields, the 𝜕𝑡E term of Ampere’s
law disappears.

2.4. Reduced MHD 4

For normalization, we normalize with respect to the central mass density 𝜌0, and the vacuum
permeability �0. Time is normalized time according to the Alfvén time (𝜏A = 𝑎

√
�0𝜌0/𝐵0), which is the

time needed for an Alfvén wave to travel one radian toroidally.
This is a simplified model, and real-world applications need additional extensions, such as finite

resistivity, anisotropic heat transport, or two-fluid effects where the electrons and the ions have different
properties.

2.4. Reduced MHD
Starting from the ideal MHD formulation above, we re-add some resistivity to the current:

E + V × B = �J (2.9)

We then add heat conductivity (�), viscosity (�), diffusivity (𝐷), and source terms (𝑆𝐻 , 𝑆𝜌 for heat
and particle sources) to the continuity, momentum, and energy equations:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒗) = ∇ · (𝐷∇𝜌) + 𝑆𝜌 ,

𝜌
𝑑𝒗
𝑑𝑡

= 𝑱 × 𝑩 − ∇𝑝 + �∇2𝒗 ,

𝑑

𝑑𝑡

(
𝑝

𝜌𝛾

)
= ∇ · (�∇𝑝) + 𝑆𝐻 ,

(2.10)

The reduced MHD model is a subset of this "resistive and diffusive" MHD model and is designed to
reduce the computation costs of the model. It does so by making assumptions that are reasonable for a
tokamak configuration. Since it is designed for tokamak plasmas, it uses a cylindrical coordinate system
𝑅, 𝑍, 𝜙, along with an associated poloidal coordinate system 𝑟, �.

We start by converting the above equations to cylindrical coordinates, with
𝑋 = 𝑅 cos 𝜙
𝑌 = −𝑅 sin 𝜙
𝑍 = 𝑍

(2.11)

Since ∇ · B = 0, we can break the magnetic field into poloidal and toroidal components B = B𝜙 + B�.
We make the following assumptions: The magnetic field is dominated by its toroidal component, and
the poloidal component is relatively weak (B𝜙 >> B�). Additionally, the toroidal component of the
magnetic field is assumed to be constant in time. The ansatz for the magnetic field is:

B =
𝐹0
𝑅

e𝜙 + 1
𝑅
∇𝜓 × e𝜙 (2.12)

where 𝐹0 is a constant, and e𝜙 is the toroidal basis vector. 𝜓 is the poloidal magnetic flux.
These assumptions eliminate "fast magnetosonic waves," which are the fastest waves in the system.

This allows for larger timesteps as the timestep size depends on the shortest relevant timescales.
Additionally, there are fewer unknowns to compute and store[Hoelzl et al., 2021].

Eventually, (see [Franck, Emmanuel et al., 2015] or [Pamela, 2010] for the full derivation) this comes
out to:

2.5. Model Extensions 5

𝜕𝜌

𝜕𝑡
= − ∇ · (𝜌𝒗) + ∇ (𝐷⊥∇⊥𝜌) + 𝑆𝜌

𝑅∇ ·
[
𝑅2𝜌∇⊥

(
𝜕𝑢

𝜕𝑡

)]
=
[
𝑅4𝜌𝑊, 𝑢

]
− 1

2
[
𝑅2𝜌, 𝑅4 |∇⊥𝑢 |2

]
−
[
𝑅2 , 𝑝

]
+ [𝜓, 𝑗] − 𝐹0

𝑅

𝜕𝑗

𝜕𝜙
+ �𝑅∇2𝑊

𝜌𝐹2
0
𝑑𝑣∥
𝑑𝑡

=𝐹0
𝜕𝑝

𝜕𝜙
− 𝑅[𝜓, 𝑝] + �∥∇2𝑣∥

𝜌
𝜕𝑇

𝜕𝑡
= − 𝜌𝒗 · ∇𝑇 − (𝛾 − 1)𝑝∇ · 𝒗 + ∇ ·

(
�⊥∇⊥𝑇 + �∥∇∥𝑇

)
+ 𝑆𝑇

𝜕𝜓

𝜕𝑡
=� (𝑗 − 𝑗𝐴) + 𝑅[𝜓, 𝑢] − 𝜕𝑢

𝜕𝜙

(2.13)

where the velocity 𝒗 and the toroidal vorticity W , as well as the magnetic field B and the toroidal
current j are defined, respectively, by

𝒗 = 𝒗∥ + 𝒗⊥ = 𝑣∥𝑩 + 𝑅2∇𝜙 × ∇𝑢
𝑊 = ∇𝜙 · (∇ × 𝒗⊥) = ∇2

⊥𝑢

𝑩 = 𝐹0∇𝜙 + ∇𝜓 × ∇𝜙

𝑗 = −𝑅2∇𝜙 · 𝑱 = 1
�0

Δ∗𝜓

(2.14)

whereΔ∗ is the Grad-Shafranov operator (Δ∗𝜓 = ∇2𝜓+2B�), 𝑢 is the electric potential, and pressure is
defined as 𝑝 = 𝜌𝑇. Note that Poisson brackets have been used, with the definition [𝑎, 𝑏] = 𝒆𝜙 · (∇𝑎 ×∇𝑏).

2.5. Model Extensions
JOREK can also execute a full MHD model. However, this is not considered here as the reduced model
captures key physics very well under most conditions for less computation cost.

JOREK can extend its model to include additional effects such as relativistic electrons, impurities, a
neutral gas, or kinetic particles. One can separate certain concepts between electrons and ions such as
their temperatures in order to form a "two-fluid" model.

3
Finite Element Methods

Finite Element Methods (FEM) are a technique for solving partial differential equations numerically.
The basic idea is to convert an infinitely-dimensional partial differential equation into a linear problem
that can be solved with numerical linear algebra techniques.

The FEM technique involves subdividing a continuous system into a finite set of smaller components
using a mesh, and then transforming the differential problem on these sub-elements into an algebraic
equation that can be solved numerically. The process is essentially:

1. Establish the strong form of the problem

2. Establish a weak form of the problem

3. Break the problem into a finite set of elements, made from compact polynomials

4. Establish the weights of those polynomial elements.

[Niels Saabye Ottosen, 1992]

3.1. Background and Derivation
The process underlying FEM is to first cast the problem up into its "weak formulation," which allows us
to use linear algebra to solve arbitrary partial differential equations.

Given a system to solve

𝐴𝑢 = 𝑓 (3.1)

finding the solution 𝑢 ∈ 𝑉 is equivalent to finding 𝑢 ∈ 𝑉 such that for all "test functions" 𝑣 ∈ 𝑉 ,

(𝐴𝑢)(𝑣) = 𝑓 (𝑣) (3.2)

Then approximating the weak form of the problem with a finite-dimensional problem by replacing
the subspace V of the weak form with a subspace of functions of small, compact, low-degree polynomial
"elements" over the domain. Then selecting a subspace V in 𝐿2 and putting the problem in its bilinear
Galerkin form [Saad, 1996, Hughes, 1987, Landstorfer et al., 2021]:

From there,
Find 𝑢 ∈ 𝑉such that 𝑎(𝑢, 𝑣) = 𝐹(𝑣), ∀ 𝑣 ∈ 𝑉 (3.3)

Our computers can only solve finite-dimensional problems, so we perform a dimension reduction:

Find 𝑢𝑛 ∈ 𝑉𝑛 such that 𝑎(𝑢𝑛 , 𝑣𝑛) = 𝐹(𝑣𝑛), ∀ 𝑣𝑛 ∈ 𝑉𝑛 (3.4)

This is called the Galerkin equation, and it is a projection of (3.3) onto𝑉𝑛 . From our finite dimensional
problem, we now extract a linear system of equations. Since 𝑉𝑛 is finite-dimensional, there exists a basis
(𝜙1 , ..., 𝜙𝑛) in 𝑉𝑛 that can construct our solution 𝑢𝑛 :

6

3.2. Bézier Surfaces 7

𝑢𝑛 =

𝑛∑
𝑖=1

𝛼𝑖𝜙𝑖 (3.5)

Due to bilinearity,

𝑎 (𝑢𝑛 , 𝑣𝑛) =
𝑛∑
𝑖=1

𝛼𝑖𝑎 (𝜑𝑖 , 𝑣𝑛)
𝑣𝑛=𝜑 𝑗

=⇒ 𝑎
(
𝑢𝑛 , 𝜑 𝑗

)
=

𝑛∑
𝑖=1

𝛼𝑖𝑎
(
𝜑𝑖 , 𝜑 𝑗

)
. (3.6)

.
This allows us to translate the problem into a linear system we can solve with numerical linear

algebra techniques:

𝐴𝑛𝛼 =

𝑎 (𝜑1 , 𝜑1) · · · 𝑎 (𝜑𝑛 , 𝜑1)

...
. . .

...
𝑎 (𝜑1 , 𝜑𝑛) · · · 𝑎 (𝜑𝑛 , 𝜑𝑛)

𝛼1
...
𝛼𝑛

 =

𝐹 (𝜑1)

...
𝐹 (𝜑𝑛)

 (3.7)

3.2. Bézier Surfaces
For the finite element method, we need a test function that satisfies certain properties. It needs to be com-
pact, The first version of the JOREK code used "generalized h-p refinable finite elements"[Hoelzl et al., 2021],
but in practice, mesh refinement was impractical. For the second version of JOREK, a new finite element
formulation was proposed and implemented that was based on 𝐺1 continuous 2D isoparametric cubic
Bézier surfaces[Hoelzl et al., 2021].

Bézier surfaces were developed in the 1960s by Paul Bézier to design automobile bodies [Czarny and Huysmans, 2008].
They are based on interpolating Bernstein polynomials developed by Sergei Bernstein based on the
following formulae:[Czarny and Huysmans, 2008]

𝐵𝑛
𝑖
(𝑠) = 𝐶 𝑖

𝑛𝑠
𝑖(1 − 𝑠)𝑛−𝑖 ,

𝐶 𝑖
𝑛 = 𝑛!

𝑖!(𝑛−𝑖)! ,

0 ≤ 𝑖 ≤ 𝑛

(3.8)

This gives us a set of polynomials with some useful properties:

1. 𝐵𝑛
𝑖

is a basis of 𝑃𝑛 , the set of polynomials of degree ≤ 𝑛.

2. 0 ≤ 𝐵𝑛
𝑖
(𝑠) ≤ 1,∀𝑠 ∈ [0; 1].

3.
∑𝑛

𝑖=0 𝐵
𝑛
𝑖
(𝑠) = 1,∀𝑠 ∈ [0; 1].

In our case, we are using cubic Bézier surfaces, which are polynomials of degree 3 (shown plotted in
Figure 3.1) [Czarny and Huysmans, 2008]:

𝐵3

0(𝑠) = (1 − 𝑠)3 ,
𝐵3

1(𝑠) = 3𝑠(1 − 𝑠)2 ,
𝐵3

2(𝑠) = 3𝑠2(1 − 𝑠),
𝐵3

3(𝑠) = 𝑠3.

(3.9)

These can be extended into rectangular patches [Czarny and Huysmans, 2008], and used as a basis
for our FEM model:

𝑃(𝑠, 𝑡) =
3∑
𝑖=0

3∑
𝑗=0

𝑃𝑖 , 𝑗𝐵
3
𝑖 (𝑠)𝐵

3
𝑗 (𝑡), 0 ≤ 𝑠, 𝑡 ≤ 1 (3.10)

Here, 𝑠 and 𝑡 are local coordinates where 0 ≤ 𝑠, 𝑡 ≤ 1, and 𝑃𝑖 , 𝑗 are the 16 control points for the
surface. Of these, four correspond to the corners of the patch, and the rest correspond to the tangents

3.2. Bézier Surfaces 8

Figure 3.1: Cubic Bézier polynomials [Czarny and Huysmans, 2008].

(𝜕𝑃𝜕𝑠 , 𝜕𝑃
𝜕𝑡) and the cross derivatives (𝜕2𝑃

𝜕𝑡𝜕𝑠) at the corners. The patches can be organized (as in JOREK) into
an unstructured mesh. In our formulation, Bézier patches are 𝐺1 continuous, meaning that where two
patches share a common edge, they also share a common angle or tangent at that edge.

Bézier surfaces were chosen for JOREK because of several properties. They require only four
degrees of freedom per node, which is an advantage over Lagrangian formulations. They react well to
mesh-refinement (unlike pure Hermite formulations or the JOREK I formulation). Bézier surfaces can
also be aligned well with the magnetic-fields present, which is advantageous as the physics parallel
to the magnetic field differ from the physics perpendicular to the fields [Czarny and Huysmans, 2008,
Krebs, 2012].

Bézier surfaces are used to construct the basis for the weak formulation of equations used in Finite
Elements. This treatment is discussed later, in section 5.2.

Figure 3.2: Example Bézier surfaces, showing control points on the left and the resulting surface on the right. The figures at the
top are 𝐺0 continuous, while the figures at the bottom are 𝐺1 continuous (as used by JOREK) [Hoelzl et al., 2021].

4
Numerical Solution Methods

FEM simulations generate linear systems with massive number of terms. A whole field has arisen to
solve these systems quickly and efficiently, and there are now many popular techniques, that have
advantages and disadvantages in certain cases.

MHD problems produce very large linear systems, due to the multitude of important plasma physics
that have effects over many orders-of-magnitude in both time and space. For example, typical fusion
plasma dimensions are of the order of a few meters, but the resistive skin depth of the plasma is
typically on the order of sub-millimeters, leading to a scale separation of four orders of magnitude
[Hoelzl et al., 2021]. This kind of dynamic forces the simulation of large volumes to use a relatively very
fine mesh. As a result, this can produce very large linear systems that can be difficult to solve. For the
solution to have good performance and stability, a thoughtful application of numerical linear algebra
techniques is required.

Solving a system A𝑥 = 𝑏, where nonsingular A ∈ C𝑛×𝑛 , takes on the order of 𝑛3 operations if done
naively. Taking advantage of certain features of the problem, one can speed this up considerably. With
about one in 3000 entries nonzero, the system that JOREK solves is highly sparse. This sparsity makes it
a good candidate for certain numerical techniques.

4.1. Condition Number
Relevant for discussing the numerical behavior for most algorithms is the "Condition number" �𝑝(A).
Given 𝑦 = 𝑓 (𝑥), the condition number represents the error Δ𝑦 induced by a small error Δ𝑥 in 𝑥. This is
very important for numerical solvers, as many operations will be needed to solve a large system, and
every floating point operation will carry with it a small error due to the maximum machine precision.

For a function generally, the condition number looks like [Vuik and Lahaye, 2023, Liesen, 2020]

� 𝑓 (𝑥) =
| | 𝑓 (𝑥 + Δ𝑥) − 𝑓 (𝑥)| |𝑌

| | 𝑓 (𝑥)| |𝑌
| |𝑥 | |𝑋
| |Δ𝑥 | |𝑋

(4.1)

For a differentiable function 𝑓 , this rearranges to form

� 𝑓 (𝑥) = | | 𝑓 ′(𝑥)| | | |𝑥 | |
| | 𝑓 (𝑥)| | (4.2)

For a linear system 𝑓 (𝑥) = A𝑥 and a norm | | · | |, this comes out to

� 𝑓 (𝑥) = | |A| | | |𝑥 | |
| |A𝑥 | | (4.3)

If A is nonsingular, this gives the bound

� 𝑓 (𝑥) ≤ ||A−1 | | · | |A| | (4.4)

9

4.2. Direct Methods 10

Thus we define the condition number for a matrix A and p-norm as

�𝑝(A) = | |A| |𝑝 | |A−1 | |𝑝 (4.5)

For the 2-norm, this is equivalent to

�2(A) =
√
�𝑚𝑎𝑥(A𝑇A)√
(�𝑚𝑖𝑛(A𝑇A)

(4.6)

thus showing one way the spectrum of a problem can impact numerical behavior.
As an example, consider the following linear problem from [Vuik and Lahaye, 2023][

1 1
1 .999

] [
𝑥
𝑦

]
=

[
2

1.999

]
(4.7)

It is nearly rank-deficient, meaning the smallest eigenvalue is very close to 0. Moreover, if there is
inaccuracy in our system and the right-hand side is changed to (2 2)𝑇 , the solution changes drastically
from (𝑥 𝑦)𝑇 = (1 1)𝑇 to (𝑥 𝑦)𝑇 = (2 0)𝑇 .

4.2. Direct Methods
The basic idea behind direct methods is to decompose the problem into a simpler subproblem. For
example, the system

A𝑥 = 𝑏 (4.8)

can be decomposed into its lower and upper triangular components

A = LU (4.9)

which turns the problem into
LU𝑥 = 𝑏 (4.10)

yielding two simpler problems with triangular matrices that are therefore easy to solve

L𝑦 = 𝑏, U𝑥 = 𝑦 (4.11)

Other direct methods may use different decompositions, but the basic idea is the same.
A disadvantage with direct methods is that until the algorithm is finished, one does not have any

partial solution and the system cannot be analyzed prematurely for information on the state of the
solution. They can also have high memory consumption for sparse problems due to fill-in, such as the
sparse systems solved by JOREK. JOREK uses direct solvers only for small problems and to solve blocks
of its preconditioner.

4.3. Iterative Methods
As opposed to direct methods, iterative methods progressively approximate a solution over numerous
iterations. When the approximate solution is satisfactory, the iterations are stopped.

These methods start with some initial guess 𝑥0, and iteratively improve that guess until an acceptable
level of accuracy is reached, as measured by the residual 𝑟𝑘 = 𝑏 − A𝑥𝑘 .

These have some improvements over direct solvers. Iterative methods parallelize better, However,
iterative methods can fail to converge. Performance can be highly susceptible to the condition number
of the system, often requiring preconditioning.

4.4. Krylov subspace methods
Krylov subspace methods are a class of iterative methods that attempt to solve A𝑥 = 𝑏 by iteratively
searching within a limited region of the Krylov subspace of A.

These are a subclass of so-called projection methods, which look for the approximate solution of the
form 𝑥𝑘 = 𝑥0 + 𝒮𝑘 , where 𝒮𝑘 is a k-dimensional subspace called the "search space." With k degrees of

4.5. Preconditioning 11

freedom in 𝑥𝑘 , we also need k constraints. We impose these on the residual (𝑟𝑘 = 𝑏 − 𝐴𝑥𝑘) with 𝑟𝑘 ⊥ 𝒞𝑘

where 𝒞𝑘 is some space that we have taken as our "constraints space."
Krylov subspace methods use the Krylov subspace as the search space 𝒮𝑘 = 𝒦𝑛 . Given an initial

guess 𝑥0 with an approximate solution 𝑥𝑚 . Given A ∈ C𝑛𝑥𝑛 and 𝑟0 ∈ C𝑛 , where the residual 𝑟0 = 𝑏 −A𝑥0
[Saad, 1996], then the Krylov subspace is

𝒦𝑛(A, 𝑟0) B span{𝑟0 ,A𝑟0 ,A2𝑟0 , ...,A𝑛−1𝑟0} (4.12)

It can be shown that an iterated Krylov subspace includes an approximate solution[Bai, 2015]:
Given 𝑥𝑥+1 = 𝑥𝑘 + 𝜔(𝑏 − A𝑥𝑘), where 𝜔 is a relaxation parameter and 𝑘 = 0, 1, 2, ..., then

𝑥𝑘 = (𝐼 − 𝜔A)𝑥𝑘−1 + 𝜔𝑏 =

𝑘−1∑
𝑗=0

(𝐼 − 𝜔A)𝑗𝜔𝑏 ∈ 𝒦𝑘(A, 𝑏) (4.13)

Provided 𝑥0 = 0 and the sequence 𝑥𝑘 is convergent, then the solution

𝑥∗ ∈ 𝒦∞(A, 𝑏) (4.14)

It can even be shown that the solution exists in the Krylov subspace of degree k, where k is the
minimum degree polynomial of A

Let 𝜙𝑘(A) be the minimum degree polynomial of A, therefore

𝜙𝑘(A) = 𝛼0I + 𝛼1A + ... + 𝛼𝑘A𝑘 (4.15)

Since A is nonsingular, 𝛼0 ≠ 0, and therefore

A
(
𝛼1𝐼 + 𝛼2A + · · · + 𝛼𝑘A𝑘−1

)
= −𝛼0𝐼 ,

∴ A−1 = − 1
𝛼0

(
𝛼1𝐼 + 𝛼2A + · · · + 𝛼𝑘A𝑘−1

) (4.16)

Therefore,

𝑥∗ = A−1𝑏 = − 1
𝛼0

(
𝛼1𝐼 + 𝛼2𝐴 + · · · + 𝛼𝑘A𝑘−1

)
𝑏

∈ span
{
𝑏,A𝑏, . . . ,A𝑘−1𝑏

}
= 𝒦𝑘(A, 𝑏).

(4.17)

JOREK makes use of several different Krylov subspace methods in its solver – namely Restarted
GMRES and BiCGSTAB, which will be discussed in section 4.7 and section 4.8.

4.5. Preconditioning
Numerical methods to solve linear systems of equations can be made more efficient by transforming
the problem into one that is better solved by that given iterative method[Saad, 1996]. This process is
called "preconditioning," and is extremely important to iterative methods and numerical linear algebra
in general.

For example, given a system A𝑥 = 𝑏, one wants to find a preconditioner M−1 that is easily invertible
and similar to A−1. Then the system M−1A𝑥 = M−1𝑏 is easy to solve as M−1A is close to the identity,
and the system has a condition number close to 1. Of course, finding a matrix close to A−1 is not easy, as
finding A−1 is essentially the whole problem to solve.

The strategy applies whether you are multiplying the preconditioner from the left or from the right.
There is a third type called "split preconditioner" that is preferred for symmetric system. It works by
modifying the system as:

M = LU, (4.18)
L−1AU−1𝑢 = L−1𝑏, 𝑥 = U−1𝑢. (4.19)

4.6. Arnoldi Method 12

Unless dealing with a symmetric system and using a split preconditioner, left and right precondi-
tioners are largely equivalent. However some preconditioners perform better as right preconditioners
for Krylov subspace methods, since these methods are based on the norm of the residual of the
preconditioned system [Ghai et al., 2016]. If the preconditioner is ill-conditioned, (�(M) ≫ 1), then the
preconditioned residual may be inflated compared to the true residual, and therefore the algorithm will
take additional iterations.

4.6. Arnoldi Method
The Arnoldi method is an algorithm for producing an orthonormal basis of vectors. It is used, particularly
in other numerical solvers, because it can be made to produce an orthonormal basis of the Krylov
subspace. It was originally made in 1951 in order to reduce a matrix into a quasi-triangular form known
as the Hessenberg form[Saad, 1996].

Let A ∈ C𝑛×𝑛 and 𝑣 ∈ C𝑛\{0} be of grade 𝑑 with respect to A. Then there exists V ∈ C𝑛×𝑑 with
orthonormal columns and an unreduced upper Hessenberg matrix H =

[
ℎ𝑖 𝑗

]
∈ C𝑑×𝑑, i.e., ℎ𝑖 𝑗 = 0 for

𝑖 > 𝑗 + 1 and ℎ𝑖+1,𝑖 ≠ 0 for 𝑖 = 1, . . . , 𝑑 − 1, such that [Liesen, 2020]

AV = VH (4.20)

The Arnoldi method builds this relation iteratively, via the relation AV𝑚 = V𝑚+1H𝑚 , where
Vm ∈ C𝑛×𝑚 ,Hm ∈ C(𝑚+1)×𝑚 . One variant of the algorithm is:

Algorithm 1: Arnoldi [Saad, 1996]
Compute: Choose a vector 𝑣1 of norm 1
for 𝑗 ∈ 1, 2, ..., 𝑚 do

Compute: ℎ𝑖 𝑗 = (𝐴𝑣 𝑗 , 𝑣𝑖) for 𝑖 = 1, 2, ..., 𝑗
Compute: 𝑤 𝑗 B 𝐴𝑣 𝑗 −

∑𝑗

𝑖=1 ℎ𝑖 𝑗𝑣𝑖
ℎ 𝑗+1 , 𝑗 = | |𝑤 𝑗 | |2 ;
if ℎ 𝑗+1 , 𝑗0 then

Stop
end
𝑣 𝑗+1 = 𝑤 𝑗/ℎ 𝑗+1, 𝑗 ;

end

If one does not stop the algorithm before the m-th step, then the vectors 𝑣1 , 𝑣2 , ..., 𝑣𝑚 form an
orthonormal basis of the Krylov subspace. This forms the basis for many Krylov subspace solvers such
as GMRES.

4.7. GMRES
In 1975, the algorithm MINRES was developed to solve linear systems. It has the disadvantage of only
working on symmetric matrices. GMRES is an iterative method based on MINRES, but that allows
for nonsymmetric matrices. It uses Arnoldi’s method to compute an orthonormal basis of the Krylov
subspace.

For the GMRES method, we take constraints space, 𝒞𝑚 = A𝒦𝑚 , so that A𝒦𝑚 ⊥ 𝑏 − A𝑥𝑚[Saad, 1996].
Arnoldi’s method is used to compute an orthonormal basis of the Krylov subspace.

This gives us the following algorithm:

4.8. BiCGSTAB 13

Algorithm 2: GMRES [Liesen, 2020]
Compute: 𝑟0 = 𝑏 − 𝐴𝑥0
for 𝑘 = 1, 2... do

Perform the kth step of Arnoldi to generate V𝑘 and H𝑘+1,𝑘 ;
Update the QR factorization of H𝑘+1,𝑘 ;
Compute the updated residual norm ∥𝑟0∥2

(
QH

𝑘+1𝑒1

)
𝑘+1

;
if the residual norm is small enough then

Compute the least squares solution 𝑡𝑘 ;
Return: the approximate solution 𝑥𝑘 = 𝑥0 + V𝑘 𝑡𝑘

end
end

A major disadvantage of the method is that it needs to store the entire Krylov subspace for every
iteration. As the number of iterations grow, the whole subspace must be stored in memory and can
become a serious limitation. Note that if A is symmetric, our Hessenberg matrix is tridiagonal, and
we only need a three-term recurrence, limiting our memory requirements. In general, however, there
is a full recurrence and the Arnoldi iterations need increasing memory for every iteration. There
are several forms of GMRES that truncate or restart in an attempt to minimize this memory burden
[Vuik and Lahaye, 2023, Ghai et al., 2016]. However, these have their own disadvantages and may not
converge as well. For some matrices that are poorly conditioned and not positive definite, the restarted
GMRES algorithm–the main iterative method used by JOREK–can stagnate indefinitely.

4.8. BiCGSTAB
The JOREK team has recently started incorporating the BiCGSTAB algorithm in addition to GMRES.
BiCGSTAB is another Krylov subspace iterative method. BiCGSTAB produces a residual vector of
the form 𝑟 𝑗 = 𝜓 𝑗(A)𝜙 𝑗(A)𝑟0, where 𝜓 𝑗 , 𝜙 𝑗 are polynomials. 𝜓 𝑗 is defined recursively as 𝜓 𝑗+1(𝑡) =

(1 − 𝜔 𝑗𝑡)𝜓 𝑗(𝑡) for some scalar 𝜔 𝑗 . BiCGSTAB determines 𝜔 𝑗 by minimizing | |𝑟 𝑗 | | with respect to
𝜔 𝑗 .[Ghai et al., 2016, Saad, 1996]

Algorithm 3: BiCGSTAB [Saad, 1996]
Compute: 𝑟0 = 𝑏 − A𝑥0; 𝑟∗0𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦;
Let 𝑝0 B 𝑟0 ;
for 𝑗 = 0, 1, until convergence do

𝛼 𝑗 B (𝑟 𝑗 , 𝑟∗0)/(A𝑝 𝑗 , 𝑟
∗
0) ;

𝑠 𝑗 B 𝑟 𝑗 − 𝛼 𝑗𝐴𝑝 𝑗 ;
𝜔 𝑗 B (A𝑠 𝑗 , 𝑠 𝑗)/(A𝑠 𝑗 ,A𝑠 𝑗) ;
𝑥 𝑗+1 B 𝑥 𝑗 + 𝛼 𝑗𝑝 𝑗 + 𝜔 𝑗𝑠 𝑗 ;
𝑟 𝑗+1 B 𝑠 𝑗 − 𝜔 𝑗A𝑠 𝑗 ;
𝛽 𝑗 B

(𝑟𝑗+1 ,𝑟
∗
0)

(𝑟𝑗 ,𝑟∗0)
× 𝛼 𝑗

𝜔𝑗
;

𝑝 𝑗+1 B 𝑟 𝑗+1 + 𝛽 𝑗(𝑝 𝑗 − 𝜔 𝑗A𝑝 𝑗) ;
end

BiCGSTAB uses less memory than GMRES, but is less stable. Due to memory issues, it is often
be an improvement over restarted GMRES[Ghai et al., 2016, Shadid and Tuminaro, 1994]. It is not as
performant as GMRES in a well-preconditioned system. Without an effective preconditioner, though,
restarted GMRES may stagnate or converge slowly. BiCGSTAB is also more well-suited than GMRES to
handle non-symmetric matrices.

One downside is that the residual does not decrease monotonically, but variants such as QMRCGSTAB
exist to handle this problem, at some computational cost.

4.9. Convergence
Several diagnostic tools are available to numerical analysts to determine convergence properties of
the linear systems involved. These depend on properties of the underlying linear system and can be
analyzed using numerical linear algebra techniques.

4.9. Convergence 14

As a rule of thumb, one often looks at the condition number of an invertible matrix A, which in the
𝑝−norm is defined

�(A) = | |A| |𝑝 | |A−1 | |𝑝 . (4.21)

In case A is symmetric and positive definite (SPD), the upper expression in the 2-norm reduces to

�2(A) = �max(A)
�min(A) , (4.22)

where �max and �min denote the respective largest and smallest eigenvalue of the matrix A. A widely
propagated misconception is that GMRES convergence can be navigated by looking at the condition
number. While this may be true for SPD matrices, this is in general not true for nonnormal (AA𝐻 ≠ A𝐻A)
and indefinite matrices (matrices having both negative and positive eigenvalues). Here, A𝐻 represents
the complex conjugate of A.

In general, for normal matrices, the distribution and clustering of the eigenvalues determine the
convergence speed of Krylov subspace methods, in particular GMRES. If the eigenvalues are clustered
near the point (1, 0) in the complex plane, we generally expect fast convergence. For nonnormal matrices
however, this may not be the case [Liesen and Tichý, 2004, Liesen, 2020]. Some numerical evidence has
been gathered over the years to suggest that spectral analysis may still provide some notions which
could outline convergence behavior [Dwarka and Vuik, 2020].

Especially for fusion simulations due to the complexity of the underlying mathematical operators,
inadequate conditioning can be misleading in assessing what preconditioning strategies will perform
better. Consequently, in this work we focus on unraveling these underlying mathematical properties to
interpret the convergence behavior of the current solver in order to work towards acceleration strategies.
For example, indefinite nonsymmetric matrices also arise in wave propagation problems, and the
respective Krylov based solvers often show acceleration using projection and multigrid techniques (for
an overview of examples and literature, see [Dwarka and Vuik, 2020, Dwarka and Vuik, 2022]).

4.9.1. GMRES Convergence
If the matrix is normal (that is to say AA𝐻 = A𝐻A), then the worst-case convergence behavior is
determined by the spectrum. If the matrix is nonnormal, the convergence behavior is not solely
determined by the spectrum and other heuristics may be necessary for a complete analysis. According
to [Liesen and Tichý, 2004], GMRES convergence analysis for nonnormal matrices remains an open
problem.

For our analysis, note that any vector in the Krylov subspace can be written in polynomial form
where 𝑝𝑛 is a polynomial of degree ≤ 𝑛. This means that the error (𝑥 − 𝑥𝑛) and the residual (𝑟𝑛) can be
written as

𝑥 − 𝑥𝑛 = 𝑝𝑛(A)(𝑥 − 𝑥0), 𝑟𝑛 = 𝑝𝑛(A)𝑟0 (4.23)

GMRES convergence is analyzed via its residual, 𝑥𝑘 ∈ 𝑥0 +𝒦𝑘 (𝐴, 𝑟0)

∥𝑟𝑘 ∥2 = ∥𝑏 − A𝑥𝑘 ∥2 = min
𝑧∈𝑥0+𝒦𝑘 (A,𝑟0)

∥𝑏 − A𝑧∥2 (4.24)

In the case that our matrix is diagonalizable, A = XΛX−1. Our residual is bounded as:

∥𝑟𝑘 ∥2 = min
𝑧∈𝒦𝑘 (A,𝑟0)

∥𝑟0 − A𝑧∥2

= min
𝑝∈𝒫𝑘 (0)

∥𝑝(A)𝑟0∥2

≤ min
𝑝∈𝒫𝑘 (0)

∥𝑝(A)∥2 ∥𝑟0∥2

= min
𝑝∈𝒫𝑘 (0)

X𝑝(Λ)X−1
2 ∥𝑟0∥2

≤ �(X) min
𝑝∈𝒫𝑘 (0)

∥𝑝(Λ)∥2 ∥𝑟0∥2

= �(X) ∥𝑟0∥2 min
𝑝∈𝒫𝑘 (0)

max
1≤𝑖≤𝑛

|𝑝 (�𝑖)|

(4.25)

4.9. Convergence 15

∴
∥𝑟𝑘 ∥2
∥𝑟0∥2

≤ �(X) min
𝑝∈𝒫𝑘 (0)

max
1≤𝑖≤𝑛

|𝑝 (�𝑖)| (4.26)

For normal matrices, we can choose eigenvalues such that�(𝑋) = 1[Liesen, 2020, Liesen and Tichý, 2004].
In the case that the spectrum is contained within a disk in the complex plane that does not include
the origin, say centered at 𝑐 ∈ C and of radius 𝑟, such that 𝑟 < |𝑐 |, then we can use the polynomial
𝑝(𝑧) = (1 − 𝑧/𝑐)𝑘 ∈ 𝒫𝑘(0) and our bound becomes

min
𝑝∈𝜋𝑛

max
𝑘

|𝑝 (�𝑘)| ≤
��� 𝑟
𝑐

���𝑛 (4.27)

When the eigenvalues are tightly clustered and distant from the origin, then GMRES will converge
quickly. However, if the opposite is true and the eigenvalues are not tightly clustered or close to the
origin, this does not necessarily mean that GMRES converges slowly[Liesen, 2020].

Further refinement is possible in certain cases, such as for example, the symmetric part of A is
positive definite.[Zou, 2023]

Overall, we end up with a bounds defined by a "worst-case" value 𝜓𝑛(A) and what is called the
"ideal" value 𝜙𝑛(A):[Zou, 2023].

∥𝑟𝑛 ∥
∥𝑟0∥

≤ 𝜓𝑛(A) ≤ 𝜙𝑛(A), 𝜓𝑛(A) = max
∥𝑣∥=1

min
𝑝∈𝒫𝑛

∥𝑝(A)𝑣∥ , 𝜙𝑛(A) = min
𝑝∈𝒫𝑛

∥𝑝(A)∥. (4.28)

The worst case is defined such that there exists an initial vector 𝑣 such that ∥𝑟𝑛 ∥ = 𝜓𝑛(A). If A is
normal, the ideal case 𝜙𝑛(A) = 𝜓𝑛(A).[Zou, 2023]

For GMRES, left, right, and split preconditioners can all be used. Unless A is highly symmetric or M
is ill-conditioned, there is little difference between these forms in theory. The operators they produce
(M−1A, AM−1 , and L−1AU−1) all have the same spectra, but as discussed, GMRES convergence is not
purely due to spectrum.

The approximate solution obtained for GMRES by left or right conditioning is

𝑥𝑚 = 𝑥0 + 𝑠𝑚−1(M−1A)𝑧0 = 𝑥0 + M−1𝑠𝑚−1(AM−1)𝑟0 (4.29)

where 𝑧0 = M−1𝑟0 and 𝑠𝑚−1 is a polynomial of degree m that minimizes the residual norm | |𝑏 −A𝑥𝑚 | |2 if
preconditioned from the right, and | |M−1(𝑏−A𝑥𝑚)| |2 if preconditioned from the left. As discussed above
and in [Ghai et al., 2016], right preconditioning is generally preferred for Krylov subspace methods as
the preconditioned residual can be enlarged if preconditioned from the left.

In practice, convergence in GMRES is not strictly consistent. It can pass through "superlinear" regions
where the convergence speed improves per iteration, or can stagnate almost completely. While GMRES
on an NxN system will always converge in at most N steps [Saad and Schultz, 1986] , the residual may
flatten completely and only converge at the final step. In these cases, a restarted GMRES strategy will
never converge. See [Zavorin et al., 2003] for certain conditions where this will occur, but the criteria
are fairly complicated and the analysis is beyond the scope of this work.

4.9.2. BiCGSTAB Convergence
BiCGSTAB has an occasional tendency to breakdown or fail to converge, and some properties of our
system can predict such cases.

The initial choice of 𝑥0 is important with BiCGSTAB. A poor choice of 𝑟0 can lead to a small iteration
parameter 𝛼𝑖 = (𝑟 𝑗 , 𝑟0) and therefore small or no improvement per iteration, and the algorithm may not
converge. In that case, one must restart with a new 𝑟0 or use another algorithm such as GMRES.

BiCGSTAB can converge poorly if for many consecutive steps, the angle between the residual 𝑟
and A𝑟 is larger than 45 degrees. Additionally, no breakdown or near-breakdown of convergence will
occur if the angle between the Krylov subspace and the "shadow" Krylov subspace (�̃�𝑘 := 𝒦𝑘(𝐴𝑇 , 𝑟0)) is
always less than 𝜋/2. In particular:

inf
𝑘

sup
{
|(𝑟𝑘 , �̃�)|
∥𝑟𝑘 ∥ ∥�̃�∥

| �̃� ∈ �̃�𝑘+1

}
> 0 (4.30)

4.10. Preconditioners for MHD Models 16

4.10. Preconditioners for MHD Models
There are a variety of different viable strategies for constructing preconditioners, and similarly a large
variety of MHD models and variants with different assumptions or extensions. There is some literature
investigating preconditioner strategies for different MHD variants or formalisms [Laakmann, 2022], but
much work remains to be done. Some of the more common preconditioner strategies used for MHD are
as follows:

One approach is with multigrid methods, which creates a preconditioner based on solving a
coarsened grid. However, these are known to only work well for systems with low Reynold’s numbers
and coupling [Laakmann, 2022].

The most common class of preconditioner used for MHD is the block preconditioner. Where the
physics of the problem leads to a system of weakly coupled sub-systems that can be separated into
blocks, these blocks can be solved separately for less computational effort than solving the whole larger
system directly. If the blocks aren’t too strongly coupled, then this is a good approximation of the
solution and therefore a good preconditioner. These have been used in incompressible MHD models
[Ma et al., 2016], and for the stationary MHD problem, for example[Laakmann, 2022] by breaking it
into hydrodynamic (Navier-Stokes) and electromagnetic (Maxwell’s) blocks and then using a multigrid
to precondition these blocks separately . The JOREK code uses a block preconditioner that will be
discussed in detail in section 5.4.

Another approach is to use an augmented Lagrangian preconditioner. By finding approximate
solutions to a weaker and constrained form of the problem that is known as the augmented Lagrangian.
This approximate solution can then be used to precondition our original problem. These have found some
applicability Navier-Stokes models as well as incompressible, resistive Hall MHD models, highly coupled
and high Reynolds Number plasmas, or anisothermal MHD models [Ma et al., 2016, Laakmann, 2022,
Laakmann et al., 2022].

According to [Laakmann, 2022], no practical robust preconditioner yet exists for the problem
in general. Certain subclasses of the problem are especially difficult, such as stationary MHD for
highly coupled systems with high Reynold’s numbers. It is unclear to what extent these different
preconditioners will apply to the reduced MHD model and discretization scheme used by JOREK.

4.10.1. Time Discretization
Time integrating an equation of the form

𝜕A(u)
𝜕𝑡

= B(u, 𝑡) (4.31)

can be discretized in general as

(1 + �)A𝑛+1 − (1 + 2�)A𝑛 + �A𝑛−1

= Δ𝑡
[
�B𝑛+1 + (1 − � − 𝜙)B𝑛 − 𝜙B𝑛−1] (4.32)

This is accurate to second order wherever 𝜙 + � − � = 1
2 . Taking 𝜙 = 0 and linearizing (with

𝛿un = un+1 − un, where 𝑛 refers to the timestep) gives the equation[
(1 + �)

(
𝜕A
𝜕u

)𝑛
− Δ𝑡�

(
𝜕B
𝜕u

)𝑛]
𝛿u𝑛 = Δ𝑡B𝑛 + �

(
𝜕A
𝜕u

)𝑛
𝛿u𝑛−1 (4.33)

For the Crank-Nicolson scheme, (�, �) = (1/2, 0), for second order BDF2 Gears scheme, (�, �) =
(1, 1/2), and for first order implicit Euler, (�, �) = (1, 0) [Hoelzl et al., 2021]. After each timestep, we
have a rather large linear problem that is then solved.

4.11. Eigenvalue Solvers
Since GMRES analysis convergence behavior is driven by the spectrum, our analysis will necessitate the
computation of eigenvalues. Moreover, we will be dealing with very large sparse matrices, so a naive
eigenvalue decomposition methods, will not be feasible, and we require methods that take advantage of
our sparsity.

4.11. Eigenvalue Solvers 17

4.11.1. Krylov-Schur
The Krylov-Schur algorithm is a method used for finding extremal eigenvalues and corresponding
eigenvectors of large, sparse matrices. It uses the Rayleigh-Ritz method to find approximate eigenvalue-
eigenvector pairs.

In a typically Arnoldi process, the Ritz pairs converge quickly only in an optimal search direction. In
practice, many iterations are needed, with more storage and more computation per iteration. To combat
this, the algorithm can be restarted in a new initial search direction based on the computed Ritz vectors.

A Krylov-Schur decomposition is a special type of Krylov decomposition (AV𝑚 = V𝑚B𝑚 + 𝑣𝑚+1𝑏𝑚+1
but where the matrix B𝑚 is in "real Schur form," with 1x1 or 2x2 diagonal blocks [Hernandez et al., 2007].

The algorithm operates by first forming an orthogonal basis for the Krylov subspace, using the
Arnoldi process. Then, it performs a Schur decomposition on the resulting Hessenberg matrix. The
resulting Krylov-Schur decomposition is reordered and truncated to order 𝑝, where 𝑝 < 𝑚 is the number
of resultant Ritz pairs (approximations of eigenvalue/eigenvector pairs). The truncation is performed
based on how the Ritz values meet a specified convergence criterion. Then the subspace is extended,
and the algorithm restarts from the second step. [Hernandez et al., 2007]

Our analysis will use this algorithm to find the extreme eigenpairs of our system in a computationally
efficient manner.

5
The JOREK Code

JOREK is a code for the simulation of magnetic confinement fusion reactors. Its goal is to model the
dynamics of major plasma disruptions and instabilities, so as to control or minimize them for existing
reactors or for new reactors such as ITER[Holod et al., 2021]. It uses the Finite Element Method over
Bézier surfaces to model plasma physics using a number of different models, such as full, reduced,
or extended MHD equations. To simulate toroidal confinement devices, it uses a toroidal Fourier
decomposition[Holod et al., 2021].

JOREK is written primarily in Fortran 90/95, with some libraries in C and C++ [Holod et al., 2021].
It is massively paralellelized via MPI and OpenMP, and is designed to be run on a high-performance
supercomputing cluster such as Marconi-Fusion [Team, 2023]. The code is developed by an international
community including the Max Planck Institute for Plasma Physics (IPP) in Garching, Germany. It
consists of more than 250 thousand lines of code, contributed to by dozens of developers. More than 40
scientists world-wide use the code for their research [Hoelzl et al., 2021]. The code is hosted in a private
git repository, and access is granted through the ITER organization. Source-code contributions from
within the community are encouraged.

5.1. Motivation
JOREK is designed to model large-scale instabilities in tokamak plasmas. These instabilities can disrupt
the plasma, thereby either limiting its power, or damaging the walls of the reactor and leading to
downtime and expensive repairs [Hoelzl, 2022].

Better modeling of these phenomena allow more robust reactor design that can run at higher power,
has higher uptime, and is less susceptible to damage. Active-control measures can also be taken to
control disruptions and preserve the plasma or the life of the reactor[Hoelzl, 2022]. JOREK is designed
to model the physics of these disruptions and to examine control strategies.[Team, 2023]

5.2. Weak Form of Equations
JOREK takes the MHD equations discussed above (in reduced, full, or extended forms), and discretizes
them for FEM with Bézier surfaces as the basis. Our test function comes out of our Bézier basis described
in section 3.2:

𝒯 ∗ = 𝐵𝑖 , 𝑗(𝑠, 𝑡)𝑆𝑖 , 𝑗𝑒
𝑖𝑛𝜙 (5.1)

𝐵𝑖 , 𝑗 is the polynomial Bézier basis, 𝑆𝑖 , 𝑗 a scaling factor, 𝜓𝑖 , 𝑗 ,𝑛 the coefficients composing the variable 𝜓,
and 𝑒 𝑖𝑛𝜙 belonging to the Fourier representation, where 𝑛 refers to the toroidal harmonic[Pamela, 2010].
For the toroidal basis used in JOREK, the 𝑠 and 𝑡 variables are taken to be orthogonal to the 𝜙 basis.

Multiplying our reduced MHD equations (2.13) by 𝒯 ∗ and integrating over the volume gives us our
weak formulation, that we can then discretize.

Using V as our physical variables and A is the magnetic vector potential, ∇ × A = B, a weak form of
the MHD problem is be reformulated as: find (A,V, 𝜌, 𝑝) in 𝒱A ×𝒱V ×𝒱𝜌 ×𝒱𝑝 such that, for any test
functions (A★,V★, 𝜌★, 𝑝★) in 𝒯 ∗

A × 𝒯 ∗
V × 𝒯 ∗

𝜌 × 𝒯 ∗
𝑝 , we have [Hoelzl et al., 2021]:

18

5.3. Model Geometry 19

∫
𝜕A
𝜕𝑡

· A★𝑑𝑉 = −
∫

E · A★𝑑𝑉,∫
𝜌
𝜕V
𝜕𝑡

· V★𝑑𝑉 = −
∫

(𝜌V · ∇V + ∇𝑝 − J)𝑑𝑉 ×B − ∇ · 𝜏 − SV
)
· V★,∫

𝜕𝜌

𝜕𝑡
𝜌★ = −

∫ (
∇ · (𝜌V) − ∇ · (𝐷∇𝜌) − 𝑆𝜌

)
𝜌★∫

𝜕𝑝

𝜕𝑡
𝑝★ = −

∫
(V · ∇𝑝 + 𝛾𝑝∇ · V − ∇ · (�∇𝑇)

−(𝛾 − 1)𝜏 : ∇V − 𝑆𝑝

)
𝑝★

(5.2)

We transform these into scalar equations by projecting the vectors onto our basis.

5.2.1. Boundary Conditions
Both Dirichlet and Neumann boundary conditions can be used for all relevant regions. Where the flux
is parallel to the boundary, Dirichlet conditions are assumed. Where the flux intersects the boundary,
sheath boundary conditions are used. Certain variables, such as the poloidal flux, current density,
electric potential, and vorticity are kept fixed.

The boundary temperatures are constrained by the boundary condition for heat flux. This form
assumes that electron and ion temperatures are the same, but these can be separated. 𝛾sh is the sheath
transmission factor.

q · n ≡
(
𝜌

2 V · V + 𝛾

𝛾 − 1𝜌𝑇
)

V · n −
�

𝛾 − 1∇𝑇 · n

= 𝛾sh𝜌𝑇eV · n,
(5.3)

Additional boundary conditions given are given, and are expressed in terms of �∇𝑇 · n =

− (𝑐b − 1) 𝜌𝑇V · n:
𝑐b,e = (𝛾 − 1) (𝛾sh,e − 1)
𝑐b,i = (𝛾 − 1) (𝛾sh,i − 𝛾 − 1)
𝑐b,total = (𝛾 − 1) (𝛾sh/2 − 𝛾/2 − 1)

(5.4)

5.3. Model Geometry
The linear system is organized as a hierarchical block tri-diagonal structure. The matrix is organized
blockwise, first in the radial direction, then blockwise in the poloidal direction, and then the individual
variables.

When organized for the preconditioner (which is based on toroidal harmonics), the matrix is
Fourier-decomposed in the toroidal direction, and then the hierarchy is reorganized so that the toroidal
harmonics come first. This puts the matrix into a block diagonal structure starting with the toroidal
modes (cosin and sin modes). The toroidal mode blocks are different sizes–the n=0 mode block is half
the size of the subsequent blocks, since there is no sin component [Hoelzl et al., 2021].

We will be dealing with tokamak models that either do or do not have an x-point geometry. Without
an x-point, a tokamak has a circular or elliptical poloidal cross-section, and all magnetic field lines
connect. With an x-point, there is a region where field lines connect, a region where field lines are
"open," and a point where field lines cross eachother that separates these regions and is known as the
separatrix. This is especially significant for our study because it dictates rotational symmetry in the
poloidal direction. Without the x-point, our system is cyclical in the toroidal direction, and cyclical in
the poloidal direction. With the x-point, the poloidal cyclicity is broken. For our matrix, that means that
the systems without an x-point are cyclical in the poloidal direction, but with an x-point this cyclicity is
broken

5.4. The JOREK Solver and Preconditioner
For simpler problems that are small or axisymmetric, the system is solved with a direct solver.
Usually the PaStiX or STRUMPACK software packages are used, but other solvers are available as well

5.5. Recent Preconditioner Improvements 20

[Hoelzl et al., 2021].
For more complex systems, JOREK uses a restarted GMRES solver. It must be preconditioned, due

to the stiffness and poor-conditioning of the system[Hoelzl et al., 2021]. The preconditioner used is
physics and geometry-based, based on the toroidal harmonics that take place in a tokamak structure.

The matrix problem is written in blocks corresponding to toroidal modes. The preconditioner
assumes that toroidal modes are decoupled, so diagonal blocks corresponding to self-interaction
are kept while off-diagonal blocks (which correspond to coupling between modes) are dropped
[Hoelzl et al., 2021].

Figure 5.1: From [Holod et al., 2021]: "The matrix structure is shown for a simple example case with the toroidal modes
𝑛 = (0, 1, 2, 3). The color blocks outline the parts of the original matrix A used to form the preconditioner solution 𝑧 = 𝑀−1 𝑤.

Each block represent individual toroidal Fourier mode."

For linear problems, this is a very effective assumption and the preconditioner behaves well. For
highly non-linear problems, the mode-decoupling assumption underlying the preconditioner no longer
holds and performance degrades unless a different preconditioner is used.

Current performance problems with the solver are associated with high memory consumption of
the factorized preconditioner, poor parallelization of the direct solver used in preconditioning, and poor
preconditioner behavior in non-linear cases with strong mode coupling [Hoelzl et al., 2021].

5.5. Recent Preconditioner Improvements
For problems with stronger coupling between modes, a newer preconditioner system is used that
breaks the matrix into toroidal "mode groups" that overlap. The preconditioner solves these blocks
separately, thus retaining interaction only within these groups. This relaxed assumption requires larger
block-matrices to be solved, but the preconditioner matches the true physics of the system more closely
and may improve GMRES convergence enough to improve performance overall.

Figure 5.2: From [Holod et al., 2021]: "Schematic illustration for the Overlapping mode group approach. The color blocks outline
the parts of the original matrix A used to form the preconditioner matrices which combine modes (0), (0,1), (1,2), (2,3), and (3) into

diagonal blocks."

5.6. Relevant Problem Size 21

The implementation allows for arbitrary mode coupling, such as, for example, modes separated by a
certain period that are believed to have strong coupling. This approach allows for modeling of reactor
designs such as stellarators, which do not linearly decouple like tokamaks.

5.6. Relevant Problem Size
According to [Hoelzl et al., 2021], a “typical large problem” leads to a grid size of about 40 million, but
the matrix is relatively sparse. About one out of every 3000 entries is nonzero. This “typical large
problem” has “about 12 thousand non-zero entries in each matrix row and about 500 billion non-zero
entries in the whole matrix, which requires about 4 TB of main memory for storing the double precision
floating point numbers.” [Hoelzl et al., 2021]. This matrix is generally not symmetric, but has symmetric
sparsity. At this size, it is too large for a single compute node, so domain decomposition is used to divide
the matrix into manageable sizes. The decomposed matrix is constructed in a parallelized manner on
multiple compute nodes.

6
Research Plan

For some settings, the JOREK team sees poor convergence when trying to solve the linear system.
The goal of this project is to analyze JOREK’s linear system and solver so as to drive better overall
performance. In particular, the team behind JOREK has asked us to:

1. Understand what limits the solver’s convergence. What causes the bad convergence they occasion-
ally see. Is this driven by e.g. a setting in the physics model or spatial feature? Is there a way to
predict how a given run will perform without running the whole solver?

2. How does this behavior link to their numerical solvers? For what conditions does GMRES perform
better or worse than other methods such as BICGSTAB?

3. Can we improve the preconditioner? Is there anything we can do to improve on memory usage,
computation cost, or convergence? Is there anything about the matrix construction or physics
model that could inform the construction of the preconditioner?

6.1. Research Plan
The JOREK team sends us data in the form of linear systems. These are systems and associated
preconditioners, in a sparse format, and encoded in the HDF5 file format.

By studying several systems with a range of convergence behavior, we hope to understand and
isolate features that negatively impact solver convergence. We will analyze these and determine if there
is anything particular about them that leads to poor performance. Is the problem ill-conditioned? Does
it have a particular spectrum that leads to poor performance for certain approaches?

Then we will attempt to see if there are any "easy wins" in terms of solving or preconditioning these
problems. Is there a preconditioner we could use to solve these with any generality? The literature
suggests other potential preconditioners for MHD, such as [Ma et al., 2016, Laakmann et al., 2022]. Are
there any minor features to the matrix that can be adjusted? Are there other solvers we could use,
such as BICGSTAB or variants of GMRES that would be preferred in some cases? For example, some
GMRES algorithms that incorporate spectral information on restarts can overcome stalling or improve
convergence in certain cases [Baker et al., 2004, Morgan, 1995].

6.2. Model Problems
The JOREK team has provided us with several example problems to analyze that have different physical
and geometric properties, and different convergence behavior when trying to solve them.

These are further illustrated in chapter 7 and chapter 8

6.3. Solver Code
I was given access to a standalone solver by the JOREK team that was written in Fortran90 and C++ as a
reference, but the code I used to analyze the systems was written by me in Julia [Bezanson et al., 2012].
Julia was chosen due to its performance in numerical computing, its readability and relative ease-of-use,

22

6.4. Hardware 23

and a strong community that has built lots of useful extensions and libraries for sparse matrices and
iterative solvers. I copied the algorithm used in the standalone solver as closely as possible,

For the GMRES and BiCGSTAB implementations, I used the implementations included in the
Krylov.jl library [JuliaSmoothOptimizers, 2023].

For spectral decompositions, I used the eigsolve function from the KrylovKit.jl library [Jutho, 2023].
This uses an Arnoldi iteration method called Krylov-Schur to find extremal eigenvalues.

6.4. Hardware
For our analysis, we used the Marconi supercomputing cluster. The Marconi supercomputer has 3,188
nodes, with 2 24-core Intel Xeon 8160 (SkyLake) processors and 196 GB of ram per node [SCAI, 2023].

We only executed on one node at a time for our analysis, and made use of only 3-5 processors per
node, depending on the system’s construction.

6.5. Preconditioner Operator
It should be noted that the JOREK solver does not use an explicit preconditioner matrix, but instead
preconditions by solving the LU decompositions of the preconditioner blocks against a solution vector.
The literature on GMRES analysis only deals with explicit "M" matrices applied as a preconditioner,
however we have no explicit preconditioner matrix. As a proof of concept, we created an explicit pre-
conditioner for the smaller problems by inverting our preconditioner blocks, but this is computationally
infeasible for the larger problems.

Thankfully, the solver and numerical analysis packages we used in Julia can also accept inputs in
the form of generic untyped objects. By making an "Operator" object and attaching multiplication
operations to it that behave identical to our preconditioning process, we have an object that behaves
identical to an explicit preconditioner but does not require additional computational resources. For our
analysis, we constructed an Operator out of our preconditioning algorithm and used that as though it
was an explicit 𝑀−1 matrix. We verified that this object had identical solver behavior compared to our
explicit preconditioner matrix.

6.6. Spectral Analysis
Since GMRES convergence behavior is driven not by the condition number, but by characteristics of the
spectrum, a spectral analysis of our system is necessary (Refer to subsection 4.9.1).

Unfortunately, the system is too complicated to study analytically. As opposed to other often
studied systems such as e.g. the Helmholtz Equation, we are not yet able to determine the eigenvalues
analytically, and must study them numerically. For the smaller systems, it is computationally feasible
to take the full spectrum. However, the larger cases are too large to calculate the complete spectrum.
To save computational resources, we use a strategy that enables us to limit our calculations on the
important regions of the spectrum.

In order to calculate the spectrum, we use the "eigsolve" function of the KrylovKit.jl software
package [Jutho, 2023]. This uses the Krylov-Schur algorithm, which uses the Arnoldi method to build a
Krylov subspace (see subsection 4.11.1. Using the Krylov-Schur method, we are able to take extremal
eigenvalues without analyzing the entire system, thus saving computational resources. Using this
method, we take in turns the "largest real", "smallest (most negative) real", "largest imaginary", and
"largest magnitude" eigenvalues for each system. We could also get the "smallest (magnitude) imaginary"
but this always yields a value with no imaginary component.

Since GMRES convergence is driven by the "radius" of the disk of eigenvalues and minimum distance
to the origin, we can infer a complete picture of GMRES convergence performance from just the extremal
eigenvalues without taking the complete spectrum. Convergence collapses in GMRES if we have a
disk of eigenvalues that includes the origin. Because our preconditioned system consistently yields
a spectrum centered at 1 with no imaginary component, we can develop a relatively effective picture
of GMRES convergence by simply taking the most negative real-valued eigenvalue, and seeing if it is
negative or comes close to a negative value.

• Take the LU decomposition of each of our preconditioner matrices. In parallel, each processor
computes and stores the LU decomposition for a separate preconditioner block.

6.6. Spectral Analysis 24

• Construct a linear Operator (as described above in section 6.5) out of these preconditioners such
that when given a vector 𝑥, return a solution vector by solving against these preconditioner blocks,
and then bringing these "local" solutions into the "global" ordering. This is the block-preconditioner
as described by [Holod et al., 2021], and it behaves the same as an explicit M−1 preconditioner
matrix.

• Take that operator and multiply it by our original A matrix to have a memory-efficient M−1A
operator that does not require the direct computation of expensive inverses.

• Plugging our M−1A operator into common Julia eigensolvers that use Krylov-Schur gives us our
spectrum or the extremal eigenvalues of our spectrum.

7
Simple Tearing Mode Case in Limiter

Geometry

The first problem analyzed has a simple toroidal geometry with a circular cross-section without an
X-point (“limiter geometry”) with the major radius of the torus being 10 times higher than the minor
radius of the circular cross section (“large aspect ratio”). As physics model, the reduced visco-resistive
MHD model of JOREK without parallel velocity is used. The anisotropy of the heat conduction is low.
The pressure of the plasma is so low that it does not contribute to the dynamics (“low beta”). This
plasma develops a slowly growing so-called tearing mode instability dominated by the toroidal mode
number n=1 that is destabilized by the radial profile of the plasma current and leads to the reconnection
of magnetic field lines and the formation of magnetic islands (see Figure 7.1). The toroidal Fourier
spectrum used to model the case includes only three toroidal modes with the mode numbers n=0, 1 and
2.

Figure 7.1: A Poincaré map of the poloidal plane of a circular tokamak in a similar simulation. Shown in blue is the magnetic
island formed by the 2/1 tearing mode at the point where they have come to saturation, and are at their largest width. The

separatrix is plotted in pink. The nearly-concentric surfaces of constant magnetic flux outside the magnetic island are plotted in
purple. [Pratt et al., 2016]

For this model, we were given an h5 file describing a sparse square matrix of n=20,160, with
21,081,600 nonzero elements, and 3 preconditioner blocks corresponding to the three different toroidal
modes n=0,1,2. As discussed in (section 5.4), the first preconditioner block corresponds to the first

25

7.1. Solver Behavior 26

toroidal mode, while subsequent blocks are of duplicate dimension, since they contain cosine and sine
components. The first toroidal mode block is a sparse square matrix of n=4,032 with 843,264 nonzero
elements. The following two blocks both have n=8,064 with 3,373,056 nonzero elements.

This reduced-size and simplified model is a "toy problem," and was primarily used to test and
benchmark my analysis tools. It is not one of the problems that challenged the JOREK solver, but it can
still be useful to analyze as a baseline.

7.1. Solver Behavior
Running GMRES without preconditioning, we get very poor convergence, as can be seen in Figure 7.2.
The residual norm drops in the first two iterations, but then remains relatively flat.

With the block preconditioner described in (section 5.4), we have convergence to a residual of 10−9 in
10 iterations (Figure 7.2). The residual norm drops exponentially.

In general for this and the following problems, we are solving up to a residual with a relative
norm of 10−12 and an absolute norm of 10−36, where these are defined by the stopping criteria
| |𝑟𝑘 | | ≤ 10−36 +10−12 | |𝑟0 | |. These were chosen for this analysis because they are the defaults in the JOREK
solver code that we are analyzing.

Figure 7.2: Residual per Iteration for several solver configurations, showing rapid convergence with preconditioning but poor
convergence without.

Similar behavior is seen with BiCGSTAB. Without preconditioning, the residual norm actually
increases slightly (Figure 7.2. With preconditioning, the residual norm drops exponentially to 10−9 after
only 7 iterations (Figure 7.2).

7.2. Spectral Analysis
The system is not symmetric (using a fairly large tolerance to test corresponding floats for equality), but
is symmetric in sparsity pattern. The system is also non-normal. The preconditioned small system is
also non-symmetric.

Calculating the eigenvalues for the un-preconditioned problem, we see a wide range in the complex
plane, stretching from approximately −105 to 1012 on the real number line, with values as small as

7.2. Spectral Analysis 27

±5 · 10−7, and as large as ±140𝑖 in the imaginary.
This is an indefinite, and extremely poorly conditioned system. It is exactly the kind of system that

would have poor performance in GMRES. It is real-valued, but not symmetric, so it does not lend itself
to other more performant methods such as CG.

After preconditioning however, we obtain a spectrum centered at 1 with values ranging ±0.2 in the
real and ±0.35𝑖 in the imaginary. As a system with tightly clustered eigenvalues, this spectrum explains
the effectiveness of the preconditioning system used by JOREK. An effective preconditioner (one that
roughly emulates A−1) leads to a system centered at 1 on the complex plane, with all values tightly
clustered around 1 and all values greater than 0. This explains GMRES performance since GMRES
convergence is driven by the radius and distance from the origin of the spectrum (Equation 4.27).

Figure 7.3: Spectrum for the non-preconditioned matrix A Figure 7.4: Spectrum for the preconditioned matrix M−1A

8
Ballooning Mode Case in X-Point

Geometry

The second cases we analyzed is considerably more realistic. It contains a plasma with an aspect
ratio (major radius divided by the minor radius) that is typical for tokamak experiments, has an
X-point, a plasma pressure that influences the dynamics, and a more realistic heat diffusion anisotropy.
Furthermore, the visco-resistive reduced MHD model of JOREK including flows along magnetic field
lines is used. Driven by the radial gradient of the pressure, the plasma develops a so-called ballooning
mode instability with higher toroidal mode numbers than the previous case, a type of interchange
instability that can be seen in Figure 8.1.

Figure 8.1: A poloidal cross-section of a similar model, showing density and vorticity streamlines at (a) 𝑡 = 2650𝜏𝐴 , (b) 𝑡 = 2700𝜏𝐴
and (c) 𝑡 = 2890𝜏𝐴. The development of n=6 ballooning modes can be seen on the edges. [Huysmans and Czarny, 2007]

Three different variants of this case were given to us by the JOREK team: one artificially small case
(44,667 rows/columns) with two toroidal modes, a similar case with higher FEM resolution (350,679
rows/columns), and another even larger case (584,465 rows/columns) that has three toroidal modes.

28

8.1. Solver Behavior 29

See Table 8.1 for more details. Significantly larger cases also exist, but for this analysis, we’ve chosen to
focus on these.

Case # of Toroidal Modes n Nonzero Elements Toroidal Mode Size
Ballooning-Mode "Small" 3 44,667 32,219,901 14,889

Ballooning-Mode "Medium" 3 350,679 260,359,785 116,893
Ballooning-Mode "Large" 5 584,465 723,221,625 116,893

Table 8.1: System Sizes for the Ballooning-mode Cases. Toroidal Mode Size refers to the matrix size of our first toroidal mode
block, and is double the size for subsequent blocks.

8.1. Solver Behavior
Similarly to the tearing mode case, convergence without preconditioning was poor. Using the simple
block preconditioner however, the solution converges well. The "small" case reached a residual of 10−9

in 16 iterations. As in the previous case, we are solving up to a relative norm of out residual of 10−12,
and an absolute norm of 10−36.

Figure 8.2: Residual per Iteration for several solver configurations in the "small" problem, showing rapid convergence with
preconditioning but poor convergence without.

It is important to note in Figure 8.4, that the convergence was much worse for BiCGSTAB than for
GMRES, also taking significantly longer per iteration (Figure 8.15).

8.2. Spectral Analysis
The systems are not symmetric (using a fairly large tolerance to test corresponding floats for equality),
but are symmetric in sparsity pattern. They are also non-normal. The preconditioned small system is
also non-symmetric. We did not do the analysis for the larger systems, but we see no reason this would
not also be true.

For the smaller ballooning mode system, the spectrum shows similar patterns as for the tearing

8.2. Spectral Analysis 30

Figure 8.3: Residual per Iteration for several solver configurations in the "medium" problem, showing rapid convergence with
preconditioning but poor convergence without.

mode case. The un-preconditioned state is highly indefinite, with eigenvalues tracking in the reals from
−3.9 ∗ 1010 to 1 ∗ 1012, and with eigenvalues as low as 1 ∗ 10−7

Applying the preconditioner matrix, we now see a spectrum centered around 1± (0.2+ 0.35𝑖). These
two spectra explain (as they did for the tearing mode case) the convergence behavior for GMRES in the
preconditioned and un-preconditioned forms.

We were only able to fully analyze the smaller of the ballooning-mode systems. The larger systems,
are too large to take the full spectrum, but an incomplete spectrum can still tell us about convergence
behavior.

Using the Krylov-Schur method, we are able to take extremal eigenvalues without analyzing the
entire system, saving lots of computation. We used the KrylovKit.jl Krylov-Schur "eigsolve" method to
take in turns the "largest real", "smallest real", "largest imaginary", "smallest imaginary", and "largest
magnitude" eigenvalues for each system.

Since GMRES convergence is driven by the "radius" of the disk of eigenvalues and minimum distance
to the origin (Equation 4.27), we can infer a complete picture of GMRES convergence performance from
just the extremal eigenvalues.

As can be seen in Figure 8.8 for the medium size case, the spectrum is again centered around 1 in a
disk that does not include the origin.

However with a range of values from 0.37 to 1.63 in the reals and ±0.81𝑖 in the imaginary, the spectral
radius is larger than it is for the smaller case (Figure 8.6), which has a range of 0.86 to 1.14 in the reals
and ±0.25𝑖.

This larger spectral radius and closer distance to the origin explains the convergence performance
seen in the medium case (38 iterations) compared to the small case (16 iterations).

8.2. Spectral Analysis 31

Figure 8.4: Residual per Iteration for several solver configurations in the "large" problem, showing rapid convergence with
preconditioning but poor convergence without.

Figure 8.5: Complex spectrum for A in the small
ballooning-mode case

Figure 8.6: Preconditioned spectrum 𝑀−1𝐴 for the small
ballooning-mode case

Figure 8.9: Extremal eigenvalues for the preconditioned
spectrum M−1A for the large ballooning-mode case

8.3. Parameter Studies 32

Figure 8.7: Extremal eigenvalues for A in the medium
ballooning-mode case

Figure 8.8: Extremal eigenvalues for the preconditioned
spectrum M−1A for the medium ballooning-mode case

We obtain a very similar plot for the larger case. For a full table of the range of eigenvalues in the
complex domain, see Table 8.3

Ballooning-Mode Case Smallest Real Largest Real Largest Imaginary
"Small" −3.90 ∗ 1010 1.00 ∗ 1012 1.00 ∗ 1012 ± 6.75 ∗ 104𝑖

"Medium" −1.30 ∗ 1010 1.00 ∗ 1012 1.00 ∗ 1012 ± 2.8 ∗ 104𝑖

"Large" −1.30 ∗ 1010 1.00 ∗ 1012 1.00 ∗ 1012 ± 2.8 ∗ 104𝑖

Table 8.2: Spectral properties for the ballooning-mode cases without preconditioning.

Ballooning-Mode Case Iterations1 Smallest Real Largest Real Largest Imaginary
"Small" 16 0.86 1.14 + 0.0𝑖 1.06 + 0.25𝑖

"Medium" 38 0.37 ± 0.025𝑖 1.63 ± 0.025𝑖 1.18 + 0.81𝑖
"Large" 59 0.39 ± 0.61𝑖 1.65 ± 0.56𝑖 1.13 + 1.40𝑖

Table 8.3: Preconditioned solution behavior and spectral properties for the ballooning-mode cases.

8.3. Parameter Studies
The JOREK team has observed that several model parameters and settings can severely impact
convergence, so they asked us to examine models for a few different systems. These new systems are
otherwise identical to the "large" ballooning-mode system, which we can use here as a reference. All of
the following experiments are performend on variations of our "large" model.

8.3.1. Stale Preconditioner
As the system evolves, the JOREK uses the same preconditioner since the LU decompositions required to
update the preconditioner are computationally expensive. Over successive iterations, the effectiveness
of the preconditioner drifts and GMRES convergence collapses.

We ran an experiment on a preconditioner that is 5 time-steps out-of-date. It had much worse
convergence behavior (see Figure 8.11) and its spectrum was considerably worse (see Figure 8.10 and
Table 8.4). The stale preconditioner is no longer a good approximation of the system. In the original
preconditioned system, M−1 is the inverse of A with some assumptions about mode coupling. After
several time-steps, one has evolved, and M no longer really approximates A, and M−1A no longer
approximates the identity. This leads to a divergence in the spectrum and a consequent impact on the
convergence for GMRES. In the case of our 5 time-steps stale preconditioner, the spectrum has grown

1The number of iterations was slightly different between JOREK’s code and the Julia code, and the JOREK solver was not
written to handle the smallest case. Here I am listing the number of iterations in the Julia code.

8.3. Parameter Studies 33

from a width of 1.26 in the reals to a width of 4.57, resulting in a much larger spectral "radius" as used
in our GMRES convergence relation Equation 4.27.

Figure 8.10: Extremal eigenvalues for the preconditioned
spectrum M−1A for the large ballooning-mode case with a stale

preconditioner.

Figure 8.11: Residual per Iteration for GMRES for the "stale"
Preconditioned Problem.

8.3.2. Parallel Thermal Conductivity
As the JOREK team believes the parallel thermal conductivity parameter (known as �𝑝𝑎𝑟) could be
a driver for poor convergence, we also ran a series of experiments with different values for �𝑝𝑎𝑟 , the
parallel thermal conductivity. Due to the way charged particles move in magnetic fields, the thermal
conductivity in a tokamak plasma is extremely anisotropic. Parallel thermal conductivity along magnetic
field lines is much larger than perpendicular thermal conductivity, that moves across magnetic field
lines. Since our ballooning instability is driven by the relative anisotropy, it makes sense that the
anisotropy of thermal conductivity could impact model performance.

The JOREK team supplied us with two additional runs with �𝑝𝑎𝑟 set respectively at 100 and 200. The
systems are otherwise identical to the "large" system, which has a �𝑝𝑎𝑟 value of 10, so we will use that
system as our reference.

As can be seen in Figure 8.12, Figure 8.13, Figure 8.14 and Table 8.4, the convergence degrades
considerably compared to our reference system. For both of these systems, the smallest eigenvalue
is considerably closer to 0, which is where we would expect to see a complete collapse of GMRES
convergence. This explains why we see such a large change in our required GMRES iterations, from 59
in the reference to 81 for �𝑝𝑎𝑟 = 100.

The difference in convergence and spectrum between the �𝑝𝑎𝑟 100 and 200 systems though is fairly
small. As expected, the �𝑝𝑎𝑟 = 200 system has slightly larger spectral radius, and slightly worse
convergence behavior. It has the same spectral radius in the imaginary, but it grows in the reals from
0.89 to 0.94, and comes closer to the origin at 0.17 instead of 0.20. This is a relatively small difference,
which reflects as a relatively small difference in the convergence behavior (87 vs 81 iterations). With
such a small jump for a doubling of the parameter, this suggests that larger and larger values of �𝑝𝑎𝑟

only make a significant difference up to a certain value.

Ballooning-Mode Case GMRES Iterations Smallest Real Largest Real Largest Imaginary
Reference 59 0.39 ± 0.61𝑖 1.65 ± 0.56𝑖 1.13 + 1.40𝑖

Stale Preconditioner 109 0.412 ± 5.9 ∗ 10−2𝑖 4.98 ± 4.18 ∗ 10−9𝑖 1.00 ± 2.18𝑖
�𝑝𝑎𝑟 = 100 81 0.20 ± 1.57 ∗ 10−2𝑖 1.98 ± 1.81 ∗ 10−3𝑖 1.18 ± 1.59𝑖
�𝑝𝑎𝑟 = 200 87 0.165 ± 7.39 ∗ 10−3𝑖 2.05 ± 2.76 ∗ 10−3𝑖 1.18 ± 1.59𝑖

Table 8.4: Preconditioned solution behavior and spectral properties for additional the ballooning-mode cases.

8.3.3. GMRES Restart
On every iteration, GMRES uses a larger Krylov subspace and therefore uses more and more memory.
On large systems, one may periodically restart GMRES in order to control memory consumption.

8.3. Parameter Studies 34

Figure 8.12: Residual per Iteration for GMRES for the Preconditioned Problem with different levels of kpar

Figure 8.13: Extremal eigenvalues for the preconditioned
spectrum 𝑀−1𝐴 for the large ballooning-mode case with

�𝑝𝑎𝑟 = 100

Figure 8.14: Extremal eigenvalues for the preconditioned
spectrum M−1A for the large ballooning-mode case with

�𝑝𝑎𝑟 = 200

The basic idea is to terminate GMRES after a certain number of iterations, say m, and then restart it,
discarding the previously computed vectors to free up memory. While this strategy can often provide a
good solution with fewer storage requirements, there is a trade-off. Restarts can harm the convergence
behavior of GMRES, because the information collected from the Krylov subspace in previous iterations
is lost at every restart. Therefore, choosing an appropriate restart frequency is vital. A small "m" can
reduce memory usage but too small "m" can slow down the convergence. If "m" is too large, it may
cause out-of-memory errors. The optimal choice of "m" usually depends on the specific problem and
system characteristics.

We performed a small set of analysis with different restart frequencies against our "large" system. This
analysis was somewhat artificial, as this system does not require restarts on the Marconi infrastructure.
However, larger problems frequently encountered by the JOREK team require restarts, and a restart
frequency of m=20 is currently in use. A difference in convergence was measured as expected, but with

8.3. Parameter Studies 35

Figure 8.15: Timing data for various preconditioners and
solvers.

Figure 8.16: Residual per time data for various
preconditioners and solvers.

a restart frequency of 10, only 12 extra iterations were needed. At the frequency used by JOREK of
m=20, 67 iterations were used instead of 59 for the reference system.

Figure 8.17: Residuals for different values of m.

8.3.4. 32-Bit Preconditioners
As an experiment, we also measured performance using preconditioners made up of both 64-bit and
32-bit floats. For the cases measured, there was no difference in terms of iteration count, but a small
speedup was observed, taking 837s with the 32-bit preconditioner and 864s with the regular 64-bit
preconditioner (see Figure 8.15).

16-bit floats were not possible for the preconditioner, as the values in the preconditioner blocks
(approximately ±1013) span a larger range than 16-bit floats can handle (±65, 504).

8.4. Conclusion 36

8.4. Conclusion
As our systems get less ideal, the "tails" of our spectrum grow along the real number line, reaching
towards the y-axis on the left and higher values on the right. As they grow, they not only increase the
spectral radius, but as the "tail" grows on the left towards 0, it also reduces the spectral disk’s distance
from the origin. These two factors drive GMRES convergence, as dictated by Equation 4.27. This relation
to convergence can be seen in the growing number of GMRES iterations necessary to reach our required
tolerance.

An interesting question of course appears, which is "what causes these tails to grow?" Our precon-
ditioner is a simplified model wherein we assume that no coupling exists between different toroidal
modes, and each mode can be solved independently. If this assumption were completely true, our
preconditioner would be ideal, and all eigenvalues would exist at (1, 0) on the complex plane. Therefore,
eigenvalues that drift away from this point imply the breakdown of this assumption. In effect, the
spectral radius acts as a sort of quantifiable measure of the toroidal mode coupling, where a larger
spread corresponds with more coupling. More complex models with a larger preconditioned spectral
radius must have greater mode-coupling, however it still is not clear what exactly is causing this
mode-coupling.

It would be very useful to determine what properties of the system drive the coupling that these
eigenvalues correspond to, such as physical properties or geometry of the system. With such a
complicated physical model, an analytical study of this is difficult and outside the scope of our analysis.
Due to our numerical experiments with �𝑝𝑎𝑟 , we can see that this value has a coupling effect, as a larger
�𝑝𝑎𝑟 results in more coupling.

The good news is that knowing about these problematic eigenvalues opens us up to deflation
techniques that can remove the problematic parts of the spectrum, improving numerical performance.
These deflation methods are a set of techniques that allow the removal of unwanted eigenvalues from a
sub-problem that can then be solved with Krylov methods more effectively than solving the original
system [Burrage et al., 1998].

9
Future Work

In this work we present the first spectral analysis from a numerical analysis point of view to thoroughly
understand the convergence behavior of solvers used in fusion simulations. Discretized versions of
the reduced MHD equations often lead to sparse, complex, indefinite and nonsymmetric systems.
Consequently, the choice of numerical solvers is nontrivial as state-of-the-art solvers do not apply to
these type of matrices. As a result, convergence can be slow and difficult to improve. By studying the
underlying mathematical properties of the matrices, such as eigenvalues, we have diagnostic tools to
interpret the convergence and find solutions to accelerate the simulation speed. The spectrum observed
in these examples reiterate a classical point of view, often encountered in numerical analysis: as the
model problems become more involved, the underlying eigenvalues start growing tails, leading to
hampered convergence. Now that we have established this effect, we can use a set of intricate techniques
to enhance the preconditioner, such as subspace projection methods, which can be addressed in future
work.

Using deflation techniques, it may be possible to alter portions of the spectrum without sacrificing
solution accuracy. The idea is to remove the smallest or most convergence-prohibitive eigenvalues from
the system, in exchange for real positive eigenvalues that don’t slow down convergence [Erhel et al., 1996].
However, further analysis for deflation for this problem is is outside the scope of this project, but it is an
obvious follow-up area of research.

37

10
Failed Attempts

10.1. Python Implementation
Before the Julia implementation, I attempted to solve this problem with Python, since it was the language
I was most familiar with, and was aware that libraries such as Numpy and Scipy are popular for linear
algebra applications. Some problems I faced were that the Python implementation was much much
slower, even just basic matrix manipulation using Numpy and Scipy. More importantly though, the
direct solvers used by Scipy and Numpy for the LU decompositions gave me slightly different answers
than I was getting from the JOREK Fortran code, for the same matrix. This is possibly due to a bug in
my code, though none was found. Another possibility could be that due to the extreme ill-conditioning
of these matrices, very minor variations in direct solver libraries caused large discrepancies between
solutions. Normally this would be very unlikely, but the extreme ill-conditioning of these matrices
means that minor differences in solvers could have large effects.

After verifying that the Julia LU decompositions were similar to the Fortran solutions, much more
performant, and just as easy to write, I switched my development to Julia.

10.2. Explicit Preconditioner
As discussed in section 6.5, our first attempt was to create explicit M−1 matrices, but this was only
feasible for very small model problems. However, since we without another way to calculate spectra,
we made a new plan using our block matrices and the Gershgorin Circle Theorem to bound our M−1]A
spectrum based on the spectra of our preconditioner blocks, which are individually small enough to
run computations on, and our A, which was manageable because it did not have to be inverted and
could remain sparse.

The process would have been as follows:

1. Take the extremes of the spectrum of our A matrix.

2. Using either Gershgorin’s Circle Theorem or Krylov-Schur, estimate the range of the eigenvalues
for our preconditioner block matrices.

3. Since the eigenvalues of an inverted matrix are equal to the inverses of the eigenvalues of the
original matrix, we use the eigenvalues of our Mi matrices to create a bounds on our M matrices.

4. Multiplying eigenvalues, we now have bounds on our the spectrum of our M−1A system.

This was abandoned for two reasons. First, this created impractically large bounds on our spectrum,
generally around ±1020 or so. Additionally, we developed a computationally practical approach to
analyze our spectra. Using artificial "Operator" objects in Julia rather than fully dense matrices, we
could successfully calculate eigenvalues for our system.

38

10.3. Nested GMRES 39

10.3. Nested GMRES
We attempted to implement a Nested GMRES system, similar to the preconditioners described in
([Van der Vorst and Vuik, 1994] [Saad, 1993]). The idea was to solve the preconditioner blocks with
GMRES rather than an LU decomposition in the inner loop. However, GMRES convergence even for
individual blocks is very poor, and this performed worse than direct solvers. There was no advantage
compared to the current implementation. Our "nested GMRES" implementation did not turn out to be
practical.

Bibliography

[Bai, 2015] Bai, Z.-Z. (2015). Motivations and realizations of krylov subspace methods for large sparse
linear systems. Journal of Computational and Applied Mathematics, 283:71–78.

[Baker et al., 2004] Baker, A. H., Jessup, E. R., and Manteuffel, T. (2004). A technique for accelerating
the convergence of restarted gmres. SIAM Journal on Matrix Analysis and Applications, 25(4).

[Bellan, 2006] Bellan, P. M. (2006). Fundamentals of Plasma Physics. Cambridge University Press.

[Bezanson et al., 2012] Bezanson, J., Karpinski, S., Shah, V. B., and Edelman, A. (2012). Julia: A fast
dynamic language for technical computing. arXiv preprint arXiv:1209.5145.

[Burrage et al., 1998] Burrage, K., Erhel, J., Pohl, B., and Williams, A. (1998). A deflation technique for
linear systems of equations. SIAM Journal on Scientific Computing, 19(4):1245–1260.

[Czarny and Huysmans, 2008] Czarny, O. and Huysmans, G. (2008). Bézier surfaces and finite elements
for mhd simulations. Journal of Computational Physics, 227(16):7423–7445.

[Dwarka and Vuik, 2020] Dwarka, V. and Vuik, C. (2020). Scalable convergence using two-level deflation
preconditioning for the helmholtz equation. SIAM Journal on Scientific Computing, 42(2):A901–A928.

[Dwarka and Vuik, 2022] Dwarka, V. and Vuik, C. (2022). Scalable multi-level deflation preconditioning
for highly indefinite time-harmonic waves. Journal of Computational Physics, 469:111327.

[Erhel et al., 1996] Erhel, J., Burrage, K., and Pohl, B. (1996). Restarted gmres preconditioned by deflation.
Journal of Computational and Applied Mathematics, 69(2):303–318.

[Franck, Emmanuel et al., 2015] Franck, Emmanuel, Hölzl, Matthias, Lessig, Alexander, and Sonnen-
drücker, Eric (2015). Energy conservation and numerical stability for the reduced mhd models of the
non-linear jorek code. ESAIM: M2AN, 49(5):1331–1365.

[Freidberg et al., 2015] Freidberg, J. P., Mangiarotti, F. J., and Minervini, J. (2015). Designing a tokamak
fusion reactor—how does plasma physics fit in? Physics of Plasmas, 22(7):070901.

[Futatani et al., 2019] Futatani, S., Pamela, S., Garzotti, L., Huĳsmans, G., Hoelzl, M., Frigione, D.,
Lennholm, M., the JOREK Team, and Contributors, J. (2019). Non-linear magnetohydrodynamic
simulations of pellet triggered edge-localized modes in jet. Nuclear Fusion, 60(2):026003.

[Ghai et al., 2016] Ghai, A., Lu, C., and Jiao, X. (2016). A comparison of preconditioned krylov subspace
methods for large-scale nonsymmetric linear systems.

[Hernandez et al., 2007] Hernandez, V., Roman, J. E., Tomas, A., and Vidal, V. (2007). Krylov-schur
methods in slepc. Technical Report STR-7, Universitat Politècnica de València. Available at
https://slepc.upv.es.

[Hoelzl, 2022] Hoelzl, M. (2022). Violent transient plasma instabilities in magnetic confinement fusion
plasmas and their control.

[Hoelzl et al., 2021] Hoelzl, M., Huĳsmans, G., Pamela, S., Bécoulet, M., Nardon, E., Artola, F., Nkonga,
B., Atanasiu, C., Bandaru, V., Bhole, A., Bonfiglio, D., Cathey, A., Czarny, O., Dvornova, A., Fehér,
T., Fil, A., Franck, E., Futatani, S., Gruca, M., Guillard, H., Haverkort, J., Holod, I., Hu, D., Kim, S.,
Korving, S., Kos, L., Krebs, I., Kripner, L., Latu, G., Liu, F., Merkel, P., Meshcheriakov, D., Mitterauer,
V., Mochalskyy, S., Morales, J., Nies, R., Nikulsin, N., Orain, F., Pratt, J., Ramasamy, R., Ramet, P.,
Reux, C., Särkimäki, K., Schwarz, N., Verma, P. S., Smith, S., Sommariva, C., Strumberger, E., van
Vugt, D., Verbeek, M., Westerhof, E., Wieschollek, F., and Zielinski, J. (2021). The jorek non-linear
extended mhd code and applications to large-scale instabilities and their control in magnetically
confined fusion plasmas. Nuclear Fusion, 61(6):065001.

40

Bibliography 41

[Holod et al., 2021] Holod, I., Hoelzl, M., Verma, P. S., Huĳsmans, G., Nies, R., and Team, J. (2021).
Enhanced preconditioner for jorek mhd solver. Plasma Physics and Controlled Fusion, 63(11):114002.

[Hughes, 1987] Hughes, T. J. (1987). The finite element method Linear static and dynamic finite element
analysis. Prentice-Hall International.

[Huysmans and Czarny, 2007] Huysmans, G. and Czarny, O. (2007). Mhd stability in x-point geometry:
simulation of elms. Nuclear Fusion, 47(7):659.

[JuliaSmoothOptimizers, 2023] JuliaSmoothOptimizers (2023). Krylov.jl. https://github.com/
JuliaSmoothOptimizers/Krylov.jl.

[Jutho, 2023] Jutho (2023). Krylovkit.jl. https://github.com/Jutho/KrylovKit.jl.

[Krebs, 2012] Krebs, I. (2012). Non-linear reduced mhd simulations of edge-localized modes in realistic
asdex upgrade geometry. Master’s thesis, Ludwig Maximilians Universitaet Muenchen.

[Laakmann, 2022] Laakmann, F. (2022). Discretisations and Preconditioners for Magnetohydrodynamics
Models. PhD thesis, Mathematical Institute, University of Oxford.

[Laakmann et al., 2022] Laakmann, F., Farrell, P. E., and Mitchell, L. (2022). An augmented lagrangian
preconditioner for the magnetohydrodynamics equations at high reynolds and coupling numbers.
SIAM Journal on Scientific Computing, 44(4):B1018–B1044.

[Landstorfer et al., 2021] Landstorfer, D. M., Ullrich, J., Kruse, D. R., Voigt, D. M., and Peschka, D. D.
(2021). Numerical mathematics ii for engineers.

[Liesen, 2020] Liesen, J. (2020). Numerical linear algebra i.

[Liesen and Tichý, 2004] Liesen, J. and Tichý, P. (2004). Convergence analysis of krylov subspace
methods. GAMM-Mitteilungen, 27(2):153–173.

[Ma et al., 2016] Ma, Y., Hu, K., Hu, X., and Xu, J. (2016). Robust preconditioners for incompressible
mhd models. Journal of Computational Physics, 316:721–746.

[Morgan, 1995] Morgan, R. B. (1995). A restarted gmres method augmented with eigenvectors. SIAM
Journal on Matrix Analysis and Applications, 16(4):1154–1171.

[Niels Saabye Ottosen, 1992] Niels Saabye Ottosen, H. P. (1992). Introduction to the Finite Element Method.
Prentice Hall.

[Pamela, 2010] Pamela, S. (2010). Simulation Magnéto-Hydro-Dynamiques des Edge-Localised-Modes dans
un tokamak. PhD thesis, Université de Provence.

[Pratt et al., 2016] Pratt, J., Huĳsmans, G. T. A., and Westerhof, E. (2016). Early evolution of electron
cyclotron driven current during suppression of tearing modes in a circular tokamak. Physics of
Plasmas, 23(10).

[Saad, 1993] Saad, Y. (1993). A flexible inner-outer preconditioned gmres algorithm. SIAM Journal on
Scientific Computing, 14(2):461–469.

[Saad, 1996] Saad, Y. (1996). Iterative Methods for Sparse Linear Systems. PWS Publishing Company,
Boston.

[Saad and Schultz, 1986] Saad, Y. and Schultz, M. H. (1986). Gmres: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing,
7(3):856–869.

[SCAI, 2023] SCAI, C. (2023). Marconi | scai. https://www.hpc.cineca.it/hardware/marconi.

[Shadid and Tuminaro, 1994] Shadid, J. N. and Tuminaro, R. S. (1994). A comparison of preconditioned
nonsymmetric krylov methods on a large-scale mimd machine. SIAM Journal on Scientific Computing,
15(2):440–459.

https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://github.com/Jutho/KrylovKit.jl
https://www.hpc.cineca.it/hardware/marconi

Bibliography 42

[Team, 2023] Team, J. (2023). JOREK Wiki.

[Van der Vorst and Vuik, 1994] Van der Vorst, H. A. and Vuik, C. (1994). Gmresr: a family of nested
gmres methods. Numerical Linear Algebra with Applications, 1(4):369–386.

[Vuik and Lahaye, 2023] Vuik, C. and Lahaye, D. (2023). Scientific computing (wi4201).

[Wesson, 1999] Wesson, J. (1999). The Science of JET. "JET Joint Undertaking".

[Zavorin et al., 2003] Zavorin, I., O’Leary, D., and Elman, H. (2003). Complete stagnation of gmres.
Linear Algebra and its Applications, 367:165–183.

[Zou, 2023] Zou, Q. (2023). GMRES algorithms over 35 years. Applied Mathematics and Computation,
445:127869.

Acknowledgements

I’d like to thank my supervisor, Dr. Vandana Dwarka, Drs. Matthias Hoelzl and Igor Holod at IPP, my
colleague Ferhat Sindy, and Dr. Angelica Ferrara for encouraging me to pursue this.

43

A
Code

A.1. Helper functions
1 # utils/helpers.jl
2 using LinearMaps
3 using Dates
4 using LinearAlgebra
5 using IterativeSolvers
6 using HDF5
7 using SparseArrays
8 using Plots
9 using KrylovKit

10 using Krylov
11 using LinearOperators
12 using ArnoldiMethod
13 using DelimitedFiles
14 using Plots
15 using Distributed
16

17

18 # Construct Preconditioner Operator
19 struct Preconditioner
20 end
21

22 opM = Preconditioner()
23

24 function load_run(run_name::String)
25 # returns A, then PCs
26 runs = Dict("199_small"=>(
27 ["data/199_small/matA.h5"],
28 ["data/199_small/pc_00.h5", "data/199_small/pc_01.h5", "

data/199_small/pc_02.h5"]
29), "199_large"=>(
30 ["data/199_large/matA_00.h5", "data/199_large/matA_01.h5"

],
31 ["data/199_large/pc_00.h5", "data/199_large/pc_01.h5", "

data/199_large/pc_02.h5"]
32), "303_modded"=>(
33 ["data/303_modded/matA_00.h5", "data/303_modded/matA_01.h5

"],
34 ["data/303_modded/pc_00.h5", "data/303_modded/pc_01.h5"]

44

A.1. Helper functions 45

35), "303_inxflow"=>(
36 ["data/303_inxflow/matA_00.h5"],
37 ["data/303_inxflow/pc_00.h5", "data/303_inxflow/pc_01.h5"]
38), "303_inxflow_3"=>(
39 ["data/303_inxflow_3_medium/matA_00.h5", "data/303

_inxflow_3_medium/matA_01.h5"],
40 ["data/303_inxflow_3_medium/pc_00.h5", "data/303

_inxflow_3_medium/pc_01.h5"]
41), "303_inxflow_5"=>(
42 ["data/303_inxflow_5_medium/matA_00.h5", "data/303

_inxflow_5_medium/matA_01.h5", "data/303
_inxflow_5_medium/matA_02.h5"],

43 ["data/303_inxflow_5_medium/pc_00.h5", "data/303
_inxflow_5_medium/pc_01.h5", "data/303_inxflow_5_medium
/pc_02.h5"]

44), "303_reference" => (
45 ["/marconi_work/FUA37_MHD/iholod00/for_Alex/case_230822_0/

matA_00.h5", "/marconi_work/FUA37_MHD/iholod00/for_Alex
/case_230822_0/matA_01.h5", "/marconi_work/FUA37_MHD/
iholod00/for_Alex/case_230822_0/matA_02.h5"],

46 ["/marconi_work/FUA37_MHD/iholod00/for_Alex/case_230822_0/
pc_00.h5", "/marconi_work/FUA37_MHD/iholod00/for_Alex/
case_230822_0/pc_01.h5", "/marconi_work/FUA37_MHD/
iholod00/for_Alex/case_230822_0/pc_02.h5"]

47), "303_zk100" => (
48 ["/marconi_work/FUA37_MHD/iholod00/for_Alex/case_230822_1/

matA_00.h5", "/marconi_work/FUA37_MHD/iholod00/for_Alex
/case_230822_1/matA_01.h5", "/marconi_work/FUA37_MHD/
iholod00/for_Alex/case_230822_1/matA_02.h5"],

49 ["/marconi_work/FUA37_MHD/iholod00/for_Alex/case_230822_1/
pc_00.h5", "/marconi_work/FUA37_MHD/iholod00/for_Alex/
case_230822_1/pc_01.h5", "/marconi_work/FUA37_MHD/
iholod00/for_Alex/case_230822_1/pc_02.h5"]

50), "303_stale" => (
51 ["c/matA_00.h5", "/marconi_work/FUA37_MHD/iholod00/

for_Alex/case_230822_2/matA_01.h5", "/marconi_work/
FUA37_MHD/iholod00/for_Alex/case_230822_2/matA_02.h5"],

52 ["/marconi_work/FUA37_MHD/iholod00/for_Alex/case_230822_2/
pc_00.h5", "/marconi_work/FUA37_MHD/iholod00/for_Alex/
case_230822_2/pc_01.h5", "/marconi_work/FUA37_MHD/
iholod00/for_Alex/case_230822_2/pc_02.h5"]

53), "303_zk200" => (
54 ["/marconi_work/FUA37_MHD/iholod00/for_Alex/case_230828_0/

matA_00.h5", "/marconi_work/FUA37_MHD/iholod00/for_Alex
/case_230828_0/matA_01.h5", "/marconi_work/FUA37_MHD/
iholod00/for_Alex/case_230828_0/matA_02.h5"],

55 ["/marconi_work/FUA37_MHD/iholod00/for_Alex/case_230828_0/
pc_00.h5", "/marconi_work/FUA37_MHD/iholod00/for_Alex/
case_230828_0/pc_01.h5", "/marconi_work/FUA37_MHD/
iholod00/for_Alex/case_230828_0/pc_02.h5"]

56)
57)
58 return runs[run_name]
59 end
60

61 function load_A(run_name)

A.1. Helper functions 46

62 A_fps, _ = load_run(run_name)
63 A, rhs, _ = multi_load_sparse_matrix_from_hdf5(A_fps, false);
64 n = size(A,1)
65 return A, rhs, n
66 end
67

68 function load_preconditioners(run_name)
69 _, pc_fps = load_run(run_name)
70

71 pcs = Vector{SparseMatrixCSC{Float64,Int64}}()
72 rhss = Vector{Vector{Float64}}()
73 l2gs = Vector{Vector{Int32}}()
74

75 for pc_fp in pc_fps
76 pc, pc_rhs, pc_l2g = load_sparse_h5(pc_fp, true);
77 push!(pcs, pc)
78 push!(rhss, pc_rhs)
79 push!(l2gs, pc_l2g)
80 end
81

82 return pcs, rhss, l2gs
83 end
84

85 function save_h5_dense(filename::String, A::Matrix)
86 datasetname = "data"
87 h5open(filename, "w") do file
88 write(file, datasetname , A)
89 end
90 end
91

92 function load_h5_dense(filenam::String)
93 datasetname = "data"
94 h5open(filename, "r") do file
95 A = read(file, datasetname)
96 end
97 return A
98 end
99

100 function dummy_A()
101 n = 41308
102 A = spzeros(n,n)
103 diags = 250
104 for i in 1:diags
105 println(i)
106 A = A + spdiagm(i => rand(n - i))
107 A = A + spdiagm(i*10 => rand(n - i*10))
108 A = A + spdiagm(-i => rand(n - i))
109 A = A + spdiagm(-i*10 => rand(n - i*10))
110 end
111

112 return A
113 end
114

115 function load_sparse_h5(filepath::String, loc2glob::Bool)
116 val = nothing
117 irn = nothing

A.1. Helper functions 47

118 jcn = nothing
119 rhs = nothing
120 l2g = nothing
121 # vals = Vector{Float64}()
122 # irns = Vector{Int}()
123 # jcns = Vector{Int}()
124 # rhss = Vector{Float64}()
125 # l2gs = Vector{Int}()
126

127 h5open(filepath, "r") do h5file
128 data = read(h5file)
129 val = data["val"]
130 irn = data["irn"]
131 jcn = data["jcn"]
132 rhs = data["rhs"]
133 print(size(rhs))
134 if loc2glob
135 l2g = data["loc2glob"]
136 end
137

138 end
139

140 # Just to make sure to use 64 bit indices
141 irn = convert(Vector{Int64},irn)
142 jcn = convert(Vector{Int64},jcn)
143

144 m, n = maximum(irn), maximum(jcn)
145 A = sparse(irn, jcn, val, m, n)
146 return A, rhs, l2g
147 end
148

149 function multi_load_sparse_matrix_from_hdf5(filepaths , loc2glob)
150 vals = Vector{Float64}()
151 irns = Vector{Int}()
152 jcns = Vector{Int}()
153 rhss = Vector{Float64}()
154 l2gs = Vector{Int}()
155

156 for filepath in filepaths
157 val = nothing
158 irn = nothing
159 jcn = nothing
160 rhs = nothing
161 l2g = nothing
162 h5open(filepath, "r") do h5file
163 data = read(h5file)
164 val = data["val"]
165 irn = data["irn"]
166 jcn = data["jcn"]
167 rhs = data["rhs"]
168 print(size(rhs))
169 if loc2glob
170 l2g = data["loc2glob"]
171 end
172

173 end

A.1. Helper functions 48

174 append!(vals, val)
175 append!(irns, irn)
176 append!(jcns, jcn)
177

178 rhss = rhs
179 if loc2glob
180 append!(l2gs, l2g)
181 end
182 end
183

184 m, n = maximum(irns), maximum(jcns)
185 A = sparse(irns, jcns, vals, m, n)
186

187 return A, rhss, l2gs
188 end
189

190 function multi_load_sparse_matrix_from_hdf5(filepaths)
191 return multi_load_sparse_matrix_from_hdf5(filepaths , false)
192 end
193

194 function collect_LUs(pcs::Vector{SparseMatrixCSC{T, Int64}}) where {T <:
AbstractFloat}

195 lus = []
196 for pc in pcs
197 println("Taking LU of PC")
198

199 push!(lus, lu(pc))
200 end
201

202 return lus
203 end
204

205

206 function collect_LUs_dense(pcs::SparseMatrixCSC{T, Int64}) where {T <:
AbstractFloat}

207 lus = []
208 for pc in pcs
209 println("Taking LU of PC")
210

211 push!(lus, lu(Matrix(pc)))
212 end
213 return lus
214 end
215

216 function global_to_locals(global_v, l2gs)
217 local_vs = []
218 for l2g in l2gs
219 push!(local_vs , global_v[l2g])
220 end
221 return local_vs
222 end
223

224 function locals_to_global(local_vs, l2gs)
225 total_length = sum(length, local_vs)
226 global_v = similar(local_vs[1], total_length)
227

A.1. Helper functions 49

228 for (local_v, l2g) in zip(local_vs, l2gs)
229 global_v[l2g] = local_v
230 end
231

232 return global_v
233 end
234

235 function solve_non_LU(x::Vector{AbstractFloat}, pcs::Vector{
SparseMatrixCSC}, l2gs::Vector{Vector{Int32}})

236 local_solutions = []
237 for (pc, l2g) in zip(pcs, l2gs)
238 n = size(pc, 1)
239 x_local = x[l2g]
240 local_sol = pc \ x_local
241 push!(local_solutions , local_sol)
242 end
243

244 global_solvec = locals_to_global(local_solutions , l2gs)
245 return global_solvec
246 end
247

248 function solve_pcs(x, pc_LUs, l2gs)
249 # # TODO: LU type
250 local_solutions = []
251 for (pc_LU, l2g) in zip(pc_LUs, l2gs)
252 n = size(pc_LU, 1)
253 x_local = x[l2g]
254 local_sol = pc_LU \ x_local
255 push!(local_solutions , local_sol)
256 end
257

258 global_solvec = locals_to_global(local_solutions , l2gs)
259 return global_solvec
260 end
261

262 function load_eigs(filename::String)
263 return readdlm(filename, ’,’, Complex{Float64})
264 end
265

266 function global_inverse_simple(n::Int64, pcs::Vector{SparseMatrixCSC{T,
Int64}}, l2gs::Vector{Vector{Int32}}) where {T <: AbstractFloat}

267 global_inv = Array{Float64}(undef, n,n)
268 # This will take a while.
269 for (pc, l2g) in zip(pcs, l2gs)
270 println("Downscaling matrix")
271 down_pc = downscale_matrix(pc) # May be helpful
272 println("Taking block-wise sub-inverse...")
273 invpc = inv(Matrix(down_pc))
274

275 global_inv[l2g,l2g] = invpc
276 end
277 return global_inv
278 end
279

280 function global_inverse(n, pc_LUs, l2gs)
281 global_inv = Array{Float64}(undef, n,n)

A.1. Helper functions 50

282 # This will take a while.
283 for (pc_LU, l2g) in zip(pc_LUs, l2gs)
284 println("Taking block-wise sub-inverse...")
285 invpc = inv(pc_LU)
286

287 global_inv[l2g,l2g] = invpc
288 end
289 return global_inv # AKA M^{-1}
290 end
291

292

293 function plot_residuals(residuals , output_dir)
294 p = scatter(log10.(residuals), ylabel="log10(residual)", xlabel="

iteration")
295

296 savefig(p, output_dir * "residuals.png")
297 end
298

299 function save_eig_subset(M, type, typename::String, output_dir::String;
nev=5)

300 # eig_time = now()
301 println("Eig decomp of $type")
302 decomp, hist = partialschur(M, nev=nev, which=type)
303 eigs = decomp.eigenvalues
304 println("$typename eigs: $eigs")
305 outname = output_dir * "$(typename)_eigs.txt"
306 writedlm(outname, eigs)
307 println("Saved to $outname")
308

309 return outname
310 end
311

312

313 function save_eig_subset_kk(M, type, typename, output_dir; nev=NEV)
314 println("Eig decomp of $type")
315 n = size(M,1)
316

317 eigs, vecs, info = KrylovKit.eigsolve(M, size(M,1), nev, type, Complex
{Float64})#, type)

318 println(info)
319 vecs = nothing # Throw these away
320 println("$typename eigs: $eigs")
321 outname = output_dir * "$(typename)_eigs.txt"
322 writedlm(outname, eigs)
323 println("Saved to $outname")
324 return outname
325 end
326

327 function downscale_pcs(pcs, new_size)
328 small_pcs = (pc -> downscale_matrix(pc, new_size)).(pcs)
329 end
330

331 function downscale_matrix(matrix, new_size)
332 return convert(SparseMatrixCSC{new_size,Int64}, matrix)
333 end
334

A.1. Helper functions 51

335 function dense_matrix_size(matrix)
336 bytes = sizeof(eltype(matrix))
337 return "$(size(matrix ,1)^2 * bytes /(2^30)) GB"
338 end
339

340 function lu_decompose_parallel(pcs, l2gs)
341 ## Construct LU decompositions:
342

343 # Store each LU on respective processors.
344 lu_confirmations = []
345 workers_used = []
346 println("Queueing LU storage")
347 for (i, (pc, l2g)) in enumerate(zip(pcs, l2gs))
348 conf = @spawnat i+1 lu_and_store(i, pc, l2g)
349 push!(lu_confirmations , conf)
350 push!(workers_used , i)
351 end
352 println("Only used these workers: ", workers_used)
353

354 # (x -> wait(conf)).(lu_confirmations)
355 for conf in lu_confirmations
356 wait(conf)
357 end
358 end
359

360

361 function lu_and_store(i::Int, pc::SparseMatrixCSC{T, Int64}, l2g::Vector{
Int32}) where {T <: AbstractFloat}

362 println(i, ", Storing lu")
363 lu_pc = lu(pc)
364 global lu_worker = lu_pc
365 global l2g_worker = l2g
366 println(i, "Stored")
367 return true
368 end
369

370 function solve_pcs_parallel(x, pcs, l2gs)# where {T<: AbstractFloat , T1 <:
Union{Vector{Float64}, SubArray{Float64, 1, Matrix{Float64}, Tuple{
Base.Slice{Base.OneTo{Int64}}, Int64}, true}, Vector{AbstractFloat}}}

371 local_solutions = []
372 promises = Dict()
373 i = 0
374 for i in 1:length(pcs)
375 local_sol = @spawnat i+1 solve_parallel_local(i, x)
376 promises[i] = local_sol
377 end
378

379 # We now have workers working and promises.
380 # Resolve promises.
381 for i in 1:length(pcs)
382 local_sol = fetch(promises[i])
383 push!(local_solutions , local_sol)
384 end
385

386 global_solvec = locals_to_global(local_solutions , l2gs)
387 return global_solvec

A.1. Helper functions 52

388 end
389

390 # function solve_parallel_local(i::Int, x::Vector{Float64})
391 function solve_parallel_local(i::Int, x)
392 # Knows its l2g, knows its lu
393 LU = lu_worker #decompositions[i]
394 n = size(LU, 1)
395 l2g = l2g_worker #l2gs[i]
396 x_local = x[l2g]
397 local_sol = LU \ x_local
398 return local_sol
399 end
400

401 function save_eigs(A::SparseMatrixCSC , output_dir::String, tolerance::
Float64, all_eigs=true)

402 ## Spectrum
403 decomp, hist = partialschur(A, nev=5, which=LM())
404 eigs = decomp.eigenvalues
405 println("Largest eigs: $eigs")
406 writedlm(output_dir * "largest_eigs.txt", eigs)
407

408 decomp, hist = partialschur(A, nev=5, which=LR())
409 eigs = decomp.eigenvalues
410 println("Largest (real) eigs: $eigs")
411 writedlm(output_dir * "largest_real_eigs.txt", eigs)
412

413 decomp, hist = partialschur(A, nev=5, which=LI())
414 eigs = decomp.eigenvalues
415 println("Largest (im) eigs: $eigs")
416 writedlm(output_dir * "largest_im_eigs.txt", eigs)
417

418 decomp, hist = partialschur(A, nev=5, which=SR())
419 eigs = decomp.eigenvalues
420 println("Smallest (real) eigs: $eigs")
421 writedlm(output_dir * "smallest_real_eigs.txt", eigs)
422

423 decomp, hist = partialschur(A, nev=5, which=SI())
424 eigs = decomp.eigenvalues
425 println("Smallest (im) eigs: $eigs")
426 writedlm(output_dir * "smallest_im_eigs.txt", eigs)
427

428 eigs = nothing
429 GC.gc()
430

431 if all_eigs
432 println("Attempting to get all eigs:")
433 eigenvalues , vecs, info = KrylovKit.eigsolve(A, n - 1, tol=

tolerance , krylovdim=n - 1, verbosity=2);#, nev=n-1, which=:SM)
434 println(info)
435 writedlm(output_dir * "all_eigvals$tolerance.txt", eigenvalues)
436

437 plot_eigs(eigenvalues , output_dir * "all_eigvals$tolerance")
438 end
439 end
440

441 function benchmark(start_time)

A.2. Loading our system 53

442 elapsed = now() - start_time
443 total_time = canonicalize(Dates.CompoundPeriod(elapsed))
444 println("Total time: $total_time")
445

446 return total_time
447 end
448

449 # Which of the following 2?
450 function plot_eigs(eigs, filename::String)
451 x = real.(eigs)
452 y = imag.(eigs)
453 p1 = scatter(x, y, ylabel="Imaginary", xlabel="Real", legend=false)
454 title!("Complex eigenvalues")
455 fname1 = filename *"_scatter.png"
456 savefig(p1, fname1)
457 println("Saving plot to $(fname1)")
458

459 # Compute the polar coordinates
460 r = log10.(abs.(eigs)) # Radial coordinate is the log of the magnitude

of eigs
461 theta = angle.(eigs) # Angular coordinate is the angle of eigs
462

463 # Create a scatter plot in polar coordinates
464 p2 = scatter(theta, r, proj=:polar,)
465 ticks = [-6,-4,-2,0,2,4,6,8,10,12] # TODO: Make dynamic.
466

467 yticks!(ticks, string.(ticks), ylabel="log(|eigs|)", legend=false)
468

469 title!("Complex Eigenvalues")
470

471

472 fname2 = filename * "_polar.png"
473 savefig(p2,fname2)
474 println("Saving plot to $(fname2)")
475 end
476

477 function eigplot(eigs::Union{Vector{Complex}, Matrix{Complex}})
478 # Compute the polar coordinates
479 r = log10.(abs.(eigs)) # Radial coordinate is the log of the magnitude

of eigs
480 theta = angle.(eigs) # Angular coordinate is the angle of eigs
481

482 # Create a scatter plot in polar coordinates
483 p = scatter(theta, r, proj=:polar,)
484 ticks = [-6,-4,-2,0,2,4,6,8,10,12] # TODO: Make dynamic.
485

486 yticks!(ticks, string.(ticks), ylabel="log(|eigs|)")
487

488 title!("Eigenvalues")
489 return p
490 end

A.2. Loading our system
1 # utils/load_system.jl
2 include("helpers.jl")

A.3. Solver 54

3 start = now()
4

5 if myid() == 1
6 # addprocs(3)
7 println("Number of cores: ", nprocs())
8 println("Number of workers: ", nworkers())
9

10 for i in workers()
11 id, pid, host = fetch(@spawnat i (myid(), getpid(),

gethostname()))
12 println(id, " " , pid, " ", host)
13 end
14 end
15

16 println("Total memory: ", Sys.total_memory() / 2^20, " MB")
17 println("Free memory: ", Sys.free_memory() / 2^20, " MB")
18

19 runs = ["199_small", "199_large", "303_modded", "303_inxflow", "303
_inxflow_3", "303_inxflow_5", "303_reference", "303_zk100", "303_stale"
, "303_zk200"]

20 println(ARGS)
21 run_name = length(ARGS) >= 1 ? ARGS[1] : "199_small" # Default
22 @assert run_name in runs "ARGS[0] must be a valid run_name name ($runs).

It is $ARGS"
23

24 output_dir = "output/julia/$run_name/"
25 isdir(output_dir) || mkdir(output_dir)
26 if length(ARGS) >= 2
27 output_name = ARGS[2]
28 output_dir = output_dir * "$output_name/"
29 isdir(output_dir) || mkdir(output_dir)
30 end
31

32 println("Run: $run_name. Output: $output_dir")
33

34 if myid() == 1
35 println("Loading matrices")
36 A, rhs, n = load_A(run_name)
37 pcs, rhss, l2gs = load_preconditioners(run_name)
38 println()
39 end

A.3. Solver
1 # parallel_solve.jl
2 using Distributed
3 @everywhere include("utils/helpers.jl")
4 include("utils/load_system.jl")
5

6 # Run options:
7 no_pc_run = true
8 pc_run = true
9 downscaled_pc_run = true

10

11 # Run with -p 3 or thereabouts.
12 @assert nworkers() >= size(pcs,1)

A.3. Solver 55

13 TOL = 1e-12
14 rtol = 1e-12
15 atol = 1e-36
16 memory = 200
17 restart = false
18 if restart
19 memory = 10
20 output_dir = output_dir * "restart -$memory-"
21 end
22

23 struct Tee <: IO
24 io1::IO
25 end
26

27 Base.write(t::Tee, x::UInt8) = (write(t.io1, x); write(kstdout, x))
28 Base.write(t::Tee, x::AbstractString) = (write(t.io1, x); write(kstdout, x

));
29

30 if myid() == 1
31 ## Solve
32 if no_pc_run
33 println("Raw solve: (should fail to converge)")
34 println("Krylov.jl")
35

36 fp = open("$(output_dir)raw_gmres_run.txt", "w")
37 io = Tee(fp)
38 println("Saving to $(fp.name)")
39 x, stats = Krylov.gmres(A, rhs, restart=restart, memory=memory,

rtol=rtol, atol=atol, itmax=50, verbose=1, history=true,
iostream=io)#, callback=should_terminate)

40 close(fp)
41 println(stats)
42 writedlm("$(output_dir)raw_residuals.txt", stats.residuals)
43 plot_residuals(stats.residuals , output_dir * "raw_")
44

45

46 println("Krylov.jl BiCGSTAB")
47 # io = open("$(output_dir)raw_bicgstab_run.txt")
48 io = kstdout
49 x, stats = Krylov.bicgstab(A, rhs, rtol=rtol, atol=atol, itmax=50,

verbose=1, history=true, iostream=io)
50 # close(io)
51 println(stats)
52 writedlm("$(output_dir)bicgstab_residuals.txt", stats.residuals)
53 plot_residuals(stats.residuals , output_dir * "raw_bicgstab_")
54 end
55

56 if pc_run
57 ##
58 # Preconditioner setup:
59 lu_time = now()
60 lu_decompose_parallel(pcs, l2gs)
61 println("LU time:")
62 benchmark(lu_time)
63

64 # Must be globally scoped.

A.3. Solver 56

65 function pc_fn(x::AbstractVector)
66 solution = solve_pcs_parallel(x, pcs, l2gs)
67 x .= solution # In place
68 end
69

70 function pc_fn!(out::AbstractVector , x::AbstractVector)
71 out .= solve_pcs_parallel(x, pcs, l2gs)
72 end
73

74 LinearOperators.ldiv!(op::Preconditioner , x::AbstractVector) =
begin pc_fn(x) end

75 LinearOperators.ldiv!(y::AbstractVector , op::Preconditioner , x::
AbstractVector) = begin pc_fn!(y, x) end

76

77

78 Minv = LinearMap{eltype(A)}((y, x) -> pc_fn!(y, x), size(A,1),
ismutating=true)

79

80 ##
81 println("PC’d run:")
82

83 println("Krylov.jl nil x0")
84 fp = open("$(output_dir)pcd_gmres_run.txt", "w")
85 io = Tee(fp)
86 println("Saving to $(fp.name)")
87 x, stats = Krylov.gmres(A, rhs, M=opM, iostream=io, ldiv=true,

restart=restart, memory=memory, rtol=rtol, atol=atol, itmax
=200, verbose=1, history=true)#, callback=should_terminate)

88 close(fp)
89 println(stats)
90

91 writedlm("$(output_dir)pcd_residuals.txt", stats.residuals)
92 writedlm("$(output_dir)solution_krylov.txt", x)
93 plot_residuals(stats.residuals , output_dir * "PCd_")
94 residual = rhs - A * x
95 pc_residual = Minv * residual
96 println("Residual: $(norm(residual))")
97 println("PC residual: $(norm(pc_residual))")
98 println("PC residual2: $(norm(Minv * rhs - Minv * A * x))")
99

100 println("Krylov.jl BiCGSTAB")
101 x, stats = Krylov.bicgstab(A, rhs, M=opM, ldiv=true, rtol=rtol,

atol=atol, itmax=50, verbose=1, history=true)
102 println(stats)
103 writedlm("$(output_dir)pcd_bicgstab_residuals.txt", stats.

residuals)
104 plot_residuals(stats.residuals , output_dir * "PCd_bicgstab_")
105

106 end
107

108 if downscaled_pc_run
109 ##
110 small_bits = 32 # 16 or 32
111 small_type = Float16
112 if small_bits == 32
113 small_type = Float32

A.4. Preconditioned spectra 57

114 end
115 println()
116 println("$small_bits -bit PCs:")
117 println(small_type)
118 println()
119 small_pcs = downscale_pcs(pcs, small_type)
120 @everywhere lu_worker = nothing # reset just in case
121 lu_time = now()
122 lu_decompose_parallel(small_pcs , l2gs)
123 println("LU time:")
124 benchmark(lu_time)
125

126 # Must be globally scoped.
127 function small_pc_fn(x)
128 solution = solve_pcs_parallel(x, pcs, l2gs)
129 x .= solution # In place
130 end
131

132 function small_pc_fn!(out, x)
133 out .= solve_pcs_parallel(x, pcs, l2gs)
134 end
135

136 LinearOperators.ldiv!(y::AbstractVector , op::Preconditioner , x::
AbstractVector) = begin small_pc_fn!(y, x) end

137 LinearOperators.ldiv!(op::Preconditioner , x::AbstractVector) =
begin small_pc_fn(x) end

138

139 println("Krylov.jl")
140 fp = open("$(output_dir)32bit_pcd_gmres_run.txt", "w")
141 println("Saving to $(fp.name)")
142 io = Tee(fp)
143 x, stats = Krylov.gmres(A, rhs, M=opM, iostream=io, ldiv=true,

restart=restart, memory=memory, rtol=rtol, atol=atol, itmax
=200, verbose=1, history=true)#, callback=should_terminate)

144 println(stats)
145 close(fp)
146 writedlm("$(output_dir)$(small_bits)_bit_pcd_residuals.txt", stats

.residuals)
147 plot_residuals(stats.residuals , output_dir * "$(small_bits)

_bit_PCd_")
148

149 println("Krylov.jl BiCGSTAB")
150 x, stats = Krylov.bicgstab(A, rhs, M=opM, ldiv=true, rtol=rtol,

atol=atol, itmax=50, verbose=1, history=true)
151 println(stats)
152 writedlm("$(output_dir)$(small_bits)_bit_pcd_bicgstab_residuals.

txt", stats.residuals)
153 plot_residuals(stats.residuals , output_dir * "$(small_bits)

_bit_PCd_bicgstab_")
154 end
155

156 benchmark(start)
157 end

A.4. Preconditioned spectra

A.4. Preconditioned spectra 58

1 # MA_eigs_parallel.jl
2 using Distributed
3 @everywhere include("utils/helpers.jl")
4 include("utils/load_system.jl")
5

6 # Run with -p 3 or thereabouts.
7 @assert nworkers() >= size(pcs,1)
8 TOL = 1e-9
9 NEV = 1

10

11 lu_decompose_parallel(pcs, l2gs)
12

13 function pc_fn!(out, x)
14 out .= solve_pcs_parallel(x, pcs, l2gs)
15 end
16

17 M = LinearMap{eltype(A)}((y, x) -> pc_fn!(y, x), size(A,1), ismutating=
true)

18

19 @everywhere function save_eig_subset_kk(M, type, typename, output_dir; nev
=NEV)

20 # eig_time = now()
21 println("Eig decomp of $type")
22 # x0 = randn(ComplexF64 , n)
23 eigs, vecs, info = KrylovKit.eigsolve(M, size(M,1), nev, type, Complex

{Float64}, tol=TOL)#, type)
24 println(info)
25 vecs = nothing # Throw these away?
26 println("$typename eigs: $eigs")
27 outname = output_dir * "$(typename)_eigs.txt"
28 writedlm(outname, eigs)
29 println("Saved to $outname")
30 return outname
31 end
32

33 function M_spectrums(M, output_dir)
34 filenames = []
35 types = [:LM, :LR, :LI, :SR, :SI]
36 typenames = ["largest", "largest_real", "largest_im", "

smallest_real", "smallest_im", "smallest"]
37 for i in 1:length(types)
38 type = types[i]
39 typename = typenames[i]
40 eig_time = now()
41 fname = save_eig_subset_kk(M, type, typename, output_dir ,

nev=NEV)
42

43 benchmark(eig_time)
44 println("-----------------------")
45 println()
46 push!(filenames , fname)
47 end
48 return filenames
49 end
50

51 MA = M*A

A.4. Preconditioned spectra 59

52

53 filenames = M_spectrums(MA, output_dir * "Minv_A_")
54

55 all_eigs = Vector{Complex}()
56 for fname in filenames
57 eigs = load_eigs(fname)
58 global all_eigs = vcat(all_eigs, eigs)
59 end
60

61 output_fname = joinpath(dirname(filenames[1]), "compound_eigs")
62 plot_eigs(all_eigs, output_fname)
63

64 benchmark(start)

	Introduction
	Plasma Physics and Magnetohydrodynamics
	Introduction
	Tokamak Dynamics
	MHD Derivation
	Reduced MHD
	Model Extensions

	 Finite Element Methods
	Background and Derivation
	Bézier Surfaces

	Numerical Solution Methods
	Condition Number
	Direct Methods
	Iterative Methods
	Krylov subspace methods
	Preconditioning
	Arnoldi Method
	GMRES
	BiCGSTAB
	Convergence
	GMRES Convergence
	BiCGSTAB Convergence

	Preconditioners for MHD Models
	Time Discretization

	Eigenvalue Solvers
	Krylov-Schur

	The JOREK Code
	Motivation
	Weak Form of Equations
	Boundary Conditions

	Model Geometry
	The JOREK Solver and Preconditioner
	Recent Preconditioner Improvements
	Relevant Problem Size

	Research Plan
	Research Plan
	Model Problems
	Solver Code
	Hardware
	Preconditioner Operator
	Spectral Analysis

	Simple Tearing Mode Case in Limiter Geometry
	Solver Behavior
	Spectral Analysis

	Ballooning Mode Case in X-Point Geometry
	Solver Behavior
	Spectral Analysis
	Parameter Studies
	Stale Preconditioner
	Parallel Thermal Conductivity
	GMRES Restart
	32-Bit Preconditioners

	Conclusion

	Future Work
	Failed Attempts
	Python Implementation
	Explicit Preconditioner
	Nested GMRES

	Code
	Helper functions
	Loading our system
	Solver
	Preconditioned spectra

