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Summary

Computational Fluid Dynamics (CFD) offers numerous benefits, notably the ability to study flows that
are challenging or costly to investigate using experiments. A central challenge in CFD lies in simulating
fluid flow around complex geometries. Additionally, the governing equations follow conservation laws.
This thesis aims to establish the foundation for constructing Immersed divergence-conforming finite el-
ement spaces that address both challenges. To tackle the first issue, an immersed method is considered.
Instead of generating a mesh that conforms to the object where the flow occurs, the approach involves
placing the object within a predefined mesh. However, this introduces new challenges, the most signif-
icant of which is the ill-conditioning of the associated linear system. The condition number depends
on the location of the immersed object and can lead to an extremely large condition number. The
second challenge is resolved by discretizing the problem in a way that preserves essential topological
and homological structures at a discrete level, utilizing the principles of finite element exterior calculus.
Within this thesis, a structure-preserving subcomplex is developed for the de Rham complex in 1D,
and its accuracy is validated through numerical experimentation. Optimal convergence is achieved, the
discrete inf-sup test is satisfied, and the resulting linear system’s conditioning remains unaffected by
the placement of the immersed object. However, the constructed structure-preserving subcomplex for
the de Rham complex in 2D, known as the immersed divergence-conforming finite element spaces, does
not exhibit convergence. For future research, I recommend focusing on simpler vertical and skewed cuts
before exploring more intricate immersed shapes. These simpler cuts involve straightforward choices
for edge basis functions/ 1-form basis functions that are relevant. Additionally, if the outcomes remain
unsatisfactory, considering a global approach instead of a local approach could be worthwhile.
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1
Introduction

Computational Fluid Dynamics (CFD) was developed in the early 1970s as an interdisciplinary field
that combined mathematics, physics, and computer science to simulate fluid flow [1]. CFD offers many
advantages, such as the ability to study flows that would be difficult or costly to examine through
experimentation. Moreover it is now widely used in a variety of scientific and engineering areas, such
as aircraft and car design, meteorology, oceanography, astrophysics, oil recovery, and architecture . In
some cases, CFD is even the only practical way to investigate unknown fields, such as the flow and
pressure of a space vehicle during re-entry into Earth’s atmosphere. As an example, Figure 1.1 shows
a three-dimensional CFD model that was used to predict the pressure and velocity of the re-entry
of the Apollo spacecraft, which was developed in the 1960s and consisted of three parts designed for
landing astronauts on the moon and returning them safely to Earth. To simulate this, the commer-
cial software package ANSYS was used together with a mesh comprising of around 2.45 million elements.

Figure 1.1: CFD model of supersonic flow around the Apollo Spacecraft [2][3].

A primary challenge in CFD is the fluid flow simulation around complex geometries. Prior to simulating
the fluid flow, the surfaces of all boundaries are meshed and a boundary-fitted volume mesh inside the
flow domain is generated. Note that the meshing of the boundaries is an approximation of the initial
geometry designed with Computer Aided Design (CAD). There are several meshing options: a struc-
tured mesh, an unstructured mesh (sometimes also referred to as mixed mesh) and multi-block versions
of both preceding methods. The structured mesh consists entirely of grid cells that are quadrilaterals
in 2-D and hexahedra in 3-D and the unstructured method of a mix of quadrilaterals and triangles in
2D and of hexahedra, tetrahedra, prisms and pyramids in 3D. The multi-block methods divides the
physical space into a number of topologically simpler parts -blocks - which can be more easily meshed
using a structured or unstructured mesh [1]. When we have a geometry that is regular (e.g. rectangle),
the mesh is simple to generate: the grid lines follow the coordinate directions. On the other hand for
complex geometries the choice is not trivial. Unstructured meshes are the rule rather than the exception
when considering complex geometries. However the generation of unstructured meshes is non-trivial,
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(a)

(b)

Figure 1.2: Mixed mesh of the DLR F6 aircraft model. (a) the surface mesh of the F6 aircraft model, it contains
14,866 nodes and 29,732 triangle elements. The close up shows the complex concave regions and corner nodes. (b)

presents a cut view of the hybrid mesh for exterior flow simulations, in which 689,281 prisms, 160,452 tetrahedron and
9441 pyramids are contained. The closeup shows the mesh details around two complex corners. The Figures are adopted

from [5].

computationally expensive and it usually consumes the largest amount of the simulation time by far.
This is due to the significant manual intervention (e.g. when improving mesh quality, which is assessed
by several metrics such as skewness, Smoothness, shapes and sizes of elements but also the optimal
balance between the computational cost and the level of fineness etc.). It is normal for a designer to
spend several weeks on generating a single grid [4]. As an example, in Figure 1.2 a mixed mesh for the
DLR F6 aircraft model is shown. In the close ups several complex corner nodes are shown that create
a challenge for the grid generation.

The governing equations that are to be solved are conservation laws (e.g. mass conservation and momen-
tum conservation) therefore the numerical scheme should also satisfy these laws on a local and global
basis. This is yet another challenge in CFD. These numerical schemes are referred to as conservative
schemes. They ensures that the conservation laws are satisfied at a discrete level so that the error can
only be improperly distributed over the solution domain. Non-conservative schemes create artificial
sources and sinks, and therefore violating the conservation laws but can still be consistent and stable
and consequently give the correct solution in the limit of a very fine grid. The errors due to conservation
are only observable on coarse grids. The problem is that it is difficult to know on which grid these
errors are small, therefore conservative schemes are preferred [4].
In this master thesis we focus on conservative numerical methods which are able to satisfy physical
constraints on a discrete level. More specifically we are interested in flows with constant fluid density
(or gases with a Mach number below 0.3), these are incompressible flows. For these flows the mass
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conservation equation reduces to the simple expression:

∇ · v = 0,

where v is the velocity of the fluid.

Figure 1.3: On the left a bodyfitted mesh is shown that conforms to the boundary of the geometry and on the right an
unfitted mesh is shown with an immersed geometry.

To overcome the first challenge the complex geometry is immersed in the mesh rather than the mesh
being fitted to the geometry as shown in Figure 1.3. This makes the time consuming and computa-
tionally expensive meshing step redundant when simulating fluid flow. Examples of methods that solve
the governing equations by using an unfitted mesh are the Finite cell method [6] the Fictitious domain
FEM [7][8] and Cut-FEM [9]. The basic idea of these methods is to extend the domain of computation
up to the boundaries of an embedding domain, which can be meshed more easily. All of the methods
are in principle Galerkin methods, which is also the method of choice in this master thesis. More specif-
ically we choose spline based trial and test spaces. The idea of using spline based spaces originates
from the concept of Isogeometric analysis which was introduced by Hughes et al. in [10]. Spline spaces
favour higher order inter element continuity compared to standard FEM spaces (such as Lagrange and
Hermite polynomial spaces). Moreover they attain the same order of convergence with far less degrees
of freedom making them far more efficient. Our method of choice shares the same problems as all the
other unfitted methods/immersed methods.

To start with immersed methods require special quadrature rules on the grid cells intersected by the im-
mersed geometry (trimmed elements). There are several possible methods to integrate on such trimmed
element. The first one being NURBS-enhanced integration scheme, it requires the intersection points be-
tween the mesh and a NURBS representation of the boundary of the immersed geometry. The trimmed
element is partitioned into disjoint triangles and NURBS curved sided triangles. For the former stan-
dard Quadrature rules are applied and for the latter a special mapping is introduced to distribute the
quadrature point appropriately [11]. Moreover the introduced mappings include the functions used for
the representation of the geometry, consequently it uses the exact geometrical representation. Another
possibility is quadrature free integration scheme. The idea is to successively apply the divergence theo-
rem to transform integrals over boundary representations into line integrals with polynomial integrands.
The resulting integrals are solved analytically with machine precision accuracy [12]. Lastly we have the
Quadtree/ Octree methods. The general idea is to capture the geometry of a trimmed element by
recursively bisecting trimmed sub elements that intersect with the boundary of the domain. At every
level of this recursion, sub-cells that are completely inside the domain are preserved, while sub-cells
that are completely outside of the domain are discarded [13]. The latter option might be cumbersome
since every point needs to be evaluated whether it lies within or outside the immersed geometry. In
addition under mesh refinement and when utilizing higher order basis functions a lot of recursive levels
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are necessary and consequently a lot of quadrature points are necessary to retain optimal convergence
rates. From an implementation point of view we opt for the NURBS-enhanced integration scheme since
it reuses the routines implemented for the untrimmed elements.

Another challenge is imposing essential boundary conditions. The boundary of the geometry is not
fitted by the mesh therefore it is not clear how to enforce essential boundary conditions. A possible
way of enforcing these boundary conditions is by rewriting it as a robin boundary condition with a
penalty parameter. By doing this the boundary equation are enforced weakly. This way of enforcing
the boundary condition is referred to as the penalty method [14]. The drawback of this method is that
the choice of the penalty parameter is challenging. It needs to be a large value to properly enforce the
boundary condition and consequently making the condition number of the Galerkin matrix very large.
Another possibility is the Lagrange multiplier technique [15], here the boundary conditions are treated
as constraints in the minimization problem by introducing a Lagrange multiplier function. The main
disadvantage of the Lagrange Multiplier technique is that it requires the user to introduce an appro-
priate space for the unknown Lagrange function, which must be carefully selected. In this Literature
review we use Nitsche’s method [16] to enforce the boundary conditions on the immersed geometry.
Nitsche’s method is similar to the penalty method, it enforces the essential boundary conditions weakly
by altering the weak form and introducing a parameter. In contrast to the penalty method the stability
parameters are evaluated by solving a local generalized eigenvalue problem at the essential boundary
condition thereby allowing for a systematic way of choosing the parameter[17][18].

Moreover all of the mentioned immersed methods have conditioning problems. Standard fitted galerkin
methods impose conditions on the shape and sizes of the elements in the considered meshes. For the
immersed methods one has no control over the shape and size of the trimmed elements. Therefore
trimmed elements can have arbitrarily small intersections with the immersed geometry. This yields ill-
conditioned linear systems because basis functions can have an extremely small support on an element
in the physical domain[19]. This was already noted by Klaus and Höllig [20][21], they introduced the
Weighted Extended B-spline (WEB-spline) spaces. By adjoining the basis functions with small support
with the stable basis functions, the condition number of the linear systems become independent of the
location of the immersed geometry. However this requires the use of weight functions which for general
domains have to be constructed numerically. Since we intend to enforce the essential boundary condi-
tions weakly via the Nitsche’s method the weight functions are omitted and the WEB-spline spaces are
reduced to Extended B-spline spaces as described in [22].

Finally, we consider the second challenge, that is satisfying the conservation laws on the discrete level.
For incompressible fluid flow, divergence-conforming B-splines spaces are a favorable candidate for the
trial and test spaces, as introduced by Buffa et al. [23] in the context of Stokes flow in 2D. These spaces
produce pointwise divergence-free velocity fields, thereby satisfying the incompressibility constraint. Fur-
thermore, the divergence-conforming B-spline spaces conserve linear and angular momentum, energy,
and vorticity. They are a generalization of other well-known finite element spaces, such as the Taylor-
Hood, Nédélec, and Raviart-Thomas pairs of finite element spaces. These specific B-spline spaces were
derived for three-dimensional vector spaces in [24]. They were inspired by the theory of finite element
exterior calculus (FEEC), introduced by Arnold et al. [25], [26], which preserves essential topologi-
cal and homological structure at a discrete level, thereby producing accurate and stable finite element
spaces. However, the divergence-conforming B-spline spaces suffer from ill-conditioning in the context
of immersed methods. The research on immersed methods that overcome the conditioning problems and
simultaneously satisfy the incompressibility constraints is ongoing. A recent publication is given in the
context of cutFEM applied to Darcy flow problems [27] (pre-print), where the Raviart-Thomas space,
the Brezzi-Douglas-Marini spaces are employed to approximate the velocity field and a discontinuous
space to approximate the pressure. Furthermore, the ghost penalty stabilization method is employed
to control the condition number of the resulting linear system matrix, but it destroys the conservative
property, which is rectified by introducing yet another stabilization. Another recent approach is in the
context of the finite cell method for Stokes problem [28], where again a specific type of finite element
spaces (Taylor–Hood, Sub-grid, Raviart–Thomas, and Nédélec elements) are used, but the condition-
ing problems are left unaddressed and only the convergence properties are evaluated. Lastly, in the
context of fictitious domain method applied to Stokes flow [29], linear finite element spaces are used
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together with a stabilization. All of the aforementioned attain the correct convergence order and for
the first and latter, the condition number of the resulting linear system is independent of the location
of the immersed geometry. However, one thing that is shared between the latter methods is that they
use a stabilization in combination with specific finite element spaces (e.g. Taylor-Hood, Nédélec, and
Raviart-Thomas lower order finite element spaces) as their trial and test spaces.

The goal of this Master thesis is to construct Immersed Divergence-Conforming Finite Element Spaces,
such that the resulting condition number of the associated Galerkin matrix is independent of the location
of the trimming curve. We do this by answering the following research questions:

RQ 1: What extended B-spline spaces form a structure preserving subcomplex of the B-spline
spaces satisfying the de Rham complex in one and two dimensional domains?

and if constructed

RQ 2: Is the condition number of the Galerkin matrix associated to the constructed structure
preserving finite element spaces irrespective of the location of the trimming curve?

RQ 3: Do the constructed structure preserving finite element spaces satisfy the standard
error estimates for elliptic problems?

To begin with, the theoretical background is introduced in Chapter 2, which concisely introduces B-
splines, NURBS, the Immersed FEM, and Structure preserving discretization. Afterward, A structure
preserving complex is constructed in for one and two dimensional finite element spaces in chapter 3 and
assessed trough numerical experiments in the subsequent Chapter 4. Finally, in Chapter 5 a conclusion
is drawn together with a recommendation for future work.



2
Background Theory

In this chapter the theoretical background is concisely introduced. We start with B-splines, where we
introduce B-spline basis functions and B-spline curves which form the basis for the next two sections,
NURBS and the immersed Finite element method. NURBS are used to define the trimming curve which
forms the boundary of the immersed body. Hitherto the geometrical representation of the immersed
body is concluded and the immersed finite element method is introduced extensively together with finite
element bases utilizing B-spline basis functions and extended B-spline basis functions. To conclude a
brief section is devoted to structure preserving discretization.

2.1. B-splines
As mentioned before the B-splines form the basis of the next two section. We start by defining the
B-spline basis functions together with their properties and derivatives. Thereafter the B-splines curves
are defined, the B-spline curves are constructed by linear combinations of B-spline basis functions. For
an extensive explanation we refer to the books by Piegl and Tiller [30] and De Boor [31]. To define
B-spline basis functions a knotvector, Ξ, and an order p ∈ N, must be given.

Definition 2.1.1. A knotvector is a non-decreasing set of real numbers

Ξ = {ξ1, ξ2, . . . , ξn+p+1},

where ξi ∈ R is the i-th knot and i is the index of the knot, p is the order of the polynomial basis
functions and n the number of basis functions.

Knotvectors are uniform if the knotvalues are equally spaced and non-uniform otherwise. Furthermore
Knot values may be repeated, the number of times a knotvalue appears in a knotvector is defined as
the multiplicity of the knotvalue, mi. This has implications for the basis functions. Additionally a
knotvector is said to be open if the the last and first knotvalue have multiplicity p+ 1.

Given a knotvector Ξ and an order p ∈ N. The i-th basisfunction (1 ≤ i ≤ n) of degree p, Ni,p(ξ), is
defined recursively due to De Boor, Cox, and Mansfield [32] [33] [31]:

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise
, (2.1)

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), p = 1, 2, . . . . (2.2)

The B-spline basis functions with uniform knotvector of order p have the following important properties:

1. Homogeneous, The basis functions have the same shape but are translated.
2. Partition of union,

∑n
i=1Ni,p(ξ) = 1, ∀ξ ∈ [ξ1, ξn+p+1].

6
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3. Non-negativity, Ni,p(ξ) ≥ 0, ∀ξ ∈ [ξ1, ξn+p+1].
4. Ni,p has p − 1 continuous derivatives across the knot values. (Note: all derivatives exist on the

interior of each knot interval.)
5. Local support property, the support of Ni,p is p+1 knot spans. More specifically it is nonzero on

[ξi, ξi+p+1].
6. Linear independence. Due to this property every piecewise polynomial fp,Ξ of degree p over a

knot sequence Ξ can be uniquely described by a linear combinations of Ni,p. Therefore they form
a basis on the spline space Sp,Ξ, collecting all functions of the form Sp,Ξ =

∑n
i=1Ni,pci, ci ∈ R

[34].

The proofs of the first five properties can be found in [30, p. 55]. It is important to note that the first
property does not hold for non-uniform knot vectors. Additionally, knot values may be repeated in
non-uniform knot vectors, which reduces the number of continuous derivatives across knot values. In
general, basis functions of order p have p −mi continuous derivatives across the knot value ξi. When
mi = p, the basis function becomes interpolatory at the knot value ξi, and when mi = p+ 1, the basis
function becomes discontinuous. Figure 2.1 shows the basis functions for a uniform and non-uniform
knot vector. An important difference between them is the number of basis functions and the continuity
across the knot values. It is evident that for the non-uniform knot vector, the nonzero basis function
at knot value 2 is C0.

(a) (b)

Figure 2.1: Comparison between B-spline basis functions of order p = 2 with different type of knotvectors. (a) B-spline
basis functions with the uniform knotvector Ξ = {0, 1, 2, 3, 4}, (b) B-spline basis functions with the non-uniform

knotvector Ξ = {0, 0, 0, 1, 2, 2, 3, 4, 4, 4}.

Another important remark is that it seems that the local support of some basis functions has reduced
for the non-uniform knotvector, but note that the local support is given by [ξi, ξi+p+1) and that knot
values may be repeated. The derivatives of a B-spline basis function are given by equation (2.3), which
can be derived by induction from equation (2.1) (see [30, p. 59]).

dk

dkξ
Ni,p(ξ) =

p

ξi+p − ξi

(
dk−1

dk−1ξ
Ni,p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dk−1ξ
Ni+1,p−1(ξ)

)
. (2.3)

Note that the derivative is zero for k > p. Finally we want to make a remark regarding the evaluation
of the B-spline basis functions. The evaluation of a basisfunction Ni,p(ξ) or its derivative at a point ξ̃
using the recursive equations (2.1) and (2.3) is computationally time inefficient [35], since it requires
the evaluation of a truncated triangular table. A lot of these evaluations are redundant due to the local
support property of the basis functions. Fortunately there are more time efficient algorithms exploiting
this property to evaluate the basisfunction and its derivatives, for instance Algorithms A2.2 [30, p. 70]
and A2.3 [30, p. 72]). The B-splines basis functions can be used to define curves.

Definition 2.1.2. A p-th degree B-spline curve is defined by

C(u) =

n∑
i=1

Ni,p(u)Pi, a ≤ u ≤ b,
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where Pi are the control points, and Ni,p B-spline basis functions of order p with open knotvector
U = {a, . . . , a︸ ︷︷ ︸

p+1

, up+1, . . . , un, b, . . . , b︸ ︷︷ ︸
p+1

}

The polygon formed by the control points {Pi} is called the control polygon. The properties of the
B-spline curve are derived from the properties of the B-spline basis functions. The most important
properties are:

1. if n = p and U = {a, . . . , a, b, . . . , b} then C(u) is a Bézier curve (which is a different way of
representing curves and a special case of B-spline curves).

2. C(u) is a piecewise polynomial curve, since Ni,p(u) are piecewise polynomials.
3. Endpoint interpolation: C(0) = P0 and C(1) = Pn., because the knotvector is assumed to be

open.
4. Strong convex hull property: the curve is contained in the convex hull of its control polygon. More

specifically, if u ∈ [ui, ui+1) such that p ≤ i < n− p then C(u) is in the convex hull of the control
points Pi−p, . . . ,Pi.

5. The control polygon represents a piecewise linear approximation of the curve. Additionally the
approximation is improved by knotrefinement (see Figure 2.2).

6. The continuity and differentiability of the curve follows from the basis functions, therefore the
curve is infinitely often differentiable on the interior of the knots and at least p − mi times
differentiable at the i-th knotvalue, where mi is the multiplicity.

In Figure 2.2 a B-spline curve with its control polygon and basis functions is shown. In addition the
control polygon for a knot refinement is shown and shows an improved linear approximation to the
curve.

(a) (b)

Figure 2.2: A B-spline curve with its corresponding basis functions. (a) The basis functions with knotvector
U = {0, 0, 0, 1/7, 2/7, . . . , 6/7, 1, 1, 1} of order p = 2. (b) The B-spline curve with control points P1 = [0,0.1], P2 =

[0.1,0], P3 = [0.2,0], P4 = [0.2,0.2], P5 = [0.4,0.2], P6 = [0.6,0.4], P7 = [0.2,0.6], P8 = [0.1,0.3], P9 = [0,0.5]. In addition
the control polygon of a knotrefinement is shown to illustrate the piecewise approximation.

The derivatives of a B-spline curve are defined straightforwardly since it is a linear combination of
control points and B-spline basis functions. The k-th derivative of a B-spline curve is determined by
computing the k-th derivative of the B-spline basis functions:

Definition 2.1.3. Let C(k)(u) denote the k-th derivative of C(u) then

C(k)(u) =
n∑

i=1

N
(k)
i,p (u)Pi, a ≤ u ≤ b.

To compute a point on the B-spline curve or its derivatives the B-spline basis functions need to be evalu-
ated . As mentioned earlier in this subsection evaluating the B-spline basis function is computationally
inefficient, therefore computational efficient algortihm exist to evaluate a point on the B-spline curve
and its derivatives, see for instance Algorithm A3.1 [30, p. 82] and Algorithm A3.2 [30, p. 92].
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2.2. NURBS
NURBS are an acronym for Non-Uniform Rational B-Splines, they are the industry standard for rep-
resentation, design and data exchange of geometric information processed by computers. NURBS are
successful because of the following reasons:

1. NURBS algorithms are fast and numerically stable.
2. NURBS can represent a variety of things: analytic shapes, such as conic sections and quadratic

surfaces, as well as free-form entities, such as car bodies and ship hulls.
3. NURBS curves and surfaces are invarient under common geometric transformations.

All of these reasons have made NURBS popular in CAD [30]. We start this section by defining NURBS
and give their properties together with their derivatives and conclude by illustrating an important
application of knot insertion. Again we refer to the book by Piegl and Tiller [30] for a more detailed
explanation.

Definition 2.2.1. A p-th degree NURBS curve is defined by

C(u) =

∑n
i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

, a ≤ u ≤ b,

where Pi are the control points, {wi > 0} the weights, and Ni,p(u) the B-spline basis functions of order
p with open knotvector U = {a, . . . , a︸ ︷︷ ︸

p+1

, up+1, . . . , un, b, . . . , b︸ ︷︷ ︸
p+1

}

Next we define the rational basis functions:

Ri,p =
Ni,p(u)wi∑n
j=1Nj,p(u)wj

(2.4)

this allows for a compact notation of a NURBS curve

C(u) =

n∑
i=1

Ri,p(u)Pi (2.5)

The rational basis functions, Ri,p have the following important properties, which are mostly derived
from the properties of the B-spline basis functions:

1. Nonnegativity, Ri,p(u) ≥ 0, ∀i ∈ [1, . . . , n], p and u ∈ [u1, un+p+1]

2. Partition of union, ∀u ∈
∑n

i=1Ri,p(u) = 1.
3. Local support property, the support of Ri,p(u) is p+1 knot spans. More specifically it is nonzero

on [ui, ui+p+1].
4. All derivatives of Ri,p exist on the interior of each knot interval, where the rational function has

a nonzero denominator and p−mi continuous derivatives across the knots.
5. if wi = 1 ∀i ∈ 1, . . . , n then Ri,p = Ni,p, ∀i ∈ 1, . . . , n.

These properties of the rational basis functions give the following geometrical properties for the NURBS
curves:

1. Endpoint interpolation: C(0) = P0 and C(1) = Pn., because the knotvector is assumed to be
open.

2. Strong convex hull property: the curve is contained in the convex hull of its control polygon. More
specifically, if u ∈ [ui, ui+1) such that p ≤ i < n− p then C(u) is in the convex hull of the control
points Pi−p, . . . ,Pi.

3. The control polygon represents a piecewise linear approximation of the curve.
4. The continuity and differentiability of the curve follows from the basis functions, therefore the

curve is infinitely often differentiable on the interior of the knots, where the rational basis func-
tions are nonzero and at least p −mi times differentiable at the i-th knotvalue, where mi is the
multiplicity.
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5. A NURBS curve without interior knots is a rational Bézier curve.

The derivatives of a NURBS curve are more complicated than than the derivatives of a B-spline curves,
since we have to work with rational functions. Therefore we want to express the derivatives of the
NURBS curves as the derivatives of the B-spline curves. To this end, we define the weighted control
points Pw

i = (wixi, wiyi, wizi, wi), where xi, yi, zi are the spatial components of the coordinates of the
control points. Then define the non-rational B-spline curve in four dimensional space:

Cw(u) =
n∑

i=0

Ni,p(u)Pw
i

Furthermore the map H is introduced:

P = H {Pw} = H{(X,Y, Z,W )} =

{(
X
W , Y

W , Z
W

)
if W ̸= 0

direction (X,Y, Z) if W = 0
(2.6)

The map H applied to Cw(u) gives the NURBS curve C(u).

Definition 2.2.2. Let C(u)(k) denote the k-th derivative of C(u) then

C(k)(u) =
A(k)(u)−

∑k
i=1

(
k
i

)
w(i)(u)C(k−i)(u)

w(u)
,

where A(u) is the vector-valued function whose coordinates are the first three coordinates of Cw(u) and
w(u) the last coordinate of Cw(u).

The k-th derivative of the NURBS curve C(k)(u) is expressed in terms of A(k)(u) and k − 1 derivatives
of w(u), which are determined by taking the derivative of Cw(u) using Definition 2.1.3, since Cw(u) is
a non rational B-spline curve. The derivatives allow for the evaluations of the normal and tangent
vectors. In Figure 2.3 a circle is approximated using a NURBS curve. The circle is constructed
using four 90◦ arcs in each quadrant, this is apparent from the knotvector which is given by U =
{0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1} with order p = 2. At each double knot the basis functions are
C0 continuous and hence the curve as well. The points that are C0 continuous are called cusps. That
happens at every point where the 90◦ arcs meet.

Figure 2.3: A NURBS curve representing a circle with knotvector U = {0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1} of
order p = 2, control points {P1} = {[1, 0], [1, 1], [0, 1], [−1, 1], [−1, 0], [−1,−1], [0,−1], [1,−1], [1, 0]} and weights

{wi} = {1,
√
2/2, 1,

√
2/2, 1,

√
2/2, 1

√
2/2, 1}. In addition the normal and tangential vectors at the point u = 0.2 are

shown by evaluating the derivative of the NURBS curve.
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In addition the tangential vector is evaluated at u = 0.2, which is equal to C(1)(0.2), and normal vector
are shown.

A fundamental tool when considering NURBS curves ( and B-spline curves ) is knot insertion. The
problem statement is as follows: Let Cw(u) =

∑n
i=0Ni,p(u)Pw

i be a NURBS curve with knotvec-
tor U = {u0, . . . , um}. Let ū ∈ [uk, uk+1), and insert ū in U to form a new knotvector Ū =
{ū0 = u0, . . . , ūk = uk, ūk+1 = ū, ūk+2 = uk+1, . . . , ūm+1 = um}. The curve Cw(u) is given by

Cw(u) =
n+1∑
i=1

N̄i,p(u)Qw
i ,

where the basis functions N̄i,p(u) are known and determined by equation (2.1) using the known or-
der and knotvector Ū , therefore knot insertion boils down to determining the controlpoints {Qw

i }.
To determine these controlpoints we refer to Algorithm A5.1 in [30, p.151]. An important ap-
plication of knot insertion is curve splitting. Consider the curve in Figure 2.3, where p = 2 and
U = {0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1}. We insert the knot ū = 1/3 and ū = 2/3 three times.
This splits the curve at the both points and as a result a new splitted NURBS curve is obtained as
shown in Figure 2.4. In general suppose ū ∈ [uk, uk+1) initially has multiplicity s then the curve is
splitted if p− s+ 1 knots are inserted.

Figure 2.4: The NURBS curve representing a circle and a splitted NURBS curve obtained by p+ 1 knot insertions at
u = 1/3 and u = 2/3.

2.3. Immersed Finite Element Method
The finite element method (FEM) is a widely used numerical method to solve partial differential equa-
tions that emerge in engineering and physics problems. There exist several free and commercial software
packages like FEniCS, COMSOL Multiphysics, ANSYS and many more. The main idea of the finite
element method is to divide the domain in smaller subdomains, on which we define functions to ex-
pand the exact solution with. Moreover before the problem is actually solved the domain is meshed
as a pre-processing step. This is the most time consuming part and is actually a piecewise polynomial
approximation of the domain. In this section the geometry is immersed in the mesh rather than the
mesh being fitted to the geometry as shown in Figure 1.3. This makes the time consuming and com-
putationally expensive meshing step redundant when simulating. Additionally we consider B-spline
basis functions as introduced in section 2.1 instead of the standard the FEM-approximation such as the
Lagrange (C0-continuous) and Hermite polynomials (C1-continuous), which have a low inter-element
continuity. B-spline basis functions favour higher inter-element continuity. Moreover they attain the
same order of convergence with far less degrees of freedom making them far more efficient. In addition
we restrict to a unit square domain, Ω = [0, 1]× [0, 1]. We start by introducing the Galerkin method to
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reduce an infinite dimensional problem to a finite dimensional problem, thereafter we define a finite ele-
ment bases for the immersed FEM. Moreover imposing essential boundary conditions on the introduced
finite element bases require special attention which will be covered in the subsequent section and finally
in the last section the numerical integration over trimmed and untrimmed elements is considered. For
a more detailed treatment regarding theory and implementation of FEM and the use of B-spline basis
functions for FEM we refer to the text-books [36] [10]. The Poisson equation is considered as example
differential equation throughout this section:

Find u : Ω̄→ R such that 
−∆u = f in Ω,

u = g on ΓD,

∇u · n = h on ΓN ,

(2.7)

where ΓD ∪ΓN = Γ = ∂Ω, ΓD ∩ΓN = ∅ and n is the unit outward normal vector on ∂Ω. The functions
f : Ω → R, g : ΓD → R, h : ΓN → R are given. This form of the Poisson problem is referred to as the
strong form of the boundary value problem.

2.3.1. Galerkin method
Before FEM became popular the terms “Galerkin method” and “FEM” were used interchangeably.
While FEM has grown considerably the core of its approach is still in line with the Galerkin method.
In short, The Galerkin method is a general strategy to convert a continuous (variational) problem into
a finite dimensional system of linear equations. Before the Galerkin method can be applied the problem
needs to be reformulated in its weak form. In equation (2.7) the strong form requires the solution
u ∈ C2

0 (Ω̄), whereas the weak form allows the solution to be in a “larger” set making the solution
“weaker”. In order to rigorously introduce the weak form several definitions are introduced.

Definition 2.3.1 (Smooth functions with compact support). Let Ω ⊂ Rd be a domain and define the
space of all smooth functions with compact support on Ω

C∞
c (Ω) := {h : Ω→ R | h is infinitely differentiable and supp(h) ⊂ Ω is compact }

Definition 2.3.2 (Square integrable function). Let Ω ⊂ Rd be a domain and define the space of all
square integrable functions on Ω

L2(Ω) =

{
v : Ω→ R|

∫
Ω

|v(x)|2dx <∞
}
,

which is a vector space with the inner product (u, v)L2(Ω) =
∫
Ω
u(x)v(x)dx and corresponding induced

norm ∥u∥L2(Ω) =
√

(u, u)L2(Ω).

Definition 2.3.3 (Weak derivative). Let Ω ⊂ Rd be a bounded domain with a piecewise smooth boundary.
Then v ∈ L2(Ω) is the weak derivative of u of order α if∫

Ω

vφdx = (−1)|α|
∫
Ω

uDαφdx ∀φ ∈ C∞
c (Ω), where Dαf =

∂|α|f

∂xα1
1 . . . ∂xαn

n
.

Definition 2.3.4 (k-th Sobolev space).

Hk(Ω) =
{
u : Ω→ R|u ∈ L2(Ω), Dαu ∈ L2(Ω) for |α| ≤ k

}
.

Given the above definitions, let H1(Ω) be called the trial space in which we search for a solution and
let H1

0 = {w ∈ H1(Ω)|w(x) = 0 on ΓD} be called the test space, the space of test functions. Next the
Strong problem is multiplied with a test function and integrated over the domain Ω.

−
∫
Ω

∆u · v dx =

∫
Ω

fv dx ∀v ∈ H1
0 .

Applying the product rule, ∇ · (v∇u) = ∇u · ∇v + v∇ · (∇u)︸ ︷︷ ︸
=∆u

, gives
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∫
Ω

∇u · ∇v dx−
∫
Ω

∇ · (v∇u)dx =

∫
Ω

fv dx ∀v ∈ H1
0 .

Next we apply the theorem of Gauss to arrive at.∫
Ω

∇u · ∇v dx−
∫
Γ

n · (v∇u) dx =

∫
Ω

fv dx ∀v ∈ H1
0 ,

where n denotes the outward normal vector. The integral over the boundary can be rewritten as a
separate integral over the disjoint boundaries ΓD and ΓN . Furthermore note that on ΓD, the test
functions are zero and therefore the integral on ΓD as well. On ΓN , ∇u · n = h and the test functions
are nonzero resulting in the following weak form

Find u ∈ H1(Ω) with u = g on ΓD such that
∫
Ω

∇u · ∇v dx︸ ︷︷ ︸
:=a(u,v) bilinear form

=

∫
ΓN

hv dx+

∫
Ω

fv dx︸ ︷︷ ︸
:=F (v) linear form

∀v ∈ H1
0 .

(2.8)
The Dirichlet boundary conditions are called essential boundary conditions for this problem, since they
affect the choice of the underlying space H1

0 . The Neumann boundary conditions are called natural
boundary conditions, since they do not affect the space H1

0 .

Having derived the weak formulation, the Galerkin method can be applied. The method can be sum-
marized as follows:

1. Get the weak formulation: Let V , W two vector spaces. Then the weak formulation is:

Find u ∈ V such that a(u, v) = F (v) ∀v ∈W.

V is the trial space and W is the test space. In general W and V coincide
2. Perform a Galerkin dimension reduction: For each n ∈ N let Vn ⊂ V be a subspace of V

with dim(Vn) = n. Then the Galerkin equation is given by:

Find un ∈ Vn such that a (un, vn) = F (vn) ∀vn ∈ Vn, (2.9)

which formulates the problem projected on Vn.
3. Derive a linear system of equations: Vn is a finite dimensional space, therefore there exist a

basis {ϕ1, . . . , ϕn} of Vn. Consequently the solution can be written as un =
∑n

i=1 αiϕi. Using the
bilinear property of a(·, ·) and substituting un in the Galerkin equation gives:

Find αj ∈ R ∀j ∈ {1, . . . , n} such that
n∑

j=1

αja (ϕj , ϕi) = F (ϕi) ∀i ∈ {1, . . . , n}.

This translates to a matrix vector equation given by:

Anα =

 a (ϕ1, ϕ1) · · · a (ϕn, ϕ1)
... . . . ...

a (ϕ1, ϕn) · · · a (ϕn, ϕn)


 α1

...
αn

 =

 F (ϕ1)
...

F (ϕn)

 =: fn ∈ Rn.

The matrix An is the Galerkin matrix associated to the galerkin problem.

Note that if the discrete test space does not coincide with the discrete trial space, the method is called a
Petrov-Galerkin-method. In conclusion a variational problem on infinite dimensional spaces is reduced
to solving a linear system. Next the concept of Galerkin orthogonality is introduced. Let u the exact
solution and un ∈ Vn the solution of equation (2.9). Vn ⊂ V therefore

a(un, vn) = F (vn) = a(u, vn).
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This gives

a(un − u, vn) = 0, ∀vn ∈ Vn.

That is if a admits an inner product on V then the error is orthogonal to Vn with respect to the inner
product induced by a. This means that un gives the best approximation of an exact solution u in term
of the following norm:

∥v∥a =
√
a(v, v).

Thus the best approximation property is given by:

∥u− un∥a = inf
vn∈Vn

∥u− vn∥a .

This result allows us to state the standard error estimate for elliptic boundary value problems (for a
proof and derivation see [36, p.185])

Theorem 2.3.1. if u ∈ Hk+1(Ω) then

∥u− uh∥Hs ≤ chβ∥u∥Hk+1 ,

where c is a constant, independent of u and h (= mesh parameter, it can be chosen as diameter of the
largest element), β = min{k + 1 − s, 2(k + 1−m)}, k is the degree of polynomial of the element shape
functions and m is the order of the highest derivatives appearing in the billinear form a(·, ·). Note that
H0(Ω) = L2(Ω).

Lastly There is an estimate for the condition number of the Galerkin system arising from the model
problem (2.7). For standard finite element subspaces the condition number with respect to the 2-norm
(κ2(A) = ∥A∥2∥A−1∥2 ≥ 1) is bounded in terms of the mesh parameter h:

κ2(Ah) = Ch−2, (2.10)

where C is a constant independent of h. This concludes the chapter about the Galerkin method. In the
next section appropriate finite element spaces are considered.

2.3.2. Finite element Bases
Let Ω = [0, 1] × [0, 1] ⊂ R2. We construct finite element basis functions on regular grids using the
B-splines defined in section 2.1. We start by defining bi-variate B-spline basis functions and state
their properties, which are derived from the uni-variate B-spline basis functions. Thereafter a closed
trimming curve is introduced which trims the domain Ω and another finite element basis is constructed,
by stabilizing the former truncated finite element bases. Let p, q ∈ N and let the knotvectors Ξ and H
be defined as

Ξ = {0 = ξ1, ξ2, . . . , ξn1+p+1 = 1},
H = {0 = η1, η2, . . . , ηn2+q+1 = 1},

(2.11)

and open. We assume that all knots have multiplicity 1 ≤ r1 ≤ p+1 in knotvector Ξ and 1 ≤ r2 ≤ q+1
in knotvector H. In addition we introduce the ordered knotvectors

Ξ̄ = {ξ̄1, . . . , ξ̄l1},

H̄ = {η̄1, . . . , η̄l2},

which represents the vector of knots without repetitions, where l1 = (n1 − p − 1)/(r1 + 2) and l2 =
(n2 − q − 1)/(r2 + 2). Associated to these knotvectors is a mesh Ωh that partitions the domain into
rectangles (Grid cells/ elements):

Ωh = {Q = (ξ̄i, ξ̄i+1)× (η̄j , η̄j+1)|1 ≤ i ≤ l1 − 1 and 1 ≤ i ≤ l2 − 1}.
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Given an element Q ∈ Ωh, hQ = diam(Q), and h = max{hQ, Q ∈ Ωh}. The knotvectors Ξ and
H of order p and q respectively give rise to the B-spline basis functions {Ni(ξ)}n1

i=1 and {Ni(η)}n2
i=1

with α1 := p − r1 and α2 := q − r2 continuous derivatives across the knotvalues. As mentioned in
section 2.1 the B-spline basis functions are linear independent and therefore their span forms a spline
space. We define the spline spaces as Spα1

(Ωh) = span{Ni(ξ)}n1
i=1 and Sqα2

(Ωh) = span{Ni(η)}n2
i=1. This

notation differs from the notation introduced in section 2.1, since we assume knotvectors of the form
(2.11) therefore the spline spaces are fully characterized by their order, number of continuous derivatives
accros knotvalues and mesh. We define the tensor-product B-spline basis functions as:

Nij(ξ, η) := Ni(ξ)⊗Nj(η), i = 1, . . . , n1, j = 1, . . . , n2.

Then, the tensor-product B-spline space is defined as the space spanned by these basis functions

Sp,qα1,α2
= Sp,qα1,α2

(Ωh) := span {Nij}n1,n2

i=1,j=1 .

All the properties of the univariate B-spline basis functions stated in section 2.1: positivity, parity
of union, non-negativity, local support property and linear independence carry over due to the tensor
product construction. Now we consider a specific example. Let Ξ = {0, 0, 0, 0.5, 1, 1, 1} of order p = 2
and H = {0, 0, 0, 1, 1, 1} of order q = 2. Then in Figure 2.5a the uni-variate components of the tensor-
product B-spline basis functions in each parametric direction are shown for the domain Ω = [0, 1]× [0, 1].
In Figure 2.5b the specific basisfunction N3,2(ξ, η) with support [ξ3, ξ6]× [η2, η5] = [0, 1]× [0, 1] is shown.
Moreover only two knotspans have positive measure. To clarify this, the concept of index space is intro-
duced. The index space uniquely identifies each knot and discriminates knots with similar knot values.
The index space for this specific example is shown in Figure 2.6. The two knotspans with nonzero
measure are labeled Ω1 and Ω2. In addition the support of the two basis functions N3,2 and N1,1 are
shown, their indices coincides with the lower left corner of their support in index space. Henceforth the
coordinate of the lower left corner of the support of a basisfunction in index space is used as a label.

(a) (b)

Figure 2.5: A tensor product B-spline basis for the domain Ω = [0, 1]× [0, 1]. (a) The basis functions related to the
knotvectors Ξ = {0, 0, 0, 0.5, 1, 1, 1} of order p = 2 and H = {0, 0, 0, 1, 1, 1} of order q = 2. The basis functions in red are

the uni variate basis functions of the tensor product basis function shown in sub figure (b). (b) The Bi-variate basis
function N3,2(ξ, η) with its projections on the respective direction η and ξ.
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Figure 2.6: Index space of the bi-variate basis functions on the knotvectors Ξ = {0, 0, 0, 0.5, 1, 1, 1} of order p = 2 and
H = {0, 0, 0, 1, 1, 1} of order q = 2. Additionally the support of the basis functions N1,1 and N3,2 in respectively red and

blue is shown together with their labels in the lower left corner of the support. Moreover the two knot spans with
nonzero measure are labeled Ω1, Ω2.

Next we introduce a trimming curve C(u) on the domain Ω with a mesh Ωh induced by the knotvectors
Ξ and H with r1 = α1, r2 = α2 and order p and q. The trimming curve C(u), is defined by NURBS
as in definition 2.2.1 and we denote the order, knotvector, weights and control points of the trimming
curve by l, U , wi and Pi respectively. The trimming curve represents the boundary of a subdomain
D ⊂ Ω that trims the domain Ω. The model problem 2.7 is adjusted by adding an extra boundary
condition on the trimming curve: 

∆u = f in Ω,

u = g on ΓD,

u = k on ∂D,

∇u · n = h on ΓN ,

(2.12)

Note that now Γ = ΓD1
∪ ΓD2

∪ ΓN and that all boundaries are disjoint. The relevant basis functions
of the spline space Sp,qα1,α2

(Ωh) are those basisfunction which are nonzero for some x ∈ Ω \D.

Definition 2.3.5. (Spline space on a trimmed domain) Given a spline space Sp,qα1,α2
(Ωh) on the domain

Ω and a subdomain D ⊂ Ω which trims the domain Ω. The spline space on the trimmed domain is
defined as

Sp,qα1,α2
(Ωh \D) = {Ni,j ∈ Sp,q

α1,α2
(Ωh) : Ni,j(ξ̃, η̃) ̸= 0 for some (ξ̃, η̃) ∈ Ω \D}

For convenience, let the two dimensional index array K contains all the relevant basis functions. Then
Sp,qα1,α2

(Ωh \D) = span{Nk}k∈K .

The space on the trimmed domain can be seen as a restriction of the original space on the untrimmed
space. In Figure 2.7 the mesh induced by the space S2,21,1(Ωh) is shown with equally spaced knot values in
both parametric directions together with circles labeling the basis functions. Furthermore the trimming
curve from Figure 2.3 is used (after translating and rescaling) to represent the boundary of the trimmed
domain D, which is a centered circle with radius 0.25. All the relevant basis functions are labeled with
a white dot and are in the spline space S2,21,1(Ωh \D) while the redundant ones are labeled with a black
dot. In addition the support of a relevant basis function is shown in red. Its support in Ω \D is very
small, this leads to excessively large condition numbers of the Galerkin matrix (and the estimate 2.10
not being valid anymore). In [19], a specific example shows that the condition number is inversely
proportional to the size of the smallest boundary grid cell (more specifically to the power of a function
depending on the basis functions’ order and the domain’s dimension). This leads to an excessively large
condition number, increasing the solution’s sensitivity to changes in the right-hand side and reducing
the accuracy of numerical solutions. Additionally, it causes extremely slow convergence of iterative
methods. Note that other factors, such as initial guesses and eigenvalue distribution, also influence
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iterative method convergence. Consequently, the restrictive B-spline space is not uniformly stable with
respect to the mesh parameter h [20][21].

Figure 2.7: The domain Ω with its mesh Ωh and a trimming curve defined by a NURBS curve, more specifically the
NURBS curve defined in Figure 2.3. The white dots represent the relevant basis functions and the black dots the

redundant ones.

To overcome this problem the basis functions with small support are adjoined suitably with the stable
basis functions of Sp,qα1,α2

(Ω \D). This idea was introduced by Klaus Höllig et al. in [21] and is named
extended B-splines. To distinguish between the stable and unstable B-splines the mesh Ωh is partitioned
into interior, boundary and exterior gridcells and the basis functions are labeled as either inner or outer
basis functions depending on the gridcells in their support.

Definition 2.3.6. Given a spline space on a trimmed domain Sp,qα1,α2
(Ωh \ D). A gridcell Q ∈ Ωh is

classified as interior, boundary or exterior depending on whether Q ⊂ Ω̄\D, the interior of Q intersects
∂D or Q ∩ (Ω \D) = ∅. Then the relevant basisfunction of the space Sp,qα1,α2

(Ωh \D) on the trimmed
domain Ω \D

Nk, k ∈ K,

are called inner basis functions

Ni, i ∈ I,

if at least one interior cell is in their support, and outer basisfunction

Nj , j ∈ J = K \ I,

if the support of the basis function consist entirely of boundary and exterior grid cells.

In Figure 2.8 a continuation of the previous example is considered. The boundary, interior and exterior
gridcells are colored dark grey, lights grey and white respectively. In addition the inner basis functions
are labeled with a white dot and the outer basis functions with a black dot. The outline of the support
of two specific basis functions are shown in red and blue. The red outline contains one inner grid cell
and consequently the respective basis function is an inner basis functions. Unlike the blue outline, that
only contains boundary and outer gridcells, the corresponding basis functions is an outer basis function.
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Figure 2.8: Gridcell classification. The boundary, interior and exterior gridcells are colored dark grey, light grey and
white respectively. In addition the relevant basisfunction of the spline space on a trimmed domain are partitioned into

inner (white dot) and outer (black dot) basisfunction. Moreover the support of a specific inner and outer basisfunction is
shown in blue and red respectively.

To stabilize the space Sp,qα1,α2
(Ωh \ D), the outer b-splines are connected to the inner b-splines in a

suitable way. It is important that all polynomials of coordinate degree ≤ p and ≤ q remain an element
of the resulting stabilized subspace to preserve the approximation power of the space. We consider the
Marsden identity

Theorem 2.3.2 (Marsden Identity). For a bi-infinite knot sequence ξ, any polynomial of degree ≤ n
can be represented as a linear combination of B-splines. In particular, for any y ∈ R,

(x− y)n =
∑
k∈Z

ψn
k,ξ(y)N

n
k,ξ(x), x ∈ R,

where ψn
k,ξ(y) = (ξk+1 − y) · · · (ξk+n − y). (Note the change of notation of the B-spline basis function(Nn

k,ξ(x)).
This is to emphasize the order of the basisfunction, which is n and the dependence on the knotvector ξ.)

The Marsden’s identity shows how polynomials are represented as linear combinations of B-splines. This
identity is formulated for the whole real line but we only consider finite knotvectors. Restricting the
Marsden identity to a bounded domain gives the following quantitative result:

Theorem 2.3.3. Any multivariate polynomial f can be represented on the domain D as a linear
combination ∑

k∈K

g(k)Nk(x), x ∈ D,

where g is a multivariate polynomial of degree ≤ n in each variable kv.

Lets consider a polynomial f(ξ, η) then by the Marsden identity we arrive at:

f(ξ, η) =
∑
i∈I

g(i)Ni(ξ, η) +
∑
j∈J

g(j)Nj(ξ, η), (ξ, η) ∈ Ω \D. (2.13)

Since g is also a polynomial of coordinate degree ≤ p and ≤ q, we can determine g(j) using any
(p + 1)(q + 1) inner indices I(j) ⊂ I, if the polynomial interpolation problem at the points I(j) is
uniquely solvable. We denote the Lagrange polynomials of order n related to I(j) by lj,i, then:
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lj,i(k) = δi,k, i, k ∈ I(j)

and for fixed j we define: {
ei,j = lj,i(j), i ∈ I(j),
ei,j = 0, i /∈ I(j).

So that g(j) can be written as

g(j) =
∑

i∈I(j)

ei,jg(i)

Substituting this in equation 2.13 and interchanging the sum yields

f =
∑
i∈I

g(i)

Ni(x) +
∑

j∈J(i)

ei,jNj(x)

 ,
where J(i) = {j ∈ J : i ∈ I(j)}. The term in the brackets is the correct combination of inner and
outer B-splines. Using this linear combination all polynomials of coordinate degree ≤ p and ≤ q can be
represented without referring to the outer b-splines explicitly.

Definition 2.3.7 (Extended B-splines). For an outer index j ∈ J let I(j) = (ℓ1, ℓ2) + {0, . . . , p} ×
{0, . . . , q} ⊂ I be a 2-dimensional index array of inner indices closest to j, assuming that h is small
enough so that such an array exists. Moreover, denote by

ei,j =

2∏
ν=1

nν∏
µ=0

ℓν+µ ̸=iν

jν − ℓν − µ
iν − ℓν − µ

, where nν =

{
p if ν = 1,
q if ν = 2.

,

the values of the Lagrange polynomials associateed with I(j) and J(i) = {j ∈ J : i ∈ I(j)}. Then, the
extended B-splines

Bi = Ni +
∑

j∈J(i)

ei,jNj , i ∈ I

form a basis for the extended b-spline space eSp,qα1,α2
.

Note that this construction of the extended B-spline space requires uniform knot vectors. This way the
construction solely depends on the indices of the B-splines involved. For non-uniform knotvectors the
dual functional are required [31] and the simple structure is lost [37] [34]. Note that we are actually not
working with nonuniform knotvectors, the knotvalues at the boundary of the domain have a multiplicity
bigger than one in both coordinate direction but this does not pose a problem as long as the mesh is
fine enough and the trimming curve is not intersecting the boundary of the unit square domain that
we are considering.
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Figure 2.9: For several outer basis functions with index j the index set I(j) with the values of ei,j are shown.
Specifically, we focus on the outer basis functions with red, green, and blue trims. For each of these basis functions, we

show the index set I(j) of stable basis functions labeled with a white circle and their corresponding trim color.
Additionally, the extension coefficients eij are provided within the circles.

In Figure 2.9 the index set I(j) for several outer basis functions j is shown together with the values ei,j
of the Lagrange polynomial. For example lets consider the outer basis function with a green trim and
look at i = j − (3, 3)

ei,j =

(
3− 1

0− 1

3− 2

0− 2

)(
3− 1

0− 1

3− 2

0− 2

)
= 1,

Since j− ℓ = (3, 3) and i− ℓ = (0, 0), in the other two examples, many zeros appear due to the fact that
the Lagrange polynomials vanish whenever jν ∈ (ℓν + 0, . . . , n) \ iν for some ν. Conversely, in Figure
2.10, the index set J(i) for several inner basis functions j is shown (Note that only the outer basis
functions with ei,j ̸= 0 are shown). Moreover, the number of outer basis functions with nonzero ei,j is
different for each inner basis function. For instance, the red trimmed inner basis function has three outer
basis functions with nonzero ei,j in its index set J(i), whereas the green and blue trimmed inner basis
functions have only one. Additionally, the extended B-splines that are far away from the trimming
curve are just regular B-splines, i.e., J(i) = ∅. The extended B-splines inherit all the properties of
B-splines except for non-negativity, since the extension coefficients ei,j can be negative. Compared to
regular B-splines, extended B-splines have the property that the condition number of their associated
Galerkin matrix is independent of the location of the trimming curve since B-splines with small support
are substituted.
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Figure 2.10: For several inner basis functions with index i the index set J(i) with the values of ei,j are shown. The
considered inner basis functions have a red, green, and blue trims. For each of these basis functions, we show the index

set I(j) of unstable basis functions labeled with a black circle and their corresponding trim color. Additionally, the
extension coefficient eij is provided within the circle.

We conclude this section with a final remark concerning the assembly of the Galerkin matrix using
extended B-spline trial and test spaces in both global and local approaches. In the global approach, we
start by transforming the Galerkin matrix from the standard B-spline space given by.

Ahu = f, (2.14)
where Ah ∈ Rn×n is the Galerkin matrix for the B-spline spaces, u ∈ Rn and f ∈ Rn. For the extended
B-spline spaces, we introduce an extension matrix E ∈ Rm×n, where m < n and

ei,k =

 1 for k = i,
ei,j for k = j ∈ J(i),
0 otherwise,

(2.15)

to modify the linear system as follows

EAhE
T eu = Ef =⇒ eAh

eu = ef, (2.16)
with eAh ∈ Rm×m representing the Galerkin matrix for the extended B-spline spaces, ef ∈ Rm the
right hand side and eu ∈ Rm the vector containing the weight of each basis function in the extended
B-spline space. The global approach is particularly useful when there is an existing assembly procedure
implemented for the standard B-spline spaces. On the other hand, a more local approach is also
possible. In this case for each boundary grid cell, a local extension matrix is constructed to transform
the element matrices and vectors of the standard B-spline spaces to the extended B-spline spaces. This
local approach is discussed further in section 3.2.

2.3.3. Boundary conditions
The spline spaces defined in the previous section seem infeasible to enforce essential boundary conditions
since they are not interpolatory. Lets first consider the mother problem 2.7 on the untrimmed domain
Ω = [0, 1] × [0, 1] together with knotvectors defined in the previous section for illustration. Classical
finite elements generally interpolate g on the boundary. If g is a constant the same applies to the spline
space, but for a general function g this is not possible. Instead the boundary will only be enforced
approximatley gh|ΓD

≈ g. More specifically an L2 projection is considered [10]. The L2 projection
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projects an arbritrary function g ∈ L2(Ω) into a finite element space Vh ⊂ L2(Ω). Mathematically. the
following minimisation problem needs to be solved:

Find uh ∈ Vh such that uh = min1
2
∥uh − g∥2L2(Ω) .

This minimization problem is convex and therefore has a global minimum. Applying the Fréchet deriva-
tive the problem reduces to

Find uh ∈ Vh such that (uh, vh)L2(Ω) = (g, vh)L2(Ω), ∀vh ∈ Vh.

Applying Galerkin method from section 2.3.1 a linear system is obtained: Mα = b. Solving this system
gives the weights to expand the function g on the spline space. In this way the Dirichlet boundary
conditions are enforced on the boundaries of the untrimmed domain Ω. Note that the mesh is fitted
to the boundary meaning that the boundary of the mesh coincides with the the boundary of the
physical domain. In contrast the boundary ∂D is not fitted by the mesh. It is not clear how to enforce
essential boundary conditions. This problem occurs in meshfree and embedded finite element methods
where Nitsche’s method [16] is used to enforce Dirichlet boundary conditions weakly [17] [18]. Other
possible method exist like the the penalty method [14] and Lagrange multiplier technique [15], but
the former increases the condition number of the Galerkin matrix considerably and the latter requires
the introduction of an additional unknown function, therefore we consider Nitsche’s method. Nitsche’s
method enforces the Dirichlet boundary conditions weakly consequently the finite element spaces in the
weak formulations are not enforced to be zero at the boundary. Hence the weak formulation is altered.
For the mother problem on a trimmed domain 2.12 the weak formulation is now given by

Find u ∈ H1(Ω \D) with u = g on ΓD such that
∫
Ω

∇u · ∇v dΩ−
∫
∂D

v(∇u · n) + u(∇v · n) dΓ

+ α

∫
∂D

vu dΓ =

∫
ΓN

hv dΩ+

∫
Ω

fv dx−
∫
∂D

k(∇v · n)dΓ + α

∫
∂D

vk dΓ ∀v ∈ H1
0 ,

where H1
0 = {h ∈ H1(Ω \ D) : h|ΓD

= 0} and α ∈ R a stabilization parameter. The choice of α is
discussed in [38]. The stabilization parameter is chosen such that the bilinear form is coercive. This is
done by solving an eigenvalue problem. This can be done either locally or globally, where the former
is adopted for its efficiency and simplicity of implementation. For each boundary gridcell Ωe with a
trimming curve segment Γe (inside the boundary gridcell) the following generalized eigenvalue problem
is constructed:

Ax = ΛBx, where

[A]ij =

∫
Γe

(∇Ni · n) (∇Nj · n) dΓ,

[B]ij =

∫
Ωe

∇Ni · ∇Nj dΩ,

where Nk can be in either Sp,qα1,α2
(Ωh \D) or Sp,qα1,α2

(Ωh \D) and are the basis functions with support on
the considered boundary gridcell Ωe. Note that the domain integrals representing the entries in B are
evaluated on the entire domain irrespective of where the trimming curve intersects. Choosing α bigger
than the maximum eigenvalue obtained from the generalized eigenvalue problem ensures coercitiviy of
the bilinear form, hence we choose α = 2max(Λ).

2.3.4. Numerical integration
The Assembly of the Galerkin matrix requires the evaluation of integrals over trimmed and non trimmed
elements, where the latter is a rectangle. Lets first consider a non trimmed element Ωe = [ξk+1, ξk] ×
[ηl+1, ηl] and let f : Ωe ⊂ R2 → R be a given function that is smooth and integrable. We want to
evaluate
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∫
Ωe

f(x) dΩ =

∫ ξk+1

ξk

∫ ηk+1

ηk

f(ξ, η) dξ dη (2.17)

First the integral is mapped to a reference element Ωref = [−1, 1] × [−1, 1] by applying the linear
transformations

X(x) =
1

2
(ξk+1 − ξk)x+

1

2
(ξk+1 + ξk), Y (y) =

1

2
(ηk+1 − ηk)y +

1

2
(ηk+1 + ηk) (2.18)

yielding ∫ 1

−1

∫ 1

−1

f(X(x), Y (y))

∣∣∣∣12(ξk+1 − ξk)
∣∣∣∣ ∣∣∣∣12(ηk+1 − ηk)

∣∣∣∣ dx dy. (2.19)

We approximate this integral by Gaussian Quadrature in each dimension.

n
(1)
in∑

k=1

n
(2)
in∑

l=1

f (X(x̃l), Y (ỹk))wlwk

∣∣∣∣12(ξk+1 − ξk)
∣∣∣∣ ∣∣∣∣12(ηk+1 − ηk)

∣∣∣∣ , (2.20)

where the values for wk/wl and x̃l/ ỹk are tabulated in [39]. In one dimension the Gaussian Quadrature
is optimal and an accuracy of order 2nin is achieved by nin points [36]. This simple approach breaks
down when a trimmed element is considered, since the element is not a rectangle anymore. There are
several options to integrate on such a trimmed element:

1. NURBS-enhanced integration scheme: This requires the intersection points between the mesh Ωh

and NURBS trimming curve C(u). The trimmed element is partitioned in disjoint triangles and
NURBS curved side triangles. For the former standard Quadrature rules can be applied and for
the later a mapping is introduced [11].

2. Quadrature free integration scheme: By successively applying the divergence theorem, integrals
over boundary representations are transformed into line integrals with polynomial integrands and
solved analytically with machine precision accuracy [12].

3. Quadtree methods: The general idea of quadtree integration is to capture the geometry of a
cut-cell by recursively bisecting sub-cells that intersect with the boundary of the domain. At
every level of this recursion, sub-cells that are completely inside the domain are preserved, while
sub-cells that are completely outside of the domain are discarded [13]

We opt for the NURBS-enhanced integration scheme, since it reuses the routines from the untrimmed
elements. As mentioned this method requires the intersection points between the mesh and the trimming
curve a discussion on how to obtain these intersection points can be found in Appendix B. Moreover
a sub-curve needs to be extracted from the trimming curve for each trimmed element, as discussed in
section 2.2 by means of knot insertion. The trimmed elements are decomposed into triangles and NURBS
curve sided triangles. There are several possible decompositions depending on how the trimming curve
intersect the grid cell. In Figure 2.11 the different possibilities are distinguished by the number of
vertices of the polyhedron, due to the trimming process. For the first case we have five vertices and
split the trimmed grid cell into two triangles and one NURBS curve sided triangle. For the next case
we have four vertices and divide the trimmed grid cell into one triangle and one NURBS curve sided
triangle. For the last case with only three vertices no decomposition is necessary and the trimmed cell
is a NURBS curve triangle itself. We have several special cases, for instance a NURBS curve with a
high curvature. This should not pose a problem since a sufficiently fine grid is assumed to exclude
this situation. Another special case is that the trimming curve C(u), which is defined using NURBS,
has a knot inside the grid cell. At such a knot the properties of the NURBS curve may change (e.g.
continuity), hence the curve sided triangle is split into two NURBS curve sided triangles.
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Figure 2.11: Possible decomposition’s of the trimmed grid cell depending on the number of vertices of the resulting
polyhedron due to the trimming.

Now we discuss how to perform numerical quadrature on these decomposed trimmed elements. First
Gaussian quadrature on the regular triangles are discussed. In Figure 2.12 the quadrature rules defined
on a reference element Ωref = [−1, 1]× [−1, 1] are mapped to a regular triangle.

Figure 2.12: Mapping of quadrature points from a reference square to a triangle.

We start from the reference element Ωref = [−1, 1]× [−1, 1] and rescale it to a unit square by applying
the map P .

P : {x, y} → {u, ζ},


u =

ξ

2
+

1

2
,

ζ =
η

2
+

1

2
.

(2.21)

Thereafter the unit square is mapped to a reference triangle by collapsing one edge of the unit square
with the map T .

Q : {u, ζ} → {s, t},

{
s = u,

t = (1− u)ζ.
(2.22)

Lastly the reference triangle is mapped to the triangle element in the actual domain by applying the
map R.

R : {s, t} → {ξ, η},

{
ξ = ξ1s+ (1− s− t)ξ2 + ξ3s,

η = η1t+ (1− s− t)η2 + η3s.
(2.23)

In conclusion, to map the quadrature point from the reference element to the triangle element Te the
above mappings are consecutively applied. To this end we define the composition of these mappings as:

Ψregular = R ◦ T ◦ P. (2.24)

Now we consider Gaussian quadrature on the NURBS curve sided triangle. In Figure 2.13 the quadrature
rules defined on a reference element Ωref = [−1, 1]×[−1, 1] are mapped to a NURBS curve sided triangle.
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Figure 2.13: Mapping of quadrature points from a reference square to a curved triangle.

In contrast to the regular triangle, the reference square is re-scaled by applying the map S.

S : {x, y} → {u, ζ},


u =

ξ

2
(u2 − u1) +

1

2
(u2 + u1) ,

ζ =
η

2
+

1

2
,

(2.25)

where u1 and u2 are NURBS curve coordinates of the points (ξ2, η2) and (ξ3, η3) respectively, thereafter
the rectangle is mapped to the actual NURBS curve sided triangle by applying the map Q.

Q : {u, ζ} → {ξ, η}, (1− ζ)C(u) + ζ

[
ξ1
η1

]
(2.26)

Note that the vertices of the NURBS curve sided triangle need to be chosen carefully. The vertex that is
not on the NURBS curve is labeled as (ξ1, η1). To this end we define the composition of these mappings
as

Ψcurved = S ◦Q (2.27)

The defined mappings allow us to evaluate equation (2.17) over a trimmed gridcell Ωtrim. The trimmed
gridcell is decomposed in regular and curved triangles

∫
Ωe

f(x) dΩ =

Nregular∑
i=1

∫
Tei

f(x) dΩ+

Ncurved∑
i=1

∫
Tei

f(x) dΩ, (2.28)

where Nregular and Ncurved is the number of regular and curved triangles respectively. The integrals are
evaluated with quadrature after applying the mappings

Nregular∑
i=1

∫
Tei

f(x) dΩ+

Ncurved∑
i=1

∫
Tei

f(x) dΩ =

Nregular∑
i=1

n
(1)
in∑

k=1

n
(2)
in∑

l=1

f (Ψregular,i(x̃l, ỹk))wlwk|JΨregular,i(x̃l, ỹk)|

+

Ncurved∑
i=1

n
(1)
in∑

k=1

n
(2)
in∑

l=1

f (Ψcurved,i(x̃l, ỹk))wlwk|JΨcurved,i
(x̃l, ỹk)|, (2.29)

where Jg is defined as the jacobian of the mapping g. Lastly we consider Gaussian quadrature for a
line integral on a segment of the NURBS curve Γe = C ([u1, u2]) with integrand f(ξ, η) : Γe ∈ R→ R:
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∫
Γe

f(ξ, η)dℓ =

∫ u2

u1

f(C(u)) ∥C′(u)∥ du =

∫ 1

−1

f(C(X(x))) ∥C′(X(x))∥
∣∣∣∣12(u2 − u1)

∣∣∣∣ dx

=

nin∑
k=1

f (C(X(x̃k)))wk ∥C′(X(x̃k)))∥
∣∣∣∣12(u2 − u1)

∣∣∣∣ ,
.
this type of integral occurs in enforcing natural boundary conditions and essential boundary conditions
which are imposed weakly.

2.4. Structure preserving discretization
Hitherto we have discussed problems in two forms: the strong form (as seen in equation (2.7)) and
the (primal) weak form (as seen in equation (2.8)). However, there exists a third form known as the
mixed weak form. This formulation allows us to impose constraints exactly, like the incompressibility
constraint ∇ · uuu = 0. It also makes it easier to access certain variables, such as the derivative of
the numerical solution, without having to differentiate the solution itself. Additionally, it helps avoid
difficulties that arise when discretizing spaces of regular functions, like H2

0 , which appear in fourth-order
problems. Approximating such spaces requires ensuring continuity of derivatives at element interfaces,
which can be more challenging than approximating spaces like H1 or H1

0 , which appear in the mixed
weak form of fourth-order problems [40]. To arrive at the mixed weak formulation for the mother
problem in equation (2.7), we introduce an extra variable σ, the flux, to rewrite the strong form as
follows: 

σ −∇u = 0 in Ω,

∇ · σ = −f in Ω,

u = g on ΓD,

σ · n = h on ΓN .

(2.30)

Next both equations are multiplied with test functions τ ∈ Σ and v ∈ V respectively, integrated over
the domain Ω and the product rule is applied to arrive at∫

Ω

(σ · τ +∇ · τu)dΩ =

∫
Γ

τ · ng ds ∀τ ∈ Σ,∫
Ω

∇ · σv dΩ = −
∫
Ω

fv dΩ ∀v ∈ V.

Note that the boundary condition for the flux is essential and the boundary condition for u is natural.
The space V is set to be equal to L2(Ω) and the space Σ = H(div) := {u ∈ L2(Ω)|∇ · u ∈ L2(Ω)}. The
mixed weak form is now given by:

Find (u,σ) ∈ L2(Ω)×H(div; Ω) with σ · n = h on ΓN such that∫
Ω

σ · τ +∇ · τudΩ =

∫
ΓD

τ · ng ds ∀τ ∈ H0(div),∫
Ω

∇ · σv dΩ = −
∫
Ω

fv dΩ ∀v ∈ L2(Ω),

where H0(div) = {u ∈ H(div)|u · n = 0}. As usual, to solve the problem Galerkin method is applied
and appropriate discrete spaces Vh ⊂ V and Σh ⊂ Σ are chosen to arrive at a linear system. It is not
straightforward on how to choose Vh and Σh. Certain combinations of discrete spaces can lead to a
non-singular Galerkin matrix and/or instabilities. For instance, if we choose τττ = σhσhσh and v = uh and
add both equations, it results in σh = 0 when f = 0, but it doesn’t necessarily mean that uh is equal
to zero, therefore the linear system can be singular. Even if we choose finite element spaces in such a
way that the linear system becomes non-singular, there are still other issues related to stability (see for
instance to Figure 2.2. [25, p.295]). To ensure stability, we must consider discrete spaces that satisfy
the inf-sup stability condition, which for the mixed Poisson problem is given by
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inf
v∈Vh

sup
τ∈Σh

∫
Ω
(∇ · τv)dΩ
∥v∥L2∥τ∥H1

≥ γ > 0, (2.31)

In most cases, proving this condition analytically for a specific pair of finite element spaces is out of
reach. Therefore, we assess the discrete inf-sup constant, denoted as γh, as introduced by [41]. A
numerical evaluation is very useful, but by no means an analytical proof, but from the experience it is
that when the numerical test is passed, in fact, the inf-sup condition is satisfied. The test involves the
calculation of γh for a sequence of meshes. If γh for these discretizations do not show a decrease towards
zero, the test is passed. Next we outline how the discrete inf-sup constant is defined for the mixed
Poisson problem. Let’s assume that the finite element spaces are represented as Vh = span{Nu

i }
nu
i=1 and

Σh = span{NNNτ
i }

nτ
i=1, where N ·

i represents spline basis functions as introduced in subsection 2.3.2. By
expressing the solution as a linear combination of the basis functions with degrees of freedom ui and pi:

uh(x) =

nu∑
i=1

Nu
i (x)ui, σh(x) =

nσ∑
i=1

Nσ
i (x)σi (2.32)

we obtain a linear system of the following form[
A BT

B 0

] [
û
p̂

]
=

[
f1
f2

]
, (2.33)

where

Aij =

∫
Ω

Nσ
i ·N

σ
i dΩ, û = (u1, . . . , unu)

T , f1 =

∫
Γ

Nσ
i · ng ds,

Bij =

∫
Ω

Nu
i ∇ ·N

σ
i dΩ, σ̂ = (σ1, . . . , σnσ)

T , f2 = −
∫
Ω

fNu
i dΩ.

(2.34)

To this end, the discrete inf-sup constant γh is the square root of the smallest non-zero eigenvalue of
the following generalized eigenvalue problem

BM−1
uu B

T τ = (γh)
2Mσστ, (2.35)

where Muu and Mσσ are Gramian matrices associated to the inner products of Vh and Σh, i.e.

(Muu)ij =< Nu
i , N

u
j >Vh

, (Mσσ)ij =<Nu
i ,N

u
j >Vh

. (2.36)

To construct finite element spaces that ensure accuracy and stability of the mixed finite element method
the concept of finite element exterior calculus method (FEEC) [26] is adopted. FEEC preserves essential
topological and homological structures at the discrete level. FEEC requires knowledge from homological
algebra, algebraic topology, and functional analysis. For compactness, we will only introduce necessary
definitions from homological algebra, where relevant for a more detailed explanation we refer to [26].
We start with the definition of a graded vector space.

Definition 2.4.1 (Graded vector space). A graded vector space is a vector space V expressed as a
direct sum of subspaces Vk indexed by integers:

V =

∞⊕
k=−∞

Vk.

It is non negative if Vk = 0 for k < 0 and finite if finitely many of the summands are nonzero.

Next we can also define a mapping from a graded vector space to another graded vector space.

Definition 2.4.2 (Graded map). A linear map f : V → W between two graded vector spaces is called
a graded map of degree p if f(Vk) ⊂Wk+p for k.

With the latter two definitions the Chain complex is introduced.
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Definition 2.4.3 (Chain complex). A chain complex is a graded vector space V with a graded linear
map ∂ : V → V of degree −1 which satisfies ∂2 = 0. the sequence of operators ∂k = ∂|Vk

is called the
differential of the chain complex. We write the chain complex as:

· · · → Vk+1
∂k+1−→ Vk

∂k−→ Vk−1 → · · · ,

or in short (V, ∂). The elements of Vk are called k-chains

Note that ∂k : Vk → Vk−1, k ∈ Z, with the property that ∂k ◦ ∂k+1 = 0. Under certain condition a
subspace of a graded vector space forms a chain complex itself which is called a subcomplex of the chain
complex.

Definition 2.4.4 (subcomplex). A subcomplex of (V, ∂) is a chain complex (S, ∂) such that the subspace
S ⊂ V decomposes as a direct sum of subspaces Sk ⊂ Vk and ∂Sk ⊂ Sk−1.

Given a chain complex (V, ∂). The null space E and the range space B equipped with the differential
operator ∂ are each subcomplexes. The elements of Ek are called k-cycles and the elements of the range
Bk of ∂k−1 are called k-boundaries. Recall that ∂2 = 0 implies Bk ⊂ Ek. The k-th Homology space is
defined to be the quotient space Hk = Ek \ Bk. The elements of the homology space are equivalence
classes of k-cycles, where two cycles are equivalent if their difference is the k-boundary of a (k+1)-chain.
If the boundary space is equal to the cycle space the homology space vanishes and the complex is said
to be exact. Next we introduce chain maps which connect two chain complexes

Definition 2.4.5. (chain maps) A chain map from a chain complex (V, ∂) to a second chain complex
(W, δ) is a sequence of linear maps fk : Vk →Wk such that the following diagram commutes

. . . −→ Vk+1
∂k+1−−−→ Vk

∂k−→ Vk−1 −→ . . .

fk+1

y fk

y fk−1

y
. . . −→ Wk+1

δk+1−−−→ Wk
δk−→ Wk−1 −→ . . .

More specifically a chain map is a linear map of degree 0 which commutes with the differentials f◦∂ = δ◦f

the chain map maps the k-boundaries and cycles of V to the k-boundaries and cycles of W . In addition
the chain map induces a linear map f̄ : Hk(V ) → Hk(W ). A special case is when the complex W is
a subcomplex of V then the chain map is called a chain projection since the maps fk are projections
of Vk onto Wk. The last concept that we will introduce is a cochain complex, which is the same as a
chain complex except with the indexing reversed. The cochain differential have degree +1 instead of -1.
From a notation point of view the subscripts are replaced by superscripts.

· · · → V k−1 dk−1

−→ V k dk

−→ V k+1 → · · · .

All the definitions carry over with a prefix of co-: coboundary Bk, cocycles Ek and cohomology Hk.
Many finite element spaces are defined as discrete subspaces (V j

h ) of continuous spaces (V j) by applying
Galerkin projection. These continuous spaces and finite element spaces are connected respectively in a
cochain complex and subcomplex via differential operators (dj). The subcomplex is again connected to
the chain complex via projections (Πj

h):

. . . −→ V k−1 dk−1

−−−→ V k dk

−→ Vk+1 −→ . . .

Πk−1
h

y Πk
h

y Πk+1
h

y
. . . −→ V k−1

h
dk−1

−−−→ V k
h

dk

−→ V k+1
h −→ . . .
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The Galerkin method is consistent and stable and converges with the rate of the best approximation if
the Galerkin subspaces satisfy three conditions:

1. The subspaces afford a good approximation
2. The subspaces form a subcomplex
3. The subspaces admit a bounded cochain projection, i.e. bounded linear projections V j → V j

h

which commute with dj

We revisit the mixed weak formulation of the poisson problem and use spline test and trial spaces and
assume Ω ⊂ R2. The chain complex associated with the spaces appearing in the weak form of the
problem is known as the De Rham complex. De Rham complex is connected to the spline spaces via
Galerkin projections (Π·

h):

0 −→ H1(Ω)
∇×−−→ H(div; Ω) ∇·−→ L2(Ω) −→ R

Πk+1
h

y Πk
h

y Πk−1
h

y
0 −→ Sp,qα1,α2

(Ωh)
∇×−−→ Sp,q−1

α1,α2−1(Ωh)× Sp−1,q
α1−1,α2

(Ωh)
∇·−→ Sp−1,q−1

α1−1,α2−1(Ωh) −→ R

, where ∇×u =

[
−∂u

∂y
∂u
∂x

]
for u ∈ H1(Ω) .The diagram is constructed by A.Buffa et al. [24] for Ω ⊂ R3

and satisfies all of the three bulletpoints resulting in consistent and stable method that converges with
the rate of best approximation. A final remark regarding the terminology of the basis functions within
the spline subcomplex of the chain map. The basis functions in the first column are referred to as the 0-
form basis functions, and those in the second column as the 1-form basis functions and so forth. Another
commonly used terminology is vertex basis functions, edge basis functions, and face basis functions.
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Construction of a structure preserving

subcomplex
In this chapter, our objective is to expand the chain map presented in Section 2.4, which consists of the
De Rham complex and a structure-preserving subcomplex comprised of spline spaces. We introduce
an additional subcomplex. This additional subcomplex is constructed in a sequential manner, starting
from the 0-form. More specifically, the 0-form is defined as the extended B-spline space derived from the
0-form spline space in the predefined subcomplex. Moving forward, each subsequent form is constructed
in a progressive fashion by exploiting the commutative property of the diagram in a similar fashion as
[42]. To provide a comprehensive overview, we also consider and introduce the one dimensional De Rham
complex in Section 3.1. Furthermore, in the subsequent Section 3.2, we delve into the examination of
the two dimensional De Rham complex.

3.1. One dimensional domain
The De Rham complex in 1D is given by:

0 −→ H1(Ω)
d
dx−−→ L2(Ω) −→ R.

Next De Rham complex is connected to a spline subcomplex as constructed by A.Buffa et al. [24] via
Galerkin projections Π2

h and Π1
h

0 −→ H1(Ω)
d
dx−−→ L2(Ω) −→ R

Πk+1
h

y Πk
h

y
0 −→ Spα(Ωh)

d
dx−−→ Sp−1

α−1(Ωh) −→ R

Now we want to introduce an additional subcomplex. The 0-form of this additional subcomplex is
the extended B-spline space of the 0-form spline space of the predefined subcomplex. The extended
B-spline basis function are related to the B-spline basis function by an extension matrix E0 as discussed
in subsection 2.3.2. To this end we have the following chain map

30
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0 −→ H1(Ω)
d
dx−−→ L2(Ω) −→ R

Πk+1
h

y Πk
h

y
0 −→ Spα(Ωh)

d
dx−−→ Sp−1

α−1(Ωh) −→ R

E0

y E1 =?

y
0 −→ eSpα(Ωh)

d
dx−−→ ? −→ R

where E1 is left to be determined by exploiting the commutative property. To this end we assume
Ω := [0, 1] \ (ttrim, 1] = [0, ttrim], where 0 < ttrim < 1 is the trimming location, h fixed in R, p fixed in
N>0 and α ∈ {0, . . . , p− 1}. Let g ∈e Spα(Ωh) then

g =

m∑
i=1

gi

Np
i +

∑
j∈J(i)

ei,jN
p
j

 =
[
Np

1 . . . Np
n

]
E0

 g1...
gm

 , (3.1)

where m is the number of stable basis functions, n is the number of basis functions whit nonzero support
on Ω, J(i) is the set of unstable basis functions j ∈ J(i) that use stable basis function i to stabilise
with, E0 ∈ Rn×m is the extension matrix of the 0-form with entries the extension coefficients ei,j . We
define βi =

∑m
j=1 gjeij for i ∈ {1, . . . , n} then:

g =
[
Np

1 . . . Np
n

] β1...
βn

 . (3.2)

Taking the derivative of g gives

dg

dx
=
[
Np−1

1 . . . Np−1
n−1

]  β2 − β1
...

βn − βn−1

 =
[
Np−1

1 . . . Np−1
n−1

]


−1 1 0 . . . . . . 0

0
. . . . . . . . . ...

... . . . . . . . . . . . . ...

... . . . . . . . . . 0
0 . . . . . . 0 −1 1





β1
...
...
...
βn


:=
[
Np−1

1 . . . Np−1
n−1

]
D

β1...
βn

 =
[
Np−1

1 . . . Np−1
n−1

]
DE0

 g1...
gm

 , (3.3)

where D ∈ R(n−1)×n. To this end we try to recover an expression of the following form:

[
Np−1

1 . . . Np−1
n−1

]
E1

 g2 − g1
...

gm − gm−1

 (3.4)

and determine E1. We exploit the partition of union property of the extended b-splines and the fact
that applying the matrix D to a constant vector gives ‘‘0” to arrive at:
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dg

dx
=
[
Np−1

1 . . . Np−1
n−1

]
DE0

 g1...
gm

 =
[
Np−1

1 . . . Np−1
n−1

]
DE0


 g1...
gm

− g1
1...
1




=
[
Np−1

1 . . . Np−1
n−1

]
DE0


0

g2 − g1
...

gm − g1

 =
[
Np−1

1 . . . Np−1
n−1

]
DE0


0 . . . 0

1
. . . ...

... . . . 0
1 . . . 1


 g2 − g1

...
gm − gm−1



=
[
Np−1

1 . . . Np−1
n−1

]
DE0I

 g2 − g1
...

gm − gm−1

 , (3.5)

where I ∈ Rm×(m−1), and also referred to as the integration matrix and to be confused with the identity
matrix. We conclude that E1 = DE0I ∈ R(n−1)×(m−1). Lastly we have several remarks:

• The choice to subtract the constant vector with value g1 is done because of convenience, since the
first row of matrix I will be a row of zeros and the remaining rows form a lower triangular matrix.
One can choose any of the values gl with l ∈ {1, . . . ,m}.

• We observe from several numerical examples that the span of the derived basis functions, i.e.
the unknown space “?”, coincides with the extended B-spline space eSp−1

α . A proof is given in
Appendix C. We conclude that the extended chain map is given by:

0 −→ H1(Ω)
d
dx−−→ L2(Ω) −→ R

Πk+1
h

y Πk
h

y
0 −→ Spα(Ωh)

d
dx−−→ Sp−1

α−1(Ωh) −→ R

E0

y E1

y
0 −→ eSpα(Ωh)

d
dx−−→ eSp−1

α−1(Ωh) −→ R

• Note that we have assumed only one trimming location, nevertheless the approach can be extended
to multiple trimming locations straightforwardly.

• To numerically verify the convergence and stability the constructed structure preserving subcom-
plex we consider the mixed Poisson problem:

σ = −u′, in Ω

σ′ = f, in Ω

u = 0, on ∂Ω

(3.6)

with the following weak form

Find (u, σ) ∈ L2(Ω)×H1(Ω) such that∫
Ω

στdx−
∫
Ω

uτ ′dx = 0, τ ∈ H1(Ω),∫
Ω

σ′vdx =

∫
Ω

fvdx, v ∈ L2(Ω).

which has trial and test spaces H1(Ω) and L2(Ω).
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• One can also consider a local approach instead of the global approach mentioned earlier. For
example, let’s consider the domain mentioned at the beginning of this section. We have a function
g belonging to S(Ωe)

2
1, where Ωe represents a boundary grid cell or element. Within the element Ωe,

there are a total of 3 nonzero basis functions. The local extension matrix, denoted as E0 ∈ R3×3,
is defined as:

E0 =

3 −3 1
1 0 0
0 1 0

 ,
the first row corresponds to unstable basis functions, stabilized by 3 stable basis functions, while
the last two rows correspond to the stable basis functions. Next we have the difference matrix,
D ∈ R2×3, which is given by

D =

[
1 −1 0
0 1 −1

]
,

and lastly a possible integration matrix, I ∈ R3×2, is given by

I =

 0 0
−1 0
−1 −1

 ,
This gives the following 1-form local extension matrix:

E1 =

[
2 −1
1 0

]
which is exactly the local extension matrix of a function f ∈ S10(Ωe). This approach is especially
useful in higher dimensions. Moreover if we consider an interior grid cell the 1-form extension
matrix is the identity which is what we expect since we do not require stabilization for these basis
functions:

E1 = DE0I = D

1 0 0
0 1 0
0 0 1

 I =

[
1 −1 0
0 1 −1

] 0 0
−1 0
−1 −1

 =

[
1 0
0 1

]

3.2. Two dimensional domain
In the previous section, we discussed the one-dimensional case. Now, we shift our focus to the two-
dimensional case. The approach is similar, but there’s a difference: the extension matrices are now
local for each element. Let’s consider an element labeled as a boundary grid cell, denoted by Ωe. For
the other grid cells, which are interior, the untouched chain complex is sufficient. To extend the chain
map from section 2.4, we introduce another subcomplex with its 0-form, the extended b-spline space of
the predefined subcomplex’s 0-form.

0 −→ Sp,qα1,α2
(Ωe)

∇×−−→ Sp,q−1
α1,α2−1(Ωe)× Sp−1,q

α1−1,α2
(Ωe)

∇·−→ Sp−1,q−1
α1−1,α2−1(Ωe) −→ R

E0

y E1

y E2

y
0 −→ eSp,qα1,α2

(Ωe)
∇×−−→ ?

∇·−→ ? −→ R

where E1 and E2 are to be determined, and E0 ∈ Rnloc×mloc , where nloc is the number of basis functions
with nonzero support on the element Ωe, i.e. nloc = (p+1)(q+1), and mloc is the number of stable basis
functions with nonzero support on Ωe and the stable basis functions used to stabilize the unstable basis
functions with nonzero support on Ωe. We begin with determining E1. Suppose we have a function
g ∈e Sp,qα1,α2

(Ωe)

g =
[
Np,q

1 . . . Np,q
nloc

]
E0

 g1
...

gmloc

 (3.7)
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We define βi =
∑mloc

j=1 gjeij for i ∈ {1, . . . , nloc} then:

g =
[
Np,q

1 . . . Np,q
nloc

]  β1
...

βnloc

 . (3.8)

Taking the derivative of g with respect to both spatial coordinates gives

[
dg

dx

dg

dy

]
=
[
Np,q−1

1 . . . Np,q−1
q(p+1) Np−1,q

1 . . . Np−1,q
p(q+1)

]
D



β1
...
...
...

βnloc


, (3.9)

where D =

[
D11 ⊗D12

D21 ⊗D22

]
∈ R[p(q+1)+q(p+1)]×nloc . Moreover D11 =

1 −1
. . . . . .

1 −1

 ∈ Rp×(p+1),

D11 = I ∈ R(q+1)×(q+1), D21 = I ∈ R(p+1)×(p+1) and D22 =

1 −1
. . . . . .

1 −1

 ∈ Rq×(q+1). We

expand the vector of βi’s to arrive at.

[
dg

dx

dg

dy

]
=
[
Np,q−1

1 . . . Np,q−1
q(p+1) Np−1,q

1 . . . Np−1,q
p(q+1)

]
D

 β1
...

βnloc

 ,

=
[
Np,q−1

1 . . . Np,q−1
q(p+1) Np−1,q

1 . . . Np−1,q
p(q+1)

]
DE0

 g1
...

gmloc

 .
(3.10)

To this end we try to recover an expression of the following form:

[
Np,q−1

1 . . . Np,q−1
q(p+1) Np−1,q

1 . . . Np−1,q
p(q+1)

]
E1D̃

 g1
...

gmloc

 . (3.11)

The matrix D̃ ∈ Rnedges×nloc is a difference matrix that contains nedges ∈ N differences consisting of all
the possible vertical and horizontal differences. Just as we did for the one-dimensional domain, we take
advantage of the partition of union property of the extended b-splines and the fact that applying the
matrix D to a constant vector results in a vector of zeros to arrive at:
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[
dg

dx

dg

dy

]
=
[
Np,q−1

1 . . . Np,q−1
q(p+1) Np−1,q

1 . . . Np−1,q
p(q+1)

]
DE0

 g1
...

gmloc


=
[
Np,q−1

1 . . . Np,q−1
q(p+1) Np−1,q

1 . . . Np−1,q
p(q+1)

]
DE0


 g1

...
gmloc

− g1
1...
1




=
[
Np,q−1

1 . . . Np,q−1
q(p+1) Np−1,q

1 . . . Np−1,q
p(q+1)

]
DE0


0

g2 − g1
...

gmloc − g1


=
[
Np,q−1

1 . . . Np,q−1
q(p+1) Np−1,q

1 . . . Np−1,q
p(q+1)

]
DE0ID̃

 g1
...

gmloc

 ,

(3.12)

where the matrix I ∈ Rmloc×nedges is known as the integration matrix (not to be confused with the
identity matrices used earlier). The integration matrix is constructed row by row. For each difference
gi−g1 ∈ 2, . . . ,mloc, we determine a path from gi to g1 through a path-finding algorithm that traverses
through the edges. Then:

Ii,j =


0 if edge is not used
−1 if edge is used in its correct orientation
1 if edge is used in its incorrect orientation

(3.13)

By comparing the final results in equations 3.12 and 3.11, we can conclude that E1 = DE0I ∈
R[p(q+1)+q(p+1)]×nedges . To illustrate this approach, let’s consider the following example:

Let g ∈ S2,21,1(Ωe), where Ωe is the element highlighted in red in Figure 3.2. The nonzero basis functions
(labeled with a circle in the lower left corner of their support and their stability marked as explained
in section (2.3.2)) on this element are enclosed within the red square. In total, there are n = 9 nonzero
basis functions, of which 3 are unstable (the ones with a black trim). To stabilize these unstable basis
functions, we choose an index set. For this example and convenience, the same index set is chosen for
all three unstable basis functions, with appropriate extension coefficients eij , indicated by a colored
square corresponding to the color of each basis function. This gives us the following local extension
matrix for the 0-form:

E0 =



0 9 −9 3 0 −9 9 −3 3 −3 1
0 3 0 0 0 −3 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0
0 3 −3 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0


∈ R9×11. (3.14)
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Figure 3.1: Illustration of a particular situation in the space S2,21,1 and its corresponding eS2,21,1, where we focus on the
element Ωe highlighted in red. The basis basis functions with nonzero support are shown in a red square. In this

scenario, there are three unstable basis functions, each assigned the same index set with a colored square that matches
the color of the unstable basis function (please note that they have different corresponding extension coefficients eij).

After stabilizing the unstable basis functions, the number of basis functions with nonzero support on
the element Ωe increases to nloc = 11, as shown in Figure 3.1 enclosed by a red rectangular curve.
Additionally, in Figure 3.1, the 1-form basis functions are depicted as arrows, and we have only chosen
the trivial differences, therefore nedges = 14. Each basis function is locally numbered.
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Figure 3.2: Illustration of a particular situation in the space eS2,21,1, where we focus on the element Ωe highlighted in
red. The basis functions with nonzero support are shown in a red rectangular curve and represented as

circles.Additionally, we use arrows to represent the basis functions associated with trivial differences (i.e., edge basis
functions). Both types of basis functions are locally numbered, and the degree of freedom related to the edge basis

functions is marked with a tilde.

For this specific example:

D̃ =



1 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 −1
0 1 −1 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 1 −1



∈ R14×11. (3.15)

Furthermore, we choose g1 as the value we subtract (as done in equation 3.12). Therefore, a possible
integration matrix can be represented as follows:
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I =



0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 −1 0 0 0 0 0
−1 0 −1 0 0 0 0 0 0 1 1 0 0 0
−1 0 −1 0 0 0 0 0 0 0 1 0 0 0
−1 0 −1 0 0 0 0 0 0 0 0 0 0 0
−1 0 −1 0 0 0 0 0 0 0 0 −1 0 0
−1 0 −1 0 0 −1 0 0 0 0 0 0 1 0
−1 0 −1 0 0 −1 0 0 0 0 0 0 0 0
−1 0 −1 0 0 −1 0 0 0 0 0 0 0 −1


∈ R11×14. (3.16)

The difference g5 − g1 can be represented by transversing trough the edges: 1̃, 2̃, 9̃, 1̃1, where the corre-
sponding values I5,1 and I5,2 are −1 because we go with the direction of the difference and for I5,9 and
I5,11 are 1 because we go against the direction of the difference. For this specific example the 1-form
extension matrix is given by:

E1 = DE0I =



0 0 0 0 0 0 0 6 −3 0 −6 3 2 −1
−1 0 2 0 0 −1 0 3 0 0 −3 0 1 0
0 0 0 0 0 0 0 2 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 2 0 0 −1 0 6 −2 0 −9 3 3 −1
0 0 2 0 0 −1 0 2 0 0 −3 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 3 −1 −1 −1 0 0 0
0 0 1 0 0 0 0 1 0 0 −1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0



∈ R12×14. (3.17)

Lastly we have several remarks:

• To find the paths from gi to gj , one can use a pathfinding algorithm like Dijkstra’s algorithm.
In certain situations, evaluating a path may not be possible because the 0-form basis functions
cannot be reached through the edge basis functions. In such cases, we include additional trivial
differences that are not unstable. By incorporating weights into the Dijkstra algorithm, we can
force it not to include the unstable edge basis functions in its path. This ensures that the condition
number of the Galerkin matrix remains unaffected by the location of the trimming curve.

• It’s important to note that we have some flexibility in selecting the differences or edge basis
functions, and we have chosen only the trivial differences.

• To numerically verify the convergence and stability the constructed structure preserving subcom-
plex we consider the vector Laplacian problem:

∇× σ −∇∇ · uuu =fff (x, y) ∈ Ω,

σ =∇× uuu (x, y) ∈ Ω,

σ =0, (x, y) ∈ ∂Ω,
uuu ·nnn =0, (x, y) ∈ ∂Ω,

with the following weak form

Find (uuu, σ) ∈ H0(Div; Ω)×H1
0 (Ω) such that∫

Ω\D
στ − uuu · (∇× τ)dx = 0 ∀τ ∈ H1

0 (Ω),∫
Ω

(∇× σ) · vvv +∇ · vvv∇ · uuudx =

∫
Ω

fff · vvvdx ∀vvv ∈ H0(Div; Ω),

which has trial and test spaces H1(Ω) and H(Div; Ω).
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We are left to determine E2. Nonetheless, because the outcomes of the constructed extension matrix
E1 in section 4.3 were unsatisfactory, the determination of E2 is deferred for future investigations.



4
Numerical Results

In this chapter the numerical result are presented for several test problems. In section 4.1 the immersed
Poisson problem is considered, where the known results from the Chapter 2 are confirmed. Thereafter
the constructed structure preserving spaces in Chapter 3 are numerically assessed in sections 4.2 and
4.3.

4.1. Immersed Poisson Problem
For the first test problem a standard Poisson problem (4.1) is solved on the domain Ω \D where Ω is a
unit square, Ω = [0, 1]× [0, 1], and D is the trimmed region. The boundary ∂D is given by the trimming
curve C(u) (defined by using NURBS) that describes a circle with radius 0.25 and midpoint (0.5, 0.5).

−∆u =4π(0.5− x) cosπx sinπy + 4π(0.5− y) sinπx cosπy
− 4 sinπx sinπy, (x, y) ∈ Ω \D,

u(x, y) =0, (x, y) ∈ ∂D,
u(x, y) =0, (x, y) ∈ ∂Ω.

(4.1)

The exact solution is given by ũ = sinπx sinπy((x− 0.5)2+(y− 0.5)2− (0.25)2) and is shown in Figure
4.1.

(a) (b)

Figure 4.1: Exact solution of problem (4.1). In Figure (a) a 2D surface plot is shown, the trimming of the domain Ω
by the trimming curve C(u), which is a circle, is represented by the black curve. In Figure (b) the exact solution is

plotted as a 3D surface plot.
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Problem (4.1) is solved using the theory discussed in section 2.3. In short the problem is reformulated
in its weak form (see equation (2.8)) and the infinite dimensional space H1(Ω \ D) is approximated
by spline spaces Sp,qp−1,q−1(Ωh) of order p = q = 1, 2 and 3. Moreover proper numerical integration on
the trimmed elements, strong enforcement of the boundary condition on ∂Ω and weak enforcement of
the boundary condition on ∂D using Nitsche method is used to obtain the numerical solution uh. The
convergence order in the L2 and H1 norm is shown in Figure 4.2.

Figure 4.2: On the left the convergence order in the L2 norm for B-spline space of order (p,q) is shown and on the
right in the H1 norm.

The convergence order coincide with the theoretical error estimate stated in section 2.3.1. Next we
consider the condition number of the Galerkin matrix which is shown in Figure 4.3. The condition
number is not in line with the theoretical estimate shown in equation (2.10). This is because the B-
spline spaces are not stable when trimming is involved. More specifically there are basis functions with
small support due to the trimming of the domain.

Figure 4.3: The condition number of the Galerkin matrix is calculated using the standard B-spline space for trial and
test space approximation for various values of the mesh parameter h. Additionally, the slopes are displayed.
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Next we are going to solve problem (4.1) again, but now the extended B-spline space eSp,qp−1,q−1(Ωh) is
used instead to approximate the infinite dimensional space H1(Ω \D). The corresponding convergence
order in the L2 and H1 norm is shown in Figure 4.4.

Figure 4.4: On the left the convergence order in the L2 norm for the extended B-spline space of order (p,q) is shown
and on the right in the H1 norm.

Figure 4.5: The condition number of the Galerkin matrix is calculated using the extended B-spline space for trial and
test space approximation for various values of the mesh parameter h. Additionally, the slopes are displayed.

The convergence order aligns with the theoretical error estimate mentioned in section 2.3.1. However,
when comparing it to the B-spline space, Figure 4.5 reveals that the condition number of the Galerkin
matrix is significantly smaller. This difference arises from the characteristic of the extended B-splines,
wherein the condition number of the resulting Galerkin matrix remains unaffected by the location of
the Galerkin matrix. Figure 4.6 illustrates this property more clearly, here we solve the following test
problem instead.
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−∆ũ =2π2 sin(πx) sin(πy), (x, y) ∈ Ω \D,

du(x, y)

dx
· n =

dũ(x, y)

dx
· n, (x, y) ∈ ∂D,

u(x, y) =0, (x, y) ∈ ∂Ω.

(4.2)

where the exact solution is given by ũ = sin(πx) sin(πy) and n is the outward pointing normal vector of
the trimming curve. The mesh parameter is fixed (h = 1

16 ) and the trimming curve is defined as before
but shifted by varying the center of the circle with a value ϵ, which is also represented on the horizontal
axis in Figure 4.6. Moreover in Figure 4.7, problem 4.2 is solved for two different trimming curve for
illustration:

Figure 4.6: On the left the condition number is shown with respect to the parameter ϵ, where the value ϵ shifts the
center of the circle along the horizontal axis, for the standard B-spline space and on the right for the extended B-spline

space.

(a) (b)

Figure 4.7: In Figure (a) the exact solution of problem (4.2) is shown, the domain Ω is trimmed by the D where ∂D is
represented by the trimming curve C(u), with U = {0, 0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1, 1} of order l = 3, control points
{P1} = {[0.3, 0.4], [0.32, 0.35], [0.5, 0.25], [0.75, 0.5], [0.7, 0.75], [0.35, 0.75], [0.25, 0.5], [0.3, 0.4]} and unit weights, and is

represented by the black curve. In Figure (b) the absolute error is shown between the exact solutions and the Galerkin
approximation using a standard spline space of order 1 and mesh parameter h = 1/16.
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(a) (b)

Figure 4.8: In Figure (a) the exact solution of problem (4.2) is shown, the domain Ω is trimmed by the
D = [0.7 + 10−10, 1]× [0, 1] where ∂D is represented by a vertical cut at x = 0.7 + 10−10, and is represented by the

black curve. In Figure (b) the absolute error is shown between the exact solutions and the Galerkin approximation using
a extended B-spline space of order 2 and mesh parameter h = 1/16.

4.2. Immersed Mixed Poisson Problem - One dimensional domain
In this section the spaces constructed in Chapter 3 are numerically assessed. The one dimensional
domain case is considered. For the two dimensional domain some auxiliary results are shown in Appendix
D. In this section, we address a mixed Poisson problem defined on the domain Ω\D. Here, Ω represents
the standard unit interval, and D = (ttrim, 1] denotes the trimmed region. The value of ttrim lies between
0 and 1, specifying the trimming point. We aim to solve the following specific boundary value problem:

σ(x) = u′(x) x ∈ [0, ttrim],

σ′(x) = −
( 1

2π

ttrim

)2

a cos
[
1

2
π

(
x

ttrim

)]
− b

1− ettrim
ex x ∈ [0, ttrim],

u(0) = a,

u(ttrim) = b.

(4.3)

The exact solution is given by: u = a cos
[
1
2π

x
ttrim

]
+ b

1−ettrim (1 − ex), and σ = −
1
2π

ttrim
a sin

[
1
2π

x
ttrim

]
−

b
1−ettrim e

x. For completeness we state the weak formulation, which is given by:

Find (u, σ) ∈ L2([0, ttrim])×H1([0, ttrim]) such that∫ ttrim

0

στdx+

∫ ttrim

0

uτ ′dx = bτ(ttrim)− aτ(0), τ ∈ H1([0, ttrim]),∫ ttrim

0

σ′vdx =

∫ ttrim

0

(
−
( 1

2π

ttrim

)2

a cos
[
1

2
π

(
x

ttrim

)]
− b

1− ettrim
ex

)
vdx, v ∈ L2([0, ttrim]).

In order to have consistent and stable method, we choose the trial and test spaces for H1([0, ttrim])
and L2([0, ttrim]), that appear in the weak form based on diagram (3.1). Specifically, we utilize the sub
spaces Spp−1 and Sp−1

p−2 of order p = 1, 2, 3. Additionally, we set ttrim = 0.5 + 1e−13. The convergence
order in the L2 norm for both uh and σh, as well as the H1 norm for σh, are depicted in Figure 4.9 and
4.10, respectively.
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Figure 4.9: L2 norm of the error for B-spline basis functions of order 1,2 and 3. On the left, the error of uh is
represented in the L2 norm, while on the right, the error of σ is represented in the L2 norm.

Figure 4.10: The error of σh in the H1 norm for B-spline basis functions of order 1,2 and 3.

We observe optimal convergence order for σh for all values of p. However, for uh, we observe optimal
convergence order only when p = 1. This discrepancy arises from the condition number increasing
as the mesh parameter is refined and the basis function order is raised. Figure 4.11 illustrates this
phenomenon, which is a consequence of certain basis functions having small support within the domain.
We observe convergence in the H1 and L2 norms for the σ variable. To solve the system, we utilize
LU-decomposition with pivoting. However, when solving the system again using the CG-method, both
variables do not converge. On the other hand, the opposite occurs for the GMRES-method compared
to the LU-decomposition method.
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Figure 4.11: The condition number of the Galerkin matrix is calculated using the standard B-spline space for trial and
test space approximation for various values of the mesh parameter h. Additionally, the slopes are displayed.

Next, we choose the test and trial spaces eSpp−1 and eSp−1
p−2 for H1(Ω \D) and L2(Ω \D), respectively

as constructed in section 3.1. The convergence order in the L2 norm for both uh and σh, and H1 norm
for σh are shown in Figure (4.12) and (4.13). We observe optimal convergence order.

Figure 4.12: L2 norm of the error for extended B-spline basis functions of order 1,2 and 3. On the left, the error of uh

is represented in the L2 norm, while on the right, the error of σ is represented in the L2 norm.
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Figure 4.13: The error of σh in the H1 norm for extended B-spline basis functions of order 1,2 and 3.

In Figure 4.14, we observe a significant reduction in the condition number of the Galerkin matrix
compared to the standard B-spline spaces. The condition number now follows an order of κ2(Ah) =
O(h−1). This is due to the property of the extended B-splines, that is the condition number of the
resulting Galerkin matrix is irrespective of the location of the trimming point.

Figure 4.14: The condition number of the Galerkin matrix is calculated using the extended B-spline space for trial and
test space approximation for various values of the mesh parameter h. Additionally, the slopes are displayed.

To highlight this property further, Figure 4.15 compares the condition number of the Galerkin matrix
associated with the constructed extended B-spline space in section 3.1 with that of the standard B-spline
spaces. The mesh parameter is fixed to h = 1

8 while the trimming location is varied.
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Figure 4.15: The condition number of the Galerkin matrix is computed using the extended B-spline space for trial and
test space approximation. We evaluate it for various values of the trimming point ttrim on the left and for the standard

B-spline spaces on the right. The parameter ttrim represents the trimming point.

Lastly we assess the stability of the method numerically as discussed in section 2.4. In Figure 4.16
the discrete inf-sup constant, γh for both the standard B-spline spaces and extended B-spline spaces is
shown for various mesh parameters h. We observe that the discrete inf-sup constant grows therefore
the test is passed and we can say that the inf-sup condition is satisfied.

Figure 4.16: The condition number of the Galerkin matrix with respect to the mesh parameter h. In addition the
slopes are shown.

4.3. Immersed Mixed Vector Laplacian Problem
In this section the convergence, conditioning and stability of the finite element spaces constructed
in section 3.2 are assessed numerically by solving a vector Laplacian problem. First the problem is
solved using the standard b-spline spaces and thereafter using the constructed spaces in subsection. We
consider the same domain as mentioned in section 4.1. We considered the vector Laplacian with the
following boundary conditions
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∇× σ −∇∇ · uuu =

[
4π2 cosπy sinπx
2π2 sinπy cosπx

]
(x, y) ∈ Ω \D,

σ =∇× uuu (x, y) ∈ Ω \D,
σ =0, (x, y) ∈ ∂Ω,

uuu ·nnn =0, (x, y) ∈ ∂Ω,
∇ · uuu =h := ∇ · ũuu, (x, y) ∈ ∂D,
uuu · sss =g := ũuu · sss, (x, y) ∈ ∂D,

(4.4)

where ∇× σ =

[
σy
σx

]
, ∇× uuu = ∂u2

∂x −
∂u1

∂y , nnn is the inward pointing normal vector of the curve CCC(u)

(note that here the variable u is the local coordinate of the curve) and sss is the tangent vector of the

curve CCC(u). The exact solution is given by ũ̃ũu =

[
2 cosπy sinπy
sinπy cosπx

]
and σ = ∇× ũuu = π sinπy sinπx. For

completeness we also state the weak formulation.

Find (uuu, σ) ∈ H0(Div; Ω \D)×H1
0 (Ω \D) such that∫

Ω\D
στ − uuu · (∇× τ)dx =

∫
∂D

τg ds ∀τ ∈ H1
0 (Ω \D),∫

Ω\D
(∇× σ) · vvv +∇ · vvv∇ · uuudx =

∫
∂D

hvvv ·nnn ds+
∫
Ω\D

fff · vvvdx ∀vvv ∈ H0(Div; Ω \D),

(4.5)

where H1
0 (Ω\D) = {u ∈ H1(Ω\D) : u = 0 on ∂Ω} and H0(Div; Ω\D) = {uuu ∈ H(Div; Ω\D) : uuu·nnn = 0}.

The Galerkin approximations for the test and trial spaces are chosen in a structure preserving manner
as discussed in section 2.4. More specifically the spline space Sp,qp−1,q−1 and Sp,q−1

p−1,q−2× Sp−1,q
p−2,q−1 of order

p = q = 1, 2 and 3 are used as trial and test spaces for H1(Ω \ D) and H(Div; Ω \ D) respectively
together with proper numerical integration on the trimmed elements and proper enforcement of the
boundary conditions. The convergence order in the L2 norm for both σh and uuuh is shown in Figure
4.17 and in the H1(Ω \D) and H(Div; Ω \D) norm for σh and uuuh respectively in Figure 4.18.

Figure 4.17: L2 norm of the error for B-spline basis functions of order 1,2 and 3 in both coordinate directions. Left
the L2 norm of the error of uuu is shown and at the right for σ.
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Figure 4.18: On the left, we display the H(Div) norm of the error for uuu, while on the right, we show the H1 norm of
the error for σ. Both graphs show B-spline basis functions of order 1, 2, and 3 in both coordinate directions.

Optimal convergence order is observed when refining the mesh parameter h for both uuuh and σh for
p = q = 1 and 2. For p = q = 3 we do not have optimal convergence this is due to the condition
number of the Galerkin matrix being of the order 1018 and as a result the round off error becomes
larger and thereby reducing the numerical accuracy. Next we consider the condition number of the
Galerkin matrix which is shown in Figure 4.19. The condition numbers grow as the mesh parameter is
refined and order of the basis function is increased. This is because of the unstable space we have chosen.
More specifically there are basis functions with small support due to the trimming of the domain.

Figure 4.19: The condition number of the Galerkin matrix with respect to the mesh parameter h. In addition the
slopes are shown.

Next, we choose the test and trial spaces as constructed in section 3.2. The convergence order in the L2

norm for both uh and σh, and H1 norm for σh are shown in Figure (4.20) and (4.21) for basis functions
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of order one. We do not observe optimal convergence order. For the order two and three the Galerkin
matrix is singular. This could be due to multiple reasons. First of all this could be due to the local
construction. Since there is a possibility that an extension coefficient, ei,j , for some stable basis function
with index i and unstable basis function with index j has a different values for different local extension
matrices constructed. Another possible reason is that we have only included the trivial differences in
the matrix D̃.

Figure 4.20: L2 norm of the error for B-spline basis functions of order 1,2 and 3 in both coordinate directions. Left
the L2 norm of the error of uuu is shown and at the right for σ.

Figure 4.21: On the left, we display the H1 norm of the error for σ, while on the right, we show the H(Div) norm of
the error for uuu. Both graphs show B-spline basis functions of order 1, 2, and 3 in both coordinate directions.

For completeness, in Figure 4.22, the condition number of the associated Galerkin matrix is shown for
various mesh parameters h. We observe that for a finer mesh the condition number becomes very large.
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Figure 4.22: The condition number of the Galerkin matrix with respect to the mesh parameter h. In addition the
slopes are shown.



5
Conclusion and Recommendations

In this chapter the conclusion are first discussed in section 5.1 based on the results of chapter 4 and
thereafter a recommendation is given in section 5.2. But first the research questions are promptly
answered:

RQ 1: What extended B-spline spaces form a structure preserving subcomplex of the B-spline
spaces satisfying the de Rham complex in one and two dimensional domains?

A 1: For the one-dimensional domain a structure preserving subcomplex is constructed and
for the two-dimensional domain a structure preserving subcomplex is constructed for the 0-
and 1-form.

RQ 2: Is the condition number of the Galerkin matrix associated to the constructed structure
preserving finite element spaces irrespective of the location of the trimming curve?

A 2: For the one-dimensional domain the structure preserving subcomplex is irrespective of
the location of the trimming curve (numerically assessed). For the two-dimensional domain
this is not the case.

RQ 3: Do the constructed structure preserving finite element spaces satisfy the standard
error estimates for elliptic problems?

A 3: For the one-dimensional domain the structure preserving subcomplex satisfy the stan-
dard error estimates (numerically assessed). Moreover the spaces satisfy (problem related)
the inf-sup condition (numerically assessed). For the two-dimensional domain the standard
error estimates are not satisfied.

5.1. Conclusion
In section 3.1, we construct a structure-preserving subcomplex for the de Rham complex in 1D, focusing
on immersed problems. Subsection 4.2 contains the numerical assessment of this subcomplex. Our
findings indicate optimal convergence rates in both the L2 and H1 norms, along with stability ensured
by the discrete inf-sup constant being positive. Furthermore, the associated Galerkin matrix exhibits
a condition number that remains independent of the trimming curve’s location. Despite the impressive
results, the immersed problems are somewhat redundant in 1D. An alternative approach involves adding
the trimmed grid cell to its neighboring untrimmed grid cell, effectively avoiding conditioning problems.
The 2D case is more interesting. In section 3.2, we construct a structure preserving subcomplex in 2D
but only for the 1-form, due to the unsatisfactory numerical results. We do not observe convergence for
basis functions of order 1. For basis functions of order 2 and 3 we obtain a linear system that is singular.
This could be due to the local construction. There is a possibility that an extension coefficient, ei,j for
some stable basis function with index i and unstable basis function with index j has different values for
different the local extension matrices constructed.
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5.2. Recommendations
As mentioned earlier, dealing with immersed problems in 1D is superfluous. However, there’s still room
to explore what extended hierarchical B-spline spaces form a structure-preserving subcomplex for the
hierarchical B-splines that satisfy the de Rham complex. Moreover, it is worthwhile to evaluate how
well things converge and remain stable across different problems. When it comes to immersed problems
in 2D, it is prudent to first consider the local approach for vertical and skewed cuts. This should happen
before looking into more complicated trimming curves like circles or irregularly shaped curves as done
in this Master thesis. For these kinds of cuts, it is easier to determine the correct differences that appear
in the matrix D̃ (as shown in section 3.2). Additionally, one must still formulate the local extension
matrix for the 2-form. But for these specific cuts involving higher-order B-spline basis functions, we
must use extended B-splines on non-uniform knot vectors. The simpler method based on the indices of
the B-spline basis functions, which we discussed in subsection 2.3.2, is no longer applicable. Another
possible approach is to construct the extension matrices globally. This way, we avoid the problem of
having different extension coefficients for the same stabilization.
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A
Grid classification

Before constructing the extended B-spline spaces, the grid cells must be classified in a preprocessing
step. The grid cells are classified as inner, exterior, or boundary grid cells. There are different ways
to approach this problem. If one has already determined the intersection points between the mesh and
the trimming curve then this can be exploited to classify the grid cells in a straightforward manner.
However we determine the intersection points after the grid classification and therefore consider an
alternative approach. We classify the grid cells in two steps. First, the vertices of the grid cells are
classified, and thereafter the grid cell is classified using the classification of its vertices. Each vertex
is classified using the Raycasting algorithm (see Algorithm 1) using a polygonal approximation of the
trimming curve through sampling. The Raycasting algorithm checks if a point (in this case, a vertex)
is inside or outside the polygon given a point and a polygon (in this case, a polygon approximation of
the trimming curve).

Algorithm 1 Raycasting Algorithm
Require: Polygon, Point

Count ← 0
for Side in Polygon do

if Ray_intersect_segment(Point,Side) then
Count ← Count + 1

end if
end for
if Is_odd(Count) then

return Inner Point
else

return Outer Point
end if

Figure A.1 shows the classification of the vertices for the trimming curve from Figure 2.3 (after trans-
lating and re-scaling), which is a centered circle with radius 0.25. Additionally, rays are drawn for three
specific vertices colored green, blue, and red. The Raycasting algorithm counts the number of times
the ray, which starts from the vertex, intersects the trimming curve, if it is a even number (or 0) the
corresponding vertex is classified as an outer vertex and if it is an odd number the vertex is classified as
an inner vertex. For instance the green ray intersects the trimming curve twice, therefore it is classified
as an inner vertex. The blue ray intersects the trimming curve once therefore its corresponding vertex
is classified as an outer vertex.
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Figure A.1: Classification of the vertices of each grid cell. The vertices are classified as inner or outer, and colored
white or black respectively. Additionally, a green, red, and blue ray is drawn for the three vertices of each color.

The accuracy of this approach depends on the number of sampling points used to approximate the
trimming curve as a polygon. To address this problem, a hierarchical approach is used. The vertices
are first classified by the Raycasting algorithm using a polygon generated by s0 ∈ N sampling points.
Then, the vertices are classified again using s1 > s0 sampling points. Next, the classification of the
vertices at each level is compared. If the classification for each vertex is the same, then the classification
process is stopped, and the classification of the vertices is returned. If not, this process is repeated until
a classification is returned or the prescribed level is reached. Using the classification of the vertices the
grid cells are classified as follows: if all the vertices of a grid cell are classified as inner vertices then
the grid cell is classified as a interior grid cell, if all the vertices are classified outer vertices then the
grid cell is classified as outer grid cell and if the vertices are classified as either inner or outer grid cells
then the grid cell is classified as a boundary grid cell. In Figure A.2 the classification of the grid cell is
shown for the vertex classification of Figure A.1.
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Figure A.2: Grid classification and vertex classification. The vertices are classified as inner or outer, and colored white
or black respectively. The boundary, interior and exterior gridcells are colored dark grey, light grey and white

respectively



B
Intersection points

To perform numerical integration over the trimming curve and trimmed elements, we require the in-
tersection points between the mesh and trimming curve. Throughout this section, we assume that the
grid cells are classified. We follow the approach proposed by [43]. Since the grid cells are classified, we
know which specific grid cells contain the intersection points, i.e., the boundary grid cells. Figure B.1
shows a specific example of a trimmed grid cell with two intersection points.

Figure B.1: Boundary grid cell.

We consider the intersection point S1. At this intersection point ξ = ξ1 is known and u1 and η are
unknown. To find the unknowns we solve the following set of equations using Newton’s method.{

Cξ(u)− ξ1 = 0,

Cη(u)− η = 0.
(B.1)

Since we are working with a closed trimming curve, equation (B.1) can have multiple solutions. To avoid
this problem, we use a divide and conquer approach. This approach involves splitting the trimming
curve, which is a NURBS curve, into several Bézier curves by curve splitting the NURBS curve at
every knot value as mentioned in section 2.2. Afterward, the NURBS curve, C(u), in equation (B.1) is
replaced by the closest Bézier curve. The closest Bézier curve is determined by calculating the distance
between one of the vertices of the boundary grid cell and the Bézier curves evaluated at the midpoint
of their knot vector. Figure B.2 shows the intersection points for the trimming curve from Figure 2.3
(after translating and rescaling) using the above approach. Another approach, which is interesting but
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not used in this Master’s thesis, is referred to as Bézier clipping [44]. Bézier clipping is a more robust
way of finding the intersection points.

Figure B.2: Intersection points for a centered circle with radius 0.25.



C
Proof

We assume a domain Ω = [a, b] that is trimmed by the domain D = (ttrim, b], where ttrim is the
trimming location. Furthermore we assume that n+ 1 basis functions have nonzero support on Ω \D
and are of order p, of which n are stable basis functions. The unstable basis functions are stabilized by
choosing the closest p + 1 << n stable basis functions, therefore j − l = p + 1 (, where l is the index
of the most left basisfunction in the index set I(j)). Since we assume trimming from the right this
simplifies the expression for the extension coefficients. That is the extension coefficients:

eqi,j =

q∏
µ=0

ℓ+µ ̸=i

j − ℓ− µ
i− ℓ− µ

,

where q is the order of the basis function and i, j the indices of the stable and unstable basis functions
respectively can be rewritten as:

eqα =

q∏
µ=0

α−µ ̸=0

q + 1− µ
α− µ

,

where α := i− l To Proof : DE0I = E1, where

D =



−1 1 0 . . . . . . 0

0
. . . . . . . . . ...

... . . . . . . . . . . . . ...

... . . . . . . . . . 0
0 . . . . . . 0 −1 1


∈ Rn×(n+1), E0 =



1 . . .
. . .

. . .
. . .

1
0 . . . 0 ep0 . . . epp


∈ R(n+1)×n,

I =



0 . . . . . . . . . 0

1
. . . ...

... . . . . . . ...

... . . . . . . ...

... . . . 0
1 . . . . . . . . . 1


∈ Rn×(n−1), E1 =



1 . . .
. . .

. . .
. . .

1

0 . . . 0 ep−1
0 . . . ep−1

p−1


∈ Rn×(n−1).
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Proof:

DE0I =



−1 1
. . . . . .

. . . . . .
. . . . . .

. . . . . .
. . . . . .

−1 1
0 . . . 0 ep0 ep1 . . . epp−1 epp − 1


I

=



1 . . .
. . .

. . .
. . .

. . .
1

(
∑p

α=0 e
p
α)− 1 . . . (

∑p
α=0 e

p
α)− 1 (

∑p
α=0 e

p
α)− 1 (

∑p
α=1 e

p
α)− 1 . . . epp − 1



Note that (
∑p

α=0 e
p
α) = 1. It remain to show that:

1 . . .
. . .

. . .
. . .

1
0 . . . 0 (

∑p
α=1 e

p
α)− 1 . . . epp − 1


?
=



1 . . .
. . .

. . .
. . .

1

0 . . . 0 ep−1
0 . . . ep−1

p−1


We focus on the last row since the other rows coincide. That is we need to show that:[

0 . . . 0 (
∑p

α=1 e
p
α)− 1 . . . epp − 1

] ?
=
[
0 . . . 0 ep−1

0 . . . ep−1
p−1

]
Comparing each entry of the row gives:

epp − 1 = ep−1
p−1

epp−1 + epp − 1 = ep−1
p−2 =⇒ epp−1 + ep−1

p−1 = ep−1
p−2

epp−2 + epp−1 + epp − 1 = ep−1
p−2 =⇒ epp−2 + ep−1

p−2 = ep−1
p−3

...(
p∑

α=1

epα

)
− 1 = ep−1

0 =⇒ ep1 + ep−1
1 = ep−1

0

This leaves us to show that:

epp − 1 = ep−1
p−1

epk + ep−1
k = ep−1

k−1, k ∈ {1, . . . , p− 1}

For the first expression we first show that eqq = q + 1:
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eqq =

q∏
µ=0

q−µ ̸=0

q + 1− µ
q − µ

=

q−1∏
µ=0

q + 1− µ
q − µ

=

∏q−1
µ=0(q + 1− µ)∏q−1

µ=0(q − µ)
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µ=−1(q − µ)∏q−1
µ=0(q − µ)

=

∏q−1
µ=0(q − µ)∏q−1
µ=0(q − µ)

p+ 1

1
= q + 1

Using the above expression we have that:

epp − 1 = p+ 1− 1 = p = ep−1
p−1

To proof the second expression we first show that epk = p+1
k ep−1

k−1, k ∈ {1, . . . , p − 1} and that ep−1
k =

k−p−1
k ep−1

k−1, k ∈ {1, . . . , p− 1}
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∏p
µ=0

k−µ ̸=0

(p− µ)∏p−1
µ=0

k−1−µ ̸=0

(k − 1− µ)



66

=
k − p
k

1

p− k

∏p
µ=0 (p− µ)∏p−1

µ=0
k−1−µ ̸=0

(k − 1− µ)

=
k − p
k

p− k + 1
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Using the above expression we have that:

epk + ep−1
k =

p+ 1

k
ep−1
k−1 +

k − p− 1

k
ep−1
k−1 =

(
p+ 1

k
+
k − p− 1

k

)
ep−1
k−1 = ep−1

k−1,

Which concludes that DE0I = E1.



D
Auxiliary Results

D.1. Immersed Mixed Poisson Problem - Two dimensional domain
In this section the convergence and conditioning for several finite sub-spaces are assessed by solving a
mixed Poisson problem. First the problem is solved using the standard b-spline spaces and thereafter
using the constructed spaces in subsection (3.2). We consider the same domain as mentioned in section
4.1. To asses convergence we use the method of manufactured solution with the following exact solution
and right hand side

ũ = cos(2π(y − 0.5)(x− 0.5))((x− 0.5)2 + (y − 0.5)2 − 0.252),

σ̃̃σ̃σ = ∇ũ,
f̃ = −∇ · σ̃σσ.

Moreover we solve the mixed Poisson problem with the following prescribed boundary conditions

σ −∇u =0 (x, y) ∈ Ω \D,
−∇ · σ =f̃ (x, y) ∈ Ω \D,
u(x, y) =0, (x, y) ∈ ∂D,
u(0, y) =ũ(0, y), y ∈ [0, 1],

u(1, y) =ũ(1, y), y ∈ [0, 1],

σσσ(x, 0) ·nnndown =σ̃̃σ̃σ(x, 0) ·nnndown, x ∈ [0, 1],

σσσ(x, 1) ·nnnup =σ̃̃σ̃σ(x, 1) ·nnnup, x ∈ [0, 1].

(D.1)

where nnndown =

[
0
−1

]
and nnnup =

[
0
1

]
. For completeness we state the weak form which is given by

Find (u,σ) ∈ L2(Ω \D)×H(Div; Ω \D) with σσσ(x, 0) ·nnndown = σ̃̃σ̃σ(x, 0) ·nnndown

on (x, y) ∈ [0, 1]× {0} and σσσ(x, 1) ·nnnup = σ̃̃σ̃σ(x, 1) ·nnnup

on (x, y) ∈ [0, 1]× {1}. such that∫
Ω

σ · τ +∇ · τudx =

∫ 1

0

ũ(0, y)τ ·
[
−1
0

]
dy +

∫ 1

0

ũ(1, y)τ ·
[
1
0

]
dy ∀τ ∈ H0(Div; Ω \D),∫

Ω

∇ · σv dx = −
∫
Ω

fv dx ∀v ∈ L2(Ω \D),

(D.2)

where H0(Div; Ω\) = {fff ∈ H(Div; Ω\D) : fff(0, y)·
[
−1
0

]
and fff(1, y)·

[
1
0

]
}. The galerkin approximations

for the test and trial spaces are chosen in a structure preserving manner as discussed in section 2.4. More
specifically the spline space Sp−1,q−1

p−2,q−2 and Sp,q−1
p−1,q−2×S

p−1,q
p−2,q−1 of order p = q = 1, 2 and 3 are used as trial
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and test spaces for L2(Ω\D) and H(Div; Ω\D) respectively together with proper numerical integration
on the trimmed elements and proper enforcement of the boundary conditions. The convergence order
in the L2 norm for both uh and σσσh is shown in Figure D.1 and in the H(Div; Ω \ D) norm for σσσh in
Figure D.2.

Figure D.1: L2 norm of the error for B-spline basisfunctions of order 1,2 and 3 in both coordinate directions. Left the
L2 norm of the error of u is shown and at the right for σσσ.

Figure D.2: H(Div; Ω \D) norm of the error of σσσh for B-spline basis functions of order 1, 2 and 3 in both coordinate
directions.

Optimal convergence order is observed when refining the mesh parameter h for both uh and σσσh. Next
we consider the condition number of the Galerkin matrix which is shown in Figure D.3. The condition
numbers grow as the mesh parameter is refined and order of the basisfunction is increased. This is
because of the unstable space we have chosen. More specifically there are basis functions with small
support due to the trimming of the domain.
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Figure D.3: The condition number of the Galerkin matrix with respect to the mesh parameter h. In addition the
slopes are shown.



E
Source Code

The code used to obtain the results presented in this literature review was written by the author of this
paper using Python. The code is available upon request. Please contact the author at F.Sindy@outlook.com
to obtain the details regarding the code.
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