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Abstract

Every year, 180,000 new cases of hydrocephalus are diagnosed among infants in Sub-Saharan
Africa. Unfortunately, more than two-thirds of the population in this region lacks access
to essential medical imaging technologies, such as magnetic resonance imaging (MRI). To
address this issue, a collaborative effort between the TU Delft, Leiden University Medical
Center, Penn State, and Mbarara University of Science and Technology has led to the devel-
opment of a low-cost, portable, low-field MRI system. However, images obtained from this
scanner are often noisy and distorted and might contain artefacts, therefore, need prepro-
cessing before they can be utilized in diagnostics. The enhancement of their quality can be
achieved through both hardware calibration and optimization, as well as the application
of filtering, enhancement, and segmentation techniques. In this master’s project, we pro-
pose a two-step PDE-based segmentation approach. Additionally, we compare it with the
modified approach where presegmentation in the initial phase of the standard algorithm is
introduced. Both approaches yield segmentation results comparable to the ground truth or
manually performed segmentation. Nonetheless, there remains room for further improve-
ment in both denoising and segmentation techniques.
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Abbreviations and Acronyms

Abbreviation Definition

2D Two-dimensional
3D Three-dimensional
ADMM Alternating Direction Method of Multipliers
AHE Adaptive Histogram Equalization
CSF Cerebrospinal Fluid
CT Computer Tomography
DPCG Deflated Preconditioned Conjugate Gradient
FDM Finite Difference Method
HE Histogram Equalization
MRI Magnetic Resonance Imaging
PCG Preconditioned Conjugate Gradient
PDF Probability Density Function
PET Positron Emission Tomography
RF Radiofrequency
SDAM Squared Deviation from the Absolute Mean
SDCM Squared Deviation from the Class Mean
SRG Seeded Region Growing
TV Total Variation
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1
Introduction

Approximately 180,000 infants are diagnosed with hydrocephalus in Sub-Saharan Africa
each year [1]. This is a congenital or acquired condition caused by accumulation of cere-
brospinal fluid (CSF) resulting in abnormal expansion of the cerebral ventricles [2]. Inade-
quate diagnosis and poor treatment, which happen due to lack of specialized medical high
technology equipment, might lead to severe brain damage and, ultimately, death.

The most effective tool of diagnosing this disease is Magnetic Resonance Imaging (MRI)
[3]. MRI is a non-invasive imaging technology that produces three dimensional detailed
anatomical images and is commonly used for disease detection, diagnosis, and tracking
treatment progress [4].

However, MRI systems and their maintenance are expensive and not accessible in 66 %
of the world [5]. According to the World Health Organizations recent statistics [5], 44 to 67%
of the population in low- and lower-middle-income countries has poor availability of non-
communicable diseases (NCD) tests/procedures relying on specific medical devices while
this number for high-income countries is limited to 2%. Specifically, 40% of low-income
and 27% of lower-middle-income countries do not have any units of MRI.

1.1. Motivation
In a recent joint project of the Technical University of Delft (TU Delft), Leiden University
Medical Center (LUMC), Pennsylvania State University (PSU), and Mbarara University of
Science and Technology (MUST) a prototype of an inexpensive and sustainable device has
been designed [6, 7]. Later, a team of LUMC developed an updated version of the MRI

1



2 1. Introduction

(a) (b) (c)

Figure 1.1: Low-field MRI scanner developed by the LUMC and the TU Delft. Upper left image: the scanner,
Upper right image: the radio frequency (RF) coil, Bottom image: MUST MRI scanner during a measurement

of a phantom (a papaya).

scanner, and its copy (see Figure 1.1) was constructed at MUST [8]. The latter is still under
development, therefore, the image quality can still be improved by hardware optimizations.
The approximate costs of this MRI system (excluding machining and personnel) sum up to
around 13,500 euros while those of a conventional multipurpose whole-body MRI reach
several million euros.

A cheaper point-of-care mobile MRI system should make testing for hydrocephalus
more accessible to patients in Uganda. However, images obtained from this scanner are
often noisy and distorted, and might contain artefacts, therefore, they should undergo pre-
processing before being used in diagnostics.

1.2. Related Research
There has been a lot of research conducted on denoising and image enhancement for MRI
scans and low-field MRI in particular. The University of Hong Kong research group has al-
ready studied many clinical patients, incorporating various noise removal and advanced
image processing techniques [9, 10, 11]. Brown University’s Advanced Baby Imaging Lab
has already studied numerous cases of human subjects, with noise removal and segmen-
tation into white matter, gray matter and CSF [12, 13, 14, 15]. The Rosen Lab has worked
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on developing low-cost “purpose-built" MRI systems for brain imaging and enhancing ob-
tained images [16, 17].

1.3. Research Questions
As mentioned above, although a low-field MRI system will provide many people with ac-
cess to this type of medical diagnosis, scans obtained from it are frequently of poor quality.
Nevertheless, both hardware and software improvements can be made in order to signifi-
cantly increase it.

Research on enhancement and segmentation of low-field MR images is mainly focused
on artificial intelligence (AI) techniques, as is exemplified by the work in the above refer-
ences. This thesis focuses on analytical, PDE-based techniques. We follow the two-stage
approach suggested in [18]. The idea behind the approach is to firstly find the approxima-
tion of the initial image by solving a minimization problem that includes image reconstruc-
tion and image filtering terms. In the second stage, several enhancing techniques and Jenks
natural breaks classification method [19] are employed to obtain the final segmentation of
the initially noisy MR scan. We aim to answer the following research questions:

1. Can a two-step PDE-based segmentation approach applied to noisy MR scans pro-
duce reliable results?

2. Can a two-step approach, extended by adding a presegmentation step, yield more
accurate segmentation than standard one?

1.4. Report Outline
The report is structured in the following way: Chapter 1 contains introduction to the re-
search topic. Next, in Chapter 2 and Chapter 3 respectively, image filtering techniques
and standard segmentation methods are described. Additionally, Chapter 4 covers how
the two-step segmentation approach can be applied to process noisy images. In Chapter 5
the basics of the MRI concepts are explained and the data set on which the numerical ex-
periments are conducted is presented. Chapter 6 contains the results and the analysis of
our model performance. Finally, Chapter 7 is devoted to the conclusions and Chapter 8
provides suggestions for future research.





2
Image Filtering Techniques

In this chapter we will discuss the model that we use as a filtering technique for a noisy
or distorted images. Moreover, we will briefly and concisely describe the numerical dis-
cretization of the obtained system and the ways to solve it using Picard iteration and pre-
conditioning.

2.1. Diffusion PDE’s for noise reduction
The Perona-Malik diffusion model is a filtering technique that allows to reduce image noise
without diffusing the edges or other significant image details [20, 21]. It is given by the
equations below:

∂u(x, t )
∂t

=∇ · (c(‖∇u(x, t )‖)∇u(x, t )) in Ω× (0,T ) (2.1)

u(x,0) = f (x) in Ω (2.2)

∂u(x, t )
∂n

= 0 on ∂Ω× (0,T ). (2.3)

Here Ω is the picture domain, T is the stopping time, u(x, t ) is the image intensity, f is an
initial noisy image and c is a function satisfying following conditions:

• c(‖∇u(x, t )‖) is a non-negative monotonically decreasing function,

• lim
‖∇u(x,t )‖→0

c(‖∇u(x, t )‖) = M , where M ∈ (0,∞),

5



6 2. Image Filtering Techniques

• lim
‖∇u(x,t )‖→∞

c(‖∇u(x, t )‖) = 0.

The basic anisotropic diffusion PDE from Equation 2.1 can be modified in such a way
that the updated equation maintains the fidelity to the original image, the stopping time
does not have to be chosen anymore and the diffusion termination at trivial solutions, such
as a constant image, is avoided (see [22]). Extra terms are added to the right-hand side
which brings us to the following PDE:

∂u(x, t )
∂t

=∇ · (c(‖∇u(x, t )‖)∇u(x, t ))+η(u(x,0)−u(x, t )) in Ω× (0,T ) (2.4)

The added terms η(u(x,0)−u(x, t )) in Equation 2.4, with η being a fidelity parameter,
are providing constraint that penalizes variation of the output image from the input one.
Knowing the initial condition, u(x,0) can be substituted with f (x).

2.1.1. Diffusion Coefficients
The original model suggests the following diffusion coefficients:

c(‖∇u(x, t )‖) = exp
(
−

(‖∇u(x, t )‖
K

)2)
, (2.5)

c(‖∇u(x, t )‖) = 1

1+
[‖∇u(x, t )‖

K

]2 . (2.6)

Despite their ability to sharpen edge, these coefficients are unable to remove heavy-tailed
noise and create the so-called “staircase” artefacts. Although this “staircase” effect is not
useful for image enhancement, it might be beneficial to segmentational purposes.

The following Gaussian-smoothed diffusion coefficient was proposed in to avoid the
above-mentioned issues [23]:

c(‖∇u(x, t )‖) = exp
(
−

(‖∇u(x, t )∗Gσ‖
K

)2)
, (2.7)

where K is a damping parameter and Gσ is Gaussian filter with standard deviation σ.
Another option is a parameter-free total variation diffusion coefficient

c(‖∇u(x, t )‖) = 1
‖∇u(x, t )‖ . (2.8)
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Moreover, morphological operations (discussed later in Section 3.4) can be incorpo-
rated in the diffusion coefficients:

c(‖∇u(x, t )‖) = exp
(
−

(‖∇S(x, t )‖
K

)2)
, (2.9)

where S = (u(x, t ) •◦ B)◦B is the morphological closing-opening filter with B being a struc-
turing element [24].

Finally, we consider the elastic net modification of the total variation diffusion coeffi-
cient:

c(‖∇u(x, t )‖) = 1
dp

·
(

1
‖∇u(x, t )‖2

) dp
2 −1

+K . (2.10)

Here dp is the diffusion power and K is the diffusion parameter.

2.2. Picard Iteration
We will consider the following model:

0 =∇ · (c(‖∇u(x)‖)∇u(x))+η( f (x)−u(x)) in Ω (2.11)

It can be viewed as one time-step of implicit Euler method applied to Equation 2.1

u1 −u0

τ
=∇ · (c(‖u1‖)∇u1) (2.12)

which can be rewritten using the known initial condition and by taking η= 1
τ and u = u1:

∇ · (c(‖u‖)∇u)+η( f −u) = 0. (2.13)

Equation 2.13 exactly coincides with Equation 2.11. It can also be noticed that Equation 2.4
is a time-dependent form of Equation 2.11. In [25, Section 2.7.6], the authors explain that,
under certain conditions, the solution u(x, t ) of the time-dependent problem should ap-
proximate a minimizer u(x) of the model Equation 2.11 as time increases.

To solve the system, we firstly discretize Equation 2.11 in space using the standard finite
difference method (FDM) (see, for instance, [20, 26]). In the two-dimensional case, we
obtain the following semi-discrete system:

0 =C (u)u+η(f−u), (2.14)
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where

u = (u0,0, · · · ,uN−1,0, · · · ,u0,N−1, · · · ,uN−1,N−1)T , (2.15)

f = ( f0,0, · · · , fN−1,0, · · · , f0,N−1, · · · , fN−1,N−1)T , (2.16)

and N is the number of subintervals in each direction. The system for the three-dimensional
case can be derived similarly.

Rewriting Equation 2.16 brings us to the following form:
(
1− 1

η
C (u)

)
u = f. (2.17)

The nonlinear system in Equation 2.18 is then solved using the lagged diffusion Picard
iteration as suggested in [27]:

(
1− 1

η
C

(
un))

un+1 = f. (2.18)

Denoting A(u) :=
(
1− 1

ηC (u)
)

, b := f, we obtain the final linear system that needs to be
solved in every Picard iteration:

A
(
un)

un+1 = b. (2.19)

2.3. Deflated Preconditioned Conjugate Gradient Method
Deflated Preconditioned Conjugate Gradient Method (DPCG), see e.g.[28], is a method al-
lowing to speed up the convergence of the Preconditioned Conjugate Gradient Method
(PCG) when applied to a number of problems [29, 30].

In Section 2.2 we discussed the numerical discretization and the final system that has
to be solved in each Picard iteration. Matrix A in Equation 2.19 is symmetric and positive
definite. However, discontinuities in the diffusion coefficient might occur resulting in A
being ill-conditioned.

System Equation 2.19 can be solved using the conjugate gradient method. Moreover, it
can be sped up by solving preconditioned system

M−1 Au = M−1b, (2.20)

where M is chosen in such a way that it resembles A. Further improvements in the speed
of the convergence can be performed by applying deflated preconditioner (DPCG). This
allows to map isolated eigenvalues to zero, effectively removing them from the system [31].
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The projector P is defined as follows:

P = I − AZ (Z T AZ )−1Z T , Z ∈Rn×m , (2.21)

where Z =
[
z1 z2 . . . zm

]
is the deflation matrix of a full rank and I is the identity matrix.

The solution u can be split into two terms u = (I −P T )u+P T u. Replacing P with its
definition in the first term yields

(I −P T )u = Z (Z T AZ︸ ︷︷ ︸
:=Ã

)−1Z T Au = Z Ã−1Z T Au = Z Ã−1Z T b. (2.22)

Therefore, we only need to calculate the second term P T u. We solve the deflated system
using the fact that AP T = PA and the PCG method:

PAũ = Pb. (2.23)

After we find ũ, we can obtain P T u by multiplying ũ by P T .
There exist different possible choices for the matrix Z : it can be constructed by seg-

menting the image into small images using different methods, for example, region growing,
thresholding, same size patches. In our research, we use the approach that defines Z based
on the domain decomposition [28]. Assume that the domain Ω is divided into m nonover-
lapping subdomains Ωi , i = 1, · · · ,m. Then each column zi of the matrix Z is defined as:

{
zi = 1, on Ωi ,

zi = 0, on Ω j , j *= i ,
for i = 1, · · · ,m. (2.24)

Such choice of Z is called subdomain deflation.
To conclude, the DPCG method lets us split the solution into two parts, one of which

is in the range of the deflation subspace R(Z ) and the other one is in its complement.
Pseudo-code for the algorithm can be found in [32, p. 462]





3
Segmentation Techniques

In this chapter basic segmentation techniques and their application to the problem are
presented. Additionally, global and adaptive histogram equalization processes that allow
significant enhancement of image quality are described. It is mainly based on [33, Chapters
3, 9, 10]

3.1. Thresholding
Thresholding is the simplest image segmentation technique that is allowing to split the
image into regions by analysing its intensity values [33, p.760−764].

Assume that there is an intensity histogram, corresponding to an image f (x, y), consist-
ing of light objects on a dark background. Therefore, the pixels of the fore- and background
can be grouped into two main modes with a threshold value equal to some T . Then the
segmented image, g (x, y), is defined as:

g (x, y) =
{

1, if f (x, y) > T,

0, if f (x, y) + T.
(3.1)

This is an example of a single threshold. It can be generalized in the following way: let
{T1, . . . ,Tn} be the set of threshold values (assume that there are (n−1) types of light objects

11



12 3. Segmentation Techniques

on a dark background). Then the segmented image, g (x, y), is as follows:

g (x, y) =





a1, if f (x, y) > Tn ,

a2, if Tn−1 < f (x, y) + Tn ,

. . .

an−1, if T1 < f (x, y) + T2,

an , if f (x, y) + T1,

(3.2)

where {a1, a2, . . . , an} are n distinct intensity values. However, dual (or higher level) thresh-
olding is difficult to solve, therefore, other techniques are preferable in such cases.

3.2. Edge Detection
In Section 2.1 we have already discussed filtering technique that allows to perform denois-
ing of the image without diffusing the edges. It is given by Equation 2.4, Equation 2.10.

Once anisotropic diffusion has been applied to the initial image, edge detection proce-
dure can be defined. The gradient magnitude ‖∇u(x)‖ serves as such detector. Defining a
certain threshold T of ‖∇u(x)‖ gives us the locations of the edges e:

if ‖∇u(x)‖> T ⇒ e(x) = 1, (3.3)

if ‖∇u(x)‖ + T ⇒ e(x) = 0. (3.4)

For example, in the case of the diffusion coefficients from eqs. (2.5) and (2.6), parameter K
can be used as such threshold. Indeed, for the small values of ‖∇u(x, t )‖ the diffusion flux
arises, while for the large ones it is suppressed:

if ‖∇u(x, t )‖- K ⇒ c(‖∇u(x, t )‖) → 1, (3.5)

if ‖∇u(x, t )‖. K ⇒ c(‖∇u(x, t )‖) → 0. (3.6)

3.3. Background Removal Using Region Growing
Since the objects in MRI scans are generally center-located and the background is usually
black, it can be subtracted from the image letting the foreground be extracted for further
processing. Seeded region growing, originally presented in [34], is one of the techniques
used for background removal. It is an algorithm performing a segmentation of an image
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with respect to a set of seeds. The final result of the algorithm is an image split into regions
satisfying the following requirements:

1)
n⋃

i=1
Ωi =Ω,

2) Ωi ∩Ω j =0, i *= j ,

3) Ωi is a connected region, i = 1,2, . . . ,n,

4) P (Ωi ) = T RU E , i = 1,2, . . . ,n,

5) P (Ωi ∪Ω j ) = F ALSE , ∀i , j s.t. Ωi ,Ω j are adjacent.

Here P (Ωi ) is some logical predicate defined over each Ωi . For example, it might define
some properties that should be met by each pixel within Ωi .

In the first step, each region Ωi , i = 1,2, . . . ,n, consists of an initials set of seeds (a set
might also consist of a single point). On each of the following steps, one pixel is added to
one of the existing sets. The process of assigning a pixel to a set is as follows: consider the
sets Ωi , i = 1,2, . . . ,n, after a certain step M . Let T denote the set of all unallocated for this
moment pixels which border at least one of Ωi , i = 1,2. . . ,n:

T =
{

x ∉
n⋃

i=1
Ωi \N (x)∪

n⋃

i=1
Ωi *=0

}
, (3.7)

where N (x) denotes a set of immediate neighbors of the pixel x.

• If for x ∈ T an intersection of N (x) is non-empty with only one set Ωi , then the index
i (x) ∈ 1,2, . . . ,n is defined as the one that gives N (x)∩Ωi (x) *=0. Moreover, we define
a measure of differentness δ(x) of a pixel x from the region that it is assigned to as:

δ(x) = |G(x)−mean
y∈Ωi (x)

[G(y)]| (3.8)

with G(x) being a gray value of the pixel x.

• If N (x)∩Ωi *= 0 for more than one index, then i (x) is chosen as the one that meets
the condition of N (x)∩Ωi (x) *=0 and δ(x) is minimized.

After that, the (M + 1)-th step is completed. The procedure continues until every pixel is
allocated to one of the sets.
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3.4. Morphological Operations
Before we introduce several morphological operations, let us give a few definitions. The
translation of a set B by point z = (z1, z2) is a set (B)z s.t.

(B)z = {b + z| b ∈ B}. (3.9)

Morphological operations have two inputs: an image that is to be processed and the second
is a structuring element (SE), another, typically much smaller, image. The function of the
structuring elements is to probe the input image. The SE can be of any shape, however,
rectangles and circular regions of specified sizes are commonly employed.

Using the above notation, we can define the two morphological operations dilation and
erosion [33, p. 652− 657], [35, p. 78− 79]. Let A, B be sets in Z 2. The erosion of A by
structuring element B is defined as

A⊕B =
⋂

b∈B
(A)−b . (3.10)

An example of an eroded image is presented in Figure 3.1.

(a) Input image. (b) Erosion by SE of size 11×11.

(c) Erosion by SE of size 15×15. (d) Erosion by SE of size 45×45.

Figure 3.1: Example of erosion process with different sizes of structuring elements (SE) [33, p. 654].
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The dilation of A by structuring element B is defined as

A⊕B =
⋃

b∈B
(A)b . (3.11)

An example of dilated image is shown in Figure 3.2.

(a) Input image. (b) Dilation by SE of size 5×5.

(c) Structuring element.

Figure 3.2: Example of dilation process with a structuring element Figure 3.2c [33, p. 656].

In other words, erosion allows removal of small-scale details from a binary image. Un-
like erosion, which is frequently considered a thinning operator, dilation is used to fill in
the holes in the existing image, thus, it can be thought of as a thickening operator that can,
for instance, fill the existing holes.

Next, two more useful operations can be defined [33, p. 657−663]. The opening of a set
A by structuring element B is

A ◦B = (A!B)⊕B. (3.12)

The closing of a set A by structuring element B is

A •◦ B = (A⊕B)!B. (3.13)

Using the above-mentioned operations, morphological filtering can be performed by
applying opening followed by closing. In Figure 3.3 structuring element (B) of size 3×3 is
used.
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(a) Input image (A).

(b) A!B . (c) A ◦B .

(d) (A ◦B)⊕B . (e) (A ◦B) •◦ B .

Figure 3.3: Example of opening followed by closing [33, p. 661].

Finally, erosion and set difference can be used to extract object boundaries [33, p. 664].
Let the boundary of a set A be denoted as β(A). Then it can be obtained as

β(A) = A− (A!B), (3.14)

where B is a suitable SE (see example in Figure 3.4).

3.5. Histogram Equalization
Histogram equalization is an image pre-processing method allowing to spread the intensity
level of an initial image in such a way that the equalized image covers a wider range of the
intensity scale, and, as a result, leading to contrast enhancement [33, p. 142−148].

Let r denote the intensities of the input image and let it be in the range [0,L−1], where
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(a) Input image. (b) Processed image.

Figure 3.4: Example of boundary extraction with a structuring element of size 3×3 [33, p. 665].

r = 0 stand for black and r = L −1 represents white. The histogram of an image is then a
discrete function h(rk ) = nk with rk being the k-th intensity value and nk being the total
number of pixels of the image with this specified intensity rk . Therefore, if M and N are the
row and column dimensions of the image, then the normalized histogram can be given by:

pr (rk ) = h(rk )
M N

= nk

M N
, k = 0,1,2, . . . ,L−1. (3.15)

Here M N gives the total number of the pixels in the image. Then the following transforma-
tion is called histogram equalization:

sk = T (rk ) = (L−1)
k∑

j=0
pr (r j ) = (3.16)

= (L−1)
M N

k∑

j=0
n j k = 0,1,2, . . . ,L−1. (3.17)

The idea behind it is that the probability density function (PDF) of s (the output image)
has uniform distribution. Thus, such image will have an appearance of high contrast and
will display a large variety of gray tones. An example of the output images obtained by
histogram equalization are presented in Figure 3.5.
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Figure 3.5: Left column: original input images, middle column: ouput of HE procedure, right column:
corresponding histograms [33, p. 151]. These examples were performed by using histeq function in

MATLAB.
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3.6. Adaptive Histogram Equalization
The process discussed in Section 3.5 can be referred to as global histogram equalization
since its transformation is based on the PDF of an entire image. Although in most of the
cases it significantly increases the overall quality of an image, there are examples in which
certain details should be enhanced over smaller parts of an image.

Considering local transformations, as mentioned in [33, p. 161], instead of global ones
can serve as a possible solution to this issue. This approach is called adaptive histogram
equalization (AHE). We will use its variation which was firstly suggested in [36]. Let an
image have the size M ×N and let us split it into contextual regions of the size px ×py . This
implies that the total number of such regions, or patches, is as follows:

ntotal = nx ·ny , (3.18)

nx = M
px

, (3.19)

ny =
N
py

, (3.20)

where nx , ny denote the number of patches in x− and y−directions respectively.
For each of the patches, we compute its transformation function as in Equation 3.17:

skq =
(L−1)
px ·py

k∑

j=0
n jq k = 0,1, · · · ,L−1, (3.21)

q = 1, · · · ,ntotal.

Moreover, we store the coordinates of the central pixels xc and yc for every patch:

xcq = x0q +
⌊

px +1
2

⌋
(3.22)

ycq = y0q +
⌊

py +1

2

⌋
, (3.23)

where x0q and y0q are global coordinates of the upper left corner pixel of the patch.
Once all the above-mentioned transformations are computed, we can perform adaptive

equalization. The resulting mapping at any pixel is computed as a bilinear interpolation of
the mapping at the four neighbouring pixels (see Figure 3.6). Consider a pixel with inten-
sity j located at (x, y) and let s j+− be the mapping of the patch to the upper right of (x, y).
Similarly, s j++ , s j−+ , s j−− denote the mappings of the patches to the upper left, bottom left
and bottom right respectively of (x, y). Then the result of the AHE is given by:

Tahe( j ) = cy
(
cx s j−− + (1− cx)s j+−

)
+ (1− cy )

(
cx s j−+ + (1− cx)s j++

)
, (3.24)
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where

cx =
x −xc−−

xc+− −xc−−
, cy =

y − yc+−

yc++ − yc+−
. (3.25)

Figure 3.6: Example of sample points (·) for mapping computations and evaluation points (∗) (in the corner,
at the border and between the four sampling points). Dashed line shows which neighbouring sample points

are used for computing the AHE result of a particular pixel.

Mappings of the pixels located in the borders of the image should be computed spe-
cially, using linear interpolation of the two closest patches or, in case of the corner location,
applying only one transformation.

Equalization process for the three-dimensional case can be derived in a similar way,
adding trilinear interpolation to it.
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3.7. k-means Clustering
The main idea of k-means clustering method is to give a partition of the initial set into k
disjoint clusters (with k being a predefined parameter) [37]. In our research, we use the
Jenks natural breaks classification method, which is a variation of the k-means clustering
method but applied to univariate data [19]. This is an iterative process that consists of the
following steps:

1. Choose the maximum number of clusters ncl.;

2. Split the set into k initial clusters in some way which can be arbitrary;

3. Calculate the sum of squared deviations from the class means (SDCM);

4. Regroup the data into new clusters, possibly by moving elements from one cluster to
a different one;

5. Compute new sum of deviations per cluster.

Steps 3, 4 and 5 are repeated until a certain tolerance τ is achieved or SDCM becomes con-
stant.

Let us specify the way in the set is divided into clusters and which stopping criterion is
used in our research. Firstly, all the pixel values are sorted and the number of clusters k is
set to 1. After that, SDCM is computed. Moreover, the sum of squared deviations from the
mean of the whole dataset (SDAM) and the goodness of variance fit (GVF) are calculated.
The number of clusters is iteratively increased and the elements are moved from one class
to another while

k < ncl. and GVF = SDAM−SDCM
SDAM

< τ.





4
Two-step Segmentation Approach

This chapter is devoted to the two-step segmentation approach and its application in our
study. It was inspired by the paper of T. Wu et al. [18]. In this paper they introduced two-
stage segmentation approach using non-convex '2 −'p approximation of the Mumford-
Shah (MS) model [38]. In the first step, they use the Split-Bregman algorithm to obtain
the solution of a non-convex variant of MS model. In the second step, the obtained solu-
tion is segmented by applying thresholding in combination with the k-means clustering.
In our research, anisotropic diffusion filtering is employed in the first step to enhance the
image. Furthermore, splitting of the solution into clusters is performed with the Jenks nat-
ural breaks classification method. Additionally, we propose modification of the approach
where the diffusion is based upon the segmented image.

4.1. Two-step Image Segmentation
Consider the following minimization problem:

argmin
u

η

2

∫

Ω

( f −u)2 d x +R(‖∇u‖2). (4.1)

Here η is a fidelity parameter, u is an optimal approximation of the initial image f , Ω⊂ R2

is the image domain. Moreover, Ω is supposed to be a bounded open set with Lipschitsz
boundary and f is continuous inside the image domain. Note that f is the result of model-
based reconstruction of MRI signal. The second term is the regularization term. It should
filter out noise while preserving the edges of the objects.

23
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The energy functional given by Equation 4.1 is minimized by the solution of the corre-
sponding Euler-Lagrange equations:

∇ ·
(
R ′(‖∇u‖)∇u

)
+η( f −u) = 0. (4.2)

One can notice that it coincides with earlier derived Equation 2.11 because R ′(·) is equal to
the diffusion coefficient c(·). Detailed discussion of possible choices for c(·) can be found
in Subsection 2.1.1. In Table 4.1 we present only total variation (TV) regulariser and the its
extension with elastic net. The latter is used in our experiments.

Name R(s) R ′(s) = c(s)

Total Variation 2
7

s 17
s

Total Variation with Elastic Net s
dp
2 +K s 1

dp
·
(

1
s

) dp
2 −1

+K

Table 4.1: Choice of regularisers. Note that s = ‖∇u‖2.

Image reconstruction and filtering can be combined in one optimization problem since
R(·) can serve as a regulariser for f as well:

min
f ,u

[
h( f )+ g (u)

]
s.t. u − f = 0. (4.3)

Here

1. Image reconstruction is given by: h( f ) = 1
2‖A f −b‖2

2; min
f

[
h( f )

]
;

A is the Fourier transform [39];

2. Nonlinear diffusion filtering is represented by: g (u) =λR(‖∇u‖2); min
u

[
g (u)

]
;

λ is the regularization parameter.

The method has two stages. In the first stage minimization problem Equation 4.3 is
solved, thus, approximation u is obtained. In order to perform that, we use a single step of
the Alternating Direction Method of Multipliers (ADMM) [40, ].

In the second stage we perform splitting of the solution u into clusters. The authors of
[18] proposed to use a combination of k-means clustering method (Section 3.7) and thresh-
olding (Section 3.1). The solution u is firstly scaled in such a way that ũ ∈ [0,1], thus, the
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range of the smoothed data is restricted. Cluster centroids are denoted as ci , i = 1,2, . . . ,k,
and, without loss of generality, can be assumed to have intensities ρ̃(c1) + ρ̃(c2) + · · · +
ρ̃(ck ). The thresholds are then computed as

ρi =
ρ̃(ci )+ ρ̃(ci+1)

2
, i = 1,2, . . . ,k −1. (4.4)

Afterwards, the scaled solution ũ can be split into clusters by

Ωi := {x ∈Ω : ρi−1 + ũ(x) < ρi }, i = 1,2, . . . ,k. (4.5)

Based on the idea of Wu et al., we use the following two-step approach:

1. First step: enhance the image using anisotropic diffusion filtering with elastic net as
a diffusion coefficient;

2. Second step: segment the image using background removal, morphological closing,
global/adaptive histogram equalization and the Jenks natural breaks classification
method.

4.2. Modified Two-step Approach
In the original two-step approach the diffusion coefficient is computed on basis of the orig-
inal image. A new idea that we will investigate in Section 6.2 is to compute the diffusion on
the segmented image instead . The motivation of this approach is that for segmentation we
want sharp jumps in the diffusion coefficients.

Then the algorithm of the modified approach is as follows:

1. First step:

• Perform segmentation of the unfiltered image using the Jenks natural breaks
classification method;

• Enhance previously segmented image using anisotropic diffusion filtering with
elastic net as a diffusion coefficient;

2. Second step: segment the filtered image using background removal, morphological
closing, global/adaptive histogram equalization and the Jenks natural breaks classi-
fication method.





5
MRI Measurements and Dataset

In this chapter we will give a brief introduction into MRI operation principle, mainly based
on [41, Chapter 5]. Additionally, we will describe the data set that will be used for testing
the proposed methods.

5.1. MRI operation principle
Magnetic resonance imaging (MRI) is a non-invasive diagnostic tool that produces detailed
layer-by-layer images of almost any part of the human body, including, for instance, the
muscles, blood vessels and organs. It is an example of medical application of nuclear
magnetic resonance. MRI produces a visual representation of the spatial distribution of
hydrogen nuclei (found in water and lipids) across different tissues. The image’s bright-
ness is determined by the quantity of protons present at each spatial point and the phys-
ical characteristics of the tissue, including its thickness, rigidity, and protein content. The
key difference from other medical imaging methods, such as computer tomography (CT),
positron emission tomography (PET), X-ray, is that no harmful radiation is required. MRI
is extensively used for diagnosing various conditions, including neurological ones. Apart
from being able to provide anatomical structure, MRI can be used to visualize blood flow
(angiography), water diffusion, and localized brain activity.

The MRI system consists of three core hardware components: a superconducting mag-
net, a set of three magnetic field gradient coils, and a radio frequency transmitter and re-
ceiver (see Figure 5.1). Depending on the strength of the superconducting magnet used,
MRI systems can be classified into several types [42, 43]:
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Figure 5.1: Major components of an MRI system. B0 denotes the magnetic field produced by the
superconducting magnet [41, p. 205].

• ultra-low field (lower than 0,25 T);

• low-field (0,25−1 T);

• high-field (1−7 T);

• ultra-high field (higher than 7 T);

Exposed to this magnetic field, protons start precessing at a ’resonance’ frequency, i.e.,
at a frequency proportional to the strength of the magnetic field. Moreover, adding the
magnetic field gradients leads to this resonance frequency being dependent upon the spa-
tial location of each proton in the body. This makes the image formation possible. Finally,
a tuned radiofrequency (RF) coil serves as transmitter and/or receiver. It transmits the en-
ergy to the tissue, and same or other RF coil receives the induced MRI signal.

Let us discuss more in details the physics of MRI. As mentioned earlier, the hydrogen
nucleus (a single proton) is contained in the water and other tissues of the human body.
This single proton carries a positive electric charge [44]. The hydrogen protons are be-
having like small magnets and are constantly spinning. Without external magnetic field
applied to them, they have random orientation. Application of an external magnetic field
aligns the protons either parallel or perpendicular to this field.
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This alignment can be disturbed by applying RF pulses that make the protons flip and
rotate. The duration of such pulses typically counts to few microseconds. After the RF
pulses are switched off, the nuclei return to their equilibrium state, releasing energy that
can be measured (a signal). It is this signal that is then used for an MR image to be created
[45].

5.2. Dataset Description

(a) (b)

(c) (d)

Figure 5.2: Images and scans used for filtering, enhancement and segmentation.
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In this report, four different images/scans will be used for testing the implemented al-
gorithms. First image is presented in Figure 5.2a and was taken from the Weizmann dataset
[46]. The second and third images (Figure 5.2c and Figure 5.2b) are scans of 3D-printed
physical phantoms [47] modeled after the Shepp-Logan phantom that serves as a model of
a human head for testing imaging techniques [48]. Finally, the last image (Figure 5.2d) is an
MRI scan of a papaya.

5.2.1. Low-field MRI Scans Obtained at MUST

(a) (b) (c)

(d) (e)

Figure 5.3: Scans of a sample object (papaya) obtained with a low-field MRI system for varying values of RF
amp and RF duration: (a) rf_amp =0.37, rf_dur = 300; (b) rf_amp = 0.40, rf_dur = 250; (c) rf_amp = 0.40,

rf_dur = 300; (d) rf_amp = 0.40, rf_dur = 350; (e) rf_amp = 0.45, rf_dur = 300

In June, 2023 a work trip to Mbarara, Uganda took place. During this trip, we managed
to conduct some experiments and collect new scans from the MRI system fabricated at
MUST (see Figure 1.1a). This is a 46µT Halbach magnet-based system with a 15cm diam-
eter RF solenoidal coil (Figure 1.1b) and a papaya used a sample (Figure 1.1c). A few ex-
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amples of the papaya scans obtained with the MRI system are given in Figures 5.3a to 5.3e.
The five cases correspond to different pairs of values of rf_amp and rf_dur. rf_amp is the
RF amplitude. The amplitude is intensity of the RF signal generated by the control system
and rf_dur is the RF duration (see Section 5.1). We observe that the object is shifted for
some values of rf_amp and rf_dur. The level of noise also varies per image.

Apart from the noise present around the object, we can observe a so-called zipper arte-
fact common for MRI [49]. Many parameters are still tuned manually at this stage which
affects the quality of the output, so we consider these images as preliminary ones and ex-
pect later scans to be of better quality.

Additional scans that were obtained at MUST, but were not used for testing in this re-
port, can be found in Appendix A.





6
Results

All the algorithms were implemented in modern Fortran programming language and tested
on the data set described in Chapter 5. In this chapter the results are presented and dis-
cussed.

6.1. Two-step Segmentation Approach
This section presents the results of testing the two-step segmentation approach which was
discussed in Chapter 4. The following parameters of filtering technique are chosen manu-
ally for each image: the fidelity parameter η, the diffusion power dp , the diffusion parame-
ter K (Equation 2.10, Equation 2.11). For the DPCG method, diagonal scaling is chosen as
a preconditioner [32]. Subdomain deflation is applied with the number of subdomains in
each direction equal to 8. Next, the maximum number of clusters ncl. and nb are adjusted.
The latter defines whether background removal (Section 3.3) and morphological closing
(Equation 3.13) need to be applied to the filtered image:

nb =−1 ⇒ no background removal, (6.1)

nb = 0 ⇒ background removal applied, (6.2)

nb 8 1 ⇒ background removal applied (6.3)

and closing with a SE of the size nb ×nb performed.

Moreover, if the image is equalized using adaptive histogram equalization (AHE), the num-
ber of patches in each direction (nx and ny ) has to be chosen.
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Figures 5.3b to 5.3d do not have ground truth (GT) segmentation, therefore, manual
segmentation of the initial scans was carried out with the use of ITK-SNAP [50]. The results
of this manual segmentation together with the GT of Figure 5.3a are presented in Figure 6.1.

(a) (b) (c) (d)

Figure 6.1: (a) GT segmentation of Figure 5.3a. (b)-(d) Manual segmentations of Figures 5.3b to 5.3d.

There exist various criteria to assess the quality of segmentation if GT is available. We
will use imabsdiff M AT L AB function to compute the absolute differences of the GT and
the segmented image and compute the percentage of pixels that were not assigned cor-
rectly. When the images do not have the GT, we have to compare the results visually. Some
of the inaccuracies in segmentation are marked with red boxes and the improvements are
highlighted with yellow boxes.

Results of the two-step approach tested on Figure 5.3a are given in Figure 6.2, 6.4. In
the second case, we added Gaussian noise with zero mean and variance of 0.01 to the raw
image. All the parameters were kept the same in both cases apart from nb . It had to be
increased to get rid of the background noise. The Gaussian noise was successfully removed
by the first step as observed in Figure 6.2b. Both segmentations have small details along
the contours that can be further improved. For instance, front parts of the beaks are cut
and that can be explained by the small difference in their intensity values and the intensity
of the background (the water in this case). Nevertheless, Figure 6.2c , 6.4c show similar
results to Figure 6.1a. According to Figure 6.3, only 1.06% and 2.34% of the pixels were not
assigned correctly in 6.2c and 6.4c respectively.
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(a) (b) (c)

Figure 6.2: (a) Raw image. (b) Filtered image with the parameters dp = 0.01,η= 8 ·102,K = 0.7 used. (c)
Segmented image with the parameters ncl. = 1,nb = 3 without HE.

(a) (b) (c)

Figure 6.3: (a) GT. (b) Segmented image 6.2c. (c) Absolute difference between the GT and the segmented
image.
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(a) (b) (c)

Figure 6.4: (a) Raw image with added Gaussian noise with zero mean and variance 0.01. (b) Filtered image
with the parameters dp = 0.01,η= 8 ·102,K = 0.7 used. (c) Segmented image with the parameters

ncl. = 1,nb = 6 without HE.

(a) (b) (c)

Figure 6.5: (a) GT. (b) Segmented image 6.2c. (c) Absolute difference between the GT and the segmented
image.

Next, we applied the approach to Figure 5.3b. After filtering, a smooth image was ob-
tained (see 6.6b). Final segmented image 6.6c has two types of inaccuracies:

• An intensity peak that, after the background removal is performed, is not assigned to
the only cluster;

• Pixels in the central part of the image that were not removed by morphological clos-
ing, possibly due the small distance between the objects.
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(a) (b) (c)

Figure 6.6: (a) Raw image. (b) Filtered image with the parameters dp = 0.01,η= 8 ·102,K = 1 used. (c)
Segmented image with the parameters ncl. = 1,nb = 1 without HE.

(a) (b)

(c) (d) (e)

Figure 6.7: (a) Raw image. (b) Filtered image with the parameters dp = 0.01,η= 8 ·102,K = 0.2 used. (c)-(e)
Segmented image with the parameters ncl. = 2,nb = 1,nx = 8,ny = 1 in three cases: without HE, with global

HE and with AHE.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 6.8: (a) Raw image. (b) Filtered image with the parameters dp = 0.01,η= 8 ·102,K = 1.7 used. (c)
Segmented image with the parameters η= 5 ·104,ncl. = 2,nb = 1 without HE. (d)-(e) Segmented image with

the parameters η= 8 ·102,ncl. = 2,nb = 1 in two cases: without HE and with global HE. (f)-(g) Segmented
image with the parameters η= 8 ·102,ncl. = 3,nb = 2 in two cases: without HE and with global HE.

In the next example 6.7, enhancement and segmentation of Figure 5.3c were done.
There were certain limitations when choosing the parameters for this case: taking higher
values of k, dp would lead to the edges being blurred. Therefore, though filtering technique
managed to smooth out the image (6.7b), some noise was still left and can be observed in
Figure 6.7c. We again encounter the intensity peak issue as described in the previous ex-
ample. Moreover, inner contours are not preserved. Using global HE (6.7d) resolves this
issue but increases the noise. Finally, in adaptively equalized image (6.7e), the noise is still
present but now spread all over the image. We assume that correcting uneven lighting of
the initial image can benefit the segmentation result.

We finally move on to discussing the performance of the two-step approach applied to
a low-field MRI scan 5.3d. After the first phase was performed, the filtered image 6.8b was
obtained. It was then enhanced and segmented with two different combinations of ncl. and
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nb values. Although we expect the final number of clusters to be equal to 2, in the second
case we considered ncl. = 3 to compare the resulted segmentations. While in the first case
the star-shaped core’s area is smaller than expected, that of the second case is closer to the
manually segmented image Figure 6.1d.

We also provide the results of segmentation 6.8c for an image that was filtered with
a higher value of the fidelity parameter (η = 5 ·104 compared to η = 8 ·102 in other cases).
Background removal process failed, entailing the rest of the errors. This shows the necessity
of adjusting the parameters for each object separately at this phase of our research.

6.2. Modified Two-step Segmentation Approach

In this section we discuss a modification of the two-phase approach where a presegmen-
tation step is added to the first phase. Thus, the image is firstly reconstructed, then seg-
mented and finally filtered. The second phase remains unchanged and is performed as
described in Chapter 4. It is important to mention that ncl.+1 is used during presegmenta-
tion as we consider background to be a separate additional cluster at that step.

The modified approach applied to Figure 5.3a yields similar results (figs. 6.9 and 6.11)
to both manually segmented solution and the solution in Section 6.1. Moreover, taking
ncl. = 2 led to more accurate edges in the final segmentation (compare Figure 6.11d and
Figure 6.9c). Indeed, only 0.61% of the pixels in Figure 6.11d ended up in a wrong cluster,
while that in the case of Figure 6.9c was 1.69% (see Figure 6.10 and Figure 6.12).

Image 6.9c is included to show the effectiveness of morphological closing. While in
6.11c the background noise is still present, in 6.11d it was eliminated by applying closing
with a SE of the size 1×1. Figures 6.11e and 6.11f are given as examples of images where
the use of histogram equalization worsened the results.

We move on to testing the modified approach on Figure 5.3c. After the first phase was
completed, presegmented and filtered image 6.13b was obtained. The advantage of the
modified approach in this particular case is that the contrast increases, therefore, the inner
contours are better visible in the segmented image 6.13c. However, some of the noise is still
preserved. Due to this noise, histogram equalization only deteriorated the result.
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(a) (b) (c)

Figure 6.9: (a) Raw image. (b) Filtered image with the parameters dp = 1,η= 104,K = 1 used. (c) Segmented
image with the parameters ncl. = 1,nb = 2 without HE.

(a) (b) (c)

Figure 6.10: (a) GT. (b) Segmented image 6.9c. (c) Absolute difference between the GT and the segmented
image.
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(a) (b) (c)

(d) (e) (f)

Figure 6.11: (a) Raw image. (b) Filtered image with the parameters dp = 0.1,η= 104,K = 1.5 used. (c)
Segmented image with the parameters ncl. = 2,nb = 0 without HE. (d)-(f) Segmented image with the

parameters ncl. = 2,nb = 1,nx = 16,ny = 1 in three cases: without HE, with HE and with AHE.

(a) (b) (c)

Figure 6.12: (a) GT. (b) Segmented image 6.11d. (c) Absolute difference between the GT and the segmented
image.
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(a) (b) (c)
(d)

Figure 6.13: (a) Raw image. (b) Filtered image with the parameters dp = 0.01,η= 103,K = 0.2 used. (c)-(d)
Segmented image with the parameters ncl. = 2,nb = 1 in two cases: without HE and with HE.

Next, Figure 5.3b was enhanced and segmented. The resulted images can be found in
Figure 6.14 and 6.15. All the parameters were the same except for η. We show how the
fidelity parameter influenced the first step by comparing Figure 6.14b and Figure 6.15b.
While the blurrier image 6.14b led to a result 6.14c similar to the one in 6.6c, the sharper
image 6.15b, where the noise was preserved, led to some pixels of the object being consid-
ered as background.

(a) (b) (c)

Figure 6.14: (a) Raw image. (b) Filtered image with the parameters dp = 1,η= 104,K = 1 used. (c) Segmented
image with the parameters ncl. = 1,nb = 1 without HE.
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(a) (b) (c) (d)

Figure 6.15: (a) Raw image. (b) Filtered image with the parameters dp = 1,η= 105,K = 1 used. (c) Segmented
image with the parameters ncl. = 1,nb = 0 without HE. (d) Segmented image with the parameters

ncl. = 1,nb = 1 without HE.

Finally, we present the results of the modified approach’s performance on Figure 5.3d.
From the image 6.16b obtained after the first phase, it can be observed that not only were
the edges diffused, but the noise also remained after filtering. Consequently, the segmented
images figs. 6.16c and 6.16d also exhibit noise and incorrect object contours.

(a) (b) (c) (d)

Figure 6.16: (a) Raw image. (b) Filtered image with the parameters dp = 1,η= 104,K = 1 used. (c)-(d)
Segmented image with the parameters ncl. = 2,nb = 1 in two cases: without HE and with global HE.
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Conclusions

In Chapter 1 of this thesis, two research questions have been formulated:

1. Can a two-step PDE-based segmentation approach applied to noisy MRI scans pro-
duce reliable results?

2. Can a two-step approach, extended by adding a presegmentation step, yield more
accurate segmentation than standard one?

Following the research carried out within this project, we can now answer both questions. It
has been shown that the two-step PDE-based segmentation approach tested on both real-
life images and MRI scans yields results comparable to the ground truth (GT) and manually
performed segmentation. Furthermore, the modified two-step approach produced seg-
mentation results that were similar to those obtained by the standard two-step approach
for some of the example scans, while for others, the results were inferior to the standard
approach. We find this result to be extremely promising and we believe that the model,
developed in this project, followed by subsequent improvements, will find application in
real-life medical diagnostics in the future.

First, an in-depth literature review of PDE-based filtering techniques, enhancement
methods, and segmentation approaches was conducted. The Nordstrom model, built upon
the Perona-Malik model, was selected, and various diffusion coefficients were explored.
The Total Variation (TV) diffusion coefficient, complemented with an elastic net term, was
applied throughout all the tests. Subsequently, a numerical discretization was then ob-
tained, with the Picard iteration method chosen as the non-linear solver. It was further sped
up by combining it with the Deflated Preconditioned Conjugate Gradient method where di-
agonal scaling was chosen as a preconditioner and deflating matrix was based on domain
decomposition.
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46 7. Conclusions

Next, a spectrum of enhancement and segmentation techniques were introduced and
discussed. Background removal, utilizing seeded region growing (SRG), has demonstrated
remarkable performance in subsequent experiments. Morphological operations proved
highly effective when dealing with noisy images, in particular with low-field MRI scans.
Both global histogram equalization (HE) and the newly implemented adaptive HE have
proven to be beneficial to the enhancement purposes in some cases. Lastly, the Jenks nat-
ural breaks classification method was employed as the primary segmentation technique.

Afterwards, the dataset that was used for testing the enhancement and segmentation
techniques, was described. This dataset encompasses not only a real-life image and a
Shepp-Logan phantom but also includes low-field MRI scans acquired from the low-field
MRI system at Mbarara University of Science and Technology (MUST) during my work visit
to Uganda in June. We briefly discussed the physics of MRI to be able to link the physical
concepts to the parameters tuned while scanning the objects.

We introduced a two-step PDE-based segmentation approach inspired by the concept
presented in [18]. The first phase involves image reconstruction and nonlinear diffusion fil-
tering, discussed earlier. They are combined into an optimization problem that is solved by
a single step of the alternating direction method of multipliers (ADMM). The second phase
is as follows: solution, obtained in the first phase, is then enhanced by using the aforemen-
tioned techniques. Lastly, the enhanced result is partitioned into clusters using the Jenks
natural breaks method. This approach has shown to produce reliable segmentation results
as can be seen in Section 6.1.

Finally, the standard two-step approach was extended by including presegmentation
step in the first phase. As elaborated upon in Section 6.2, the images obtained after the first
step have higher intensity contrast. However, this can result in more precise edges, while
also introducing greater noise levels in the final segmented images.

The main drawback of our approach lies in the number of parameters that need to be
specified individually for each scan. By the time the developed low-field MRI system be-
comes used for brain imaging, we expect to have found an optimal set of parameters that
is suitable for this particular object.



8
Future Research

Despite having achieved promising results in performing segmentation of initially noisy
MRI scans, there is always a room for improvements: many different techniques can be
incorporated in low-field MRI research.

We recommend exploring alternative methods for solving PDEs: although the stan-
dard numerical methods are accurate, they are computationally expensive for complex
problems such as nonlinear PDEs. Therefore, physics-informed neural networks (PINNs)
[51, 52] can be applied to thhis problem as they have shown to be able to ensure consis-
tency with the physics, as well as being able to extrapolate accurately beyond the available
data.

Another aspect to be investigated is the influence of different segmentation-based de-
flation vectors (e.g. thresholding, region growing) on the accuracy and the efficiency of the
DPCG method.

Moreover, combining multiple segmentation techniques may yield better results. Along-
side edge detection, SRG, k-means clustering, there also exists such well-known segmenta-
tion methods as the Chan-Vese active contour algorithm [53] and morphological extraction
of the connected components (ECC). The Chan-Vese algorithm as well as other PDE-based
methods is computationally expensive and, therefore, is not widely used. Nowadays, the
research mostly focuses on AI-type techniques and neural networks (NNs). However, each
method’s accuracy varies based on multiple factors. Hence, a comparative analysis of these
techniques could identify the most accurate and efficient approach.

Finally, evaluating segmentation performance both when the ground truth (GT) is avail-
able and in its absence [54, 55], could constitute a distinct part of the research. It is impor-
tant to choose suitable evaluation criteria in order to be able to formally assess segmenta-
tion performance, going beyond subjective visual assessments.
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A
Data Collected in Uganda

In this appendix some additional scans obtained in the MRI lab at MUST are shown (see
Figure A.1). A bell pepper, a pineapple, three bottles filled with water/oil and a single bottle
filled with oil served as the objects.
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56 A. Data Collected in Uganda

Figure A.1: MRI scans obtained from a low-field MRI system at MUST.



B
Extra Segmentation Results

In this appendix we include additional results (see Figure B.1) of the two-step segmentation
approach tested on the papaya scan with a different set of parameters.

(a) (b) (c) (d) (e)

Figure B.1: (a) Raw image. (b) Filtered image with the parameters dp = 0.5,η= 3 ·102,K = 0.5 used. (c)-(e)
Segmented image with the parameters ncl. = 2,nb = 2,nx = 2,ny = 2 in three cases: without HE, with global

HE and with AHE.
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