Robust Algorithms for Discrete Tomography

Frank Tabak

CWI & TUDelft
Supervisors: Prof.dr. K.J. Batenburg (CWI) & Dr.ir. M.B. van Gijzen (TUDelft)

June 1, 2012
1 Introduction

2 Algebraic Reconstruction Methods (ARM’s)
 - Model Description
 - ART, SIRT and SART
 - ARM Experiments

3 Discrete Tomography
 - DART
 - DART Experiments

4 Research Goals
 - Research Questions
 - Methodology
1. **Introduction**

2. **Algebraic Reconstruction Methods (ARM’s)**
 - Model Description
 - ART, SIRT and SART
 - ARM Experiments

3. **Discrete Tomography**
 - DART
 - DART Experiments

4. **Research Goals**
 - Research Questions
 - Methodology
Introduction

τόμος (tomos) + γράφειν (graphein) = Tomography

- tomos: slice/part
- graphein: to write
- Invention X-ray 1895 by Wilhelm Röntgen
- Non-invasive way to see inside of an object
Applications:

- Medical
- Geophysics
- Astrophysics
- Material Science
- Many others...
Introduction
Algebraic Reconstruction Methods (ARM's)
Discrete Tomography
Research Goals

$f(x, y)$

$P_\theta(t)$
Introduction

Algebraic Reconstruction Methods (ARM's)

Discrete Tomography

Research Goals

Frank Tabak

Robust Algorithms for DT
Introduction
Algebraic Reconstruction Methods (ARM's)
Discrete Tomography
Research Goals

Original Image: x

Projection data: t

Reconstruction: x

Frank Tabak
Robust Algorithms for DT
Roughly two ways to reconstruct an object from projections:

- *Analytical*: Using Fourier transforms
- *Algebraic*: Formulating problem as system of linear equations
1. Introduction

2. Algebraic Reconstruction Methods (ARM’s)
 - Model Description
 - ART, SIRT and SART
 - ARM Experiments

3. Discrete Tomography
 - DART
 - DART Experiments

4. Research Goals
 - Research Questions
 - Methodology
Model Description
Pixels / cells: $f_j, j = 1, 2, \ldots, N$
Rays: $p_i, i = 1, 2, \ldots, M$
Contribution (weight) cell j to ray i: w_{ij}, assume $w_{ij} \geq 0$

\[
\begin{align*}
 w_{11} f_1 + w_{12} f_2 + \cdots + w_{1N} f_N &= p_1 \\
 w_{21} f_1 + w_{22} f_2 + \cdots + w_{2N} f_N &= p_2 \\
 &\vdots \\
 w_{M1} f_1 + w_{M2} f_2 + \cdots + w_{MN} f_N &= p_M.
\end{align*}
\]

$Wf = p$
Pixels / cells: \(f_j, j = 1, 2, \ldots, N \)
Rays: \(p_i, i = 1, 2, \ldots, M \)

Contribution (weight) cell \(j \) to ray \(i \): \(w_{ij} \), assume \(w_{ij} \geq 0 \)

\[
\begin{align*}
 w_{11} f_1 + w_{12} f_2 + \cdots + w_{1N} f_N &= p_1 \\
 w_{21} f_1 + w_{22} f_2 + \cdots + w_{2N} f_N &= p_2 \\
 \vdots \\
 w_{M1} f_1 + w_{M2} f_2 + \cdots + w_{MN} f_N &= p_M.
\end{align*}
\]

\[Wf = p \]
Kaczmarz’s Method / ART

By Stefan Kaczmarz (1937). Rediscovered (1970) as Algebraic Reconstruction Technique (ART) by Gordon, Bender and Herman.

Idea: Subsequently project approximation onto hyperplanes
Let \(\mathbf{w}_i = (w_{i1}, w_{i2}, \ldots, w_{iN})^T \), the \(i \)-th row of \(\mathbf{W} \)

And \(\mathbf{r}^k = \mathbf{p} - \mathbf{W} \mathbf{f}^k \), the \(k \)-th residual

The \(k \)-th approximation is found as\(^1\)

\[
\mathbf{f}^k = \mathbf{f}^{k-1} + \frac{\langle \mathbf{r}^{k-1}, \mathbf{w}_i \rangle}{\langle \mathbf{w}_i, \mathbf{w}_i \rangle} \mathbf{w}_i, \quad i = (k - 1) \mod (M) + 1.
\]

\(^1\) Avinash C. Kak and Malcolm Slaney; *Principles of Computerized Tomographic Imaging* (IEEE Press, 1987).
Let $\mathbf{w}_i = (w_{i1}, w_{i2}, \ldots, w_{iN})^T$, i-th row of \mathbf{W}
And $\mathbf{r}^k = \mathbf{p} - \mathbf{Wf}^k$, k-th residual
The k-th approximation is found as

$$f^k = f^{k-1} + \frac{\langle \mathbf{r}^{k-1}, \mathbf{w}_i \rangle}{\langle \mathbf{w}_i, \mathbf{w}_i \rangle}\mathbf{w}_i, \quad i = (k - 1) \mod (M) + 1.$$
Let \(\mathbf{w}_i = (w_{i1}, w_{i2}, \ldots, w_{iN})^T \), \(i \)-th row of \(\mathcal{W} \)

And \(\mathbf{r}^k = \mathbf{p} - \mathcal{W}\mathbf{f}^k \), \(k \)-th residual

The \(k \)-th approximation is found as

\[
\mathbf{f}^k = \mathbf{f}^{k-1} + \frac{\langle \mathbf{r}^{k-1}, \mathbf{w}_i \rangle}{\langle \mathbf{w}_i, \mathbf{w}_i \rangle} \mathbf{w}_i, \quad i = (k - 1) \text{ mod } (M) + 1.
\]
Let \(w_i = (w_{i1}, w_{i2}, \ldots, w_{iN})^T \), \(i \)-th row of \(W \)
And \(r^k = p - Wf^k \), \(k \)-th residual
The \(k \)-th approximation is found as

\[
f^k = f^{k-1} + \frac{\langle r^{k-1}, w_i \rangle}{\langle w_i, w_i \rangle} w_i, \quad i = (k - 1) \mod (M) + 1.
\]
Simultaneous Iterative Reconstruction Technique (1979) by Dines and Lyttle.

ART: Project successively onto hyperplanes.

SIRT\(^1\):

i. First compute correction for all rows using current approximation.

ii. Average over all corrections.

\[
f_j^k = f_j^{k-1} + \frac{1}{\sum_{i=1}^{M} w_{ij}} \sum_{i=1}^{M} \frac{w_{ij} r_i^{k-1}}{\sum_{h=1}^{N} w_{ih}}.
\]

\(^1\)Jens Gregor and Thomas Benson, "Computational analysis and improvement of SIRT", *IEEE Transactions on Medical Imaging* 27(7) (July 2008):918–924.
SIRT

Simultaneous Iterative Reconstruction Technique (1979) by Dines and Lyttle.

ART: Project successively onto hyperplanes.

SIRT\(^1\):

i. First compute correction for all rows using current approximation.

ii. Average over all corrections.

\[
f_j^k = f_j^{k-1} + \frac{1}{\sum_{i=1}^{M} w_{ij}} \sum_{i=1}^{M} \frac{w_{ij} r_i^{k-1}}{\sum_{h=1}^{N} w_{ih}}.
\]

\(^1\)Jens Gregor and Thomas Benson, "Computational analysis and improvement of SIRT", *IEEE Transactions on Medical Imaging* 27(7) (July 2008):918–924.
Simultaneous Iterative Reconstruction Technique (1979) by Dines and Lyttle.

ART: Project successively onto hyperplanes.

SIRT\(^1\):

i. First compute correction for all rows using current approximation.

ii. Average over all corrections.

\[
f_j^k = f_j^{k-1} + \frac{1}{\sum_{i=1}^{M} w_{ij}} \sum_{i=1}^{M} \frac{w_{ij} r_i^{k-1}}{\sum_{h=1}^{N} w_{ih}}.
\]

\(^1\) Jens Gregor and Thomas Benson, "Computational analysis and improvement of SIRT", *IEEE Transactions on Medical Imaging* 27(7) (July 2008):918–924.
SART

SART\(^2\): Update per projection angle
i. Compute correction for all rays with angle \(\theta_i\).
ii. Average over these corrections.

\(R\): No. rays per angle

\[
f_j^{k} = f_j^{k-1} + \frac{1}{\sum_{i=R \cdot (l-1)+1}^{R \cdot l} W_{ij}} \sum_{i=R \cdot (l-1)+1}^{R \cdot l} \frac{r_i^{k-1} W_{ij}}{\sum_{h=1}^{N} W_{ih}}.
\]

SART

SART2: Update per projection angle

i. Compute correction for all rays with angle θ_i.

ii. Average over these corrections.

R: No. rays per angle

\[
 f_j^k = f_j^{k-1} + \frac{1}{\sum_{i=R\cdot(l-1)+1}^{R\cdot l} W_{ij}} \sum_{i=R\cdot(l-1)+1}^{R\cdot l} \frac{r_i^{k-1} W_{ij}}{\sum_{h=1}^{N} W_{ih}}.
\]

SART

SART\(^2\): Update per projection angle

i. Compute correction for all rays with angle \(\theta_l\).

ii. Avarage over these corrections.

\(R\): No. rays per angle

\[
f_j^k = f_j^{k-1} + \frac{1}{\sum_{i=R \cdot (l-1)+1}^{R \cdot l} W_{ij}} \sum_{i=R \cdot (l-1)+1}^{R \cdot l} \frac{r_i^{k-1} W_{ij}}{\sum_{h=1}^{N} W_{ih}}.
\]

Convergence of SIRT

Recall SIRT

\[f_j^k = f_j^{k-1} + \frac{1}{\sum_{i=1}^{M} w_{ij}} \sum_{i=1}^{M} \frac{w_{ij} r_i^{k-1}}{\sum_{h=1}^{N} w_{ih}}. \]

Let \(C, R \) be diagonal matrices containing inverse column (\(C \)) and row (\(R \)) sums.

\[
C = \begin{pmatrix} \ldots & \frac{1}{\sum_{i=1}^{M} w_{ij}} & \ldots \\ & \ldots & \ldots \end{pmatrix}, \quad R = \begin{pmatrix} \ldots & \frac{1}{\sum_{j=1}^{N} w_{ij}} & \ldots \\ & \ldots & \ldots \end{pmatrix},
\]

Then SIRT can be written as

\[f^k = f^{k-1} + CW^T R r^{k-1} \]
Convergence of SIRT

Recall SIRT

\[
f_j^k = f_j^{k-1} + \frac{1}{\sum_{i=1}^{M} w_{ij}} \sum_{i=1}^{M} \frac{w_{ij} r_i^{k-1}}{\sum_{h=1}^{N} w_{ih}}.
\]

Let \(C, R \) be diagonal matrices containing inverse column (\(C \)) and row (\(R \)) sums.

\[
C = \begin{pmatrix}
 \vdots \\
 \frac{1}{\sum_{i=1}^{M} w_{ij}} \\
 \frac{1}{\sum_{i=1}^{M} w_{ij}} \\
 \vdots
\end{pmatrix},
R = \begin{pmatrix}
 \vdots \\
 \frac{1}{\sum_{j=1}^{N} w_{ij}} \\
 \frac{1}{\sum_{j=1}^{N} w_{ij}} \\
 \vdots
\end{pmatrix},
\]

Then SIRT can be written as

\[
f^k = f^{k-1} + CW^T R r^{k-1}
\]
Convergence of SIRT

Recall SIRT

\[f_j^k = f_j^{k-1} + \frac{1}{\sum_{i=1}^{M} w_{ij}} \sum_{i=1}^{M} \frac{w_{ij} r_i^{k-1}}{\sum_{h=1}^{N} w_{ih}}. \]

Let \(C, R \) be diagonal matrices containing inverse column (\(C \)) and row (\(R \)) sums.

\[C = \begin{pmatrix} \cdots & \frac{1}{\sum_{i=1}^{M} w_{ij}} & \cdots \end{pmatrix}, \quad R = \begin{pmatrix} \cdots & \frac{1}{\sum_{j=1}^{N} w_{ij}} & \cdots \end{pmatrix}, \]

Then SIRT can be written as

\[f^k = f^{k-1} + CW^T Rr^{k-1}. \]
Rewrite

\[f^k = f^{k-1} + CW^T Rr^{k-1} \]
\[= f^{k-1} + CW^T R(p - Wf^{k-1}) \]
\[= (I - CW^T RW)f^{k-1} + CW^T Rp. \]

\((I - CW^T RW)\) is iteration matrix.

Definition

The spectral radius of \(A \in \mathbb{R}^{n \times n} \), denoted \(\rho(A) \), is defined as

\[\rho(A) = \max_{\lambda_i, i=1,\ldots,n} |\lambda_i| \]

where \(\lambda_i \) are the eigenvalues of \(A \).

If \(\rho(I - CW^T RW) < 1 \), then convergence is guaranteed\(^3\).

Rewrite

\[f^k = f^{k-1} + CW^T Rr^{k-1} \]
\[= f^{k-1} + CW^T R (p - Wf^{k-1}) \]
\[= (I - CW^T RW)f^{k-1} + CW^T Rp. \]

\((I - CW^T RW)\) is iteration matrix.

Definition

The *spectral radius* of \(A \in \mathbb{R}^{n \times n} \), denoted \(\rho(A) \), is defined as

\[\rho(A) = \max_{\lambda_i, i=1,\ldots,n} |\lambda_i| \]

where \(\lambda_i \) are the eigenvalues of \(A \).

If \(\rho(I - CW^T RW) < 1 \), then convergence is guaranteed\(^3\).

Rewrite

\[f^k = f^{k-1} + CW^T R r^{k-1} \]
\[= f^{k-1} + CW^T R (p - W f^{k-1}) \]
\[= (I - CW^T RW) f^{k-1} + CW^T R p. \]

\((I - CW^T RW)\) is iteration matrix.

Definition

The *spectral radius* of \(A \in \mathbb{R}^{n \times n} \), denoted \(\rho(A) \), is defined as

\[\rho(A) = \max_{\lambda_i, i=1,...,n} |\lambda_i| \]

where \(\lambda_i \) are the eigenvalues of \(A \).

If \(\rho(I - CW^T RW) < 1 \), then convergence is guaranteed\(^3\).

Let λ be an eigenvalue of $CW^T RW \Rightarrow 1 - \lambda$ eigenvalue of $(I - CW^T RW)$

To prove

$$\rho \left(I - CW^T RW \right) = \max_{\lambda} |1 - \lambda| < 1 \Leftrightarrow 0 < \lambda < 2$$

Unfortunately, if W is not of full rank, one can only show $\lambda \geq 0$. Then stagnation may occur: error does not change.
Let λ be an eigenvalue of $CW^TRW \Rightarrow 1 - \lambda$ eigenvalue of $(I - CW^TRW)$

To prove

$$\rho \left(I - CW^TRW \right) = \max_{\lambda} |1 - \lambda| < 1 \iff 0 < \lambda < 2$$

Unfortunately, if W is not of full rank, one can only show $\lambda \geq 0$. Then *stagnation* may occur: error does not change.
Let λ be an eigenvalue of $CW^T RW \Rightarrow 1 - \lambda$ eigenvalue of
$(I - CW^T RW)$
To prove

$$\rho \left(I - CW^T RW \right) = \max_{\lambda} |1 - \lambda| < 1 \Leftrightarrow 0 < \lambda < 2$$

Unfortunately, if W is not of full rank, one can only show $\lambda \geq 0$. Then stagnation may occur: error does not change.
Recall: $R, C > 0$ diagonal matrices.

$W^T W$ is symmetric positive semidefinite (SPSD) and since $R > 0$, $W^T R W$ is SPSD.

C is positive definite thus $C W^T R W$ has eigenvalues $\lambda \geq 0$.
Recall: $R, C > 0$ diagonal matrices.
$W^T W$ is symmetric positive semidefinite (SPSD) and since $R > 0$
$W^T R W$ is SPSD.
C is positive definite thus $C W^T R W$ has eigenvalues $\lambda \geq 0$.
Recall: $R, C > 0$ diagonal matrices. $W^T W$ is symmetric positive semidefinite (SPSD) and since $R > 0$ $W^T RW$ is SPSD. C is positive definite thus $CW^T RW$ has eigenvalues $\lambda \geq 0$.
Remains to show that $\lambda < 2$.

The spectral radius of a matrix is less or equal to any operator norm4. Thus:

$$\rho(CW^T RW) \leq \|CW^T RW\|_{\infty} \leq \|CW^T\|_{\infty} \|RW\|_{\infty}.$$

Recall: c_{jj} are inverse column sums of $W \rightarrow$ inverse rows sums of $W^T \Rightarrow \|CW^T\|_{\infty} = 1$. Equivalently $\|RW\|_{\infty} = 1$

Thus $0 \leq \lambda \leq 1 < 2$

Hence SIRT either converges or stagnates.

4 James W. Demmel. \textit{Applied numerical linear algebra}. (S.I.A.M., 1997)
Remains to show that $\lambda < 2$.
The spectral radius of a matrix is less or equal to any operator norm\(^4\). Thus:

$$\rho(CW^T RW) \leq \| CW^T RW \|_\infty \leq \| CW^T \|_\infty \| RW \|_\infty.$$

Recall: c_{jj} are inverse column sums of $W \rightarrow$ inverse rows sums of $W^T \Rightarrow \| CW^T \|_\infty = 1$. Equivalently $\| RW \|_\infty = 1$

Thus $0 \leq \lambda \leq 1 < 2$
Hence SIRT either converges or stagnates.

Remains to show that $\lambda < 2$.
The spectral radius of a matrix is less or equal to any operator norm\(^4\). Thus:

$$\rho(CW^TRW) \leq \|CW^TRW\|_{\infty} \leq \|CW^T\|_{\infty}\|RW\|_{\infty}.$$

Recall: c_{jj} are inverse column sums of $W \rightarrow$ inverse rows sums of $W^T \Rightarrow \|CW^T\|_{\infty} = 1$. Equivalently $\|RW\|_{\infty} = 1$

Thus $0 \leq \lambda \leq 1 < 2$
Hence SIRT either converges or stagnates.

Remains to show that $\lambda < 2$.
The spectral radius of a matrix is less or equal to any operator norm\(^4\). Thus:

$$\rho(CW^T RW) \leq \|CW^T RW\|_\infty \leq \|CW^T\|_\infty \|RW\|_\infty.$$

Recall: c_{jj} are inverse column sums of $W \rightarrow$ inverse rows sums of $W^T \Rightarrow \|CW^T\|_\infty = 1$. Equivalently $\|RW\|_\infty = 1$

Thus $0 \leq \lambda \leq 1 < 2$
Hence SIRT either converges or stagnates.

ARM Experiments

Used image was the *Shepp-Logan head phantom*. The image was 128 by 128 pixels and scanned using 32 projection angles with 192 rays per projection.
Without Noise

ART: 5 iter.
SIRT: 200 iter.
SART: 200 iter.
Without Noise

\[
\frac{\|\Delta f\|_2}{\|f\|_2}
\]

- ART
- SIRT
- SART

Iterations

Frank Tabak	Robust Algorithms for DT
21 | 38
With Noise

![Graph showing iterations vs. \(\| \Delta f \|_2 \) and \(\| f \|_2 \)]
With Noise

ART: 7 iterations SIRT: 200 iterations SART: 3 iterations

ART: 200 iterations SIRT: 200 iterations SART: 200 iterations
1 Introduction

2 Algebraic Reconstruction Methods (ARM’s)
 - Model Description
 - ART, SIRT and SART
 - ARM Experiments

3 Discrete Tomography
 - DART
 - DART Experiments

4 Research Goals
 - Research Questions
 - Methodology
Discrete Tomography

Discrete tomography

- Object consists of some finite set of densities $\{\rho_1, \rho_2, \ldots, \rho_l\}$.
- In general very few projections angles (< 15) resulting from a small angular range;
- Different strategies for solving:
 - Combinatorial
 - Statistical
 - Continuous optimisation
 - Continuous with discretisation step \Rightarrow DART5

Discrete Tomography

Discrete tomography

- Object consists of some finite set of densities \(\{\rho_1, \rho_2, \ldots, \rho_l\} \).
- In general very few projections angles (< 15) resulting from a small angular range;
- Different strategies for solving:
 - Combinatorial
 - Statistical
 - Continuous optimisation
 - Continuous with discretisation step \(\Rightarrow \) DART\(^5\)

Discrete Tomography

Discrete tomography

- Object consists of some finite set of densities \(\{\rho_1, \rho_2, \ldots, \rho_l\} \).
- In general very few projections angles (\(< 15\)) resulting from a small angular range;
- Different strategies for solving:
 - Combinatorial
 - Statistical
 - Continuous optimisation
 - Continuous with discretisation step \(\Rightarrow \text{DART}^5 \)

Discrete Algebraic Reconstruction Technique (DART)

Initial ARM reconstruction

Identify fixed pixels F and free pixels U

Apply ARM to free pixels U

Smooth reconstruction

Stop criterion met?

Final reconstruction

Segment the reconstruction

no

yes
Discrete Algebraic Reconstruction Technique (DART)

Initial ARM reconstruction

Identify fixed pixels F and free pixels U

Apply ARM to free pixels U

Smooth reconstruction

Stop criterion met?

Segment the reconstruction

no

yes

Final reconstruction

Frank Tabak Robust Algorithms for DT 25 / 38
Discrete Algebraic Reconstruction Technique (DART)

Initial ARM reconstruction
- Identify fixed pixels F and free pixels U
- Apply ARM to free pixels U

Segment the reconstruction

Stop criterion met?
- yes: Final reconstruction
- no: Segment the reconstruction

Final reconstruction

Identify fixed pixels F and free pixels U

Smooth reconstruction
Segmentation

Segmentation is setting the values of the pixels to one of the admitted grey values $\rho \in \{\rho_1, \rho_2, \ldots, \rho_l\}$.

Most intuitive segmentation, rounding values to nearest grey value:

$$\tau_i = \frac{\rho_i + \rho_{i+1}}{2},$$

$$r(v) = \begin{cases}
\rho_1, & (v < \tau_1) \\
\rho_2, & (\tau_1 \leq v < \tau_2) \\
\vdots \\
\rho_l, & (\tau_{l-1} \leq v)
\end{cases}.$$
Segmentation

Segmentation is setting the values of the pixels to one of the admitted grey values $\rho \in \{\rho_1, \rho_2, \ldots, \rho_l\}$. Most intuitive segmentation, rounding values to nearest grey value:

$$r(v) = \begin{cases}
\rho_1, & (v < \tau_1) \\
\rho_2, & (\tau_1 \leq v < \tau_2) \\
\vdots \\
\rho_l, & (\tau_{l-1} \leq v)
\end{cases}.$$
Discrete Algebraic Reconstruction Technique (DART)

Initial ARM reconstruction

Identify fixed pixels F and free pixels U

Apply ARM to free pixels U

Smooth reconstruction

Segment the reconstruction

Stop criterion met?

yes

no

Final reconstruction
Fixed and Free Pixels

Set of fixed pixels F: Pixels surrounded by pixels with the same grey value.
Free (boundary) pixels U: At least one neighbour with a different grey value.

Every pixel in F is freed with probability $1 - p$.

p: The fix probability

Needed to find overlooked holes in the image.
Fixed and Free Pixels

Set of fixed pixels F: Pixels surrounded by pixels with the same grey value.

Free (boundary) pixels U: At least one neighbour with a different grey value.

Every pixel in F is freed with probability $1 - p$

p: The fix probability

Needed to find overlooked holes in the image.
Discrete Algebraic Reconstruction Technique (DART)

- Initial ARM reconstruction
- Identify fixed pixels F and free pixels U
- Apply ARM to free pixels U
- Segment the reconstruction
- Smooth reconstruction
- Stop criterion met?
- Final reconstruction
Apply ARM to Free Pixels

Original system:

\[
\begin{pmatrix}
 w_{:,1} & \cdots & w_{:,N}
\end{pmatrix}
\begin{pmatrix}
 f_1 \\
 \vdots \\
 f_N
\end{pmatrix}
= \begin{pmatrix}
 p_1 \\
 \vdots \\
 p_M
\end{pmatrix}.
\]

Suppose pixel \(j \) is fixed, new system:

\[
\begin{pmatrix}
 w_{:,1} & \cdots & w_{:,j-1} & w_{:,j+1} & \cdots & w_{:,N}
\end{pmatrix}
\begin{pmatrix}
 f_1 \\
 \vdots \\
 f_{j-1} \\
 f_{j+1} \\
 f_N
\end{pmatrix}
= \begin{pmatrix}
 p_1 \\
 \vdots \\
 p_M
\end{pmatrix} - w_{:,j} f_j.
Apply ARM to Free Pixels

Original system:

\[
\begin{pmatrix}
 w_{:,1} & \cdots & w_{:,N}
\end{pmatrix}
\begin{pmatrix}
 f_1 \\
 \vdots \\
 f_N
\end{pmatrix}
=
\begin{pmatrix}
 p_1 \\
 \vdots \\
 p_M
\end{pmatrix}.
\]

Suppose pixel \(j \) is fixed, new system:

\[
\begin{pmatrix}
 w_{:,1} & \cdots & w_{:,j-1} & w_{:,j+1} & \cdots & w_{:,N}
\end{pmatrix}
\begin{pmatrix}
 f_1 \\
 \vdots \\
 f_{j-1} \\
 f_{j+1} \\
 \vdots \\
 f_N
\end{pmatrix}
=
\begin{pmatrix}
 p_1 \\
 \vdots \\
 p_M
\end{pmatrix} - w_{:,j} f_j.
\]
Discrete Algebraic Reconstruction Technique (DART)

1. Initial ARM reconstruction
2. Identify fixed pixels F and free pixels U
3. Apply ARM to free pixels U
4. Smooth reconstruction
5. Stop criterion met?
 - yes: Final reconstruction
 - no: Segment the reconstruction and repeat from step 2.
Discrete Algebraic Reconstruction Technique (DART)

Initial ARM reconstruction

- Identify fixed pixels F and free pixels U

- Apply ARM to free pixels U

- Smooth reconstruction

- Segment the reconstruction

- Stop criterion met?
 - yes
 - no

Final reconstruction
Discrete Algebraic Reconstruction Technique (DART)

1. **Initial ARM reconstruction**
2. Identify fixed pixels F and free pixels U
3. Apply ARM to free pixels U
4. Smooth reconstruction
5. Stop criterion met?
6. If no, go back to Segment the reconstruction.
7. Yes, Final reconstruction.

Research Goals

- **Discrete Tomography**
- **Discrete Algebraic Reconstruction Methods (ARM's)**

DART Experiments

- **D ART**
- **D ART Experiments**

Frank Tabak

Robust Algorithms for DT
DART

Frank Tabak

Robust Algorithms for DT
Introduction
Algebraic Reconstruction Methods (ARM's)
Discrete Tomography
Research Goals

DART
DART Experiments

Initial ARM Reconstruction
Segmentation
Free Pixels

ARM on Free Pixels
Smoothed Image
Segmentation,
First DART reconstruction
DART Experiments
1 Introduction

2 Algebraic Reconstruction Methods (ARM’s)
 - Model Description
 - ART, SIRT and SART
 - ARM Experiments

3 Discrete Tomography
 - DART
 - DART Experiments

4 Research Goals
 - Research Questions
 - Methodology
The approach of DART is rather heuristic at the moment:

- The smoothing operation;
- The random subset construct.

Can the DART algorithm be improved?

- Which algorithm should be used as ARM in DART and does it matter?
- Can better results be obtained by introducing *regularization* directly onto the set of free pixels U?
- Are there alternatives for the random subset construct?
Research Questions

The approach of DART is rather heuristic at the moment:

- The smoothing operation;
- The random subset construct.

Can the DART algorithm be improved?

- Which algorithm should be used as ARM in DART and does it matter?
- Can better results be obtained by introducing *regularization* directly onto the set of free pixels U?
- Are there alternatives for the random subset construct?
The approach of DART is rather heuristic at the moment:

- The smoothing operation;
- The random subset construct.

Can the DART algorithm be improved?

- Which algorithm should be used as ARM in DART and does it matter?
- Can better results be obtained by introducing _regularization_ directly onto the set of free pixels U?
- Are there alternatives for the random subset construct?
Regularization is the use of additional information to make an ill-posed problem well-posed. The segmentation is a form of regularization.
To answer the questions one could solve the system

\[
\begin{pmatrix}
W \\
D
\end{pmatrix}
\mathbf{f} = \begin{pmatrix}
p \\
D\mathbf{v}
\end{pmatrix},
\]

\(D\) diagonal matrix,
\(\mathbf{v}\) vector.
Questions