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Preface
Dear reader,

This dissertation is the result of a collaboration between an engineering science and a
mathematics department. It is the result of four years of PhD research in collaboration
with – again – mathematicians and engineers from all over the world. Therefore, this
dissertation is neither written for only engineers nor for only mathematicians. Instead,
it provides concepts applied across a broad spectrum between engineering concepts and
mathematical test cases. To facilitate the engineer, the mathematician, and anyone else
with a thorough background reading this dissertation, a chapter with mathematical and
physical preliminaries has been included. This chapter provides basic concepts and ideas
related to the core of this dissertation, with a broad range of references to use for further
reading. I hope, whoever you are, wherever you are, whenever you read this, andwhatever
your background is, that you will learn something from this work.

Hugo Maarten Verhelst
Delft, January 2024

Voorwoord
Beste lezer,

Dit proefschrift is een resultaat van een samenwerking tussen een afdeling in ingenieurs-
wetenschappen en een afdeling in de wiskunde. Het is een resultaat van vier jaar docto-
raalonderzoek, in samenwerking met – alweer – wiskundigen en ingenieurs van over de
hele wereld. Daarom is dit proefschrift niet puur geschreven voor ingenieurs, en ook niet
puur voor wiskundigen. In plaats daarvan levert dit proefschrift concepten toegepast op
een breed spectrum tussen ingenieursconcepten en wiskundige test-cases. Om de inge-
nieur, de wiskundige en ieder ander van een diepgaande achtergrond te voorzien om dit
proefschrift te lezen is een preliminaries hoofdstuk toegevoegd. Dit hoofdstuk bevat ba-
sale concepten en ideeën gerelateerd aan de kern van dit proefschrift met een breed scala
aan referenties voor verdere verdieping. Ik hoop, wie je ook bent, waar je je ook bevindt,
wanneer je dit ook leest en wat je achtergrond ook mag zijn, dat je iets leert van dit werk.

Hugo Maarten Verhelst
Delft, januari 2024
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Summary
Wrinkles are ubiquitous in the world around us. In our daily lives, we encounter wrinkles
in various forms, whether in our clothes or on our skin. Wrinkles emerge as a result of
a delicate interplay between bending, membrane, and foundation stiffness contributions
within membranes. While experimental investigations provide insights into the physics
underlying wrinkling, numerical investigations find their purpose in the design, analysis,
and optimisation of membranes subjected to wrinkling. Nevertheless, the numerical sim-
ulation of membrane wrinkling presents several challenges. Firstly, wrinkling constitutes
a buckling phenomenon in membranes with low bending stiffness. Wrinkles have the po-
tential to evolve into folds, creases, or other wrinkling patterns as loads or displacements
increase. Secondly, the wavelengths of wrinkling can be orders of magnitude smaller than
the overall geometry, requiring a small resolution of the numerical simulation and hence
increasing computational costs. Overall, the question arises of how to design robust and
accurate numerical models for the analysis of wrinkled membranes. This dissertation is
subdivided into four parts and aims to provide answers to this question.

Constitutive Modelling
The first theme considers hyperelastic material modelling, with a focus on developing
wrinkling models under large strains. The shell model employed in this dissertation is
based on the isogeometric analysis paradigm. Specifically, the Kirchhoff–Love shell model
is used, which leverages the higher-order continuity of underlying spline spaces. Chap-
ter 3 extends hyperelastic material formulations to stretch-based materials, enabling the
use of the isogeometric analysis paradigm for rubber-like shells. Since the modelling of
wrinkling patterns imposes physical scales limiting element mesh sizes, chapter 4 intro-
duces a hyperelastic isogeometric membrane element that incorporates an implicit wrin-
kling model, thus avoiding explicit modelling of wrinkling amplitudes.

Adaptive Simulation
The second theme addresses adaptive methods. On the one hand, spatial adaptivity en-
hances the local detail in a numerical simulation. Chapter 5 presents an adaptive isogeo-
metric analysis framework based on intuitive goal functions, such aswrinkling amplitudes,
to guide adaptive meshing routines. On the other hand, temporal or quasi-temporal adap-
tivity serves to enhance the efficiency of dynamic or quasi-static simulations. Chapter 6
introduces an adaptive parallel arc-length method. The method’s adaptivity arises as a by-
product of parallelisation efforts aimed at reducing computational times for quasi-static
simulations.

Multi-Patch Modelling
The advantage of the smoothness inherent in the spline spaces used in isogeometric analy-
sis is limited to simple topologies. To benefit from this smoothness in complex geometries,
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the third theme of this dissertation focuses on complex domain modelling. Chapter 7
presents a qualitative and quantitative comparison of unstructured spline constructions
for multi-patch modelling using isogeometric analysis. This chapter offers insights and
suggestions for future developments related to unstructured spline constructions.

Result Reproduction
The final theme of this dissertation concerns the reproducibility of the developed methods.
In this section, design considerations are presented for an open-source software library,
along with small examples, aimed at ensuring easy reproducibility and supporting future
research in the three themes mentioned earlier.

In summary, this dissertation offers a wide range of methods for the isogeometric
analysis of structural instabilities in thin-walled structures, including the modelling of
wrinkling. The concepts developed in terms of hyperelasticity expand the applicability of
wrinkling models to encompass large strains. The concepts developed in terms of adaptiv-
ity provide intuitive error estimators that drive local refinement in space, as well as a novel
continuation method that eliminates the inherently serial arc-length methods. Through
the use of unstructured splines, complex domains become accessible for the analysis of
structural stabilities. By creating an open-source, forward-compatible software library,
these concepts are made available for future developments in the field of isogeometric
analysis of wrinkling.
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Samenvatting
Kreukels zijn alomvertegenwoordigd in de wereld om ons heen. In ons dagelijks level
nemen we kreukels waar in verschillende vormen en maten: bijvoorbeeld in onze kle-
ding of in onze huid. Kreukels ontstaan ten gevolge van een delicaat samenspel tussen
buigstijfheid, membraanstijfheid in membranen, en de stijfheid van de fundering onder
membranen. Waar experimenteel onderzoek inzichten geeft in de fysica achter het vor-
men van kreukels, wordt numeriek onderzoek toegepast in het onderwerp, de analyse en
de optimalisering van kreukelende membranen. Toch zijn er verschillende uitdagingen
gerelateerd aan numerieke simulatie van kreukels. Ten eerste ontstaan kreukels als een
knikprobleem in membranen met een lage buigstijfheid. Kreukels kunnen zich verder evo-
lueren tot plooien, vouwen of andere kreukelpatronen als belastingen of verplaatsingen
toenemen. Ten tweede kunnen de golflengtes van kreukels ordes van grootte kleiner zijn
dan het formaat van het membraan zelf, wat vraagt om veel detail in de numerieke si-
mulatie, en daardoor de numerieke kosten ophoogt. Over het algemeen is de vraag hoe
robuuste en nauwkeurige numerieke modellen voor de analyse van kreukels moeten wor-
den ontworpen. Dit proefschrift is onderverdeeld in vier delen en beoogt deze vraag te
beantwoorden.

Constitutief modelleren
Het eerste thema van dit proefschrift beschouwt het modelleren van hyperelastische ma-
terialen, met nadruk op het ontwikkelen van kreukelmodellen voor grote rekken. Het
schalenmodel wat gebruikt wordt in fit proefschrift is gebaseerd op het isogeometric-
sche analyse-paradigma. Meer specifiek wordt het Kirchhoff-Love schalenmodel gebruikt,
welke gebruik maakt van de hoger-orde continuïteit van de onderliggende splineruimtes.
Hoofdstuk 3 breidt hyperelastische materiaalformuleringen uit tot stretch-gebaseerde ma-
terialen, zodat het gebruik van het isogeometrische analyse-paradigma gebruikt kan wor-
den voor rubberachtige schalen. Omdat fysieke lengteschalen de maasgrootte kunnen
bepalen bij het modelleren van kreukelpatronen introduceert Hoofdstuk 4 een hyperelas-
tisch isogeometrisch membraanelement met een impliciet kreukelmodel. Daardoor wordt
het expliciet modelleren van kreukelamplitudes vermeden.

Adaptief Simuleren
Het tweede thema adresseert adaptieve methoden. Aan de ene kant kan ruimtelijke adap-
tiviteit het lokale detail van een numerieke simulatie bevorderen. Hoofdstuk 5 presenteert
een adaptief isogeometrisch framework gebaseerd op intuïtieve doelfuncties, bijvoorbeeld
kreukelamplitudes, om adaptieve maasmodificatieroutines aan te sturen. Aan de andere
kant kan tijds- of quasi-tijdsadaptiviteit de efficiëntie van dynamische of quasistatisch
simulaties bevorderen. Hoofdstuk 6 introduceert een adaptieve parallelle booglengteme-
thode. De adaptiviteit van de methode komt voort als een bijproduct van de parallellisatie
die als doel heeft om de rekentijden voor quasistatisch simulaties te reduceren.
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Multi-Patch Modelleren
Het voordeel van de gladheid inherent aan de splineruimtes die gebruikt worden in is-
ogeometrische analyse is beperkt tot eenvoudige topologieën. Om voordeel te halen uit
deze gladheid voor complexe geometrieën, focust het derde thema van dit proefschrift
op het modelleren van complexe domeinen. Hoofdstuk 7 presenteert een kwalitatieve en
kwantitatieve vergelijking van ongestructureerde splineconstructies voormulti-patchmo-
dellering met isogeometrische analyse. Dit hoofdstuk geeft inzichten en suggesties voor
verdere ontwikkelingen gerelateerd aan ongestructureerde spline-constructies.

Resultaten Reproduceren
Het laatste thema van dit proefschrift omvat de reproduceerbaarheid van de ontwikkelde
methoden. In hoofdstuk 8 worden ontwerpoverwegingen gepresenteerd voor een open-
bare softwarebibliotheek, samen met kleine voorbeelden. Het doel is om eenvoudige re-
produceerbaarheid en toekomstig onderzoek rondom de drie eerdergenoemde thema’s te
garanderen.

Samenvattend biedt dit proefschrift een breed scala aan methoden voor het isogeome-
trisch modelleren van constructie-insabiliteiten in dunwandige structuren, inclusief het
modelleren van kreukels. De concepten die ontwikkeld zijn aangaande hyperelasticiteit,
breiden de toepasbaarheid van kreukelmodellen uit richting grote rekken. De concepten
die ontwikkeld zijn gerelateerd aan adaptiviteit geven intuïtieve foutschatters die lokale
verfijning kunnen leiden, en ook een nieuwe continuatiemethode die seriële booglengte-
methoden elimineert. Via het gebruik van ongestructureerde splineconstructies komen
complexe domeinen beschikbaar voor de analyse van structurele instabiliteiten. Door een
openbare, voorwaarts compatibele softwarebibliotheek te creëren, zijn de bovenstaande
concepten beschikbaar voor toekomstige ontwikkelingen op het gebied van isogeometri-
sche analyse van kreukels.
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1
Introduction

Wrinkles are an essential part of us. Wrinkles, for example, show up on our skin when
laughing (figure 1.1b) or in fruits and vegetables, in case they lay around for too long (fig-
ure 1.1d). Wrinkles are all around us in different fields of applications. Wrinkles show
up in sails of ships (figure 1.1a) or spacecraft membrane propulsors. Wrinkles shape in-
flatables like airbags (figure 1.1c)and have a vital role in the stability of parachutes. The
thickness of skin tissue, sail canvas, wing foil, airbag sheet and parachute fabric is typi-
cally very small, all referring to a membrane type of element. Wrinkles appear at different
scales, ranging from layers of graphene at nano-metre scale up to floating solarmembranes
at kilometre-scale, and at the same time the wrinkle wave lengths are potentially small.
Last but not least, the wrinkling behaviour in time introduces a structural stability prob-
lem. Patterns suddenly appear, disappear and transform, meaning that numerical analysis
of wrinkling membranes is a challenging topic from computational science perspective.

(a) Wrinkles in the corner of the spinnaker of the Andante,
a classical example of wrinkling under in-plane loading.

(b) Wrinkling in a the corner of the author’s eye, a clas-
sical example of wrinkling of a membrane on an elastic
foundation.

Figure 1.1: (Caption on next page.)
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(c) Wrinkling in inflatable neck pillow, a classical example
of wrinkling in a pressurised membrane.

(d) Wrinkling of an aged apple, a classical example of
growth- or shrinkage-induced wrinkling on an elastic
foundation.

Figure 1.1: Everyday examples of different forms of wrinkling.

With the advent of Isogeometric Analysis (IGA), a new computational framework en-
tered the realm of computational science and engineering. IGA is a computational frame-
work enabling a one-to-one workflow of Computer-Aided Design (CAD) and Computer-
Aided Engineering (CAE). Using splines as a mathematical basis allows for exactly the
same geometry in CAD and CAE, providing high efficiency in numerical analysis of struc-
tural instabilities like wrinkling of membranes. The Kirchhoff–Love shell formulation –
containing membrane properties – is a key element in that respect. In addition, the geo-
metric representation inherited from CAD provides an intuitive parametrisation for shape
optimisation. Despite the momentum of IGA since the introduction in 2005, applications
in the field of structural stability problems like wrinkling and membranes are limited. A
dedicated framework is considered to be essential for the design, analysis as well as opti-
misation.

1.1 Research Goals
This dissertation aims to provide a general modelling framework for the modelling of
shell instabilities using isogeometric analysis. In particular, the models in this dissertation
enable the analysis of membrane wrinkling in a robust and efficient manner.

Develop robust and efficient models for structural stability analysis using
isogeometric analysis, with a focus on wrinkling.

Since a computational analysis of stability problems involves multiple aspects, differ-
ent subjects related to the numerical analysis of wrinkling are covered. First of all, mem-
brane type of materials are sometimes made of rubber and require advanced hyperelas-
tic models rather than a linear elastic one. Opposite to explicit modelling of wrinkling
patterns, such models can be modified such that their behaviour changes where the mem-
brane is in a wrinkled state; also known as implicit wrinkling modelling. Therefore, hyper-
elastic models and their application to membrane wrinkling are part of the first sub-goal
of this dissertation:
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(i) Extend the isogeometric Kirchhoff-Love shell formulation with constitutive
models required for implicit and explicit wrinkling analysis.

A second aspect involves efficient allocation of computational resources wherever
more detail is needed, introducing the concept of adaptivity. This concept of adaptivity is
covered in the second sub-goal of this dissertation:

(ii) Develop methods for adaptive meshing and adaptive load stepping tailored
to stability analysis.

In case of more complex geometries, for example because of holes, sub-domains have
to be patched, introducing a third aspect:

(iii) Provide a qualitative and quantitative comparison of unstructured spline
constructions for IGA.

In a broad sense, robustness and efficiency can be reflected in software design as well.
Robust software can be applied to several problems or when it can be extended, without
crashing. Efficiency, particularly for users or developers, is achieved by modularity and
an easy-to-use interface. The last sub-goal of this dissertation relates to the tools that are
developed through goals (i) to (iii):

(iv) Develop an efficient, robust and future proof open-source computational tool
for isogeometric wrinkling analysis.

1.2 Dissertation Outline
This dissertation is the result of a study on computational modelling techniques for stabil-
ity problems using isogeometric analysis. To support the reader with mathematical and
physical preliminaries combined with a broad literature overview, chapter 2 provides pre-
liminaries for the remainder of this dissertation. Thereafter, this dissertation consists of
four parts, aligned with goals (i) to (iv):

(i) Constitutive Modelling
Constitutive modelling entails the modelling of the relationship between stress and
strain in materials. This part focuses on constitutive models for hyperelastic ma-
terial models, i.e., material models that are accurate for large strains. Chapter 3
presents a framework to include stretch-based hyperelastic material models in the
isogeometric Kirchhoff-Love shell formulation. Stretch-based hyperelastic material
models are particularly relevant for the modelling of rubber-like materials. There-
after, chapter 4 provides a modification scheme for hyperelastic material models,
where the constitutive model of the material model is locally modified depending
on the tension field of a membrane at a material point, i.e., whether the membrane
is in a taut, slack, or wrinkled state.

(ii) Adaptive Simulation
Adaptivity in numerical simulations is typically used to allocate computational re-
sources or detail more efficiently in parts of the domain where it is needed. A do-
main could be spatial, but it can also be related to the variation of other parameters.
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Chapter 5 provides a framework for spatially adaptive simulations for isogeometric
Kirchhoff-Love shells. This framework is driven by goal-adaptive error estimators,
meaning that the error is defined in terms of a goal function (e.g., predicting the
stress in a part of the domain), steering the computational mesh towards regions
with the highest error contributions. On the other hand, chapter 6 provides a novel
method to parallelise arc-length methods, which are typically used to find solutions
in terms of varying load paths, e.g., in structural stability computations. The ap-
proach is referred to as the Adaptive Parallel Arc-Length Method and is inherently
adaptive, besides providing computing parallelism.

(iii) Multi-Patch Modelling
Since isogeometric shell models are typically defined on tensor-product surfaces,
any geometry that can be mapped onto a square can be modelled straightforwardly.
More complex topologies, e.g., surfaces with holes, require trimming or multi-patch
domain approaches. The latter approach includes unstructured splines, where a
smooth basis is constructed over a multi-patch domain. In chapter 7, unstructured
spline constructions for isogeometric analysis are reviewed and compared qualita-
tively and quantitatively.

(iv) Result Reproduction
Aiming for full reproducibility of the results in this dissertation, as well as compati-
bility with future research, the last part of this dissertation provides background on
the open-source software developed in this research. In particular, chapter 8 pro-
vides a background on the design considerations of the software developed along
with this dissertation, alongwith the software perspective on benchmarks presented
in other chapters. In addition, every chapter is concluded with a result reproduction
section as an appendix, giving instructions on the reproduction of the figures in the
respective chapters.

Each part is indicated on the outsides of the pages of the corresponding chapters us-
ing the part title and the colour of the thumb indices. Chapters not belonging to a part
have black thumb indices and are untitled. After the core of this dissertation, chapter 9
provides conclusions about the main goal of this dissertation, and chapter 10 provides
directions for future research.
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2
Preliminaries

Physics and mathematics play an important role in this dissertation. To provide the reader
with background knowledge as well as a mathematically sound notation, this chapter pro-
vides mathematical and physical preliminaries. In section 2.1, a brief overview of the math-
ematical notations used in this dissertation is provided. Section 2.2 provides a background
in isogeometric analysis: This section briefly introduces B-splines (section 2.2.1), refinement
splines (section 2.2.4) and unstructured splines (section 2.2.5). Thereafter, section 2.3 focusses
on isogeometric shell modelling: It reviews the state-of-the-art in isogeometric shell analysis
(section 2.3.1), and provides a detailed derivation of the isogeometric Kirchhoff–Love shell for-
mulation (section 2.3.2), which will be recurring in less detail throughout the other chapters.
Given a discrete shell model, routines for numerical structural analysis can be defined. This is
done in section 2.4 for various analysis types, for example, arc-length methods (section 2.4.4).
Lastly, section 2.5 provides a broad overview of the wrinkling mechanics. This overview starts
with the essential physical principles behind wrinkling (section 2.5.1), after which a review
of experimental investigations related to wrinkling in various contexts is given (section 2.5.2).
Since this dissertation presents numerical methods for the analysis of wrinkling, section 2.5.3
provides a review of the state-of-the-art of the numerical analysis of wrinkles and section 2.5.4
provides a brief overview of techniques to minimise wrinkles in membranes, e.g. by optimi-
sation. The chapter ends with concluding remarks; see section 2.6.
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2.1 Notations
This dissertation relies on mathematical derivations related to geometric modelling and
numerical analysis for mechanical problems. In this section, the mathematical notations
used in this dissertation are briefly outlined.

Firstly, scalar quantities are denoted by mostly lower-case Latin or Greek characters,
e.g., 𝑎,𝜙. Upper-case italic Latin scalars with a subscript or superscript are used to de-
note elements of a matrix or a tensor, e.g., 𝐴𝑖𝑗 to denote the elements of a second-order
tensor 𝐀. As an exception, upper-case Latin scalars can also denote common material or
geometric parameters, e.g., 𝐸 for Young’s modulus and 𝐿 for length. Their definition will
follow from the context. Scalar functionals are represented by calligraphic upper-case let-
ters, e.g.,𝒲ext represents external work. Variations or functional derivatives are typically
denoted by a 𝛿 in front of the functional, e.g., 𝛿𝒗𝒲ext. The optional subscript indicates
the variable introduced when taking the variation. Blackboard-bold upper-case letters are
used to denote function spaces, e.g., 𝔹, ℍ and 𝕋 are spaces of, respectively, B-spline, HB-
spline and THB-spline basis functions and 𝕊 denotes an arbitrary function space. Lastly,
Latin letters used as subscript or superscript are indices and typically take values 1,…3
and Greek letters used a subscript or superscript typically take values 1,2.

Vectors and vector fields are denoted by italic and bold Latin or Greek letters. Lower-
case quantities typically denote vectors. In addition, vectors with a subscript denote co-
variant basis vectors and vectors with a superscript denote contravariant basis vectors,
e.g., 𝒂𝑖 and 𝒂𝑖 are covariant and contravariant basis vectors. Vectors decorated with a hat,
e.g., ̂𝒂𝑖 , denote unit vectors with the norm ‖ ̂𝒂𝑖‖ = 1. The vector 𝒖 is always recurring as the
displacement vector. Although often omitted, the 𝒖ℎ denotes the discrete displacement
vector. An inner product between two vectors 𝒂 and 𝒃 is denoted by 𝒂 ⋅ 𝒃, with repeated
indices denoting summation. A cross-product between the same vectors is denoted by
𝒂 ×𝒃, and the dyadic vector product is denoted by 𝒂 ⊗𝒃.

Second-order tensors are mostly used for continuum mechanics derivations. In this
dissertation, second-order tensors are denoted by non-italic upper-case bold Latin letters,
e.g., 𝐄 for the strain tensor. Matrices are denoted by upper-case italic letters, e.g. 𝐾 is a
stiffness matrix. The double contraction of second-order tensors is denoted by 𝐒 ∶ 𝐄, result-
ing in a scalar. In the context of tensors, summation over repeated indices is often used, e.g.
𝐒 ∶ 𝐄 = ∑3

𝑖=1∑
3
𝑗=1 𝑆𝑖𝑗𝐸𝑖𝑗 = 𝑆𝑖𝑗𝐸𝑖𝑗 . Tensors are defined using a matrix of coefficients and a

basis, e.g., 𝐄 = 𝐸𝑖𝑗 𝒈 𝑖 ⊗𝒈𝑗 , with the superscript denoting a contravariant basis. Lastly, bold-
face calligraphic Latin letters indicate fourth-order tensors, e.g., 𝓒= 𝒞 𝑖𝑗𝑘𝑙 �̊�𝑖 ⊗ �̊�𝑗 ⊗ �̊�𝑘 ⊗ �̊�𝑙
denoting the material tensor. The inner product of a fourth-order tensor with a second-
order tensor is a second-order tensor, e.g., 𝐒 =𝓒 ∶ 𝐄, providing coefficients 𝑆𝑖𝑗 = 𝒞 𝑖𝑗𝑘𝑙𝐸𝑘𝑙 .

2.2 Isogeometric Analysis
Computer-Aided Design (CAD) and Computer-Aided Analysis (CAA) are closely related
in the Computer-Aided Engineering (CAE) workflow. Inside the engineering workflow,
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(a) CAD-representation of the flame of
the TU Delft.

(b) Discretisation 𝓣(Ω). The mesh is
created using the method of Ji et al.
[287], optimising the position of the
surface control points for the “mesh
quality“, keeping the boundaries fixed.

High

Low
𝑇

(c) Solution of the stationary heat equa-
tionΔ𝑢 = 𝑓 (𝑡) on the domainΩ. A non-
dimensional temperature of 𝑇 = 20 [−]
is applied on the blue point in the bot-
tom right, and a non-dimensional tem-
perature of 𝑇 = 10 [−] is applied on
the red boundary, both via a Dirichlet
boundary condition. The grey bound-
ary is insulated via a Neumann bound-
ary condition.

Figure 2.1: A simple pipeline for Isogeometric Analysis (IGA). Figure (a) provides the design of the flame of
the Technische Universiteit Delft (TU Delft), for example, provided by Computer-Aided Design (CAD). Using this
geometry, figure (b) provides a discretisation of the surface of the flame, referred to as a mesh. Lastly, figure (c)
provides the solution of the heat equation solved on the mesh of the TU Delft flame, as an example of Computer-
Aided Engineering (CAE).

CAD typically uses a Graphical User-Interface (GUI), where lines, surfaces, and volumes
can be sculptured in-silico. Provided a geometry from CAD, CAA, on the other hand, en-
tails the analysis of physical phenomena such as fluid flow, thermodynamics, magnetism,
or elasticity, all described by Partial Differential Equations (PDEs), which can be solved
by Finite Element Analysis (FEA). Classically, the CAE workflow handles CAD and CAA
as two separate entities connected via a mesh: a decomposition of the domain consisting
of elements on which the CAA computations are performed. For complex geometries, the
mesh is typically an approximation of the original CAD geometry.

Isogeometric Analysis (IGA) [268] aims to facilitate a smooth CAE workflow by bridg-
ing the CAD and CAA routines via splines: mathematical objects that are being used in
CAD but traditionally not in CAA. Since its introduction in (2005), IGA employs splines as
a mathematical basis both for the geometry and for solving the Partial Differential Equa-
tions (PDEs) in CAA, following on the idea of having the same (iso) geometry in CAD and
CAA. As indicated in figure 2.1, a geometry specified in CAD (see figure 2.1a) is naturally
discretised into a mesh (see figure 2.1b) such that CAA can be performed (see figure 2.1).
This workflow is naturally facilitated by using splines as the basis of FEA.

Since the advent of IGA (2005), many new properties of the method have been discov-
ered, and it has been applied to several problems in computational mechanics. The book
of Cottrell et al. [120] provides a textbook overview of the method in its early years (2009),
and the book of Bazilevs et al. [38] (2013) provides an overview of Fluid-Structure Interac-
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tion with a focus on Isogeometric Analysis. Besides these books, few reviews on IGA have
been written, for instance the review by Nguyen et al. [405], by Gupta et al. [226] (2023),
by Marussig & Hughes [379] (2018), by De Lorenzis et al. [143] (2014), and by Kunoth et al.
[327] (2018), the latter three primarily focusing on trimming, contact, and linear algebra,
respectively. Other publications providing complete literature reviews are the works by
Buffa et al. [78] on the mathematics of adaptive IGA and by Paul et al. [433] on domain
coupling methods for fourth-order problems.

The continuity of the spline basis functions employed in IGA provides advantages and
disadvantages of the method. Among the advantages of IGA are the following points,
relevant to or closely related to this dissertation:

• High accuracy per degree-of-freedom
In classic FEA, pure degree elevation (𝑝-refinement) provides away to increase the speed
of convergence of solverswhile performingmesh refinements (ℎ-refinements). IGA does
not only provide 𝑝-refinement and ℎ-refinements but also a procedure to elevate the
degree while preserving maximum continuity across elements, so-called 𝑘-refinement
[268]. The potential of the 𝑘-refinement was demonstrated in many works and showed
higher accuracy per degree of freedom than classical FEA. Mathematical justification
for this effect was provided by Sande et al. [488].

• Accurate eigenvalue approximations
In the context of eigenvalue problems, for example, structural vibrations or buckling
problems, IGA provides accurate approximations of eigenvalue spectra compared to
classic 𝐶0 FEA, thanks to the 𝑘-refinement property. That is, a full eigenvalue spec-
trum from FEA shows spikes and outliers, whereas the optical branches are eliminated,
and the full spectrum converges for IGA with high continuity, besides a few outliers.
This effect was identified by Cottrell et al. [122] and further investigated by Hughes
et al. [270] and Hughes et al. [269], showing that this advantage is not only limited to
structural vibrations but holds for elliptic eigenvalue problems in general.

• Geometrically exact (structural) stability analysis
The exact geometry description in IGA due to its relation with CAD not only has the
potential to unify CAD and CAA routines, but it can also affect problems sensitive to
geometric imperfections. This, as a consequence, eliminates the geometric error, mak-
ing its application in structural stability problems advantageous [218, 343]. A recent
analysis of Oesterle et al. [414] indeed shows the significance of geometric exactness for
pre-buckling analysis.

• Seamless control for shape and topology optimisation
Another advantage of directly using the spline discretisation from CAD is the inher-
ent concise geometric parametrisation that can be used as design variables for shape
optimisation [194, 596]. Compared to FEA, any mesh modification or generation step
is eliminated from the optimisation framework, and geometric exactness is maintained.
Examples of isogeometric shape optimisation include stiffened shell optimisation [248],
auxetic meta-material optimisation [607], optimisation of beam structures [614], or ther-
mal extruders [666]. In addition, splines offer efficient control of level-set [597, 598] or
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density [197] fields in topology optimisation, providing natural parametrisation of the
topology and the shape for optimisation of auxetic meta-materials [198, 409] or heat
conduction systems [275]. The frameworks of isogeometric topology and shape optimi-
sation were recently combined by Cai et al. [82].

The geometric exactness and flexibility with respect to continuity provide advantages
of IGA over FEA. However, these aspects also have disadvantages:

• Computational costs of continuity
Since higher continuity of basis functions (see section 2.2.1) comes with a larger over-
lap (i.e., support) between basis functions, the bandwidth of matrices assembled for
CAA typically increases, decreasing the performance of direct [108] and iterative [107]
solvers. However, by employing multi-grid solvers, systems of equations can be solved
more efficiently [249, 250, 517, 518, 532, 565]. In addition, using weighted-quadrature
rules [83, 489] or sum factorisation [12], matrices can be assembled faster. Lastly, it
is worth noting that the efficiency of 𝑘-refinement compared to conventional ℎ and 𝑝-
refinement strategies generally reduces mesh sizes, hence increasing critical time steps
in explicit dynamic simulations drastically, yielding a decrease in overall computational
costs [394].

• Analysis-aware and analysis-suitable geometric modelling
The idea behind IGA to bridge CAD and CAA seamlessly by employing the same mathe-
matical basis requires analysis-aware geometric modelling when used in practice [106].
Overall, this CAD-CAA-pipeline requires additional geometric pre-processing to achieve
seamlessness. For example, CAD volumes are often represented as a Boundary Rep-
resentation (BRep), i.e., as a set of surfaces surrounding the geometry. To perform
CAA, mesh generation and parametrisation are required, e.g., as presented by Hinz et al.
[245, 246], Ji et al. [282, 284, 287], Shamanskiy et al. [499] and others. Furthermore, CAD
geometries are often represented by boolean geometric operations and trimming, which
could result in so-called non-watertight geometric models. To make these CAD geome-
tries analysis-suitable, non-watertight holes can be filled using T-splines, for example
[36]. In addition, small features in CAD models can lead to meshing problems while
being irrelevant to the results of the CAA. To overcome this, de-featuring of CAD mod-
els provides automatic selection of features in CAD, relevant for CAA [76, 77]. Overall,
developments towards seamless CAD-CAA modelling have been made for parametric
models [206, 239, 260] and for BReps [558, 559] and trimmed geometries [657].

In the remainder of this section, an overview of some spline constructions for isogeo-
metric analysis will be given. Section 2.2.1 provides a brief background on B-splines and
their properties. Then, sections 2.2.4 and 2.2.5 provide the basics of refinement splines and
unstructured splines, respectively.
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2.2.1 Splines
Geometries in computer-aided design and solutions in isogeometric analysis are described
using splines. Splines are piece-wise polynomial mathematical functions, in general char-
acterised by being smooth. The origin of splines can be found in shipbuilding, where
wooden strips with attached weights were used to draw smooth curves [183]. The math-
ematical counterpart of these wooden strips with weights is referred to as basis splines
(B-splines), coined by Schoenberg [493]. Nowadays, these mathematical objects lay the
foundation of modern Computer-Aided Geometric Design (CAGD). In the following, a
brief introduction to B-spline bases and geometries is given. Thereafter, a brief back-
ground on advanced techniques for refinement and unstructured splines is provided as
an introduction for chapter 5 on adaptive meshing and chapter 7 on unstructured splines.
For more information on geometric modelling with splines, the reader is referred to the
books of De Boor [141], Piegl & Tiller [437], Böhm & Prautzsch [55], and Lyche & Morken
[369], among other reference works.

2.2.2 B-Spline Basis
A B-spline object consists of a B-spline basis and a set of control points. The B-spline basis
is typically defined using the Cox-De Boor recursion formula [123, 140] from a knot vector.
In general, a knot vector is a sequence of non-decreasing real numbers:

Ξ = [𝜉1, 𝜉2,… ,𝜉𝑛+𝑝+1], 𝜉𝑖 ≤ 𝜉𝑖+1, ∀𝑖 = 1,2,…,𝑛 +𝑝. (2.1)

The above can be used to define 𝑛 B-splines of degree 𝑝 ≥ 0. Provided the knot vector Ξ,
the Cox-De Boor recursion formula starts by defining basis functions 𝜑0𝑖 of degree 𝑝 = 0

𝜑0𝑖 (𝜉 ) = {1 if 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1,
0 otherwise. (2.2)

Given the basis functions of degree 0, the basis functions of higher degrees are recursively
defined as

𝜑𝑝𝑖 (𝜉 ) =
𝜉 − 𝜉𝑖

𝜉𝑖+𝑑 −𝜉𝑖
𝜑𝑝−1𝑖 (𝜉 ) + 𝜉𝑖+𝑑+1 −𝜉

𝜉𝑖+𝑑+1 −𝜉𝑖+1
𝜑𝑝−1𝑖+1 (𝜉 ). (2.3)

Here, quantities are defined to be 0 in the case of division by zero [437]. Although the Cox-
De Boor recursion formula provides a straightforward definition of B-splines, it is a rather
inefficient way of constructing B-splines. Instead, a B-spline basis can be represented us-
ing matrices, providing efficient implementation of the evaluation of the B-spline basis
using common linear algebra routines [369].

Having defined the B-spline basis, several properties of these functions can be identi-
fied [437]. For the analysis of PDEs, the following properties are of interest:

• Local support
The basis functions have local support, meaning that the basis function 𝑖 with degree 𝑝

Parts of section 2.2.1 are based on:
[283] Y. Ji, M. Möller & H. M. Verhelst, “Design Through Analysis”, (accepted for publication)
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is identically zero outside of the domain [𝜉𝑖 , 𝜉𝑖+𝑝+1]. Furthermore, within the knot span
[𝜉𝑗 , 𝜉𝑗+1], at most 𝑝 + 1 basis functions are non-zero, more precisely, only the functions
𝜑𝑗−𝑝,𝑝 ,… ,𝜑𝑗,𝑝 . Typically, the non-zero functions at a point 𝜉 are referred to as the active
functions.

• Non-negativity
From the definition in equation (2.2), it follows that the basis functions of degree 0, 𝜑𝑖,0,
are non-negative over 𝜉 , i.e., 𝜑𝑖,0(𝜉 ) ≥ 0. By induction over the degree 𝑝, it can be shown
that the non-negativity property holds for all degrees 𝑝, i.e., 𝜑𝑖,𝑝(𝜉 ) ≥ 0 holds for all 𝑖, 𝑝,
and 𝜉 .

• Partition of unity
The basis functions possess the partition of unity property, meaning that for all points in
the domain [𝜉𝑖 , 𝜉𝑖+1) and all 𝑖, the sum of the basis functions is unity. Since the functions
have local support, this property implies that the sum of the active functions (i.e., the
functions 𝑖 − 𝑝 up to 𝑖) at any 𝜉 ∈ [𝜉𝑖 , 𝜉𝑖+1) is unity:

𝑖
∑
𝑗=𝑖−𝑝

𝜑𝑗,𝑝(𝜉 ) = 1. (2.4)

• Regularity
All derivatives of 𝜑𝑖,𝑝(𝜉 ) with respect to 𝜉 exist in the interior of a knot span (𝜉𝑗 , 𝜉𝑗+1).
Moreover, given the multiplicity 𝑘 of the knot 𝜉 ∈ {𝜉𝑖+1,… ,𝜉𝑖+𝑝} with multiplicity 𝑘, 𝜑𝑖,𝑝
is 𝑝 −𝑘 times differentiable at 𝜉 . As a consequence, an increase in the degree increases
the continuity, and an increase in the knot multiplicity decreases the continuity.

The combination of the aforementioned properties has implications for discretisations
where these basis functions are used. Since the basis functions have local support, a sys-
tem of equations assembled with this basis is sparse. Furthermore, the non-negativity
and partition of unity properties provide positive definiteness of the system matrix and
boundedness of errors. Lastly, the arbitrary regularity of the basis provides continuity
across elements. The latter property is useful for the modelling of PDEs requiring higher-
order derivatives, such as the Kirchhoff–Love shell.

Example 2.2.1 (B-Spline Basis). Figure 2.2 provides examples of B-spline basis functions
given knot vectors with three interior knots on the knot span [0,1]. The bases have differ-
ent polynomial degrees 𝑝 and an interior multiplicity of 1. As a result, the knot vectors are
Ξ = {0,0,0.25,0.5,0.75,1,1} for degree 𝑝 = 1 and Ξ = {0,0,0,0.25,0.5,0.75,1,1,1} for degree
𝑝 = 2 onwards.

A special case of a B-spline basis is the basis with knot vectorΞ = {0,…,0,1,…,1}where
the knots 0 and 1 are repeated 𝑝 +1 times, hence its degree is 𝑝. This basis is referred to as
the Bernstein basis and forms the basis of Bézier curves.
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(a) Basis function 𝜑𝑝+1 for different
bases of degree 𝑝.
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𝜉
(b) Spline bases for unique knot vector Ξ = {0,0.25,0.5,0.75,1} and degrees
𝑝 = 0,1,2,3, from top-left to bottom-right.

Figure 2.2: B-spline basis functions 𝜑𝑖 on the domain 𝜉 ∈ [0,1] with unique knot vector Ξ = {0,0.25,0.5,0.75,1}
for degrees 𝑝 = 0,1,2,3. Figure 2.2a provides a canonical representation of the basis functions, i.e., the functions
𝜑𝑝+1 are depicted. Figure 2.2b provides all functions of each basis, with the coloured function being the one
represented in figure 2.2a.

2.2.3 B-Spline Geometry
In order to represent a geometry, solutions, or other functions using splines, a coefficient 𝒃𝑖
is assigned to each basis function 𝜑𝑖 . A spline curve 𝒄(𝜉1) ∶ [0,1]→ℝ𝑑 in a 𝑑-dimensional
space is defined by

𝒄(𝜉1) =
𝑁
∑
𝑖=1

𝜑𝑖𝒃𝑖 (2.5)

Where 𝒃𝑖 ∈ ℝ𝑑 denotes the 𝑖th control point in the geometric context. The parameter 𝜉1 is
the first parametric coordinate, typically but not necessarily defined on the unit-interval
[0,1]. Given the properties of the basis functions 𝜑𝑖(𝜉 ) mentioned in the previous sub-
section (see page 10), the properties of a B-spline curve can be formulated [437]:

• Control point locality
Following from the local support of the underlying B-spline basis, control points only
have a local effect on the curve. Moving control point 𝒃𝑖 only influences the interval
[𝜉𝑖 , 𝜉𝑖+𝑝+1). This is illustrated in figure 2.3.

• Convex hull property
As a consequence of the partition of unity and the non-negativity of the B-spline basis,
a B-spline curve is contained in the convex hull of its control polygon. Furthermore, the
control polygon interpolates the end points of the curve, i.e., the curve intersects with
its control points at its ends.

• Continuity
Due to the regularity of the B-spline basis, a B-spline curve has the same continuity as
its basis.
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Similar to B-spline curves, a B-spline surface 𝒔(𝜉1, 𝜉2) ∶ [0,1]2 →ℝ𝑑 is defined as

𝒔(𝜉1, 𝜉2) =
𝑁
∑
𝑘=1

𝜑𝑘𝒃𝑘 . (2.6)

Here, the basis functions 𝜑𝑘(𝜉1, 𝜉2) are conveniently numbered basis functions. For tensor-
product bases, the basis functions are defined as:

𝜑𝑘(𝜉1, 𝜉2) = 𝜑𝑖(𝜉1)𝜑𝑗(𝜉2), (2.7)

where the index 𝑘 is, for example, based on a lexicographic ordering of indices 𝑖 and
𝑗. The construction of tensor B-spline geometries with higher domain dimensions, e.g.,
𝒗(𝜉1, 𝜉2, 𝜉3) ∶ [0,1]3 →ℝ3 for volumes, works in the same way. In general, any parametric
domain 𝐷 can be mapped onto a geometric domain with dimension 𝑑 as 𝒗(𝜉1,… ,𝜉𝐷) ∶
[0,1]𝐷 → ℝ𝑑 ; for example, (𝐷,𝑑) = (2,3) can provide a surface, and (𝐷,𝑑) = (4,3) can
provide a time-dependent volume. Although B-spline geometries provide great flexibility
in geometric modelling by simply moving control points, they are not capable of mod-
elling exact circular segments, which are commonly used in industrial applications. By
weighting every basis function, Non-Uniform Rational B-Splines (NURBSs) provide great
flexibility in geometric modelling. Backgrounds on NURBSs can be found in the book of
Piegl & Tiller [437].

Example 2.2.2 (B-Spline Curve). Figure 2.3 provides two examples of B-spline curves. The
black curve is an original curve segment from the TU Delft flame in figure 2.1. Using bases
with different knot vectors Ξ and degrees 𝑝 (given below the curve), a B-spline curve is fitted
using 𝐿2-fitting, resulting in the red curve 𝑐0. Given curve 𝑐, the curve ̃𝑐 is constructed by
moving one control point 𝒃𝑖 , denoted by the red, to a new location �̃�𝑖 . As a consequence, the
locality of the B-spline curve can be observed by the influence of the movement of 𝒃𝑖 on the
shape of ̃𝑐.
Example 2.2.3 (B-Spline Surfaces). Figure 2.4 shows a B-spline surface spanned by two
outer curve segments of the TU Delft flame and two interface curves inside the domain. The
B-spline surface has parametric dimension 𝑞 = 2 and geometric domain dimension 𝑑 = 3. The
mesh of the surface is plotted, represented by iso-lines for the knot values of the knot vectors
of the surfaces in both directions 𝜉1 and 𝜉2. The knot vectors are Ξ1 = {0,1/9,2/9,…,1} and
Ξ2 = {0,1/11,2/11,…,1} with degrees 𝑝1 = 𝑝2 = 2. The control net is omitted for the sake of
representation.

Furthermore, figure 2.5 shows a multi-patch surface of the full TU Delft flame (see fig-
ure 2.1) represented by 5 patches, 𝜔𝑘 , 𝑘 = 1,…,5. The multi-patch geometry Ω is obtained
by splitting the boundary curves into multiple segments. Afterwards, the method of Ji et al.
[287] is used for the planar parametrisation of all patches together, with a 𝐶1 constraint.

Since the parametric domain is typically defined as a simple domain, e.g., a line for a
curve or a square for a surface, only simple geometries can be represented with tensor-
product splines. These simple geometries are referred to as patches, and by joining dif-
ferent patches, complex geometries can be constructed through so-called multi-patches.
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𝒃𝑖�̃�𝑖

𝑝 = 2 𝑐
̃𝑐

𝜑𝑖

(a) Ξ = {0,0,0,1/8,2/8,…,7/8,1,1,1}, 𝑝 = 2

𝒃𝑗�̃�𝑗

𝑝 = 4 𝑐
̃𝑐

𝜑𝑗

(b) Ξ = {0,0,0,0,0,1/8,2/8,…,7/8,1,1,1,1,1}, 𝑝 = 4

Figure 2.3: Two B-spline curves with knot vector Ξ and degree 𝑝 fitted through a segment of the TU Delft flame
from figure 2.1 in red. The B-Spline curves 𝑐 are obtained by 𝐿2 fitting, and the curves ̃𝑐 are obtained by moving
control points 𝒃𝑖 and 𝒃𝑗 to locations �̃�𝑖 and �̃�𝑗 . The basis functions coloured in red indicate the basis functions
𝜑𝑖 and 𝜑𝑗 corresponding to control points 𝒃𝑖 , 𝒃𝑗 , �̃�𝑖 , and �̃�𝑗 , and the basis functions coloured in blue correspond
to the basis functions that share the support with 𝜑𝑖 and 𝜑𝑗 .

Unlike the interior of a domain formed by a B-spline geometry, multi-patches do not have
high continuity across patch interfaces. Using straight-forward degree of freedom match-
ing, only 𝐶0 continuity can be achieved. Using so-called unstructured splines, see sec-
tion 2.2.5, continuity across patch interfaces can be (partially) recovered.

The concept of refinement of spline geometries by refining the basis is a relevant fea-
ture when aiming for accurate geometric modelling or simulation. Given a knot vector
Ξ, a new knot 𝜉𝑘 can be inserted anywhere in the interior of the knot vector to modify
the basis without changing the parametric domain. If 𝜉𝑘 is inserted with a value equal
to an existing interior knot 𝜉𝑖 , the knot multiplicity of 𝜉𝑘 is increased, decreasing local
continuity of the basis. If 𝜉𝑘 is inserted in an interval [𝜉𝑖 , 𝜉𝑖+1], a new basis function is
added within the interval, and the interval is refined. Furthermore, the degree of the basis
(and geometry) can be increased by increasing the multiplicity of the end knots. In gen-
eral, such knot insertion routines can be performed while preserving the geometry. On
the other hand, knot removal routines can be used to remove knot intervals (i.e., coarsen
elements), to reduce multiplicity, or to decrease the degree. Knot removal is therefore not
geometry-preserving. For more details about knot insertion, knot removal, and degree
modifications, the reader is again referred to the book of Piegl & Tiller [437], but also to
the original works of Böhm [52–55, 444] on this topic.
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𝜉1

𝜉2

Figure 2.4: Part of the TU Delft flame (see fig-
ure 2.1) represented by a tensor-product B-spline.
The basis has a degree 𝑝 = 2 knot vector Ξ =
{0,1/9,2/9,…,1} in 𝜉1-direction and a degree 𝑝 = 2
knot vector Ξ = {0,1/11,2/11,…,1} in 𝜉2-direction.

Ω1

Ω2

Ω3 Ω5

Ω4

Figure 2.5: The TU Delft flame (see figure 2.1) rep-
resented by 5 tensor B-spline patchesΩ𝑖 , 𝑖 = 1,…,5.

2.2.4 Refinement Splines
B-spline bases are formulated through a tensor product of bases in each dimension. When
refining one element using tensor-product techniques, the refinement also extends to mul-
tiple elements in a singular direction (as illustrated in figure 2.7a). This approach estab-
lishes a quasi-local strategy for adaptive refinement, which, while advantageous for en-
hancing the efficiency of multi-scale simulations, offers only partial enhancements. To
obtain more localised refinement of spline bases, the scientific literature introduces sev-
eral constructions. Popular constructions are hierarchical B-splines (HB-splines) [189],
truncated hierarchical B-splines (THB-splines) [202, 203], T-splines and its variations [299,
350–352, 360, 498, 616], polynomial splines over hierarchical T-meshes (PHT-splines) [149],
locally refined (LR) splines [158], and splines over unstructured meshes (U-splines) [562].
It is worth noting that “U-splines” here should not be confused with the unstructured
splines discussed in the upcoming subsection on unstructured splines (see section 2.2.5).
This review primarily focuses on (T)HB splines, while additional insights into alternative
spline constructions can be found in the aforementioned references.

The construction of the truncated (hierarchical) B-spline basis (ℍ) 𝕋 is defined recur-
sively as given by Giannelli et al. [203]:

1. Initialise 𝕋0 = ℍ0 = {𝜑 ∈ 𝔹0 ∶ supp 𝜑 ≠ ∅}, with the superscript denoting level 0, 𝔹0
a tensor B-spline basis on level 0, and 𝜑 a basis function with non-empty support
from basis.

2. Recursively define 𝕋ℓ+1 = 𝕋ℓ+1𝐴 ∪𝕋ℓ+1𝐵 or ℍℓ+1 = ℍℓ+1𝐴 ∪ℍℓ+1𝐵 for ℓ = 0, ...,𝑁 −2 with 𝑁
the maximum level. The truncated basis 𝕋ℓ+1𝐴 is defined as

𝕋ℓ+1𝐴 = {truncℓ+1 𝜏 ∶ 𝜏 ∈ 𝕋ℓ ∧ supp 𝜏 ⊈ Ωℓ+1}
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Figure 2.6: Principles of refinement for different spline bases. The top plots represent the basis on level 0, op-
tionally with (to be) refined functions given in red color. The bottom plots illustrate the refined bases: uniform
refinement (left), hence level 1; HB-refinement (middle); and THB-refinement (right) with truncated basis func-
tions in blue color. The line 𝒬 represents the elements of the basis. The unrefined unique knot vector in all cases
is Ξ = {0,1/8,2/8,…,7/8,1}, and the degree of the basis is 2. All bases are generated with the open-source IGA
library G+Smo [294].

and the hierarchical basis ℍℓ+1𝐴

ℍℓ+1𝐴 = {𝜑 ∈ ℍℓ ∶ supp𝛽 ⊈ Ωℓ+1}.
Furthermore, the basis 𝕋ℓ+1𝐵 = ℍℓ+1𝐵 is given by

ℍℓ+1𝐵 = {𝜑 ∈ 𝔹ℓ+1 ∶ supp𝛽 ⊆ Ωℓ+1},
With Ωℓ+1 ⊆ Ωℓ nested domains, 𝔹ℓ the B-spline basis on level ℓ and truncℓ 𝜏 the
truncation of 𝜏 with respect to 𝔹ℓ+1 and Ωℓ+1.

3. Then the final THB-spline basis is defined as 𝕋 = 𝕋𝑁−1 and the final HB-spline basis
is defined as ℍ =ℍ𝑁−1

Figure 2.6 illustrates the concept of local refinement employing B-splines, employ-
ing (truncated) hierarchical B-splines (HB- and THB-splines, respectively). In the top
row of this figure, an initial uniform degree 2 B-spline basis with a uniform knot vec-
tor Ξ = {0,1/8,2/8, ..., 7/8,1} is presented. The bottom row presents uniform refinement as
well as (T)HB refinements applied to the designated functions.

The potential of refinement splines compared to knot insertions for local is illustrated
in Figure 2.7. Upon executing a knot insertion within a tensor B-spline basis to refine a



2.2 Isogeometric Analysis

2

17

(a) Refinement of a tensor-product B-spline basis. To di-
adically refine the basis in an element, the knot 0.5625 is
inserted in both knot vectors.

(b) Refinement of a (T)HB-spline basis. To refine the basis
in an element, the basis functions with support on this el-
ement from the finer level (below) are inserted in the orig-
inal basis (above) following the procedure from figure 2.6.

Figure 2.7: Refinement of a 2-dimensional tensor B-spline basis (a) and a (T)HB-spline basis (b) for a marked
element with corners (0.5,0.5) and (0.625,0.625). The original B-spline basis has degree 2 and a unique knot
vector Ξ = {0,1/8,2/8,…,7/8,1} in both directions.

designated element, the refinement inherently introduces refinement of other elements in
the knot line (see figure 2.7a). Conversely, within hierarchical splines, the basis functions
are localised in their insertion, thereby introducing degrees of freedom solely within the
specified element, as illustrated in figure 2.7b.

2.2.5 Unstructured Splines
Although B-spline bases provide high continuity within a patch, only 𝐶0 continuity (i.e.,
continuity of the values of the basis functions but not of their derivatives) can easily be ob-
tained on the interfaces; hence, it would be beneficial to preserve at least part of the 𝐶d−1
continuity of higher-order B-splines when coupling multiple patches to a multi-patch ob-
ject. To achieve higher continuity over the interface of multi-patch bases, so-called un-
structured splines can be constructed. Unstructured splines are splines with higher-order
smoothness over patch interfaces.

In the case of 1-dimensional bases, the concept of patch smoothing is trivial but illustra-
tive for higher dimensions. The concept of interface smoothing is illustrated in figure 2.8
and can be interpreted as a construction where basis functions 𝜑 ∈ 𝕊1 of a spline space 𝕊1
with interface smoothness 1 are represented by a linear combination of functions 𝜓 ∈ 𝕊0
from a space 𝕊0. For example, the basis function 𝜑𝑘 is represented by all basis functions
𝜓𝑙 weighted with coefficient 𝐴𝑘𝑙 :

𝜑𝑘 = 𝐴𝑘𝑙𝜓𝑙 , (2.8)

Or, given a vector of evaluations of 𝜓𝑙 , 𝝍, the vector of evaluations of 𝜑𝑘 , 𝝋, is transformed
by a matrix 𝐴

𝝋 = 𝐴𝝍. (2.9)

Example 2.2.4 (1-Dimensional interface smoothing). Consider two bases of degree 2 with
unique knot vectors Ξ(1) = {0,1/8,2/8, ..., 7/8,1} and Ξ(2) = {1,9/8,10/8, ..., 15/8,2}. The basis
functions with non-zero value on the interface are denoted by 𝜓 (1)

10 and 𝜓 (2)
11 , and the basis
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Figure 2.8: The concept of interface smoothing between two bases of degree 2 with unique knot vector Ξ(1) =
{0,1/8,2/8, ..., 7/8,1} (left) and Ξ(2) = {1,9/8,10/8, ..., 15/8,2} (right). The top figure plots the basis functions of the
two bases, where the dashed functions have zero value but non-zero derivative on the interface. The dotted
functions are non-zero on the boundary. Themiddle row presents scaled basis functions𝐴𝑖𝑗𝜓𝑗 . Here, all functions
are scaled by a factor of 1, except the dotted functions, which are scaled by a factor of 1/2. The bottom row
presents the basis 𝜑𝑖 = 𝐴𝑖𝑗𝜓𝑗 , where the sum is evaluated over the repeated index 𝑗. The red and blue functions,
respectively 𝜑9 and 𝜑10, are constructed by taking the sum of the dashed and dotted functions in their support
on the one side (resulting in the dash-dotted line) and taking the dotted line on the other side.

functionwith non-zero derivative on the interface are denoted by, 𝜓 (1)
9 and𝜓 (2)

12 . When scaling
𝜓 (1)
10 and 𝜓 (2)

1 by a factor of 1/2 and all the other functions with a factor of 1 in their support,
𝐶1 smoothing over the interface is achieved, illustrated in Figure 2.8. The local bases in this
example have 10 basis functions each; hence, 20 in total. The global basis consists of 18
functions; hence, the matrix 𝐴 is a 18 × 20 matrix. For interface basis function 𝜑9, the non-
zero coefficients in matrix 𝐴 are 𝐴9,9 = 1, 𝐴9,10 = 𝐴9,11 = 1/2 and for interface basis function
𝜑10, the non-zero coefficients are 𝐴10,12 = 1, 𝐴10,10 = 𝐴9,11 = 1/2.

In higher dimensions, interface smoothing, as illustrated in figure 2.8, can be per-
formed to construct interface basis functions. However, the increased parametric dimen-
sion (see, e.g., figure 2.5) introduces vertices where the smoothing of basis functions is
non-trivial. Spline constructions that provide smoothing mappings like the matrix 𝐴 are
referred to as unstructured splines, providing bases with higher smoothness than 𝐶0 over
patch interfaces and vertices. Chapter 7 of this dissertation provides a comparison of un-
structured spline approaches for multi-patch surfaces.

Examples of unstructured spline constructions include the D-Patch [464, 569], the
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Figure 2.9: A sample of Almost-𝐶1 [534] basis functions on the corner of the TU Delft flame where 3 patches
join (see figure 2.1a). The basis functions are represented by contour lines with an interval of 0.05, starting from
0.

Almost-𝐶1 construction [534], the Approximate 𝐶1 basis [618, 619], the Analysis-Suitable
𝐺1 construction [109, 181, 182], polar spline constructions [568] and constructions based
on subdivision surfaces [30, 378].

Example 2.2.5 (Unstructured splines). As shown in figure 2.1a, the flame of TU delft can
be represented by a multi-patch geometry using five patches. Given this multi-patch seg-
mentation, interface smoothing can be applied across all interfaces. The geometry has only
one extraordinary vertex: the boundary vertex between Ω1, Ω2 and Ω4, located on a domain
boundary. On this vertex, special spline constructions to ensure 𝐶1 continuity need to be ap-
plied. In figure 2.9, three basis functions following from the Almost-𝐶1 construction around
the vertex are plotted.

2.3 Isogeometric Analysis for Thin-Walled Structures
Structural mechanics plays an essential role in various engineering disciplines. Thin-
walled structures, characterised as assemblies of (curved) plates with a small thickness
compared to their in-plane dimensions, are of particular interest in various engineering
disciplines (e.g., automotive, offshore, or aeronautical engineering) because of their low
weight per unit volume. The interest in thin-walled structures calls for the numerical
analysis of such structures in design and analysis. In this section, a background on iso-
geometric analysis for thin-walled structures is provided. Section 2.3.1 provides a liter-
ature overview of developments in isogeometric structural analysis, mainly focussed on
shells. Section 2.3.2 provides a detailed derivation of the isogeometric Kirchhoff–Love
shell model, supporting the remaining chapters in this dissertation.

2.3.1 Isogeometric Membrane, Shell and Solid Models
As the field of computational methods for thin-walled structures is extensive, overviews
of models are provided in many works, e.g., in the work of Bischoff et al. [49]. For the sake
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of brevity, this section highlights the most important theories for the modelling of thin-
walled structures. A comprehensive literature overview on the isogeometric Kirchhoff–
Love shell formulation is provided first, since it is most relevant for this dissertation. There-
after, a brief overview of membrane, solid and other shell formulations is given for the sake
of completeness, and the reader is referred to the general overview of shell models pro-
vided by Bischoff et al. [49], and specifically on isogeometric shell formulations by Loibl
[361]. Furthermore, the book by Hughes [267] provides a good overview of shell elements
in Finite Element Analysis.

Kirchhoff–Love Shell Formulation
In finite element methods, the Kirchhoff–Love shell theory is assumed in, for example,
the SHEBA shell [16, 49]. Since splines provide higher-degree element continuity, the
Kirchhoff–Love shell theory is relatively straightforwardly implemented in the isogeomet-
ric Kirchhoff–Love shell [319]. Here, the curvature of the surface can directly be used to
model the bending stiffness, eliminating the need for degrees of freedom for rotations and
hence yielding rotation-free shells. Isogeometric Kirchhoff–Love shells with rotational de-
grees of freedom are referred to as mixed formulations [326, 453, 454], but these elements
have a higher number of degrees of freedom compared to the formulation from [319] em-
ploying 𝐶1 continuity. Since its introduction in 2009, many contributions have been made
to the isogeometric Kirchhoff–Love shell formulations. In the following, developments
and applications of the isogeometric Kirchhoff–Love shell relevant to this dissertation are
highlighted.

• Constitutive Relations
In order to ensure a wide application of the Kirchhoff–Love shell, several constitutive
relations have been developed. For composite materials, laminate theory is used in the
work of Herrema et al. [238], but more advanced models, including plasticity and dam-
age, were developed by Alaydin et al. [4]. Furthermore, an anisotropic material model
with arbitrarily curved fibre directions was developed by Wu et al. [635]. For hyperelas-
tic models and biological tissues, formulations for non-linear elastic (i.e., hyperelastic
models) constitutive relations have been developed by Tepole et al. [555] for a selec-
tion of biological material models, by Kiendl et al. [320] for general hyperelastic models,
and as a part of this dissertation, [587] for stretch-based hyperelastic models. Further-
more, Roohbakhshan & Sauer [480] provides strategies to prevent through-thickness in-
tegration, and Sauer & Duong [490] provides formulations for solid-like and liquid-like
shells. Beyond elasticity, formulations for modelling plasticity are provided by Ambati
et al. [8], and formulations for modelling brittle and ductile fracture using phase-field
models are respectively provided by Proserpio et al. [446] and Proserpio et al. [447],
whereas Nguyen-Thanh et al. [411] provides extended isogeometric analysis (XIGA)
for the Kirchhoff–Love shell to model fracture. Furthermore, Behzadinasab et al. [40]
presents formulations for peridynamic modelling using isogeometric Kirchhoff–Love
shells. Lastly, homogenisation techniques for modelling micro-structures on a macro-
structural level for Kirchhoff–Love shells are given by Do et al. [157].
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• Complex Geometries
The isogeometric Kirchhoff–Love shell presented by Kiendl et al. [319] requires contin-
uous derivatives throughout the domain, i.e., 𝐶1 continuity. Many works have focused
on the modelling of complex geometries since multi-patch domains are 𝐶0 by default.
Since chapter 7 is devoted to the modelling of complex domains for isogeometric anal-
ysis using smooth basis constructions, a detailed overview of techniques for complex
domain modelling for isogeometric analysis is given there. In brief, multiple approaches
for complex domain modelling can be distinguished: trimming or immersed methods,
variational coupling, and coupling through unstructured splines. In the case of trim-
ming or immersed methods, the geometry is defined by a geometry and a set of trim-
ming curves or surfaces defining the actual domain and the parts of the domain to be
omitted. Trimmed isogeometric Kirchhoff–Love shells are considered in [116], among
others, and patch-wise quadrature rules are provided by Loibl et al. [362]. Variational
coupling is an approach where multi-patch domains are coupled by adding equations to
the variational problem to solve. For the Kirchhoff–Love shell, this can be done through
penalty methods [5, 119, 238, 342, 657] or Nitsche’s method [47], or via mortar methods
[247, 386]. These methods can also be used to couple trimmed domains [118, 225, 448].
Lastly, unstructured spline bases provide smooth splines over multi-patch geometries.
These constructions have not been applied extensively to isogeometric Kirchhoff–Love
shell problems [89, 182, 463, 534]. In the work of Liu et al. [355], an unstructured spline
construction is used on a local level, and weak coupling is used to couple these unstruc-
tured spline patches. Besides complex domainmodelling for shells, coupling approaches
for shells with other elements to model realistic geometries have also been studied. For
example, Raknes et al. [458] develop an isogeometric cable model coupled to Kirchhoff–
Love shells; Guo&Ruess [222] and Liu et al. [357] developmodels where Kirchhoff–Love
shells are coupled with solid-like patches; and Benson et al. [45] develop a shell formu-
lation that utilises the Kirchhoff–Love shell formulation or the Reissner–Mindlin shell
formulation where applicable. In the work of Xiao et al. [640], lattice skin structures
are modelled using isogeometric Kirchhoff–Love shells for the skin and isogeometric
truss elements for the lattice structure. Another approach for the modelling of complex
structures entails the embedding of stiffeners in shells. This includes the works of Bauer
et al. [35], Hirschler et al. [248], Wang et al. [612], and Wang et al. [602].

• Mesh Adaptivity
Adaptive meshing routines for isogeometric Kirchhoff–Love shells to localise degrees of
freedom for computational efficiency have been developed in recent years. Antolin et al.
[13] developed an a-posteriori error estimator for linear Kirchhoff–Love shells and Kirch-
hoff plates based on a so-called bubble space and using hierarchical B-splines, applied
to trimmed domains in [116], benefiting from element refinement near small geometric
features [117]. Furthermore, Casquero et al. [88] used T-splines for local mesh refine-
ment in isogeometric Kirchhoff–Love shells. In the context of fracture modelling in
Kirchhoff–Love shells, mesh adaptivity plays an important role since fracture is a local
phenomenon. In the works of Proserpio et al. [446] and Paul et al. [433], mesh adap-
tivity is applied to the problems of brittle fracture, and in the work of Proserpio et al.
[447], it is applied to ductile fracture in isogeometric Kirchhoff–Love shells, all using
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LR NURBS. In chapter 5 of this dissertation, a goal-adaptive refinement procedure is
presented, allowing to refine the isogeometric Kirchhoff–Love shell using a pre-defined
goal function, e.g., based on displacements, stresses, or strains.

• Locking and Computational Efficiency
Important developments for the isogeometric Kirchhoff–Love shell have been made
to reduce membrane locking effects and improve computational efficiency. Locking
is the phenomenon where pure displacement shell formulations underestimate defor-
mations or give stress oscillations, particularly for low thickness compared to the el-
ement size. In the works of Oesterle et al. [415] and Loibl [361], a good overview of
locking in isogeometric shell formulations is given. Although the locking effects in
isogeometric Kirchhoff–Love shells are generally small due to high inter-element con-
tinuity [344], investigations of the locking effects have been performed by Leonetti
et al. [344], showing that patch-wise reduced integration [289] can eliminate locking
effects in Kirchhoff–Love shells. In the work by Loibl et al. [362], such patch-quadrature
schemes are extended for trimmed Kirchhoff–Love shells. As an alternative to the patch-
quadrature scheme, Zou et al. [663] propose a new quadrature scheme to alleviate lock-
ing in Kirchhoff–Love shells, removing oscillations in displacement and stress fields. An-
other important development for the acceleration of the convergence of displacement-
based shell elements is theMixed Integration Point (MIP) method [340, 372]. Here, stress
and displacement are decoupled in the constitutive relations, improving the Newton
convergence and allowing larger step sizes in quasi-static computations. The MIP has
been applied to Kirchhoff–Love shells by Leonetti et al. [340, 344] and to solid shells by
Leonetti et al. [341].

• Applications
Besides theoretical developments on the applicability, accuracy, and performance of the
isogeometric Kirchhoff–Love shell, its application is wide-spread. For example, the iso-
geometric Kirchhoff–Love shell is successfully applied to the modelling of heart valves
and arteries [27, 258, 259, 290, 297, 320, 634, 635, 644, 646], towards enabling patient-
specific cardiology. Furthermore, the shell formulation is increasingly used for crash
simulations of cars [334, 335, 501, 503, 504], since typical mesh sizes of Kirchhoff–Love
shells can be an order of magnitude larger than their finite element counterpart, in-
creasing the time step size in explicit dynamics simulations and therefore increasing the
overall efficiency of the simulation [394]. Lastly, more related to the contents of this dis-
sertation is the application of isogeometric Kirchhoff–Love shells for cloth simulation
[507] and the modelling of buckling imperfections [220] in instability problems.

Membrane Formulation
Membrane elements are not characterised as shell elements because the bending stiffness
of a membrane is assumed to be zero. Therefore, they in fact represent a limit case of
shells where the thickness approaches zero. In that case, the only stiffness that is consid-
ered in membranes is the membrane stiffness; hence, the curvature terms are omitted in
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equation (2.36). As a consequence, the derivation of the isogeometric membrane element
formulation can be done similarly to the Kirchhoff–Love shell derivation, omitting bend-
ing contributions. Since the bending stiffness contribution in the isogeometric Kirchhoff–
Love shell imposes the 𝐶1 continuity constraint of this shell formulation, this constraint
vanishes for isogeometric membrane elements. Therefore, membrane elements provide a
light-weight alternative to other shell formulations, especially for explicit dynamics com-
putations Chen et al. [97]. In the context of wrinkling, membrane models are also find-
ing their use, e.g., in combination with Tension-Field Theory [402] (see equation (2.109)).
However, as bending energy plays a vital role in wrinkling physics (see section 2.5.1),
membranes are restrictive when explicit modelling of wrinkling amplitudes is needed.

Reissner–Mindlin Shell Formulation
The Reissner–Mindlin shell formulation allows for transverse shear deformations, con-
trary to the Kirchhoff–Love shell formulation. Therefore, this shell formulation is applica-
ble for applications where the slenderness of the structure is lower than for the Kirchhoff–
Love shell. However, due to the transverse shear contribution, transverse shear locking
effects becomemore pronounced as the thickness decreases, thus when the slenderness in-
creases [49]. Within isogeometric analysis, the first isogeometric Reissner–Mindlin shell
was presented by Benson et al. [44], showing accuracy and robustness for higher degrees
without an attempt to investigate reduced quadrature to reduce shear locking. Later, the
Reissner–Mindlin formulation was extended towards a rotation-free formulation, assum-
ing higher-order continuity of the basis [43]. A method to compute the director vectors
exactly was proposed by Dornisch et al. [162], and Dornisch et al. [163] presented a ro-
bust method using continuous rotations. In terms of locking, the aforementioned works
employed the potential of higher-order bases to minimise locking effects, and classical
methods to reduce locking effects are used by Adam et al. [1] and Caseiro et al. [86] by
using reduced integration and the Assumed Natural Strain method, respectively. By em-
ploying a new mixed formulation, Zou et al. [665] alleviate shear and membrane locking.
Alternatively, Beirão da Veiga et al. [41] and Kikis et al. [321] use adjusted approxima-
tion spaces for rotations and displacements to treat transverse shear locking in Reissner–
Mindlin plates and shells, respectively. Furthermore, Oesterle et al. [415] developed a
locking-free Reissner–Mindlin shell and extended it to large deformations [413] by using
a technique closely related to the hierarchical shell formulations by Echter et al. [175]. Al-
ternative formulations for the isogeometric Reissner–Mindlin shell include one based on
tangential differential calculus Schöllhammer & Fries [494] and a collocation approach by
Kiendl et al. [317]. In order to facilitate multi-patch analysis, Dornisch & Klinkel [161]
developed a methodology to model shells with kinks, and Dornisch et al. [165] developed
mortar-based coupling for Reissner–Mindlin shells. Regarding constutitive modelling, the
Reissner–Mindlin shell has been applied to plasticity problems [44] as well as peridynamic
modelling for crack simulations [502, 637–639].

Solid–Shell Formulations
Solid–shell formulations are shell formulations that do not only include transverse shear,
like the Reissner–Mindlin shell, but also include load-induced thickness changes [361].
In the isogeometric analysis framework, several solid-like shell elements have been de-
veloped, which are reviewed in this paragraph. First, Bouclier et al. [59] developed a
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solid–shell element with a modified interpolation scheme of stresses and strains through-
thickness and based on a so-called ̄𝐵 projection to deal with locking effects, extended to
geometrically non-linear analysis by Bouclier et al. [60]. In the same period, Hosseini
et al. [256] provided a solid shell with a linear Lagrange shape function through-thickness,
where the through-thickness deformations are quadratically dependent on the displace-
ment field, based on the model of Parisch [430], making the element insensitive to shear
and membrane locking. This formulation was extended to a geometrically non-linear
model using B-splines through thickness by Hosseini et al. [257], providing a locking-free
element for length over thickness ratios up to 400. By using B-splines through thickness,
laminate layers are easily modelled through thickness by using knot insertion. Another
isogeometric solid–shell element was presented by Caseiro et al. [86], employing the As-
sumed Natural Strain concept to alleviate shear and membrane locking effects. Their for-
mulation was extended by Caseiro et al. [87] for large deformations and elasto-plasticity.
Lastly, Leonetti et al. [341] presented a solid–shell model for geometrically non-linear
analyses with linear through-thickness interpolation of geometry and displacements in a
total Lagrangian setting, used for Koiter stability analysis in Leonetti et al. [343]. By using
reduced integration, locking effects are minimised, and using the Mixed Integration Point
method, Newton convergence is improved [341]. In the work of Liguori et al. [353], this
model was used for thermoelastic modelling of solid shells.

Hierarchical Shell Formulations
Echter et al. [175] presented a family of isogeometric shell formulations called the hi-
erarchic shells. The hierarchical shell family consists of a 3-parameter (3p) Kirchhoff–
Love formulation, which is extended to a 5-parameter (5p) Reissner–Mindlin shell and
a 7-parameter (7p) solid-like shell by adding displacement-based director vectors to the
Kirchhoff–Love director vector (see equation (2.13)). An alternative approach to the 5p-
hierarchic shell is presented by Oesterle et al. [415], where the director vector is defined
using displacement degrees of freedom instead of hierarchic rotations. Both approaches
are extended to a geometrically non-linear framework by Oesterle et al. [416].

Solids
Besides shell and membrane formulations, where geometries are considered a surface and
the thickness is a parameter, the mechanics of structures can also be performed by using
general elasticity equations. In that case, a thin-walled geometry is modelled as a vol-
ume instead of a surface. Compared to shell models, solid models solved using Galerkin
methods require a 3D meshed domain, making volumetric parametrisation methods more
relevant for solids than for shells, e.g., see the work of Shamanskiy et al. [499]. On the
other hand, solid models can be solved using the Boundary Element Method (BEM), re-
ducing the problem to the boundary domain rather than the interior domain, as shown in
the works of Chasapi et al. [94] and Nguyen et al. [410], among others.

2.3.2 The Isogeometric Kirchhoff–Love Shell
Since the isogeometric Kirchhoff–Love shell formulation will play an important role in
the remainder of this dissertation, a derivation of the theory is provided in this section.
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Although the derivation can be found in the contributions of this dissertation in chapters 3
and 5, it is in short form. Therefore, for the sake of completeness, the following derivation
aims to provide extra detail to the derivation of the isogeometric Kirchhoff–Love shell
presented in the following chapters of this dissertation.

Geometry
Kirchhoff–Love shell theory describes the deformation of surfaces. Hence, let 𝒔(𝜃1, 𝜃2) ∶
ℝ2 →ℝ3 be a surface. For this surface, the covariant basis vector 𝒂𝛼 is defined by taking
the derivatives of the surface with respect to the parametric coordinate 𝜃𝛼 , i.e.

𝒂𝛼 = 𝜕𝒔
𝜕𝜃𝛼 , 𝛼 = 1,2, (2.10)

Using the covariant basis, the covariant metric tensor, or first fundamental form, is defined
by

𝑎𝛼𝛽 = 𝒂𝛼 ⋅ 𝒂𝛽 . (2.11)

Using the first fundamental form of the surface, the contravariant metric tensor is defined
using the inverse of [𝑎𝛼𝛽 ], as 𝑎𝛼𝛽 = [𝑎𝛼𝛽 ]−1. Furthermore, the contravariant basis 𝒂𝛼 is
defined by

𝒂𝛼 = 𝑎𝛼𝛽𝒂𝛽 . (2.12)

Using the covariant basis vectors from equation (2.10), the surface unit normal vector is
defined by

̂𝒂3 =
𝒂1 ×𝒂2
|𝒂1 ×𝒂2|

. (2.13)

In addition to the surface gradients, the curvature of the surface is a quantity of interest,
typically related to bending. In the present derivation of the Kirchhoff–Love shell theory,
the curvature is included via the second fundamental form, as

𝑏𝛼𝛽 = ̂𝒂3 ⋅ 𝒂𝛼,𝛽 = − ̂𝒂3,𝛽 ⋅ 𝒂𝛼 (2.14)

Here, 𝒂𝛼,𝛽 denotes the second derivative or Hessian of the surface, and ̂𝒂3,𝛼 denotes the
derivative of the unit normal vector with respect to the parameter 𝜃𝛼 . Via Weingarten’s
formula [617], it holds that ̂𝒂3,𝛼 = −𝑏𝛽𝛼𝒂𝛽 with 𝑏𝛽𝛼 = 𝑎𝛼𝛾𝑏𝛾𝛽 . Since the second fundamental
form 𝑏𝛼𝛽 depends on the surface Hessian 𝒂𝛼,𝛽 , second derivatives of the surface descrip-
tion 𝒔(𝜃1, 𝜃2) are required.

Assuming the Kirchhoff hypothesis, i.e., no shear of the shell cross-section, orthogonal-
ity of orthogonal vectors after deformation, and no thickness change, the Kirchhoff–Love
shell formulation assumes that any point in the shell can be described by its position on
the surface 𝒔(𝜃1, 𝜃2) and its position along the surface normal 𝒂3 as

𝒙(𝜃1, 𝜃2, 𝜃3) = 𝒔(𝜃1, 𝜃2) + 𝜃3 ̂𝒂3 (2.15)

The derivatives of the coordinate system 𝒙 with respect to the parametric coordinates 𝜃 𝑖
(𝑖 = 1,2,3) provide the full basis of the coordinate system used for the Kirchhoff–Love shell
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element. The covariant basis of 𝒙 is given by

𝒈𝛼 = 𝜕𝒙
𝜕𝜃𝛼 = 𝒂𝛼 +𝜃3𝒂3,𝛼 ,

𝒈3 =
𝜕𝒙
𝜕𝜃𝛼 = ̂𝒂3.

(2.16)

Following from the covariant basis, the first fundamental form 𝑔𝑖𝑗 = 𝒈𝛼 ⋅𝒈𝛽 is defined using
the first and second fundamental forms as

𝑔𝛼𝛽 = (𝒂𝛼 +𝜃3𝒂3,𝛼 ) ⋅ (𝒂𝛽 +𝜃3𝒂3,𝛽 ),
= 𝑎𝛼𝛽 −2𝜃3𝑏𝛼𝛽 + (𝜃3)2𝒂𝛼 ⋅ 𝒂𝛽 ,

𝑔33 = 1,
𝑔𝑖3 = 𝑔3𝑖 = 0.

(2.17)

The last term, quadratic in 𝜃3, can be neglected for thin or moderately thick shells [49].
The contravariant metric tensor 𝑔𝑖𝑗 and the contravariant basis 𝒈 𝑖 are derived, like for
the surface 𝒔. Using the shell coordinate system equation (2.15) and the covariant basis
equation (2.17), the kinematic equation for the Kirchhoff–Love shell can be derived.

Kinematic Equation
The kinematic equation relates shell displacements to strains. Let ̊𝒙(𝜃1, 𝜃2, 𝜃3) denote the
undeformed configuration of the shell, and let 𝒙(𝜃1, 𝜃2, 𝜃3) denote the deformed config-
uration of the shell. Then, the displacement 𝒖(𝜃1, 𝜃2, 𝜃3) of a material point is defined
as

𝒖(𝜃1, 𝜃2, 𝜃3) = 𝒙(𝜃1, 𝜃2, 𝜃3) − ̊𝒙(𝜃1, 𝜃2, 𝜃3) (2.18)

Additionally, the deformation gradient 𝐅 is a tensor that maps between the undeformed
basis �̊�𝑖 and the deformed basis 𝒈𝑖 , meaning that an infinitesimal line element d ̊𝒙 in the
deformed configuration is defined as d𝒙 = 𝐅 ⋅ d ̊𝒙 in the undeformed configuration [24].
Accordingly, the deformation gradient 𝐅 is defined as

𝐅 = 𝒈𝑖 ⊗ �̊� 𝑖 . (2.19)

Indeed, the deformation gradient maps �̊�𝑖 onto 𝒈𝑖 via 𝒈𝑖 = 𝐅�̊� [24]. Using the deformation
gradient, the Green-Lagrange strain tensor 𝐄 = 𝐸𝑖𝑗 �̊� 𝑖 ⊗ �̊�𝑗 relates the non-linear relation
between deformations and strains

𝐄 = 1
2(𝐅

⊤𝐅− 𝐈) = 1
2(𝐂− 𝐈), (2.20)

where 𝐂 is the deformation tensor. Using the definition of the deformation gradient and
the fact that the identity tensor 𝐈 is equal to the metric tensor 𝐺𝑖𝑗 on �̊� 𝑖 ⊗ �̊�𝑗 yields

𝐸𝑖𝑗 =
1
2(𝑔𝑖𝑗 −𝐺𝑖𝑗) (2.21)
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Using the definition of the metric tensor from equation (2.17), the coefficients of the
strain tensor can be expressed in terms of the surface metric and the curvature:

𝐸𝛼𝛽 =
1
2(𝑎𝛼𝛽 −2𝜃

3𝑏𝛼𝛽 − ̊𝑎𝛼𝛽 +2𝜃3�̊�𝛼𝛽)

= 1
2(𝑎𝛼𝛽 − ̊𝑎𝛼𝛽)+𝜃3(�̊�𝛼𝛽 −𝑏𝛼𝛽) = 𝜀𝛼𝛽 +𝜅𝛼𝛽 .

(2.22)

The shear strains 𝐸𝑖3, 𝐸3𝑖 , and the normal strain 𝐸33 vanish because of the orthogonality
and unity of the basis vector 𝒈3 in deformed and undeformed configurations. This indeed
shows that the shell formulation following from the assumed coordinate system in equa-
tion (2.15) yields a formulation free of cross-sectional shear and thickness change. Hence,
the shell can be represented by its mid-surface only, and the strain tensor is represented
with respect to the first two components of the basis, i.e., 𝐄 = 𝐸𝛼𝛽 �̊�𝛼 ⊗ �̊�𝛽 . The coefficients
𝜀𝑖𝑗 and 𝜅𝛼𝛽 relate to the membrane strain tensor 𝜺 = 𝜀𝛼𝛽 �̊�𝛼 ⊗ �̊�𝛽 and the bending strain
tensor 𝜿 = 𝜅𝛼𝛽 �̊�𝛼 ⊗ �̊�𝛽 .

Constitutive Relation
In general continuum mechanics, the second Piola-Kirchhoff stress tensor 𝐒 = 𝑆𝑖𝑗 �̊�𝑖 ⊗ �̊�𝑗
is energetically conjugate to the Green-Langrange strain tensor 𝐄 = 𝐸𝑖𝑗 �̊� 𝑖 ⊗ �̊�𝑗[24]. For a
3D continuum, the coefficients of the second Piola-Kirchhoff stress tensor can be defined
using a strain energy density function Ψ:

𝑆𝑖𝑗 = 2 𝜕Ψ
𝜕𝐶𝑖𝑗

(2.23)

In addition, the material tensor or elasticity tensor 𝓒 = 𝒞 𝑖𝑗𝑘𝑙 �̊�𝑖 ⊗ �̊�𝑗 ⊗ �̊�𝑘 ⊗ �̊�𝑙 is a fourth-
order tensor that relates the total differentials of the second Piola-Kirchhoff stress 𝐒 and
the Green-Lagrange strain 𝐄. Its coefficients are defined by

𝒞 𝑖𝑗𝑘𝑙 = 𝜕𝑆𝑖𝑗
𝜕𝐸𝑘𝑙 = 4 𝜕2Ψ

𝜕𝐶𝑖𝑗𝜕𝐶𝑘𝑙
, (2.24)

Such that the coefficients of the total differential of the second Piola-Kirchhoff stress tensor,
d𝑆𝑖𝑗 , relates to the total differential of the Green-Lagrange strain tensor, d𝐸𝑖𝑗 via

d𝑆𝑖𝑗 = 𝒞 𝑖𝑗𝑘𝑙 d𝐸𝑖𝑗 (2.25)

For linear elastic materials, stress and strain are linearly dependent, such that 𝓒 has con-
stant coefficients according to equation (2.24). Therefore, the following identity is valid
for linear materials:

𝑆𝑖𝑗 = 𝒞 𝑖𝑗𝑘𝑙𝐸𝑘𝑙 . (2.26)

Furthermore, assuming small strains, the through thickness deformation is neglected and
𝐶33 = 𝑔33 = 1 holds. The latter allows to use 2D constitutivemodels. However, when strains
are large, for example in hyperelastic material models, the plane-stress assumption that
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𝑆33 = 0 is typically violated [320], hence 𝐶33 ≠ 1. To use the in-plane components of the
stress tensor 𝑆𝛼𝛽 in the Kirchhoff–Love shell model, static condensation of the material
tensor 𝓒 needs to be performed to satisfy the plane stress condition. The formulations
for the hyperelastic stress and material tensors for Kirchhoff–Love shells are provided
in [320]. Chapter 3 of this dissertation elaborates more on hyperelastic formulations for
Kirchhoff–Love shells [587].

Variational Formulation
The variational formulation for the Kirchhoff–Love shell is derived based on Hamilton’s
Principle, which states that

ℋ(𝒖, ̇𝒖) = ∫
𝜏2

𝜏1
𝒯 ( ̇𝒖)−𝒲 int(𝒖)+𝒲 ext(𝒖)d𝜏 , (2.27)

must be stationary for the displacement field 𝒖 and velocity field ̇𝒖. Here, 𝜏1 and 𝜏2 are
the beginning and the end of a time interval with 𝜏 ∈ [𝜏1, 𝜏2], 𝒯 ( ̇𝒖) is the kinetic energy
of the system, 𝒲 int(𝒖) is the internal potential energy of the system, and 𝒲 ext(𝒖) is the
external work acting on the system. To find the extremum of equation (2.27), its variation
𝛿𝒗ℋ(𝒖, ̇𝒖,𝒗, ̇𝒗) with respect to 𝒖 and ̇𝒖 must be zero. This implies that

𝛿𝒗ℋ(𝒖, ̇𝒖,𝒗, ̇𝒗) = ∫
𝜏2

𝜏1
𝛿𝒗𝒯 ( ̇𝒖, ̇𝒗) − 𝛿𝒗𝒲 int(𝒖,𝒗)+ 𝛿𝒗𝒲 ext(𝒖,𝒗)d𝜏 = 0 (2.28)

The kinetic energy 𝒯 ( ̇𝒖) and its variation 𝛿𝒯 ( ̇𝒖, ̇𝒗) are expressed in terms of the body
velocity ̇𝒙 , which depends on the time-derivative of the displacements ̇𝒖, having variation
̇𝒗 :

𝒯 ( ̇𝒙) = 1
2 ∫Ω⋆

𝜌 ̇𝒖 ⋅ ̇𝒖dΩ⋆ , 𝛿𝒗𝒯 ( ̇𝒖, ̇𝒗) = ∫Ω⋆
𝜌 ̇𝒖 ⋅ ̇𝒗 dΩ⋆ , (2.29)

Where Ω⋆ is the volume of the body. Applying partial integration with respect to the
temporal domain on the kinetic energy term and using (i) the fact that the virtual veloci-
ties ̇𝒗 are zero on the time-domain boundary 𝜏1 and 𝜏2, and (ii) the fact that undeformed
geometry ̊𝒙 is time-independent, hence ̈̊𝒙 = ̈𝒖 [208], equation (2.28) can be written as:

𝛿𝒗ℋ(𝒖, ̈𝒖,𝒗) = ∫
𝜏2

𝜏1
𝛿𝒗𝒯 ( ̈𝒖,𝒗) − 𝛿𝒗𝒲 int(𝒖,𝒗)+ 𝛿𝒗𝒲 ext(𝒖,𝒗)d𝜏 = 0 (2.30)

Since this must hold for all functions 𝒗 , the integrand must be equal to zero, i.e.

𝛿𝒗𝒯 ( ̈𝒖,𝒗) − 𝛿𝒗𝒲 int(𝒖,𝒗)+ 𝛿𝒗𝒲 ext(𝒖,𝒗) = 0. (2.31)

The result of equation (2.31) is similar to the principle of virtual work as used in the deriva-
tion of the Kirchhoff–Love shell model in [319], with an additional term for the kinetic
energy. In the sequel, the kinetic energy is omitted unless specified otherwise.
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Since the variation of the potential energy functional, 𝛿𝒗𝒲 (𝒖,𝒗) = 𝛿𝒗𝒲 ext(𝒖,𝒗) −
𝛿𝒗𝒲 int(𝒖,𝒗) can be non-linear, the displacements 𝒖 can be found using the Newton-
Raphson method by solving

𝛿𝒗𝒲 +𝛿2𝒗𝒘𝒲 Δ𝒖 = 0, (2.32)
where 𝛿𝒗𝒲 = 𝛿𝒲 (𝒖,𝒗) and 𝛿2𝒗𝒘𝒲 = 𝛿2𝒲 (𝒖,𝒗,𝒘) is the second variation of the energy
in the system using virtual displacements 𝒗 and 𝒘. The term Δ𝒖 is the incremental update
of the displacements.

The equation for the external virtual work is rather straightforward. Given the body
force vector 𝒇 , the boundary force vector 𝒈 , and the point loads 𝒑𝑖 , 𝑖 = 1,…,𝑁𝑝 are inde-
pendent of the deformation field 𝒖, the first variation of the external work 𝒲 ext simply
yields

𝛿𝒗𝒲 ext = ∫Ω⋆
𝒇 ⋅ 𝒗 dΩ⋆ +∫𝜕Ω⋆

𝒈 ⋅ 𝒗 dΓ+
𝑁𝑝
∑
𝑖=1

𝒑𝑖 ⋅ 𝒗

= ∫𝜏 ∫Ω
𝒇 ⋅ 𝒗 dΩd𝜃3 +∫𝜏 ∫𝜕Ω

𝒈 ⋅ 𝒗 dΓd𝜃3 +
𝑁𝑝
∑
𝑖=1

𝒑𝑖 ⋅ 𝒗
(2.33)

Where Ω⋆ = 𝜃3 ×Ω is the volume of the body with 𝜃3 the thickness domain 𝜃3 = [−𝑡/2, 𝑡/2]
of the shell and Ω the surface domain. For the internal virtual work, the first variation
with respect to the displacements 𝒖 is given by:

𝛿𝒗𝒲 int = ∫Ω⋆
𝐒 ∶ 𝛿𝒗𝐄dΩ⋆ = ∫𝜏 ∫Ω

𝐒 ∶ 𝛿𝒗𝐄dΩ = ∫Ω
𝐍 ∶ 𝛿𝒗𝜺 +𝐌 ∶ 𝛿𝒗𝜿 dΩ (2.34)

Here, the definition of the strain tensors 𝜺 and 𝜿 from equation (2.22) is used, and the
membrane force tensor 𝐍 and the bending moment tensor 𝐌 are defined as moments of
the stress tensor through thickness:

𝐍 = ∫𝜏
𝐒d𝜃3 ,

𝐌 = ∫𝜏
𝜃3𝐒d𝜃3 .

(2.35)

The second variation of the energy of the system, required for solving the non-linear sys-
tem of equations using the Newton-Raphson iterations (see equation (2.32)), solely de-
pends on the second variation of the internal energy, assuming deformation-independent
body forces¹. Taking the variation of the internal energy with respect to 𝒖, the second
variation becomes:

𝛿2𝒗𝒘𝒲 (𝒖) = ∫Ω
𝛿𝒘𝐍 ∶ 𝛿𝒗𝜺 +𝐍 ∶ 𝛿2𝒗𝒘𝜺 +𝛿𝒘𝐌 ∶ 𝛿𝒗𝜿 +𝐌 ∶ 𝛿2𝒗𝒘𝜿 dΩ. (2.36)

The variations of 𝐍 and 𝐌 can be obtained using the total differential of 𝐒, 𝛿𝐒 (see equa-
tion (2.25)). First, since

𝛿𝐄 = 𝛿(𝜺 +𝜃3𝜿) = 𝛿𝜺 +𝛿(𝜃3𝜿) = 𝛿𝜺 +𝜿𝛿𝜃3 +𝜃3𝛿𝜿, (2.37)
¹The case with deformation-dependent body forces, e.g., a follower-pressure 𝒇 = 𝑝 ̂𝒂3, is discussed in chapter 4.
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And using the total differential of the strain, 𝛿𝐄, and integrating 𝛿𝐒 through the thickness,
the total differentials of 𝐍 and 𝐌 are obtained:

𝛿𝐍 = ∫𝜃3
𝛿𝐒d𝜃3 = ∫𝜃3

(𝓒 ∶ 𝛿𝜺 +𝜃3𝓒 ∶ 𝛿𝜿 +𝛿𝜃3𝓒 ∶ 𝜿)d𝜃3

𝛿𝐌 = ∫𝜃3
𝜃3𝛿𝐒d𝜃3 = ∫𝜃3

(𝜃3𝓒 ∶ 𝛿𝜺 +𝜃3𝓒 ∶ 𝛿𝜿 +𝛿𝜃3𝓒 ∶ 𝜿)d𝜃3
(2.38)

From the first and second variations of the internal energy, respectively equation (2.34)
and equation (2.36), it can be seen that the first and second variations of the membrane
strain and bending strain tensors, together with the first variation of the membrane force
and bending moment tensors, are needed.

For non-linear time-dependent problems, the second variation of the kinetic energy
𝒯 (𝒖) provides the inertia of the system. Following from the first variation, 𝛿𝒗𝒯 (𝒖,𝒗) in
equation (2.29), the second variation of the kinetic energy simply becomes:

𝛿𝒖𝒗𝒯 (𝒖,𝒗, �̈�) = ∫Ω
𝑡𝜌�̈� ⋅ 𝒗 +𝓞(𝑡3)dΩ (2.39)

Given that the density 𝜌 is constant over the thickness. Furthermore, given the coordi-
nate system definition in equation (2.15), equation (2.39) only includes translational in-
ertia, since rotational inertia is neglected due to the small thickness assumption of the
Kirchhoff–Love shell [208]. Lastly, from equation (2.39), it can be seen that the second
variation of the kinetic energy is independent of the solution field 𝒖, making the operator
linear.

Lastly, the boundary conditions of the shell problem are partially incorporated as Neu-
mann conditions through the function 𝒈 in equation (2.33). The Dirichlet boundary condi-
tions can be imposed strongly by selecting a suitable function space for 𝒖 or weakly using,
for example, penalty methods [238].

Discretisation
The principle of virtual work derived in equation (2.31) is valid for any variation of the un-
known displacement field 𝒖(𝜃1, 𝜃2, 𝜃3). In order to discretise the principle of virtual work,
it is assumed that the undeformed and deformed configurations ̊𝒙 and 𝒙 , respectively, are
represented by a finite sum of basis functions 𝜑𝑘(𝜃1, 𝜃2) weighted by coefficients ̊𝒙ℎ𝑘 and
𝒙ℎ𝑘 , i.e.

̊𝒙ℎ(𝜃1, 𝜃2) =∑
𝑘
𝜑𝑘(𝜃1, 𝜃2) ̊𝒙ℎ𝑘 ,

𝒙ℎ(𝜃1, 𝜃2) =∑
𝑘
𝜑𝑘(𝜃1, 𝜃2)𝒙ℎ𝑘 .

(2.40)

Here, the superscript ℎ indicates discrete approximations of ̊𝒙 or 𝒙 , and the index 𝑘 indi-
cates the 𝑘th component of this representation. Since the displacement field 𝒖 is defined as
the difference between ̊𝒙 and 𝒙 , it can similarly be expressed as a discrete field 𝒖ℎ, and the
variations in the principle of virtual work are represented by virtual displacements 𝒖ℎ𝑘 . As
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a consequence, all variations in the virtual work equation are represented by derivatives
with respect to components of the virtual nodal displacements 𝒖ℎ𝑘 . In the following, all
quantities are referred to in the discrete setting, hence the superscript ℎ is omitted.

In the sequel, 𝑟 denotes the global index of the degree of freedom, and 𝑢𝑟 represents
a component of one of the nodal displacement vectors. For the sake of brevity, the short-
hand notation (⋅),𝑟 = 𝜕(⋅)

𝜕𝑢𝑟
is used to represent derivatives with respect to 𝑢𝑟 . Using equa-

tion (2.18), the variation of the deformed configuration is

𝒙,𝑟 =∑
𝑘
( ̊𝒙𝑘,𝑟 +𝒖𝑘,𝑟) =∑

𝑘
𝜑𝑘𝒖𝑘,𝑟 = 𝒖,𝑟 (2.41)

The last equality follows from the fact that the undeformed configuration is trivially inde-
pendent of the deformation field 𝒖. Similarly, the derivatives of the covariant basis vectors
𝒂𝛼 of the discrete deformed configuration 𝒙 , see equation (2.10), are:

𝒂𝛼,𝑟 = ( 𝜕𝒙𝑘𝜕𝜃𝛼 ),𝑟
=∑

𝑘

𝜕𝜑𝑘
𝜕𝜃𝛼 𝒖𝑘,𝑟 (2.42)

As a consequence, the variation of the surface metric tensor of the deformed configuration,
𝑎𝛼𝛽 (see equation (2.11)), becomes

𝑎𝛼𝛽,𝑟 = (𝒂𝛼 ⋅ 𝒂𝛽)𝑟 = 𝒂𝛼,𝑟 ⋅ 𝒂𝛽 +𝒂𝛼 ⋅ 𝒂𝛽,𝑟 (2.43)

Since the undeformed configuration is invariant to the deformation field 𝒖, the first vari-
ation of the membrane strain tensor 𝜺 from equation (2.22) becomes

𝜀𝛼𝛽,𝑟 =
1
2𝑎𝛼𝛽,𝑟 (2.44)

Similarly, the second variation of the deformed configuration, the deformed surface metric
tensor, and the membrane strain can be derived. Starting with the first variation of the
deformed configuration from equation (2.41), the second variation becomes

𝒙,𝑟𝑠 =∑
𝑘
𝜑𝑘𝒖𝑘,𝑟𝑠 = 0. (2.45)

The second variation of 𝒖𝑘 is zero since the components of these nodal weights are linear
in 𝑢𝑟 . Similarly, 𝒂𝛼,𝑟𝑠 = 0. As a consequence, the second variation of the surface metric
tensor in the deformed configuration, 𝑎𝛼𝛽 , becomes

𝑎𝛼𝛽,𝑟𝑠 = 𝒂𝛼,𝑟𝑠 ⋅ 𝒂𝛽 +𝒂𝛼,𝑟 ⋅ 𝒂𝛽,𝑠 +𝒂𝛼,𝑠 ⋅ 𝒂𝛽,𝑠 +𝒂𝛼 ⋅ 𝒂𝛽,𝑟𝑠 ,= 𝒂𝛼,𝑟 ⋅ 𝒂𝛽,𝑠 +𝒂𝛼,𝑠 ⋅ 𝒂𝛽,𝑠 . (2.46)

Again, since the undeformed configuration is invariant to the deformation field 𝒖, the
second variation of the membrane strain tensor becomes

𝜀𝛼𝛽,𝑟𝑠 =
1
2𝑎𝛼𝛽,𝑟𝑠 (2.47)
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To derive the variations of the curvature tensor, the variations of the second funda-
mental form 𝑏𝛼𝛽 are needed, hence requiring variations of 𝒂𝛼,𝛽 and ̂𝒂3; see equation (2.14).
Firstly, the variation of 𝒂𝛼,𝛽 with respect to 𝑢𝑟 is

𝒂(𝛼,𝛽),𝑟 = ( 𝜕2𝒙
𝜕𝜃𝛼𝜕𝜃𝛽 ),𝑟

=∑
𝑘

𝜕2𝜑𝑘
𝜕𝜃𝛼𝜕𝜃𝛽 𝒖𝑘,𝑟 (2.48)

Furthermore, using 𝒂3 = 𝒂1 ×𝒂2, the variation of the unit normal vector ̂𝒂3 is

̂𝒂3,𝑟 = ( 𝒂3
|𝒂3|

)
,𝑟
=
|𝒂3|𝒂3,𝑟 −𝒂3(|𝒂3|),𝑟

|𝒂3|2
(2.49)

Here, the variation of the non-unit normal vector 𝒂3 is obtained by

𝒂3,𝑟 = 𝒂1,𝑟 ×𝒂2 +𝒂1 ×𝒂2,𝑟 , (2.50)

And since |𝒂3| = √𝒂3 ⋅ 𝒂3, the variation of the normalisation |𝒂3| is

(|𝒂3|),𝑟 =
𝒂3 ⋅ 𝒂3,𝑟
|𝒂3|

, (2.51)

Such that the variation of the unit surface normal vector of the undeformed configura-
tion, ̂𝒂3, can be obtained. Together with the variation of the surface hessian, 𝒂(𝛼,𝛽),𝑟 from
equation (2.48), the variation of the second fundamental form becomes

𝑏𝛼𝛽,𝑟 = ̂𝒂3,𝑟 ⋅ 𝒂𝛼,𝛽 + ̂𝒂3 ⋅ 𝒂(𝛼,𝛽),𝑟 (2.52)

From the definition of the bending strain tensor 𝜿 in equation (2.22) and the fact that the
undeformed configuration is invariant to the deformation field 𝒖, the coefficients of the
first variation of the bending strain tensor become:

𝜅𝛼𝛽,𝑟 = −𝑏𝛼𝛽,𝑟 (2.53)

To obtain the second variation of the bending strain tensor 𝜿 , the second variations of
𝒂𝛼,𝛽 and ̂𝒂3 need to be obtained in order to compute the second variation of 𝑏𝛼𝛽 . Firstly,
from equation (2.48), it follows that 𝒂(𝛼,𝛽),𝑟𝑠 = 0 since the second variation of 𝒖𝑘 is zero.
Secondly, for the second variation of the unit normal vector ̂𝒂3, the second variation of
the non-unit normal vector 𝒂3 and its length |𝒂3| are needed. The second variation of
the non-unit normal vector follows from the first variation in equation (2.49) and from
𝒂(𝛼,𝛽),𝑟𝑠 :

𝒂3,𝑟𝑠 = 𝒂1,𝑟𝑠 ×𝒂2 +𝒂1,𝑟 ×𝒂2,𝑠 +𝒂1,𝑠 ×𝒂2,𝑟 +𝒂1 ×𝒂2,𝑟𝑠 = 𝒂1,𝑟 ×𝒂2,𝑠 +𝒂1,𝑠 ×𝒂2,𝑟 (2.54)

Furthermore, the second variation of |𝒂3| is

(|𝒂3|),𝑟𝑠 =
|𝒂3|(𝒂3 ⋅ 𝒂3,𝑟 ),𝑠 −(𝒂3 ⋅ 𝒂3,𝑟)(|𝒂3|),𝑠

|𝒂3|2
= 𝒂3,𝑠 ⋅ 𝒂3,𝑟 +𝒂3 ⋅ 𝒂3,𝑟𝑠

|𝒂3|
− (𝒂3 ⋅ 𝒂3,𝑟)(𝒂3 ⋅ 𝒂3,𝑠)

|𝒂3|3
(2.55)
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Using the second variations of the non-unit normal 𝒂3 (see equation (2.54)) and its length
|𝒂3| (see equation (2.55)), the second variation of the unit normal vector ̂𝒂3 can be derived:

̂𝒂3,𝑟𝑠 = (
|𝒂3|𝒂3,𝑟 −𝒂3(|𝒂3|),𝑟

|𝒂3|2
)
,𝑠

=
(|𝒂3|𝒂3,𝑟 −𝒂3(|𝒂3|),𝑟),𝑠

|𝒂3|2
−
(|𝒂3|𝒂3,𝑟 −𝒂3(|𝒂3|),𝑟)2|𝒂3|(|𝒂3|),𝑠

|𝒂3|4

= 𝒂3,𝑟𝑠
|𝒂3|

− (|𝒂3|),𝑠𝒂3,𝑟
|𝒂3|2

−
𝒂3,𝑠(|𝒂3|),𝑟

|𝒂3|2
−
𝒂3(|𝒂3|),𝑟𝑠

|𝒂3|2
+2

𝒂3(|𝒂3|),𝑟(|𝒂3|),𝑠
|𝒂3|3

(2.56)

Additionally, taking the variation of 𝑏𝛼𝛽,𝑟 and using the first and second variations of 𝒂𝛼,𝛽
and ̂𝒂3, the second variation of the second fundamental form 𝑏𝛼𝛽 can be obtained:

𝑏𝛼𝛽,𝑟𝑠 = ̂𝒂3,𝑟𝑠 ⋅ 𝒂𝛼,𝛽 + ̂𝒂3,𝑟 ⋅ 𝒂(𝛼,𝛽),𝑠 + ̂𝒂3,𝑠 ⋅ 𝒂(𝛼,𝛽),𝑟 + ̂𝒂3 ⋅ 𝒂(𝛼,𝛽),𝑟𝑠 ,
= ̂𝒂3,𝑟𝑠 ⋅ 𝒂𝛼,𝛽 + ̂𝒂3,𝑟 ⋅ 𝒂(𝛼,𝛽),𝑠 + ̂𝒂3,𝑠 ⋅ 𝒂(𝛼,𝛽),𝑟 .

(2.57)

From equation (2.57) and equation (2.22), it directly follows that the coefficients of the
second variation of the bending strain tensor are:

𝜅𝛼𝛽,𝑟𝑠 = −𝑏𝛼𝛽,𝑟𝑠 . (2.58)

Besides the first and second variations of the membrane strain tensor 𝜺 and the bend-
ing strain tensor 𝜿 , the first variations of the membrane force tensor 𝐍 and the bending
moment tensor 𝐌 also need to be obtained. Using the total differentials d𝐍 and d𝐌 (see
equation (2.35)), the coefficients of the first variations of 𝐍 and 𝐌 with respect to 𝑢𝑟 are

𝑁 𝛼𝛽,𝑟 = (∫𝜏
𝒞 𝛼𝛽𝛾𝛿 d𝜃3)𝜀𝛾𝛿,𝑟 +(∫𝜏

𝜃3𝒞 𝛼𝛽𝛾𝛿 d𝜃3)𝜅𝛾𝛿,𝑟

𝑀𝛼𝛽,𝑟 = (∫𝜏
𝜃3𝒞 𝛼𝛽𝛾𝛿 d𝜃3)𝜀𝛾𝛿,𝑟 +(∫𝜏

(𝜃3)2𝒞 𝛼𝛽𝛾𝛿 d𝜃3)𝜅𝛾𝛿,𝑟
(2.59)

Note that the last term of equation (2.37) drops out because the variation of 𝜃3 with respect
to 𝑢𝑟 is zero. Using the variations with respect to the nodal displacement components 𝑢𝑟 ,
the first and second variations of the energy equation in the shell following from the virtual
work statement in equation (2.31) can be defined for each component 𝑢𝑟 . Firstly, the first
variation of the energy statement provides the components of the residual vector 𝑹 as

𝑅𝑟 (𝒖) = ∫Ω
𝐍(𝒖) ∶ 𝜺,𝑟 (𝒖)+𝐌(𝒖) ∶ 𝜿,𝑟 (𝒖)dΩ−∫Ω

𝒇 ⋅𝒖,𝑟 dΩ−∫𝜕Ω
𝒈 ⋅ 𝒖,𝑟 dΓ . (2.60)

Secondly, the second variation of the energy statement from equation (2.32) provides the
stiffness matrix for the Newton-Raphson iterations, also known as the (tangential) stiffness
matrix 𝐾 , with coefficients:

𝐾𝑟𝑠 = ∫Ω
𝐍,𝑠(𝒖) ∶ 𝜺,𝑟 (𝒖)+𝐍(𝒖) ∶ 𝜺,𝑟𝑠(𝒖)+𝐌,𝑠(𝒖) ∶ 𝜿,𝑟 (𝒖)+𝐌(𝒖) ∶ 𝜿,𝑟𝑠(𝒖)dΩ. (2.61)
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In the case of zero displacements, i.e., 𝒖 = 0, the deformation gradient 𝐅 is an identity map,
and the deformation tensor 𝐂 is the identity tensor. Therefore, the stress tensor becomes
the null tensor, 𝐒 = 𝟎, making the tensors 𝐍 and 𝐌 vanish as well. In this case, the first
integral of the residual vector 𝑹 is zero, and the second and fourth terms drop out of the
stiffness matrix 𝐾 . This gives the external force vector 𝑷 and the linear stiffness matrix 𝐾𝐿,
with coefficients:

𝑃𝑟 = −𝑅𝑟 (0) = ∫Ω
𝒇 ⋅𝒖,𝑟 dΩ+∫𝜕Ω

𝒈 ⋅ 𝒖,𝑟 dΓ ,

𝐾𝐿𝑟𝑠 = 𝐾𝑟𝑠(0) = ∫Ω
𝐍,𝑠(0) ∶ 𝜺,𝑟 (0)+𝐌,𝑠(0) ∶ 𝜿,𝑟 (0)dΩ.

(2.62)

Discretising the second variation of the kinetic energy, see equation (2.39), gives the coef-
ficients of the mass matrix:

𝑀𝑟𝑠 = ∫Ω
𝑡𝜌𝒖,𝑟 ⋅ 𝒖,𝑠 dΩ (2.63)

Up to this point, all quantities have been defined to be used in the variational formu-
lation, except for the basis functions 𝜑𝑘 to define the undeformed and deformed configu-
rations of the shell surface as well as the displacement field ̊𝒙 , 𝒙 , and 𝒖, respectively (see
equation (2.40)). Since the Hessian of the metric tensor 𝑎𝛼,𝛽 is used in the definition of
the second fundamental form and its variations (see equations (2.14), (2.52) and (2.57)),
the basis functions 𝜑𝑘 need to be differentiable up to the second derivative. Due to the
higher-order continuity that can be achieved using splines, they provide a suitable basis
for the Kirchhoff–Love shell. In the paradigm of using the same splines for the repre-
sentation of the geometry 𝒔(𝜃1, 𝜃2) as well as for the discrete solution of the displacement
field 𝒖ℎ(𝜃1, 𝜃2, 𝜃3), this choice of the basis introduces the isogeometric Kirchhoff–Love shell.

2.4 Numerical Structural Analysis
In the previous section on isogeometric shell analysis (see section 2.2), the derivation for
the discretisation of the Isogeometric Kirchhoff–Love shell is presented. As a result of
discretisation, the residual vector (see equation (2.60)) and the stiffness matrix (see equa-
tion (2.61)) form the building blocks for structural analysis. Without loss of generality,
this section provides a mathematical background on the solution procedures to perform
numerical structural analysis given operators like the residual vector and the stiffness ma-
trix. The procedures presented in the current section are independent of the discretisation
method (e.g., FEA, IGA) and independent of the element type used (e.g., solids, shells,
beams). Although the section primarily focuses on structural analysis, some numerical
procedures are also applicable in other fields of computational physics, as will be detailed
in the description of these methods.

In section 2.4.1, numerical procedures for static analysis of structures are provided.
These analyses involve constant (non-linear) loading and time independence. Static anal-
ysis is relevant in chapters 3, 5, 7 and 8 of dissertation. In section 2.4.2, the numerical
procedure for linear modal analysis is provided. This procedure regards vibration analy-
sis of structures and is relevant for chapters chapters 5, 7 and 8. Section 2.4.3 provides
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the numerical procedures for computing structural stability and linear buckling analysis.
These procedures are relevant for chapters 3, 5 and 8. Following linear buckling analysis,
section 2.4.4 provides the basics for numerical analysis of post-buckling analysis. This in-
volves structural stability computations and numerical procedures with incremental loads
or displacements in a quasi-static fashion, meaning that dynamic effects are omitted. Algo-
rithms for post-buckling analysis are fundamental for the numerical analysis of wrinkling
and are relevant for chapters 3, 5, 6 and 8.

2.4.1 Static Analysis
The main goal of static analysis is to obtain a time-independent response of a structure
subject to a time-independent load. Due to the time independence of the analysis, the
kinetic energy is assumed to be zero and the load is constant. Therefore, static analysis
equilibrates the internal potential energy due to the deformation of the structure with the
external work exerted on the structure. For the isogeometric Kirchhoff–Love shell, this
implies finding the solution 𝒖 that minimises the virtual work equation equation (2.31).

The Newton-Raphson Method
The most commonly used way to find the solution 𝒖 for non-linear static analysis is to
use Newton-Raphson iterations. For the Kirchhoff–Love shell, this entails solving equa-
tion (2.32) with the Jacobian of the energy statement defined as the variation of equa-
tion (2.31) in equation (2.36). This entails that the residual equation

𝑹(𝒖) = 0, (2.64)

is solved incrementally by

𝐾(𝒖𝑖)Δ𝒖 = −𝑹(𝒖𝑖), 𝒖𝑖+1 = 𝒖𝑖 +Δ𝒖, 𝑖 = 0,1, ... (2.65)

Here, 𝒖𝑖 is the solution in iteration 𝑖, and Δ𝒖 is the solution increment. The Newton-
Raphson iterations can be initialised by a linear static analysis:

𝐾𝒖 = 𝑷, (2.66)

Where for the initialisation of 𝒖0, the linear stiffness matrix 𝐾𝐿 is used, which is by defi-
nition found by using the stiffness matrix for the undeformed configuration, i.e., 𝐾(0).

The Dynamic Relaxation Method
An alternative approach to the Newton-Raphson method for static analysis is to use a
pseudo-dynamic system. This method was developed by Otter & Day [421] for the ap-
plication of tidal computations, and later it was referred to as the Dynamic Relaxation
method [419, 420]. The dynamic relaxation method is based on the solution of the struc-
tural dynamics equation:

𝑀 ̈𝒖(𝑡) +𝐶 ̇𝒖(𝑡) −𝑹(𝒖)(𝑡) = 0, (2.67)
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where 𝑀 is the mass matrix, ̈𝒖 is the vector of discrete accelerations, 𝐶 is the damping
matrix, ̇𝒖 is the vector of discrete velocities, and 𝑹(𝒖) is the residual vector. Using central
finite differences, the acceleration vector ̈𝒖 can be expressed in terms of the velocity vector
̇𝒖 and a time step Δ𝑡 :

̈𝒖𝑡 =
̇𝒖𝑡+Δ𝑡/2 − ̇𝒖𝑡−Δ𝑡/2

Δ𝑡 , (2.68)

where the notation 𝑢𝑡 = 𝑢(𝑡) is adopted for the sake of clarity. A common assumption
in dynamic relaxation methods is to define the damping matrix proportional to the mass
matrix, i.e., 𝐶 = 𝑐𝑀 . Using ̇𝒖𝑡 = 1

2 ( ̇𝒖(𝑡 +Δ𝑡/2)+ ̇𝒖(𝑡 −Δ𝑡/2)) and substituting the damping
matrix and equation (2.68) into equation (2.67) gives:

𝑀( ̇𝒖𝑡+Δ𝑡/2 − ̇𝒖𝑡−Δ𝑡/2
Δ𝑡 + 𝑐 ̇𝒖𝑡+Δ𝑡/2 + ̇𝒖𝑡−Δ𝑡/2

2 )−𝑹(𝒖𝑡 ) = 0. (2.69)

This expression can be simplified to obtain the following result:

̇𝒖𝑡+Δ𝑡/2 =
(2− 𝑐Δ𝑡)
(2+ 𝑐Δ𝑡) ̇𝒖𝑡−Δ𝑡/2 +

2Δ𝑡
(2+ 𝑐Δ𝑡)𝑀

−1𝑹(𝒖𝑡 ). (2.70)

Here, the velocities at time 𝑡 = 0 are initialised by the zero vector, i.e., ̇𝒖0 = 0. Similar to
equation (2.68), the vector of nodal velocities ̇𝒖 can be expressed by finite differences as
follows:

̇𝒖𝑡+Δ𝑡/2 =
𝒖𝑡+Δ𝑡 −𝒖𝑡

Δ𝑡 . (2.71)

Rewriting this expression, the deformations at time-step 𝑡 +Δ𝑡 are updated using the up-
dated velocities from equation (2.70):

𝒖𝑡+Δ𝑡 = 𝒖𝑡 +Δ𝑡 ̇𝒖𝑡+Δ𝑡/2. (2.72)

The equations above can be solved for a damping parameter 𝑐 and if and only if the mass
matrix 𝑀 is invertible. In the work of Papadrakakis [429], the mass matrix is chosen to
be 𝑀 = 𝜌𝐷, and the parameters 𝜌 and 𝑐 are automatically determined. In this model, 𝐷
is a diagonal matrix with the main diagonal terms of the linear stiffness matrix 𝐾 . An-
other choice for 𝑀 is to use a diagonal lumped mass matrix [7, 32, 33, 291, 292, 566] or a
column-sum of the stiffness matrix [571]. Different scaling methods of the mass and damp-
ing contributions in the dynamic relaxation method are summarised by Rezaiee-Pajand &
Estiri [467] and Rodriguez et al. [479]. Furthermore, the works of Joldes et al. [291, 292]
provide algorithms for fast computations of the Dynamic Relaxation method on GPUs.

An alternative approach to using the damping matrix 𝐶 is to use the so-called kinetic
damping approach, introduced by Cundall [128]. In this approach, the kinetic energy in
the system is traced, and the nodal velocities ̇𝒖 are set to zero when a peak in kinetic
energy is detected. The advantage of this method is that no parameter for damping is
required and that it provides robustness [32, 33, 508]. Firstly, the kinetic energy in the
system is defined by:

𝐸𝐾𝑡 = 1
2 ̇𝒖⊤𝑀 ̇𝒖. (2.73)
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Hence, a peak is detected if 𝐸𝐾𝑡 > 𝐸𝐾𝐾,𝑡+Δ𝑡 for Δ𝑡 > 0. Following the work by Topping &
Khan [566], it is assumed that a peak occurs in themiddle of the interval [𝑡 −Δ𝑡, 𝑡], hence at
𝑡 −Δ𝑡/2 if 𝐸𝐾𝑡−3Δ𝑡/2 < 𝐸𝐾𝑡−Δ𝑡/2 and 𝐸𝐾𝑡−Δ𝑡/2 > 𝐸𝐾𝑡+Δ𝑡/2. In that situation, the displacement vector
𝒖𝑡+Δ𝑡 and the velocity vector ̇𝒖𝑡+Δ𝑡/2 are known. Using these solutions, the displacements
at the peak can be computed by:

𝒖𝑡⋆ = 𝒖𝑡+Δ𝑡 −
3
2 ̇𝒖𝑡+Δ𝑡/2 +

Δ𝑡
2 𝑀−1𝑹(𝒖𝑡 ), (2.74)

Where the peak time is denoted by 𝑡⋆. Using the displacement vector 𝒖𝑡⋆ , the method is
re-initiated using 𝒖𝑡⋆ . Since the velocities are fully damped after a kinetic energy peak,
they are set to zero upon re-initialization. Hence, to compute the next step after the restart
at a peak on 𝒖𝑡⋆ , the velocity vector for 𝒖𝑡⋆+Δ𝑡/2 becomes:

̇𝒖𝒖𝑡⋆+Δ𝑡/2 =
Δ𝑡
2 𝑀−1𝑹(𝒖𝑡⋆) (2.75)

Using equation (2.75), the displacement vector 𝒖𝑡⋆+Δ𝑡 can be found using equation (2.72).
This kinematic damping procedure is successfully applied by Barnes [32, 33], Taylor et al.
[551] and Rezaiee-Pajand & Estiri [467], among others, showing the robustness of the
method while eliminating the need to determine the damping coefficient 𝑐. Furthermore,
Lee et al. [333] presented an explicit ALM using Dynamic Relaxationwith kinetic damping,
avoiding solving any linear system.

Example 2.4.1 (Static analysis). Figure 2.10 illustrates a static analysis on the flame of the
TU Delft (see figure 2.1a) subject to a point load in out-of-plane direction, 𝑃𝑧 = 1 [𝑁 ], on its
top point. The material of the flame is steel with a thickness of 𝑡 = 1 [mm], a Young’s mod-
ulus of 𝐸 = 210 [GPa] and a Poisson’s ratio of 𝜈 = 0.3 [−]. The bounding-box of the flame is
5.5×5.5 [m2].

The parametrisation of the flame is as in figure 2.1b and the Almost-𝐶1 method us used
to generate a 𝐶1 basis over the multi-patch domain. By solving the equation 𝐾𝐿𝒖 = 𝑷 (see
equation (2.62)), the deformation of the flame can be computed. The solution is provided in
figure 2.10b.

2.4.2 Modal Analysis
The main goal of modal analysis is to find the eigenfrequencies and corresponding eigen-
modes of a structure. Eigenfrequencies are the resonance frequencies of a structure, and
eigenmodes are the shape inwhich the structure vibrates at a given eigenfrequency. Modal
analysis plays an important role not only in the acoustic analysis of structures but also in
the analysis of structures in turbulent flows. Moreover, modal analysis can also be used
to construct a reduced-order model for dynamic analysis [659].

The starting point for the derivation of the modal analysis equations is the structural
dynamics equation as given in equation (2.67). Assuming a damping-free system, no forc-
ing, and a harmonic solution 𝒖(𝑡) = 𝒖𝐴𝑒𝑖𝜔𝑡 , the discrete structural dynamics equation sim-
plifies to

−𝜔2𝑀𝒖𝐴 +𝐾𝒖𝐴 = 0 (2.76)
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𝑦
𝑥

𝑧 𝑷𝑧

(a) Problem setup. The red boundary is fixed in all direc-
tions.

(b)The deformed geometry. The colours represent vertical
displacements.

Figure 2.10: Static analysis on the flame of the TU Delft (see figure 2.1a). The problem setup is given in (a), with
the resulting deformation in (b).

Where 𝒖𝐴 are the amplitudes of the harmonic solution. Equation (2.76) represents the
so-called free vibration equation. This equation can be written as an eigenvalue problem:

𝜔2𝑀𝝓 = 𝐾𝝓 (2.77)

With 𝜔 and 𝝓 the eigenfrequency and discrete mode shape, respectively. Since this gener-
alized eigenvalue problem is composed of discrete operators 𝑀 and 𝐾 with 𝑁 degrees of
freedom, the solution to equation (2.77) consists of 𝑁 eigenpairs (𝜔𝑘 ,𝝓). In engineering
practice, the number of degrees of freedom 𝑁 can be large, and finding all eigenpairs of
the system becomes costly. In this case, special routines for sparse systems can be used
to find a small number of eigenvalues in a given range, e.g., the shifted block Lanczos
algorithm [212] or the shift-invert and Cayley transforms [384].

Example 2.4.2 (Modal analysis). As an example of modal analysis, the flame of TU Delft
(see figure 2.1a) is again considered. The problem setup is as in example 2.4.1: The flame is
fixed at the same boundary and the material properties are the same, with an additional den-
sity of 𝜌 = 7850 [kg/m3], and no load is applied on the geometry. Moreover, the parametri-
sation and the unstructured spline basis are as in figure 2.11 as well. The first three vibra-
tion modes are given in figures 2.11b to 2.11d, with corresponding eigenfrequencies 𝜔1 =
0.18 [rad/s], 𝜔2 = 0.39 [rad/s] and 𝜔3 = 0.88 [rad/s].

2.4.3 Buckling Analysis
The goal of buckling analysis is to find the critical loads in a load configuration for which
the structurewill be unstable. In the case of linear buckling analysis, amagnification factor
𝜆crit is found for which a scaled external load factor 𝜆crit𝑷 causes structural instability in
the buckling mode shape 𝝓. Before deriving the procedure to find the critical buckling
load magnification factor 𝜆crit and the corresponding buckling mode 𝝓, some notes on
structural stability are made.

Structural Stability
The stability of a structure is related to the stiffness matrix𝐾(𝒖). In particular, the displace-
ments 𝒖 for which the stability of a structure changes are such that the determinant of the
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𝑦
𝑥

𝑧

(a) Problem setup. The red boundary is fixed in all direc-
tions.

(b) The first vibration mode.

(c) The second vibration mode. (d) The third vibration mode.

Figure 2.11: Modal analysis on the flame of the TU Delft (see figure 2.1a). The problem setup is given in (a) and
the resulting vibration mode shapes of the first, second and third vibration modes are given in (b-d)

.

stiffness matrix 𝐾(𝒖) is zero, i.e., det𝐾(𝒖) = 0. Using Vieta’s rule [142], the determinant
of 𝐾(𝒖) can be written as

det𝐾(𝒖) =∏
𝑘

𝜆𝑘 (2.78)

With 𝜆𝑘 the 𝑘th eigenvalue of the matrix 𝐾(𝒖). This implies that the condition det𝐾(𝒖) = 0
is satisfied when one or more eigenvalues of det𝐾(𝒖) are zero. When 𝐾(𝒖) is symmetric
positive definite, the determinant of 𝐾(𝒖) can also be found by the product of the diagonal
matrix from a Cholesky decomposition 𝐾(𝒖) = 𝐿⊤𝐷𝐿 [631], i.e.

det𝐾(𝒖) =∏
𝑘

𝐷𝑘𝑘 (2.79)

Given a deformation vector 𝒖, the stability of the structure with this deformation
vector can be determined by analysing the determinant of 𝐾(𝒖). As specified above,
det𝐾(𝒖) = 0 corresponds to a change in the stability of the structure. Moreover, if det𝐾(𝒖) >
0, a structure is considered stable, and if det𝐾(𝒖) < 0, it is considered unstable [631]. This
implies that the stability of a structure can be determined by the sign of the smallest di-
agonal entry of the Cholesky decomposition of 𝐾(𝒖), following equation (2.79), or by the
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sign of the smallest eigenvalue of 𝐾(𝒖), following equation (2.78).

Given a singular point 𝒘𝑆 = (𝒖𝑆 , 𝜆𝑆) such that det𝐾(𝒖𝑆) = 0, it can either be a bifur-
cation point or a limit point; see figure 2.14 and figure 2.13c, respectively. A bifurcation
point is an intersection of multiple solution branches and is often associated with buck-
ling instabilities since the deformation patterns of the branches intersecting in 𝒘𝑆 are of
different nature. A limit point, on the other hand, is a point where the stability of the
structure changes without intersecting with other branches. This type of singular point
is often associated with snapping instabilities. To identify whether a singular point is a
bifurcation point or a limit point, the product of the first eigenvector 𝝓1 of 𝐾(𝒖𝑆)with the
external load vector 𝑷 is considered. If this product is (close to) zero, a bifurcation point
is found; otherwise, it is a limit point [632].

Linear Buckling Analysis
To find the critical load for a structure in a certain load configuration, the problem is to
find the solution vector 𝒖 such that det𝐾(𝒖) = 0, in other words, that the stiffness matrix
is singular. This condition is equivalent to solving

𝐾(𝒖)𝝓 = 0 (2.80)

From [70], it follows that using a split of the stiffness matrix into a linear and a non-linear
part, i.e., 𝐾(𝒖) = 𝐾𝐿 +𝐾𝑁𝐿(𝒖), equation (2.80) can be written as

(𝐾𝐿 −𝜆𝐾(𝒖𝐿))𝝓 = 0. (2.81)

Where 𝜆 is the loadmagnification factor of the load applied in the linear problem𝐾𝒖𝐿 = 𝜆𝑷
with 𝒖𝐿 the solution to this linear problem. From equation (2.81), it can be seen that
to obtain the critical load factor 𝜆 and the corresponding buckling mode shape 𝝓, the
generalised eigenvalue problem

𝐾𝝓𝑘 = 𝜆𝑘𝐾𝑁𝐿(𝒖)𝝓𝑘 , (2.82)

Has to be solved. Solving this eigenvalue problem gives the critical load factors 𝜆𝑘 and
buckling mode shapes 𝝓𝑘 , 𝑘 = 1, ..,𝑁 for a system with 𝑁 degrees of freedom.

Example 2.4.3 (Buckling analysis). To illustrate a the setup of a buckling problem, the TU
Delft flame is exposed to a horizontal load 𝑃𝑦 = 1 [N] scaled by a factor 𝜆 on its top point
(figure 2.12a) and the marked boundary is fixed in all directions. The material, the parametri-
sation and the basis are as in examples 2.4.1 and 2.4.2.

Firstly, figure 2.12b presents the linear solution 𝒖𝐿 to the linear shell problem in equa-
tion (2.62). This solution is used to compute the eigenvalue problem in equation (2.81), of
which figures 2.12c and 2.12d are the first two buckling modes, 𝝓1 and 𝝓2 with load factors
𝜆1 = 4.6 ⋅ 10−6 [−] and 𝜆2 = 5.7 ⋅ 10−6 [−].
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𝑦
𝑥

𝑧
𝜆𝑷𝑦

(a) Problem setup. The red boundary is fixed in all direc-
tions.

(b) The linear solution. The patch boundaries (black) are
used to indicated the undeformed geometry.

(c) The first buckling mode. (d) The second buckling mode.

Figure 2.12: Buckling analysis on the flame of the TU Delft (see figure 2.1a). The problem setup is given in (a)
and the linear solution is given in (b). The resulting buckling mode shapes of the first and second buckling mode
are given in (c) and (d).
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2.4.4 Quasi-static Analysis
Quasi-static analysis is the analysis of structures subject to loads or displacements with
a prescribed change. The type of analysis is referred to as quasi-static since the resulting
structural response is assumed to be time-independent, hence all dynamic effects are negli-
gible. Quasi-static analysis is typically used in applications where the structural response
with respect to increasing loads or strains is of interest, for example, when testing limit
states with fractures or tests involving structural instabilities. The primary application of
quasi-static analysis in this dissertation is wrinkling modelling, where membrane defor-
mations are studied as a consequence of an increasing load or displacement.

Let 𝑹(𝒖,𝜆) = 0 be the equilibrium path corresponding to the discrete residual 𝑹(𝒖,𝜆),
on its turn defined by geometry, material properties, and loads acting on a structure. On
the equilibrium path, the structure subject to the defined load case is in equilibrium, mean-
ing that the sum of the internal and (𝜆-scaled) external forces is equal to zero. Figure 2.13
depicts three ways to find the equilibrium path. Firstly, the external load can be incre-
mented using load increments Δ𝜆, resulting in displacement increment Δ𝒖. However, as
illustrated in figure 2.13a, this can lead to multiple solutions or large jumps in the solution
path. Alternatively, the displacement at a point or on a boundary can be controlled in-
crementally, yielding the equivalent Δ𝒖 for which a load increment Δ𝜆 can be computed.
Similar to load control, this can lead to large jumps on the paths, as shown in figure 2.13b.
In order to be able to capture the full equilibrium path, a remedy to load- or displacement-
control is to use arc-length control. In this case, the increments Δ𝜆 and Δ𝒖 are combined
to ensure they stay on the equilibrium path, provided a constraint equation 𝑓 (Δ𝒖,Δ𝜆) = 0.
As illustrated in figure 2.13c, the constraint equation can be a hypersphere of which the
intersections with the equilibrium path provide the next point. Given the residual 𝑹(𝒖,𝜆),
the ALMs find the solution 𝒘𝑖 = (𝒖𝑖 , 𝜆𝑖) in load step 𝑖 with 𝒖𝑖 and load factor 𝜆𝑖 , using

𝒘𝑖 = 𝒘𝑖−1 +Δ𝒘𝑖 , 𝑖 = 1,2, ... (2.83)

given an initial deformation 𝒘0 and with Δ𝒘𝑖 the solution increment in load-step 𝑖, which
is iteratively updated in iteration 𝑘 as

Δ𝒘𝑘 = Δ𝒘𝑘−1 +𝛿𝒘, Δ𝒘0 = (0,0), 𝑘 = 1,2, ... (2.84)

In the remainder of this section, a brief introduction to Crisfield’s [124] Arc-LengthMethod
(ALM) is given. A commonly used alternative is Riks’ method, for which the reader is
referred to the works by Riks [469, 470], Wempner [620] and Ramm [459]. For more infor-
mation on ALMs in general, the reader is referred to the books by Crisfield [126], Crisfield
et al. [127], de Borst et al. [142], and Wriggers [631]. Furthermore, the work by Fafard
& Massicotte [178] provides a geometric interpretation of ALMs, Carrera [85] provide a
comparison of some methods, and Memon & Su [385] provides historical remarks.

Parts of section 2.4.4 are based on:
[583]H.M. Verhelst, M. Möller, J. H. Den Besten, F. J. Vermolen &M.L. Kaminski, “Equilibrium Path Analysis In-
cluding Bifurcations with an Arc-Length Method Avoiding A Priori Perturbations”, Numerical Mathematics and
Advanced Applications, ENUMATH 2019: European Conference, Egmond aan Zee, The Netherlands, September
30-October 4, 1109-1117 (2019)

https://doi.org/10.1007/978-3-030-55874-1_110
https://doi.org/10.1007/978-3-030-55874-1_110
https://doi.org/10.1007/978-3-030-55874-1_110
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Figure 2.13: Load (top left), displacement (top right), and arc-length control (bottom left) for structural analysis
problems. The question mark (?) indicates the iteration where load and displacement control encounter a point
where the next obtained point is typically difficult to find. Limit points are indicated with 𝐿.

Crisfield’s Arc-Length Method
In Crisfield’s ALM, the constraint equation is given by

𝑓 (Δ𝒖,Δ𝜆) = Δ𝒖⊤Δ𝒖+Ψ2Δ𝜆2𝑷⊤𝑷 −Δℓ2 = 0, (2.85)

with Δℓ the arc length, 𝑷 the vector of external forces, and Ψ a scaling factor providing
the spherical constraint for Ψ = 0 or the elliptical constraint for Ψ = 1. As discussed by
Schweizerhof & Wriggers [497] and Bellini & Chulya [42],

Ψ𝑖 =
𝒖⊤𝑖−1𝒖𝑖−1
𝜆2𝑖−1𝑷⊤𝑷

, (2.86)

provides a dimension-independent influence of the load increment Δ𝜆𝑷 in the constraint
equation for load step 𝑖. Together with the system of equations resulting from the non-
linear problem to be solved, the constraint equation adds an extra equation to the system
to be solved. If the discretisation of the equation provides a banded system matrix, the
system loses its banded nature when the constraint equation is added [631]. Therefore,
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the system of equations is solved in a segregated way [126]. To this end, the incremental
displacement in iteration 𝑘 is split into two parts:

𝛿𝒖𝑘 = 𝛽𝛿 ̄𝒖𝑘 +𝛿𝜆𝑘𝛿�̂�𝑘 , (2.87)

where
𝐾(𝒖)𝛿 ̄𝒖𝑘 = 𝑹(𝒖𝑘 , 𝜆𝑘),
𝐾(𝒖)𝛿�̂�𝑘 = 𝑷, (2.88)

can be solved to compute the contributions of a standard load-controlled Newton-Raphson
iteration, 𝛿 ̄𝒖𝑘 , and from an incremental update of the load 𝑷 , 𝛿�̂�𝑘 , respectively. Further-
more, 𝛽 is a line-search parameter, which is 𝛽 = 1 by default. Using equation (2.84), the
constraint equation in equation (2.85) can be written as

𝑎𝛿𝜆2𝑘 +𝑏𝛿𝜆𝑘 +𝑐 = 0, (2.89)

with
𝑎 = 𝛿�̂�⊤𝑘 𝛿�̂�𝑘 +Ψ2𝑷⊤𝑷 = 𝑎0
𝑏 = 2(𝛿�̂�⊤𝑘 Δ𝒖+Δ𝜆Ψ2𝑷⊤𝑷)+2𝛽𝛿�̂�⊤𝑘 𝛿 ̄𝒖𝑘 = 𝑏0 +𝛽𝑏1
𝑐 = 𝛽2𝛿 ̄𝒖⊤𝑘 𝛿 ̄𝒖𝑘 +2𝛽𝛿 ̄𝒖⊤𝑘 Δ𝒖+Δ𝒖⊤Δ𝒖+Δ𝜆2Ψ2𝑷⊤𝑷 −Δℓ2 = 𝑐0 +𝛽𝑐1 +𝛽2𝑐2.

(2.90)

Since equation (2.89) is quadratic, it can have zero to two solutions. In the regular case,
two roots are found for equation (2.89), corresponding to two intersections of the con-
straint equation with the equilibrium path. In this case, a root needs to be selected such
that the path following proceeds in the correct direction, e.g., without stepping backwards.
Selection of the correct root corresponds to finding the correct 𝛿𝜆 such that the displace-
ment increment from equation (2.87) can be computed. In the original work of Crisfield
[124], it is proposed to take the increment that yields the largest positive inner-product
with respect to the previous step at iteration 𝑘. The root is selected as [472]:

𝛿𝜆 = max
𝛿𝜆𝑟 , 𝑟=1,2

𝛿𝜆𝑟(Δ𝒖⊤𝛿�̂�𝑘 +Ψ2Δ𝜆). (2.91)

In the case of 𝑏2 −4𝑎𝑐 in equation (2.90), complex roots occur, and the root selection from
equation (2.91) fails. As explained by Carrera [85], complex roots occur in regions where
the path is strongly curved within one load step, potentially yielding more than two in-
tersections. In this case, the arc length can be bisected until real solutions are found for
equation (2.89) [42], or a line-search technique proposed by Lam & Morley [329] or Zhou
& Murray [660] can be used. Given the displacement update 𝛿𝒖 = 𝛽𝛿 ̄𝒖 + 𝛿𝜆𝛿�̂� and given
coefficients 𝑎0, 𝑏0, 𝑏1, 𝑐0, 𝑐1 and 𝑐2 from equation (2.90) such that 𝑏2 − 4𝑎𝑐 < 0 in equa-
tion (2.89) (for 𝛽 = 1), the condition 𝑏2 − 4𝑎𝑐 ≥ 0 can be enforced, yielding the following
equation in terms of the line-search parameter ̃𝛽 ≠ 1 [125]

𝑎𝑠 ̃𝛽2 +𝑏𝑠 ̃𝛽 + 𝑐𝑠 ≥ 0, (2.92)

with [472]
𝑎𝑠 = 𝑏21 −4𝑎0𝑐2,
𝑏𝑠 = 2𝑏0𝑏1 −4𝑎0𝑐1,
𝑐𝑠 = 𝑏20 −4𝑎0𝑐0.

(2.93)
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The solutions of equation (2.92) are simply found by ̂𝛽1,2 = (−𝑏𝑠 ± √𝑏2𝑠 −4𝑎𝑠𝑏𝑠)/2𝑎𝑠 . Zhou
& Murray [660] argue that the solutions 𝛽1,2 are of opposite sign and that if 𝛽 is between
these roots, the constraint equation is satisfied. In their work, it is proposed to choose
0 < 𝛽 ≤min(1,𝛽2) for 𝛽1 < 𝛽2. In the work of Lam & Morley [329], it is advised to choose 𝛽
as:

𝛽 =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

𝛽2 −𝜖 if 𝛽2 < 1.0,

𝛽2 +𝜖 if − 𝑏𝑠
𝑎𝑠

< 1.0 < 𝛽2,

𝛽1 −𝜖 if 𝛽1 < 1.0 < −𝑏𝑠𝑎𝑠
,

𝛽1 +𝜖 if 1.0 < 𝛽1,

(2.94)

with 𝜖 = 0.05|𝛽2 − 𝛽1|. In case 𝛽 is close to zero, it is advised to bisect the arc length
[472, 660].

At the beginning of a new load step of the ALM, the arc-length iterations need to be
initialized using a predictor, such thatΔ𝒖 and 𝛿𝜆 in equations (2.89) and (2.90) are non-zero.
The load increment 𝛿𝜆0 of the predictor is given by:

𝛿𝜆0 =
⎧⎪
⎨⎪
⎩

Δℓ
√2𝛿𝒖⊤𝑡 𝛿𝒖𝑡

if (𝒖,𝜆) = (0,0),
Δℓ

√𝛿𝒖⊤𝑡 𝛿𝒖𝑡 +Ψ2𝑷⊤𝑷
elsewhere.

(2.95)

The sign of 𝛿𝜆0 is chosen positive in case of the first load step (i.e., in case where (𝒖,𝜆) =
(0,0)) and it is determined by the previous load step Δ𝒖,Δ𝜆 otherwise [184–186]:

sign(𝛿𝜆0) = sign(Δ𝒖⊤𝛿�̂� +Δ𝜆Ψ2𝑷⊤𝑷). (2.96)

In the work of Feng et al. [184–186], it is noted that the sign of 𝛿𝜆0 can also be determined
by the sign of the determinant of 𝐾(𝒖) as a by-product in case a Cholesky solver is used,
as discussed in section 2.4.3. Furthermore, they also remark in their works that the deter-
mination of the travel direction works well with a proper arc-length selection. If the arc
length is too large compared to the curvature of the solution path, the predictor can lead to
a point where more than two intersections are found and complex roots are encountered.
An alternative predictor is presented by Kadapa [295], using the two previous steps for an
extrapolation.

Arc-Length Exploration
Quasi-static analysis is not only related to finding solution paths as illustrated in fig-
ure 2.14, e.g., snapping problems with limit-point stabilities in structural analysis, but
also to problems where the solutions of 𝑹(𝒖,𝜆) = 0 branches into multiple solution curves
in a pitch-fork or bifurcation; see figure 2.14. Finding a network of curves forming the
possible equilibrium paths of a non-linear problem 𝑹(𝒖,𝜆) = 0 can be done using ALMs
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and is referred to as arc-length exploration. Arc-length exploration allows for the study of
multiple solution paths in a system, as well as the transition between the paths. Rivetti &
Neukirch [474] showed transitions between wrinkling configurations in the case of mem-
brane wrinkling on a foundation by considering multiple bifurcation branches. Further-
more, Draelants et al. [169] apply arc-length exploration to hormone transport modelling,
Wouters & Vanroose [630] uses it for modelling of superconductors, and Thies et al. [561]
applies it to solve an equation describing the skin patterning of species.

The first ingredient of an arc-length exploration method is to find bifurcation points.
To this end, the detection of singular points can be done using equation (2.79). If a singular
point is detected between the points (𝒘𝑘 ,𝒘𝑘+1), the bifurcation point can be approached
using the robust but slowly converging bi-section method [595], being a robust [80] but
slow [631] root-finding method. Alternatively, a Newton-Raphson method solving the
system:

[
𝑹(𝒖,𝜆)
𝐾(𝒖)𝝓
𝑙(𝝓)

] = 0. (2.97)

Can be used. Here, besides solving the non-linear equation 𝑹(𝒖,𝜆) = 0, the condition
𝐾(𝒖)𝝓 = 0 is solved, being equivalent to finding𝝓 such that det𝐾(𝒖) = 0 (see equation (2.79)).
Lastly, the equation 𝑙(𝝓) = ‖𝝓‖ − 1 = 0 is solved, preventing the trivial solution 𝝓 = 0 from
being found. Note that this algorithm is able to find limit points as well, since condition
equation (2.79) is valid for limit points and bifurcation points. This method is based on
the work of Wagner & Wriggers [595] and Wriggers & Simo [632], and the reader is re-
ferred to their work for further implementation details. Furthermore, Shi & Crisfield [506]
proposes a semi-direct approach, relaxing the condition to solve the equilibrium equation
𝑹(𝒖,𝜆) = 0 exactly in early iterations, providing a more efficient scheme.

Given a bifurcation point satisfying equation (2.97), branch switching can simply be
performed by applying a perturbation in the direction of one of the eigenvectors of the
system. In that case, the starting point of a new branch 𝒖𝑆 , 𝜆𝑆 is given by [505, 631]:

𝒖𝑆 = 𝒖𝐵 +𝜁 ̄𝝓, 𝜆𝑆 = 𝜆𝐵 . (2.98)

Here, ̄𝝓 is the first eigenvector of 𝐾(𝒖𝐵) and 𝜁 is a perturbation magnitude, chosen large
enough to switch the branch but small enough not to influence the solutions in the new
branch [631]. This branch-switching is the most straight-forward approach, but it suffices
for most pitch-fork bifurcations [632]. Alternative approaches are given by Wriggers &
Simo [632], Shi [505], andWouters & Vanroose [630]. Software packages for automatic ex-
ploration include PyNCT [168] in Python, BifurcationKit.jl [582] in Julia, or LOCA [487]
within Trilinos [237] in C++.
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Figure 2.14: A solution path with a bifurcation point 𝐵. The path can be approximated by perturbing the solution
(a). Alternatively, using the extended ALM, point 𝐵 can be approximated and the original solution branch can
be found (b)

.

2.5 Wrinkling Mechanics
Wrinkling is a phenomenon that is all around us, for example, in sails (figure 1.1a), in our
skin (figure 1.1b), in inflatable items (figure 1.1c), or in aged fruit (figure 1.1d). According
to the Oxford English Dictionary, a wrinkle [422, entry 2] is indeed inspired by the world
around us:

A crease, fold, or ridge, caused by the folding, puckering, or contraction of a
fabric, cloth, or other pliant substance.

Here, a pliant substance is a substance with high bending flexibility. In physics, a distinc-
tion is made between wrinkling, folding, and creasing. Adopting the definitions from Li
et al., wrinkling is defined as [345]:

(..) periodic or chaotic surface undulations appearing on an originally flat
surface.

Here, wrinkling is associated with a deformation of a surface that is initially flat, and the
undulations imply that the amplitude of the wrinkles is smoothly distributed. Folding, on
the other hand, is defined as [345]:

Parts of section 2.5 are inspired by the literature reviews of the following MSc. theses, which where supervised
by the author throughout their PhD research:

[331] E. Lavaerts (2020). “Framework to research and design wrinkle free very large flexible offshore solar platforms
by adding permeability”. Master’s thesis, Technische Universiteit Delft,

[51] S. de Bode (2021). “Wrinkling analysis and design of Offshore Flexible Floating Solar Structures”. Master’s
thesis, Technische Universiteit Delft.

https://repository.tudelft.nl/islandora/object/uuid{%}3Ad470f8ef-4893-48c5-8a9a-a0c1b8561766
https://repository.tudelft.nl/islandora/object/uuid{%}3A028751b6-e0f0-41bb-b854-ac0e975001c6
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(...) a buckling-induced surface structure with localised, deep surface valleys.

This definition implies that folds are initiated by buckling (into a wrinkled shape), and as
loading progresses, folds start to appear. In this definition, the word localized is of great
importance. Typically, a wrinkled membrane transforming into a folded membrane expe-
riences a transition from homogeneous to heterogeneous wrinkling wave lengths through
the domain. Lastly, the distinction between folding and creasing is made based on the no-
tion of self-contact with the crease:

(...) when an initially smooth surface forms a self-contacting shape with a
sharp ridge or sulci.

As described by Li et al. [345], folding occurs on membranes with a relatively high bend-
ing stiffness compared to the foundation stiffness, whereas creasing usually occurs at the
surface of soft materials without hard skins.

Understanding the mechanisms of wrinkling, folding, and creasing finds relevance
in multiple fields of science and engineering. In physics, scaling laws have been de-
veloped to describe the physics of wrinkling, inspired by water lilies [643], beach balls
[578], apples [91], et cetera. In aeronautical engineering, wrinkling is investigated in
the development of solar sails for space propulsion [195, 210, 211, 388, 484–486, 626] or
parachutes [25, 26, 298, 417, 536–546, 546–549, 556, 557] and in automotive engineering,
wrinkling plays an important role in the deployment of airbags [209, 300, 301, 383]. In
nano-engineering, wrinkling plays an important role in the development of thin graphene
sheets. This material of atomic thickness has extraordinary properties such as high ther-
mal conductivity and mechanical strength, but its very low thickness makes it prone to
wrinkling [10, 148, 349, 600, 604, 606], which as a consequence influences its thermal con-
ductivity [96] among other properties. Furthermore, in themaritime and offshore domains,
wrinkling is a topic of interest in sailing [466] or for the development of large floatingmem-
brane structures, for example, to enable offshore solar energy generation [583]. Besides
the mechanical engineering disciplines, wrinkling has been a topic of interest in the cos-
metic industry to reduce skin wrinkling or in the biomedical sciences related to wound
healing [527–529].

In this section, background on the mechanics of wrinkling is provided. In section 2.5.1,
the physics behind wrinkling are summarized. Here, the interplay between bending, foun-
dation, and membrane energies leading to wrinkling patterns in membranes is discussed.
Section 2.5.2 provides a review of pioneering results from wrinkling experiments, and
section 2.5.3 provides a review of numerical methods employed in the simulation of mem-
branewrinkling. Although themajor focus of this dissertation is on the numerical analysis
of wrinkled membranes, a review of experimental investigations is added to help under-
stand the phenomenon. Lastly, section 2.5.4 provides a brief review of design measures
that can be taken to eliminate wrinkling in membranes.
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2.5.1 Wrinkling Energy Contributions
When looking at the various applications of wrinkling research, the common denominator
is that wrinkling typically concerns thin membranes. Indeed, typical wrinkling patterns
can only exist if the bending stiffness of the material is small enough to allow for small
radii of curvature, which is naturally related to low thickness. However, low bending
stiffness is not the only factor influencing the wrinkling phenomenon. In the potential
energy balance of a wrinkled membrane, which is naturally minimised, the energy from
bending, membrane forces, and foundation stiffness determine the amplitudes and wave
lengths in a wrinkled membrane. Following the works of Cerda & Mahadevan [91] and
Pocivavsek et al. [442], the energy contributions of bending energy, foundation energy,
and stretching energy are discussed. These energy contributions form the foundation for
the study of the physics of wrinkling and the assumption of numerical models.

Bending energy
The bending energy stored in a wrinkled membrane depends on the thickness, the bending
stiffness, and the radius of curvature of the deformed membrane. In particular, for a line
as in figure 2.15, the bending stiffness per unit width is given by Cerda & Mahadevan [91]:

𝒰𝐵 = 1
2 ∫Ω

𝐵(𝜕
2𝜁

𝜕𝑥2 )
2
d𝑥 (2.99)

Assuming a two-dimensional setting and small slopes, 𝜕2𝜁
𝜕𝑥2 is the curvature of the line at

position 𝑥 and 𝐵 is the bending stiffness. Equation (2.99) shows that the bending energy
is proportional to the square of the curvature, meaning that the higher the curvature in
the membrane, the higher the bending energy stored in the wrinkle, as illustrated in ex-
ample 2.5.1. In general, the curvature of a wrinkle increases with decreasing wave length
for a fixed amplitude or with increasing amplitude for a fixed wave length. Therefore, it
can be stated that bending energy penalises short waves or high amplitudes.

Example 2.5.1 (Bending energy of sine waves). Consider three sine-waves with different
frequencies and equal amplitudes, defined by 𝜁 (𝑥) = −𝜁0 sin(𝑎𝜋𝑥), on the domain 𝑥 ∈ [0,𝜋]
with frequency parameter 𝑎 = 1,2,4. The amplitude 𝜁0 is assumed to be sufficiently small,
such that the the curvature of these waves – assuming a two-dimensional setting and small
slopes – is given by the second derivative of the amplitude function:

𝜁 ′′(𝑥) = 𝜁0𝑎2𝜋2 sin(𝑎𝑥). (2.100)

As a result, the bending stiffness stored in the function 𝜁 (𝑥) is given by

𝒰𝐵 = 1
2 ∫

1

0
𝐵(𝜁 ′′(𝑥))2 d𝑥 = 𝜁 20 𝐵

4 (𝑎4𝜋4). (2.101)

For the curves in figure 2.15, this implies that when 𝑎 doubles, the bending energy increases
by a factor of 24 = 16.
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Figure 2.15: Three sine waves with the same amplitude, from left to right: 𝜁 (𝑥) = −𝜁0 sin(𝑎𝜋𝑥), 𝑎 = 1,2,4, 𝑥 ∈ [0,1],
𝜁0 = 1/20.

Figure 2.16: Three sine waves with the same amplitude, from left to right: 𝜁 (𝑥) = −𝜁0 sin(𝑎𝜋𝑥), 𝑎 = 1,2,4, 𝑥 ∈ [0,1],
𝜁0 = 1/20, supported by a foundation (gray).

Foundation energy
When a membrane is supported by a substrate or foundation, wrinkling of the membrane
implies indentation of the foundation. For an elastic foundation, the potential energy
stored due to indentation is simply given by the square of the indentation times the stiff-
ness of the membrane [91], equivalent to the potential energy stored in a spring:

𝒰𝐹 = 1
2 ∫Ω

𝐾𝜁 2 d𝑥 , (2.102)

where 𝐾 is the foundation stiffness. Equation (2.102) shows that the foundation energy
increases with increasing indentation area into the foundation, which is not necessarily
related to wrinkling wave lengths, as illustrated in example 2.5.2. It should be noted that
equation (2.102) assumes that the potential energy stored in the membrane is related to
amplitudes into and out of the foundation. When the membrane is supported by the foun-
dation and detachment is possible (e.g., for liquids when surface tension is small or for
delaminated composites), only the indenting amplitudes imply potential energy storage
in the foundation, slightly modifying equation (2.102). As a general rule of thumb, it can
be stated that foundation energy penalises wrinkles with large indentation areas.

Example 2.5.2 (Substrate energy of sine waves). Consider three sine-waves with different
frequencies and equal amplitudes, defined by 𝜁 (𝑥) = −𝜁0 sin(𝑎𝜋𝑥), on the domain 𝑥 ∈ [0,𝜋]
with parameters 𝑎 = 1,2,4. The potential energy stored in the foundation is given by equa-
tion (2.102):

𝒰𝐹 = 1
2 ∫

1

0
𝜁 (𝑥)2 d𝑥 = 𝜁 20𝐾

4 , 𝑎 ∈ ℤ. (2.103)

This shows that irrespective of the parameter 𝑎, the curves in figure 2.16 store the same amount
of energy in the foundation.

As discussed by Pocivavsek et al. [442] and Cerda & Mahadevan [91], the combina-
tion of foundation and bending energy already illustrates an energy balance. Since the
total energy in a system is always minimised, the interplay between the influence of small
and large wave lengths in combination with the wrinkling amplitude determines the fi-
nal wrinkling shape. In example 2.5.3, the bending and foundation energy contributions
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from examples 2.5.1 and 2.5.2 are combined to illustrate energy minimisation of different
numbers of half-waves for a sinusoidal wrinkling shape.
Example 2.5.3 (Interplay between bending an substrate energy). The wrinkling shape
will be determined by minimising the total energy in the system. Under the assumption that
the wrinkle shape is sinusoidal with a small amplitude 𝜁0, the total energy in the sinusoidal
wrinkle follows from examples 2.5.1 and 2.5.2:

𝒰 = 𝒰𝐵 +𝒰𝐹 = 𝜁 20 𝐵
4 (𝑎4𝜋4)+ 𝜁 20𝐾

4 . (2.104)

In addition, introducing inextensibility of the wrinkle under end-shortening, i.e. the length of
the curve does not change when wrinkled, the following condition needs to be satisfied [91]:

Δ = 1
2 ∫

1

0
(𝜕𝜁𝜕𝑥 )

2
d𝑥 = 1

2𝑎
2𝜋2𝜁 20 . (2.105)

This condition allows to express the amplitude 𝜁𝑎 of the wave in terms of the number of half-
waves 𝑎 for a given end-point displacement Δ:

𝜁0 =
1
𝑎𝜋 √2Δ. (2.106)

Substituting this relation into equation (2.104) gives the total energy stored in the sinusoidal
wrinkle in terms of the bending stiffness 𝐵, the foundation stiffness 𝐾 and the number of
half-waves 𝑎:

𝒰 = Δ
2 (𝐵𝜋

2𝑎2 + 𝐾
𝜋2𝑎2 ). (2.107)

This energy can be minimised with respect to 𝑎 for any combination of the bending stiffness 𝐵
and the foundation stiffness 𝐾 . In figure 2.17 the number of half-waves corresponding to the
minimal energy state of the sinusoidal wrinkle is plotted for different ranges of the bending
stiffness 𝐵 and foundation stiffness 𝐾 . Indeed, this figure shows that lower bending stiffness
implies a larger number of half-waves, or, that decreasing foundation stiffness implies less
wrinkles.

Stretching energy
Besides bending energy and energy stored in a foundation, the third energy considered
for a wrinkled membrane is stretching energy. When a membrane is subject to axial ten-
sion or compression, potential energy is stored in the axial (in-plane) deformations of the
membrane. More precisely, given a tension 𝑇(𝑥) along the 𝑥 direction [91],

𝑈𝑆 =
1
2 ∫Ω

𝑇(𝑥)(𝜕𝜁𝜕𝑥 )
2
d𝑥 , (2.108)

Following the work of Cerda & Mahadevan [91], it can be observed that this expression is
similar to equation (2.102), with the foundation energy 𝐾 ∼ 𝑇/𝐿2, given the domain length
𝐿. In other words, the membrane stretching forms an effective elastic foundation. There-
fore, a rule of thumb for stretching energy is that stretching energy penalises wrinkles with
large indentations.
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Figure 2.17: The number of wrinkles (coloured) for which the total energy 𝒰 = 𝒰𝐵 +𝒰𝐹 is minimised, plotted
against different values of the (dimensionless) bending and foundation stiffnesses, 𝐵 and 𝐾 , respectively. This
diagram is valid only for wrinkles represented by a sinusoidal wave.

2.5.2 Experimental Investigations
In the last decades, experimental investigations on membrane wrinkling have increased
our understanding of the phenomenon. The interplay between the bending, membrane,
and foundation energies from section 2.5.1 explains the wrinkling wave length and ampli-
tudes that can be observed in situations like the ones depicted in figure 1.1. In this section,
a brief literature on wrinkling experiments and observations is provided. The goal of this
review is to provide a general understanding and overview of different wrinkling settings
and knowledge about them. The section is structured according to figure 1.1, hence provid-
ing an overview of: i) wrinkles in membranes due to in-plane tension or shear; ii) wrinkles
in elastically supported membranes; iii) wrinkles in pressurised membranes; and iv) wrin-
kles due to growth.

Since this section does not provide a complete overview of the wrinkling literature,
the reader is referred to the reviews of Wang et al. [611] on tension-induced wrinkles, to
[550] on wrinkles in curved surfaces, to [370] on wrinkles in membranes with elasticity
gradients, to [434] on wrinkles in membranes with low bending stiffness and high mem-
brane stiffness, and to [345] for a complete but less recent review on wrinkling.

Membranes Subject to Shear or Tension
In the pioneering work of Cerda et al. [92], the wrinkling behaviour of an elastic sheet
under tension was studied. By decomposing the energy in the system into a membrane
tension part as well as a bending part (see section 2.5.1), a scaling law is derived for the
wrinkling wave length. The pioneering work of Cerda et al. [92] was generalised in [91]
to be applicable to membranes on elastic foundations as well. For a membrane subject
to tension, the minimisation of the bending energy and the stretching energy inside the
membrane yield the final wrinkling pattern. More precisely, for wrinkles with amplitudes
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𝜆𝑥

𝜆𝑦

𝜁 (𝑥,0)

𝜁 (0,𝑦)𝑥

𝑦

Figure 2.18: Wrinkling of a rectangular membrane
subject to a tensile load, adopted from Cerda et al.
[92]. Two sketches of the wrinkles in the 𝑥 and
𝑦 directions are indicated by the lines 𝜁 (𝑥,0) and
𝜁 (0,𝑦), with wave lengths 𝜆𝑥 and 𝜆𝑦 , respectively.

Figure 2.19: Wrinkling of a rectangular membrane
subject to a shear load due to horizontal displace-
ment of the top boundary, adopted from Wong
& Pellegrino [626]. The top figure represents 𝛿 =
1.0 [mm] and the bottom figure 𝛿 = 3.0 [mm].

𝜁 and wave lengths 𝜆𝑥 and 𝜆𝑦 in 𝑥 and 𝑦-direction, respectively, the bending energy of the
wrinkles is determined by the wave lengths in transverse 𝑦-direction, and the stretching
energy is related to the longitudinal half waves with length 𝜆𝑥 ; see figure 2.18. For a low
number of wrinkles, the wave length 𝜆𝑦 is relatively high, implying relatively high ampli-
tudes 𝜁 and low curvatures 𝜁 ′′, and consequently low bending energy and high stretching
energy. In the opposite case, a large number of wrinkles implies low wave lengths 𝜆𝑦 ,
relatively low amplitudes 𝜁 and high curvatures 𝜁 ′′ and therefore relatively high bending
energy and low membrane energy. The final wrinkling state of the membrane is a result
of this interplay between amplitudes, wave lengths 𝜆𝑦 , amplitudes 𝜁 and curvatures 𝜁 ′′.

Following up on the works of Cerda et al., many investigations on the classical mem-
brane subject to tension have been carried out. Numerical investigations of the wrinkling
re-stabilisation (i.e., the disappearance of wrinkles) in the tension wrinkling case have
been performed [233, 346, 403, 551, 601, 658] and Panaitescu et al. [427] and Chopin et al.
[100] conducted simulations and experiments and provided new scaling laws and insights
on the role of the singularities in the corners of the membrane. Furthermore, Puntel et al.
[449] provide insights into the critical wrinkling load based on analytical formulations,
and Xin & Davidovitch [641] provide insights on the formation and disappearance of wrin-
kles based on analytical formulations, motivating that geometric non-linearities play an
important role in the non-linear wrinkling response. However, using only linear theory,
Silvestre [512] motivates that wrinkling under tension can be initiated due to Poisson’s ef-
fect. The tension wrinkling case also inspired works on the effects of material orthotropy
by Sipos & Fehér [514], Zhu et al. [661], and Yuan & Xing [655], and the effect of the
micro-structure of nematic elastomers [441]. Furthermore, the effects of holes [404, 650]
and embedded stiff elements [349, 649] are studied. Furthermore, the work of Wang et al.
[608] studies the wrinkling of a twisted sheet, showing great similarities with the tension
wrinkling case, and the work of Wang et al. [603] studies the effect of curvature on the
tension wrinkling behaviour.
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Motivated by the wrinkling of solar sails, Wong & Pellegrino published a trilogy on
the wrinkling of membranes, providing experiments [626], analytical mathematical mod-
els [627], and numerical simulations [628], based on earlier works [624, 625, 629]. In their
work, Wong & Pellegrino considered the wrinkling of a membrane subject to shear and
of a membrane subject to corner loads; see figure 2.20. In the analytical analysis of both
experiments [627], scaling laws for the wrinkling wave lengths and amplitudes and wave
lengths are derived based on an energy balance between bending and membrane tension
effects similar to thework of Cerda &Mahadevan. In their analysis, they used the so-called
stress fields describing stress states of bi-axial tension, bi-axial compression, and uni-axial
tension, which have a close relation to tension fields as described in equation (2.109) in
section 2.5.3.

The case of a membrane undergoing shear deformation was studied experimentally
before by Jenkins et al. [281] and Mansfield [375] performed experiments and provided an-
alytical solutions for the inclination angle of the diagonal shear wrinkles. The shear wrin-
kling case inspired Iwasa to derive scaling laws for shear wrinkling combined with tension
on the top boundary (also present in the experiments of Wong & Pellegrino) and to derive
analytical formulations for shear and tension wrinkling using tension fields [272, 273].
Furthermore, the shear wrinkling case provides a challenging case for numerical simula-
tions, as reported by Wong & Pellegrino [627].

Furthermore, the case of a square membrane subject to outward diagonal corner loads
(see figure 2.20) was experimentally studied in the work ofWong & Pellegrino [626] and in
the works of Blandino et al. [50, 150] and Adler et al. [2]. Depending on the ratio between
the loads over both diagonals, different wrinkling patterns can be found [626], typically
involving fan-shaped wrinkles in the corners of the membrane; see figure 2.20. Based on
the works by Blandino et al. [50], Tessler et al. [560] were among the first to numerically
model this benchmark, comparing results with the work of Blandino et al. [50]. Lastly,
Bouzidi & Lecieux [64] performed an experimental and numerical analysis of wrinkling
in a cruciform membrane subject to bi-axial loading. The scope of their work is on the
reproducibility of wrinkling experiments, showing that different patterns corresponding
to different solution branches are found when repeating the experiments.

Lastly, a commonly studied example problem entails the wrinkling of an annular mem-
brane with an applied torque on the inner boundary; see figure 2.21. This problem can be
seen as a shear wrinkling case, as in figure 2.19, but axisymmetric. It was studied experi-
mentally and analytically by Mikulas [387], providing closed-form solutions of the torque
versus the rotation of the inner boundary. The wrinkling behaviour of this problem was
later studied analytically by Coman & Haughton [110–112], providing expressions for the
wrinkling onset and the corresponding wrinkling pattern. More experimental results are
provided by Miyamura [389] for different materials.
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Figure 2.20: Wrinkling of a square membrane sub-
ject to outward diagonal corner loads, adopted
from Wong & Pellegrino [626].

Figure 2.21: Wrinkling of an annular membrane
subject to a torque on the internal boundary,
adopted from Miyamura [389].

Membranes on a Foundation
In the work of Pocivavsek et al. [442], the transition between wrinkles and folds of a
compressed membrane supported by a softer solid or fluid is studied. Using the interplay
between bending energy and foundation energy (see section 2.5.1), a scaling law for the
wrinkling wave length and amplitude was derived. Furthermore, the transition from a
wrinkled membrane into a membrane with localised folds can be explained using bending
and foundation energies. Following the work of Pocivavsek et al. [442], an inextensible
membrane on an elastic foundation is considered; see figure 2.22. The in-extensibility
assumption can be made if the bending stiffness of the membrane is far lower than the
membrane stiffness, which is typically the case when the thickness of the membrane is
low. When the horizontal distance Δ is low, the membrane buckles into an equally dis-
tributed wrinkling pattern, where elastic energy is stored in the foundation due to the
wrinkling amplitude 𝜁 and bending energy is stored in the membrane due to the curva-
ture 𝜁 ′′ of the membrane. When the distance Δ increases, fold localisation is observed,
where the membrane transitions into a state of minimal total energy (due to a higher-
order effect, see [442]), where the foundation energy localises into one deep valley with
sharp curvatures, and where the rest of the membrane flattens out, i.e., locally reaches a
state of low amplitudes 𝜁 and curvatures 𝜁 ′′. Since the local wrinkling-to-fold transition
is a local phenomenon, it can occur repetitively in elastically supported membranes.

Inspired by the work of Pocivavsek et al. [442], similar studies were carried out by
other researchers to investigate thewrinkling behaviour of the elementary case of the com-
pressed membrane on an elastic support. For example, the experiments by Jambon-Puillet
et al. [277] investigate the influence of self-weight and compression beyond self-contact
on folding behaviour, and the work of Brau et al. [68] studies the difference between a
viscous or elastic response. Wagner & Vella [594] study the effect of delamination of the
membrane from the fluid. Furthermore, the work of Audoly [20] provides insights into
the buckling behaviour of a floating elastica and relates the outcomes to the work of Poci-
vavsek et al. [442], whereas [153] studies the folding behaviour of a floating sheet, both
based on analytical mathematical models. Analytical mathematical models were also used
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𝜁

Δ

Δ

Δ

Figure 2.22: Wrinkling of a membrane on a liquid substrate, adopted from Pocivavsek et al. [442]. The figure
depicts three stages with increasing membrane compression (Δ) from top to bottom. The wrinkling amplitude is
indicated by 𝜁 .

in the works [473, 474], where the latter concluded that the smooth transition from wrin-
kles to folds is a series of bifurcations in theory.

Another example of the wrinkling of membranes on a foundation entails the inden-
tation of a floating elastic sheet. As for the case studied by Pocivavsek et al. [442], the
relation between the bending energy and the energy stored in the foundation is relevant
in this case. For thin, very thin membranes, the effect of surface tension comes into play
[251, 581], but in the analysis of Box et al. [65], the role of bending stiffness is more impor-
tant. In the work of Vella & Davidovitch [579], unified scaling relations are obtained for
the wrinkling behaviour at its onset and for larger indentations for very thin and thicker
membranes. These relationswere experimentally verified and extended by Ripp et al. [471].
Floating indented circular and annular membranes also show variations in the wrinkling
wave length, which was studied in more detail by Paulsen et al. [435, 436]. Furthermore,
the works of Schroll et al. [495] and Huang et al. [265], among other studies, provide an
analysis of capillary wrinkling of thin floating membranes.

Pressurised Membranes
A third commonly observed mechanism for wrinkling is related to the wrinkling of pres-
surised membranes. This phenomenon occurs in closed membranes subject to internal
pressure and with relatively thin skin. By studying the indentation of a beach ball, i.e., a
sphere subject to internal pressure, Vella et al. [578] derived scaling relations for the wrin-
kling wave length and the number of wrinkles around the indentation upon initialisation
of the wrinkles. Using a non-dimensional term for the tension due to pressurisation, the
wrinkling behaviour of shells subject to low and high internal pressure is studied. This
analysis shows that the response for low pressurisation is bending-dominated, whereas
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Figure 2.23: Wrinkling of an indented beach ball,
adopted from Vella et al. [578].

Figure 2.24: Inflation of a curvilinear balloon,
adopted from Siéfert et al. [511].

the response for high internal pressures becomesmembrane-dominated, creating a system
where wrinkles are formed as a balance between membrane tension and bending energy,
equivalent to the findings of Cerda et al. [92]. Following up on the works of Vella et al.
[577, 578, 580], the work of Taffetani & Vella [531] studies the post-wrinkling behaviour
(i.e., far from threshold behaviour [139]) of the indentation of a spherical pressurised shell
using analytical and Finite Elementmodelling. In their study, it was found that the number
of wrinkles changes as the indentation increases and that a spatial variation in the number
of wrinkles is observed when moving away from the centre of the indentation. The latter
effect is referred to as a wrinkling hierarchy [574]. Furthermore, the FEM results of Taffe-
tani & Vella [531] show period doubling of the wrinkles for large indentations, similar to
the wrinkling-to-fold transition in floating membranes as observed by Pocivavsek et al.
[442].

Other studies on pressurised membranes have been performed by Siéfert et al. [509–
511] and Panetta et al. [428]. Although these studies do not particularly elaborate on the
wrinkling physics but rather focus on the inverse design of inflatable shapes, the effect of
wrinkles and folds on the mechanical properties of these inflated structures is emphasised
as a topic of study [509, 511]. The global mechanical properties of inflatable beams and
panels have been studied byWielgosz &Thomas [563, 621, 622] for pressurised tubes or so-
called drop-stitch panels (e.g., the inflatable structure used for Stand-Up Pedalling boards)
[90], for which a recent literature overview is given by van Engelen [573]. Furthermore,
a recent study by Guo et al. [221] involved the design of a bi-stable inflatable pillow.

Growth-Induced Wrinkling
The examples on tension wrinkling, wrinkling of elastically supported membranes or pres-
surised membranes (see figures 1.1a to 1.1c), typically involve load conditions where ex-
ternal loads are applied to the membrane. On the contrary, wrinkling of membranes can
also emerge as a consequence of growth of the membrane, induced by chemical reactions,
swelling, or thermal expansion. Nevertheless, wrinkling patterns in growth-induced wrin-
kling are determined by energy balances between membrane tension energy, bending en-
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ergy, or energy stored in an elastic foundation [613]. For example, dehydration of fruits
figure 1.1d or vegetables can show complex wrinkling patterns when drying out [347]. In
this situation, shrinkage of the elastic foundation (i.e., the flesh) to which the membrane
(i.e., the skin) is attached causes a contraction of the skin, which will buckle as soon as a
threshold is exceeded. Such growth-induced wrinkling patterning is studied by Li et al.
[347], Stoop et al. [523], and Xu et al. [648] for spheres in particular. Similarly, swelling in
hydrogels with different properties in the interior or at the boundary can show structural
instabilities due to swelling, showing similarities to the work of Pocivavsek et al. [442]
when applied to a flat layer [166, 167, 280]. Inspired by nature, Xu et al. [643] applied
the theory of growth-induced wrinkling to study the morphogenesis of growing aquatic
plant leaves, revealing the influence of water as an elastic foundation on the wrinkling
wave lengths observed in the leaves. In addition, this study also reveals the influence of
the shape of the leaves, whether they are circular (hence confined in a circumferential
direction) or fan-shaped (i.e., Pacman-shaped).

2.5.3 Numerical Investigations
In section 2.5.1 and section 2.5.2, the physics behind wrinkling and experimental wrin-
kling investigations are discussed. The experimental investigations on the wrinkling of
membranes and soft materials provide great contributions to the understanding of wrin-
kling patterns observed in nature and their relation to known mechanics. However, for
engineering applications where wrinkling is an important factor , accurate and efficient
numerical modelling of wrinkle patterns becomes of great importance. This section pro-
vides an overview of previous works on the numerical analysis of wrinkled membranes.
In general, the numerical modelling can be done in different ways: by explicitly modelling
the wrinkling amplitudes and wave lengths using shell models, by implicitly embedding
the effects of wrinkling in element formulations, or by using reduced-order models based
on the Föppl-Von Kármán plate equations. In the remainder of this subsection, a literature
overview of each approach is provided.

Explicit Modelling
The conceptually most straight-forward approach for the modelling of membrane wrin-
kling is to use mathematical models that model the physics of thin films, including mem-
brane and bending effects. To this end, plate or shell models will be able to simulate
wrinkling patterns as they can be observed in a lab setting or in nature, whereas mem-
brane models without bending stiffness would not be able to model wrinkles.

Complementary to experiments for the investigation of wrinkling, commercial finite
element methods have been used for wrinkling modelling in many experimental studies
[179, 349, 367, 382, 403, 404, 427, 524, 531, 578, 628, 650, 651]. Since the primary focus
of these studies is not to develop new numerical approximation models for the computa-
tional study of membrane wrinkling, these works show that off-the-shelf finite element
techniques are able to model the wrinkling of membranes in certain conditions. These
studies use dynamic relaxation methods (see section 2.4.1) or Arc-Length Methods (ALMs)
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(see section 2.4.4).

On the contrary, scientists have developed dedicated numerical models for the study
of membrane wrinkling. The models are either based on membrane elements without
bending stiffness, on plate elements for initially flat surfaces, or on shell elements to study
initially curved geometries.

The development of dedicated numerical models for the study of membrane wrinkling,
in particular modelling amplitudes and wave lengths explicitly, has gained increasing at-
tention in the last few years. For initially flat geometries, the Föppl-Von Kármán (FvK)
model has been adopted. This model includes out-of-plane displacements in the strain
definition and assumes linear bending strains. The original FvK model, which was used
in [322] to model tension wrinkling with B-spline basis functions, was extended to non-
linear strains and applied to the problem of tension wrinkling in [233]. The model from
[233] was used by Sipos & Fehér [514] to study the effect of material orthotropy and was
later extended for hyperelastic materials in [346] and applied to the tension wrinkling case,
from which it was concluded that hyperelastic constitutive modelling is relevant in that
particular case. The extended FvK model was adopted in numerous works in the group
of Xu et al. (see [611] for an overview) to study the tension-wrinkling case for various
hyperelastic models [191], to study the effect of orthotropy [359] and general anisotropic
anisotropy [652] on the wrinkling initialisation and re-stabilisation. Other models devel-
oped in the group of F. Xu include a consistent finite-strain plate theory using Chebychev
spectral collocation [190], later applied to anisotropic materials [192], and a doubly curved
shell model based on differential geometry [609] used to study the effect of curvature on
the initialisation and re-stabilisation of stretched sheets [603] and the effect of damage
[610], later extended to study the wrinkling of tori [599].

Another model proposed by Steigmann [520] uses Koiter’s non-linear plate theory and
has been used in combination with Dynamic Relaxation methods [551] to model complex
wrinkling problems such as the shear wrinkling case of Wong & Pellegrino [626] and
wrinkling of a membrane with a hole [551], an annulus [552], for the modelling of wrin-
kles in graphene [451] and in plates with straight and wavy fibre reinforcement [553, 554].

Besides a variation of element assumptions, explicit modelling of wrinkling requires
robust algorithms for finding equilibrium solutions. One approach in the explicit mod-
elling of wrinkling is to use a static approach, consisting of a dynamic relaxation method,
a Newton-Raphson method, or a combination of both (see section 2.4.1). Wrinkling mod-
elling using static analysis is done by Taylor et al. [551]. Another approach is to use con-
tinuation methods, for example, the Arc-Length Method (see section 2.4.4), as has been
done by Wong & Pellegrino [628], Diaby et al. [152], and Healey et al. [233], among oth-
ers. Arc-length methods are also used in chapter 3 of this dissertation. Lastly, another
continuation method that has been used in the context of explicit wrinkling modelling
is the Asymptotic Numerical Method (ANM) [103–105, 132, 400], which computes a Tay-
lor series expansion around a known solution and approximating the solution in the next
point and which is also applicable to bifurcation problems [21, 63, 103, 105, 575, 647]. This
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method is applied to the wrinkling of a membrane on a substrate by Xu et al. [647] and to
other wrinkling studies [191, 264, 315, 564, 609].

Implicit Modelling
Contrary to explicitly modelling wrinkling patterns in membranes, implicit wrinkling
modelling entails the incorporation of a wrinkling condition into the system of equations
to solve. A key aspect of implicit membrane modelling is the use of a tension field. The
concept of a tension field was coined by Wagner [592, 593, 593] in a series of publications
on thin sheets in aerospace applications, and later work was continued by Reissner [465],
Kondo, Kazou, Iai, Takeshi, Moriguti, Sigeiti, Marasaki [325] and Mansfield [374, 375].
Tension fields describe the state of the membrane as being either taut, slack, or wrinkled,
using the principal stresses or strains. In particular, the tension field 𝜙(𝐂) can be defined
using the deformation tensor 𝐂 in different ways, as given in the works of Roddeman et al.
[478] and Kang & Im [300, 301] among others:

𝜙𝐸 =
⎧
⎨
⎩

Taut if𝐸𝑝,1 > 0
Slack if𝐸𝑝,2 ≤ 0
Wrinkled otherwise

, 𝜙𝑆 =
⎧
⎨
⎩

Taut if 𝑆𝑝,1 > 0
Slack if 𝑆𝑝,2 ≤ 0
Wrinkled otherwise

,

𝜙𝑀 =
⎧
⎨
⎩

Taut if 𝑆𝑝,1 > 0
Slack if𝐸𝑝,2 ≤ 0
Wrinkled otherwise

,

(2.109)

Where 𝜙𝐸(𝐂) denotes the strain-based tension field, 𝜙𝑆(𝐂) denotes the stress-based ten-
sion field, and 𝜙𝑀 (𝐂) denotes the mixed tension field. Furthermore, 𝑆𝑝,1 and 𝑆𝑝,2 are the
principal stresses such that 𝑆𝑝,1 ≤ 𝑆𝑝,2, and 𝐸𝑝,1 and 𝐸𝑝,2 are the principal strains such that
𝐸𝑝,1 ≤ 𝐸𝑝,2. Instead of the principal strains, the principal stretches 𝜆𝑖 can also be used,
yielding equivalent criteria with 𝜆𝛼 = 1 as a reference condition. A discussion on the three
different models is given by Kang & Im [300], where it is concluded that the mixed crite-
rion is the best choice for identifying tension fields.

Given the tension field, implicit wrinkling models assume zero bending stiffness in
membranes and, therefore, the elimination of stress in the slack state. Since the wrinkled
state corresponds to compression on one axis and tension on another axis, special modifi-
cations are required. These modifications can be performed by modifying the constitutive
law, i.e., the relation between the deformation and stress, or by modifying the kinematic
equations, i.e., modification of the deformation gradient. A general good overview of lit-
erature is give by Le Meitour et al. [332], and similarities between different methods are
shown by Miyazaki [390].

The first implicit models for membrane wrinkling were derived using modifications of
the constitutive relations. By modifying the strain energy density function [438], Pipkin
and Steigmann & Green present stable modification schemes for incorporating the wrin-
kling conditions in membrane models [439, 440, 521], which have been extended to hyper-
elastic models [380] and for which variational [395–397] and interior-point [146] models
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have been derived. In the work of Haseganu & Steigmann [232], the dynamic relaxation
method is used to apply the model presented by [521] for numerical modelling of wrin-
kled membranes, extended later for anisotropic non-linear materials [18, 19]. Modification
schemes for the strain energy density function have been developed for anisotropic hy-
perelastic materials [176]. In addition, modification schemes for the material matrix were
presented based on correction factors [300, 301] or projections [3], for isotropic materials
and in [278, 279] for orthotropic materials. Furthermore, Liu et al. [356] proposes a non-
intrusive implementation for existing FEA codes. Applications of the tension-field models
using modified constitutive laws include the development of novel cable arrangements
for bridges [34], wrinkle-free topology optimisation [368] or the modelling of biological
tissues with cut-outs [6].

Instead of modifying the constitutive relation of the membrane, the works of Rodde-
man et al. [476–478] proposed to modify the deformation gradient in the wrinkling condi-
tion by assuming i) plane-stress theory , ii) no bending stiffness, and iii) no support for com-
pressive stresses. Then, Roddeman et al. derive a set of inequality conditions that should
be satisfied. Furthermore, they impose that a wrinkled membrane implies an elongation
of the mean surface of the membrane, therefore changing the deformation gradient. Using
this deformation gradient, wrinkling strain and stress tensors are derived, and finite ele-
ment simulations are performed for isotropic and orthotropic materials [399, 457, 476, 477].
In the work of Lu et al. [365], explicit formulations for the tangential stiffness operator
given the model of Roddeman et al. were derived and later simplified for implementation
in [401]. The latter model was applied to isogeometric membrane elements recently [402].

Although implicit membrane wrinkling models based on tension fields do not provide
information about wrinkling wave lengths and amplitudes, they gain increasing attention
in the graphics community for the design of inflatable structures [515], of skintight cloth-
ing [392], and in cloth simulations [99, 288], for example by using tension-field theory on
a coarse mesh to graphically reconstruct fine wrinkles [95]. These works in general show
that tension-field models provide a good compromise between fast and realistic modelling
for animation.

Reduced-Order Modelling
A relatively new approach in the numerical modelling of membrane wrinkling is the multi-
scale modelling technique introduced by Damil et al. [133–135]. In this approach, the
Föppl-Von Kármánmodel is discretised using Fourier series expansions, serving as a multi-
scale model where the large Fourier modes capture the macroscopic deformations and
the high-frequency functions capture the wrinkling patterns. Detailed reviews of this
approach are given by Potier-Ferry et al. [443] andHuang et al. [266]. This so-called Fourier
reduced model is efficient as it can predict wrinkling patterns with few degrees of freedom,
but since it is inaccurate near domain boundaries, it can be combinedwith full shell models
[266]. In the work of Khalil et al. [314], the Fourier reduced model was extended to cases
with non-uniform wrinkling orientations, and in the work of Tian et al. [564], the method
was combined with the ANM path-following method.
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2.5.4 Wrinkling Minimisation and Elimination
Given the physics behind wrinkling (section 2.5.1), the experimental investigations on
the wrinkling mechanics (section 2.5.2), and the numerical techniques to solve wrinkling
(section 2.5.3), this section elaborates on the minimisation and elimination of wrinkling.
Besides cosmetic aspects, wrinkling elimination is relevant because it deteriorates the
surface reflectivity of light-weight space structures [486], or the properties of graphene
[10, 148, 349, 600, 604, 606]. In this section, wrinkling minimisation and elimination mea-
sures are reviewed based on stiffness modifications and shape and topology modifications.

Stiffness Modifications
As discussed in section 2.5.1, wrinkling is a consequence of an energy minimisation be-
tween energy stored in the bending of the membrane, in the indentation of the founda-
tion, or in membrane forces. To eliminate wrinkling, modifications to the thickness or
material of the membrane can be made to shift the energy balance in a more favourable
way, e.g., to wrinkles with lower amplitudes or wave lengths. Following the discussion in
section 2.5.1, the most straightforward modifications are changes in the thickness of the
membrane, increasing the bending stiffness and therefore increasing the wrinkling wave
length. Similarly, the foundation stiffness can be increased, penalising large amplitudes
more, hence decreasing the wrinkling wave lengths in cases of constant bending stiffness.

In the work of Li et al. [348], local stiffness modification is achieved by spatio selective
coating driven by topology optimisation of the applied coating. By using a coating, the
effect studied by Concha et al. [113] and Takei et al. [535] on wrinkling in bi-layer ma-
terials is employed. Furthermore, Taylor & Shirani [553] use wavy fibres in anisotropic
hyperelastic materials to tune the wrinkling pattern in thin membranes, and Wang et al.
[605] use micro-fibre networks to generate materials with high effective Poisson’s ratios
to eliminate wrinkling.

Shape and Topology Modifications
By changing the shape or topology of a membrane, the wrinkling pattern can be signifi-
cantly influenced. Examples of shape modifications include changes in the shape of the
boundaries or corners, whereas topology changes typically entail the creation of holes in
the membrane. Here, a brief review of both approaches is provided.

In the work of Bonin & Seffen [57], the so-called de-wrinkling of pre-tensioned mem-
branes is studied. In their work, they consider membranes of different shapes, typically
loaded by tensional loads in the corners. Analysing information from principal stress
fields, i.e., tension fields, they showed that trimming the membrane boundaries into a
slightly trimmed shape, eliminating negative principal stresses, hence wrinkling. A simi-
lar technique was used by Li et al. [349] and referred to as a pre-necking strategy. Their
technique was applied to a tension wrinkling case and combined with topology optimi-
sation to establish the optimal boundary shapes. Later, Li et al. [349] showed that their
methodology also applies to membranes with a rigid zone inside. Here, a pattern of elliptic
holes around the rigid area was found through topology optimisation. Studies of rigid ele-
ments and the effect of wrinkling are also presented by Sun et al. [525] and Yan et al. [649].



2.5 Wrinkling Mechanics

2

63

Driven by space applications, light-weight membrane structures with rigid frame ele-
ments have been studied under the umbrella term Gossamer structures [98]. To increase
the performance of deployable solar sails and large reflectors, wrinkling reduction in cable-
suspended Gossamer structures was studied by Sakamoto et al. [484–486] and Mikulas &
Adler [388], among others. In the work of Mikulas & Adler, the wrinkled area of a square
solar sail concept proposed by Greschik & Mikulas [210] was improved by applying ellip-
tic edges (as later studied by Bonin & Seffen [57] and Li et al. [349]). By adding a web
of cables around the solar sail, Sakamoto et al. [484–486] managed to reduce the weight
[484, 486] and wrinkles induced by dynamics [485]. An alternative to a cable arrangement
to eliminate wrinkling in solar sails is to use shear-compliant borders [337–339]. Here, a
series of interrogations is added close to the boundary to release local compressive stresses.

Instead of modifying the shape of the boundaries of a membrane, holes can also be
added to modify the wrinkling pattern in the membrane. In the work of Yan et al. [650],
the influence of the location of two small holes on the final wrinkling pattern in a mem-
brane subject to tension was studied. As found in this work, the location of the holes has
a significant influence on the wrinkling pattern, potentially eliminating all wrinkles. Sim-
ilar observations are made by Nazzal et al. [404]. Furthermore, Yan et al. [650] also added
patterns of holes, showing that these patterns can tailor the global wrinkling pattern. In
another work, Yan et al. [649] did a similar study on the effect of adding stiffness instead
of removing it by adding stiff squares on the membrane. Similar to their previous study on
the influence of holes, they address the fact that the global wrinkling pattern can be highly
influenced by adding stiffness. Finally, inspired by wrinkling in offshore solar platforms,
the work of Lavaerts [331] shows that a combination of holes and boundary modification
can be used to eliminate wrinkling in a membrane with an embedded solar panel.

Since wrinkling is induced by local compressive stresses in the membrane, Bonfanti &
Bhaskar [56] investigated the wrinkling behaviour of a membrane under tension with aux-
etic microstructures. These micro-structures have the property that their Poisson ratio is
negative, causing outward displacement of the edges in cases of tensionwrinkling.Inspired
by the concept of offshore solar platforms, de Bode [51] proposed an auxetic layout of solar
panels to reduce global wrinkling. The performance of the proposed concept was evalu-
ated using tension fields.

Inspired by wrinkling minimisation and elimination through shape and topology mod-
ifications of membranes, various optimisation studies have been performed. For example,
Luo et al. [366, 368] performed topology optimisation of membranes in different configu-
rations to generate wrinkling-free designs, maximising the in-plane membrane stiffness.
Among the constraints of the optimisation problem is to enforce a taut state of a tension
field (see equation (2.109)), hence eliminating wrinkled and slackened regions. Later, Luo
et al. [368] expanded their topology optimisation model to multi-material geometries, cre-
ating topologies resemblingGossamer structures. Another optimisation study to eliminate
wrinkling was performed by Xing et al. [642]. Here, the shape of corner fixtures in mem-
branes is optimised to reduce wrinkling in different membranes subject to corner loads.
Lastly, Punurai et al. [450] used genetic optimisation to find optimal cuts for the edges of
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membranes to make them wrinkle-free.

2.6 Closure
The aim of this chapter is to provide mathematical and physical preliminaries for the re-
mainder of this dissertation. Section 2.1 briefly provides a set of mathematical notations,
which will be used in all other chapters. Section 2.2 introduces the basic concepts be-
hind Isogeometric Analysis (IGA), and derives the isogeometric Kirchhoff–Love shell. The
derivation of this shell model is relevant when reading chapters 3 to 5, and the shell model
is used without derivation in chapters 6 to 8. In section 2.4, backgrounds on numerical
structural analysis are given. In particular, the background on the Arc-Length Method
(ALM) is useful when reading chapters 3, 5 and 6, the background on static solvers is use-
ful for chapter 4 and the background onmodal and buckling analysis is useful in chapters 5
and 7. The structural analysis routines are briefly summarised in chapter 8 for the sake
of reference within that chapter. Lastly, section 2.5 provides a thorough review of the
literature on wrinkling. On the one hand, this section presents the basic principles of the
energy balance behind wrinkling (see section 2.5.1), together with previously published
experimental investigations to illustrate those (see section 2.5.2). On the other hand, sec-
tion 2.5.3 gives an overview of approaches for the numerical analysis of wrinkling, as an
alternative to the ones presented in this dissertation.

2.A Result Reproduction
Some results in this chapter are obtained using parts of the Geometry + Simulation Mod-
ules (G+Smo ) [294]. More details about the modules developed along with this thesis can
be found in chapter 8, as well as instructions for installation. Table 2.1 provides a list of
commands for reproducing the results along with the respective figures in this chapter.

Table 2.1: File name and run arguments required for the reproducibility of the figures in this chapter. Arguments
with a single dash (-) require an argument. See chapter 8 for more detail about the software and installation
instructions. All executables in this table are from the gsStructuralAnalysis module, and the path to the XML
files mentioned is gsStructuralAnalysis/filedata/pde/.

Figure Run File
Arg. Description Values

Figure 2.10 static_shell_multipatch_XML
-i Input file name TUDFlame_5p_horizontal.xml
-r Number of uniform refinements 1
-m Unstructured spline construction to use 1: Almost-𝐶1

Figure 2.11 modal_shell_multipatch_XML
-N Number of modes to compute 4
-i, -r, -m As above

Figure 2.12 buckling_shell_multipatch_XML
-i, -r, -m,
-N

As above
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3
Stretch-Based Hyperelastic

Material Modelling for
Isogeometric Kirchhoff–Love Shells
The first chapter of this dissertation elaborates on the modelling of hyperelastic materials
under large strains within the isogeometric Kirchhoff–Love shell. In previous works, formu-
lations for hyperelastic material modelling with Kirchhoff–Love shells have been presented.
However, these formulations primarily focus on material definitions using so-called invari-
ants. To enable isogeometric thin shell modelling of rubber-like materials, typically defined
using stretch-based material formulations, this chapter presents stretch-based material for-
mulations for hyperelastic isogeometric Kirchhoff–Love shells. Starting from a strain energy
density function defined in terms of stretches, all derivatives with respect to the stretches are
computed analytically and transformed to local curvilinear coordinates, based on the fact
that principal stretches and their directions are a result of a spectral decomposition of the
deformation tensor. Using several numerical benchmarks, the formulations presented in this
chapter are verified with analytical solutions and benchmark results from previous works. In
addition, the model is applied to simulate the collapsing behaviour of a truncated conical shell
and the tension wrinkling of a thin sheet. If necessary, the reader is referred to section 2.3.2 for
a full derivation of the isogeometric Kirchhoff–Love shell model, to section 2.4.4 for more in-
formation about the arc-length method and to figure 2.18 in section 2.5 for more backgrounds
related to the tension wrinkling case.

This chapter is published as:
[587]H.M. Verhelst, M. Möller, J. H. Den Besten, A. Mantzaflaris &M.L. Kaminski, “Stretch-Based Hyperelastic
Material Formulations for Isogeometric Kirchhoff–Love Shells with Application to Wrinkling”, Computer-Aided
Design 139, 103075 (2021)

https://doi.org/10.1016/j.cad.2021.103075
https://doi.org/10.1016/j.cad.2021.103075
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3.1 Introduction
To model phenomena like wrinkling in membranes [91, 92, 191, 427, 601] or the deforma-
tion of biological tissues [253, 480, 644], thin shell formulations with non-linear hypere-
lastic material models are typically used. These material models are defined using a strain
energy (density) function, which measures the strain energy stored in the material when
deformed [418]. Material models with strain energy density functions based on the invari-
ants (i.e., invariant-based models) of the deformation tensor, such as the Neo-Hookean or
the Mooney-Rivlin formulations, have been widely used to study the wrinkling or defor-
mation of biological tissues. However, for rubber materials or living organs such as the
liver, spine, skin, rectum, bladder, or aorta, material models defined by the eigenvalues
and eigenvectors of the deformation tensor (i.e., stretch-based models) such as the Ogden,
Sharriff, or exponential and logarithmic models [138, 254, 522] provide better accuracy of
material characteristics with respect to experimental tests [93, 377, 500].

To include hyperelastic material models in shell formulations, derivatives of the strain
energy density function with respect to the components of the deformation tensor are re-
quired to define the stress and material tensors. For invariant-based models, this is gener-
ally a straight-forward exercise since the invariants of the deformation tensor are defined
in terms of the components of the deformation tensor. However, for stretch-based mod-
els, these derivatives result in stress and material tensors defined in the spectral basis (i.e.,
in terms of the eigenvectors), making the incorporation of these models non-trivial. The
first incorporation of stretch-based material models in the Finite Element Method (FEM)
was obtained for axisymmetric problems [171, 513], and later the extension to generally
shaped shells was made [23, 215, 253]. In these works, either closed-form expressions
of the tangents of the principal stretches [23, 513] were obtained or explicit computation
of principal directions and values [171, 462, 526] was performed. In the former case, an
unknown stretching parameter is used, which can be eliminated for incompressible mod-
els [22] and, in fact, imposes numerical difficulties when applied to compressible shells
[22, 75]. In the latter case, principal directions and values need to be solved using an
eigenvalue problem, and a tensor transformation is required. However, for compressible
materials, no additional parameters are required.

With the advent of isogeometric analysis (IGA) [268], new spline-based shell formu-
lations have been presented [44, 256, 319]. The advantage of these formulations is that
the geometry is exactly preserved after discretisation and that arbitrary continuity of the
basis functions across element boundaries provides high convergence rates and allows
for achieving necessary continuities in variational formulations, for instance, leading to
rotation-free Kirchhoff-Love shell formulations [318, 319]. These formulations have been
used to advance the development of refinement splines [88] and to optimise shell struc-
tures [28], amongst other developments. A general hyperelastic isogeometric shell for-
mulation has been developed for general compressible and incompressible material mod-
els [320], and specific formulations for biological membranes have been obtained [555].
Roohbakashan and Sauer [480] developed formulations to eliminate numerical through-
thickness integration for hyperelastic Kirchhoff-Love shells. Isogeometric Kirchhoff-Love
shell formulations are successfully used for biomedical applications to model aortic valve
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closure [394] and bioprosthetic heart valve dynamics [258, 635] as well as for industrial
applications to perform buckling, vibration, and nonlinear deformation analyses of com-
posite wind turbine blades [37, 238]. However, all advances in [238, 320, 394, 480, 555, 635]
employ the derivatives of the strain energy density function with respect to the compo-
nents of the deformation tensor; thus, application of these works is possible for invariant-
based models. On the other hand, stretch-based models such as the Ogden model require
specific treatment of the spectral deformation tensor for the existing generalised formu-
lations. Contrary to the aforementioned developments in the FEM context, stretch-based
material models have not yet been considered in isogeometric Kirchhoff-Love shell formu-
lations.

This chapter presentsmathematical formulations for the incorporation of stretch-based
material models in the isogeometric Kirchhoff-Love shell model for (in)compressible mate-
rial models. This enables the use of stretch-basedmaterial models such as the Ogdenmodel
together with the efficient Kirchhoff-Love shell formulation in isogeometric analysis for
applications in wrinkling analysis or biomechanical simulations. The formulations hold
for material models defined for 3D continua that are integrated over the shell thickness.
Explicit determination of the principal directions and values is employed, applicable to
compressible and incompressible materials. The tensor transformation from the spectral
to the curvilinear basis – which is needed for compatibility with existing codes – implies
additional computational costs compared to a component-based formulation. These costs
are minimised by using the minor and major symmetry of the hyperelastic material ten-
sor. Besides comparison with analytical solutions, the model is applied to simulate struc-
tural instabilities: the collapse of a truncated cone [23] and the wrinkling phenomenon
in a stretched sheet. These instabilities are captured with (extended) arc-length methods
[125, 632], combined with IGA [583]. The former simulation reveals the complex collapse
behaviour of the truncated cone when using the arc-length method, something that was
not reported in the literature before. For the latter simulation, this chapter reports the
first IGA results for this case, compared to results from commercial FEM packages.

Following the introduction of notations, preliminary identities, and the isogeometric
Kirchhoff-Love shell formulation backgrounds (section 3.2), stretch-based formulations
including numerical procedures are derived (section 3.3), and the isogeometric Kirchhoff-
Love shell implementation aspects are discussed (section 3.4). The model is benchmarked
with analytical or reference solutions, and it is applied to model the collapse behaviour
of a truncated cone and the wrinkling formation in a stretched thin sheet in section 3.5.
Concluding remarks follow in section 3.6.

3.2 The Kirchhoff–Love Shell Model
TheKirchhoff-Love shell element formulation is based on the KirchhoffHypothesis, that is,
the cross-section does not shear and orthogonal vectors in the undeformed configuration
remain orthogonal after deformation. As a consequence, any point in the shell can be
represented by a point on the mid-surface and a contribution in the normal direction:

𝒙 = 𝒓 +𝜃3 ̂𝒂3, (3.1)
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with the shell mid-surface 𝒓(𝜃1, 𝜃2) and the unit normal direction ̂𝒂3(𝜃3) for the deformed
configuration 𝒙(𝜃1, 𝜃2, 𝜃3). For the undeformed configuration ̊𝒙 , the same relation holds
with all quantities decorated with a ̊⋅. The parametrisation utilises surface coordinates 𝜃𝛼
and the through-thickness coordinate 𝜃3. Derivatives with respect to these coordinates
are denoted by (⋅),𝑖 = 𝜕(⋅)/𝜕𝜃 𝑖 .

The covariant basis of the mid-surface is represented by 𝒂𝑖 :

𝒂𝛼 = 𝜕𝒓
𝜕𝜃𝛼 , ̂𝒂3 =

𝒂1 ×𝒂2
|𝒂1 ×𝒂2|

, (3.2)

and the first fundamental form is 𝑎𝛼𝛽 = 𝒂𝛼 ⋅ 𝒂𝛽 . The curvature tensor 𝒃 = 𝑏𝛼𝛽 𝒂𝛼 ⊗𝒂𝛽 is
represented by the second fundamental form of surfaces, which can be obtained using the
Hessian of the surface 𝒂𝛼,𝛽 or the derivative of the normal vector ̂𝒂3,𝛼

𝑏𝛼𝛽 = ̂𝒂3 ⋅ 𝒂𝛼,𝛽 = −𝒂3,𝛽 ⋅ 𝒂𝛼 . (3.3)

The derivative of the normal vector is obtained byWeingarten’s formula ̂𝒂3,𝛼 = −𝑏𝛽𝛼𝒂𝛽 with
𝑏𝛽𝛼 = 𝑎𝛼𝛾𝑏𝛾𝛽 as the mixed curvature tensor [490]. Taking the derivative of equation (3.1),
the covariant basis of the shell coordinate system 𝒙 can be formulated as follows:

𝒈𝛼 = 𝒙,𝛼 = 𝒂𝛼 +𝜃3 ̂𝒂3,𝛼 , 𝒈3 = 𝒙,3 = ̂𝒂3. (3.4)

The metric coefficients are constructed by taking the inner product of these basis vectors,
i.e.

𝑔𝛼𝛽 = 𝒈𝛼 ⋅ 𝒈𝛽 = 𝑎𝛼𝛽 −2𝜃3𝑏𝛼𝛽 +(𝜃3)
2 ̂𝒂3,𝛼 ⋅ ̂𝒂3,𝛽 , (3.5)

where in the second equality, equation (3.3) is used. Moreover, 𝑔𝛼3 = 0 and 𝑔33 = 1 [319].
Using the definition of the covariant metric 𝑔𝑖𝑗 , the contravariant metric 𝑔𝑖𝑗 and basis
vectors 𝒈 𝑖 can be found:

𝑔𝛼𝛽 = [𝑔𝛼𝛽 ]−1, 𝒈𝛼 = 𝑔𝛼𝛽𝒈𝛽 . (3.6)

The third contravariant basis vector 𝒈3 is again the normal vector ̂𝒂3 since it has unit-
length by construction (see equation (3.2)).

Remark 3.2.1. In the isogeometric Kirchhoff-Love shell formulations [319, 320], the last term
in equation (3.5) is neglected because of the thin shell assumption, meaning (𝜃3)2 takes small
values. However, the co- and contravariant basis vectors (𝒈𝛼 and 𝒈𝛼 , respectively) are used in
the mapping of the stretch-based material matrix onto the contravariant undeformed basis
(section 3.4.3). To enable an accurate comparison of the invariant-based and stretch-based
formulations, the 𝒪((𝜃3)2) term is not neglected, contrary to previous works [320, 480].

3.2.1 Shell Kinematics
The deformed and undeformed configurations (𝒙 and ̊𝒙 , respectively) are related to each
other by the mid-plane deformation vector 𝒖 by 𝒓 = ̊𝒓 + 𝒖 and ̂𝒂3 = ̂𝒂3( ̊𝒓 + 𝒖). However,
in both the invariant-based and stretch-based forms that are described in this chapter, the
deformations are defined using the undeformed and deformed geometries. In continuum
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mechanics, the deformation gradient 𝐅 and the deformation tensor 𝐂 are defined as [24,
320]:

𝐅 = d𝒙
d ̊𝒙 = 𝒈𝑖 ⊗ �̊� 𝑖 , 𝐂 = 𝐅⊤𝐅 = 𝒈𝑖 ⋅ 𝒈𝑗 �̊� 𝑖 ⊗ �̊�𝑗 = 𝑔𝑖𝑗 �̊� 𝑖 ⊗ �̊�𝑗 . (3.7)

Note that the deformation tensor is defined in the contravariant undeformed basis �̊� 𝑖 ⊗ �̊�𝑗 .
For Kirchhoff-Love shells, it is known that 𝑔𝛼3 = 𝑔3𝛼 = 0, hence, this implies 𝐶𝛼3 = 𝐶3𝛼 = 0.
Since 𝑔33 = 1, this implies 𝐶33 to be unity, meaning that the thickness remains constant
under deformation. In hyperelastic Kirchhoff-Love shell formulations, the contribution
of 𝐶33 is therefore incorporated by static condensation, where the correction of 𝐶33 is per-
formed analytically for incompressiblematerials and iteratively for compressiblematerials.
Therefore, the deformation tensor 𝐂 and its inverse �̄� are denoted as:

𝐂 = 𝑔𝛼𝛽 �̊�𝛼 ⊗ �̊�𝛽 +𝐶33 ̊𝒂3 ⊗ ̊𝒂3, (3.8)

�̄� = 𝑔𝛼𝛽 �̊�𝛼 ⊗ �̊�𝛽 +
1
𝐶33

̊𝒂3 ⊗ ̊𝒂3. (3.9)

From equations (3.8) and (3.9), it can be observed that the thickness contribution (index 3)
is decoupled from the in-plane contributions (Greek indices 𝛼,𝛽). This is a consequence
of the Kirchhoff Hypothesis and, therefore is only valid for Kirchhoff-Love shells. Con-
sequently, using the definition �̃� = 𝑔𝛼𝛽 �̊�𝛼 ⊗ �̊�𝛽 , the trace and determinant of 𝐂 can be
simplified accordingly [252, 631]:

tr𝐂 = tr �̃� +𝐶33 = 𝑔𝛼𝛽𝑔𝛼𝛽 +𝐶33, (3.10)

det{𝐂} = det{𝐅}2 = 𝐽 2 =
||𝑔𝛼𝛽 ||
||�̊�𝛼𝛽 ||

𝐶33 = 𝐽 20𝐶33 = 𝜆21𝜆22𝜆23 , (3.11)

where 𝐽 denotes the Jacobian determinant and 𝐽0 is its in-plane counterpart. Furthermore,
the tensor invariants of 𝐂 simplify to:

𝐼1 ∶= tr{𝐂} = 𝑔𝛼𝛽 �̊�𝛼𝛽 +𝐶33 = 𝜆21 +𝜆22 +𝜆23 , (3.12)

𝐼2 ∶=
1
2(tr{𝐂}

2 − tr{𝐂2}) = 𝐶33𝑔𝛼𝛽 �̊�𝛼𝛽 + 𝐽 20
= 𝜆21𝜆22 +𝜆22𝜆23 +𝜆21𝜆23 , (3.13)

𝐼3 ∶= det{𝐂} = 𝜆21𝜆22𝜆23 , (3.14)

where 𝜆𝑖 are the principal stretches of the shell and 𝜆2𝑖 are the eigenvalues of the deforma-
tion tensor𝐂. The squares of the eigenvalues are the roots of the characteristic polynomial:

(𝜆2𝑖 )3 − 𝐼1(𝜆2𝑖 )2 + 𝐼2𝜆2𝑖 − 𝐼3 = 0. (3.15)

Corresponding eigenvectors are denoted by 𝒗𝑖 , which are normalised to have unit length.
The eigenvalue decomposition (or spectral decomposition) of the deformation tensor 𝐂 can
be written as [252, 631]:

𝐂 = 𝐶𝑖𝑗 �̊� 𝑖 ⊗ �̊�𝑗 = 𝜆2𝑖 𝒗𝑖 ⊗𝒗𝑖 . (3.16)
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Where the Einstein summation convention is used. Since𝐶33 is decoupled by construction,
one can immediately see from equations (3.8) and (3.16) that 𝜆3 = √𝐶33 and 𝒗3 = ̊𝒂3.

For the sake of completeness, the definition of the Green-Lagrange strain tensor 𝐄 =
𝐸𝛼𝛽 �̊�𝛼 ⊗�̊�𝛽 from [319, 320] and its decomposition to membrane and bending contributions
(𝜀 and 𝜅, respectively), is recalled:

𝐸𝛼𝛽 =
1
2(𝑔𝛼𝛽 − �̊�𝛼𝛽) =

1
2((𝑎𝛼𝛽 − ̊𝑎𝛼𝛽 ) − 2𝜃3(𝑏𝛼𝛽 − �̊�𝛼𝛽))

= 𝜀𝛼𝛽 +𝜃3𝜅𝛼𝛽 .
(3.17)

Remark 3.2.2. Following up on remark 3.2.1; the contribution of the 𝒪((𝜃3)2) term in equa-
tion (3.5) is neglected in the strain tensor and its derivatives. The 𝒪((𝜃3)2) term is only in-
cluded in equation (3.5) to ensure equivalence in comparison of the stretch- and invariant-
based formulations.

3.2.2 Variational Formulation
The shell internal and external equilibrium equations in variational form are derived by
the principle of virtual work [319, 320]. The variations of internal and external work are
defined as:

𝛿𝑊(𝒖,𝛿𝒖) = 𝛿𝑊 int −𝛿𝑊 ext

= ∫Ω
𝐍 ∶ 𝛿𝜺 +𝐌 ∶ 𝛿𝜿 dΩ−∫Ω

𝒇 ⋅ 𝛿𝒖dΩ, (3.18)

with 𝛿𝒖 being the virtual displacement, 𝛿𝜺 and 𝛿𝜿 the virtual strain components, Ω the
mid-surface, and dΩ= √|| ̊𝑎𝛼𝛽 ||d𝜃1d𝜃2 the differential area in the undeformed configuration,
mapped to the integration domain Ω∗ = [0,1]2 using the undeformed mid-plane measure.
Furthermore, with slight abuse of notation, the tensors 𝐍 = 𝑁 𝛼𝛽 �̊�𝛼 ⊗ �̊�𝛽 and𝐌=𝑀𝛼𝛽 �̊�𝛼 ⊗
�̊�𝛽 denote the shell normal force and bending moment tensors, respectively, with

𝑁 𝛼𝛽 = ∫[−𝑡/2,𝑡/2]
𝑆𝛼𝛽 d𝜃3 , 𝑀𝛼𝛽 = ∫[−𝑡/2,𝑡/2]

𝜃3𝑆𝛼𝛽 d𝜃3 . (3.19)

Here, 𝑆𝛼𝛽 denotes the coefficients of the stress tensor following from the constitutive re-
lations that will be derived in section 3.3, and 𝑡 stands for the shell thickness. The total
differentials of the stress resultants are:

𝛿𝑁 𝛼𝛽 = ∫[−𝑡/2,𝑡/2]
ℂ𝛼𝛽𝛾𝛿 d𝜃3 𝛿𝜀𝛾𝛿 +∫[−𝑡/2,𝑡/2]

ℂ𝛼𝛽𝛾𝛿𝜃3 d𝜃3 𝛿𝜅𝛾𝛿 ,

𝛿𝑀𝛼𝛽 = ∫[−𝑡/2,𝑡/2]
ℂ𝛼𝛽𝛾𝛿𝜃3 d𝜃3 𝛿𝜀𝛾𝛿 +∫[−𝑡/2,𝑡/2]

ℂ𝛼𝛽𝛾𝛿(𝜃3)2 d𝜃3 𝛿𝜅𝛾𝛿 .
(3.20)

Discretizing the equations using known formulations from previous publications [319,
320, 490], the solution 𝒖 is represented by a finite sum of weighted basis functions, and
the tensors 𝐍, 𝐌, 𝜺, and 𝜿 are linearised around the weights using Gateaux derivatives.
The linearised tensors are denoted by (⋅)′ = 𝜕(⋅)

𝜕𝑢𝑟
in the following, where 𝑢𝑟 are individual
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weights of the solution vector. Note that 𝒖′ denotes the basis functions [320]. Using the
discretised system, the residual vector is defined by:

𝑅𝑟 = 𝐹 int𝑟 −𝐹 ext𝑟 = ∫Ω
𝐍 ∶ 𝜕𝜺

𝜕𝑢𝑟
+𝐌 ∶ 𝜕𝜿

𝜕𝑢𝑟
dΩ−∫Ω

𝒇 ⋅ 𝜕𝒖𝜕𝑢𝑟
dΩ, (3.21)

and must be equal to the zero vector for the weights 𝒖 corresponding to the exact solu-
tion. To solve the residual equation 𝑹 = 0, another linearisation is performed, yielding the
Jacobian matrix or tangential stiffness matrix 𝐾 :

𝐾𝑟𝑠 = 𝐾 int𝑟𝑠 −𝐾ext𝑟𝑠 (3.22)

= ∫Ω
𝜕𝐍
𝜕𝑢𝑠

∶ 𝜕𝜺
𝜕𝑢𝑟

+𝐍 ∶ 𝜕2𝜺
𝜕𝑢𝑟𝜕𝑢𝑠

+ 𝜕𝐌
𝜕𝑢𝑠

∶ 𝜕𝜿
𝜕𝑢𝑟

+𝐌 ∶ 𝜕2𝜿
𝜕𝑢𝑟𝜕𝑢𝑠

dΩ

−∫Ω
𝜕𝒇
𝜕𝑢𝑠

⋅ 𝜕𝒖𝜕𝑢𝑟
dΩ.

Note that the matrix contains a contribution for the external load depending on the solu-
tion vector (𝒇 (𝒖)). For instance, follower pressures are defined by 𝒇 (𝒖) = 𝑝 ̂𝒂3(𝒖), where
𝐍 is the surface normal. In order to solve a nonlinear equation, Newton iterations are
performed for solution 𝒖 and increment Δ𝒖 by solving

𝐾Δ𝒖 = −𝑹. (3.23)

3.3 Stretch-Based Constitutive Relations
Invariant-based (in)compressible material model formulations have been obtained for the
strain energy density functions Ψ(𝐂) in component form based on [320]. However, when
experimental material data fitting is involved, a formulation in terms of stretches (i.e.,
in terms of the eigenvalues of 𝐂, Ψ(𝝀) with 𝝀 = (𝜆1, 𝜆2, 𝜆3) might be preferred, meaning
that a transformation to spectral form is required. Therefore, this section provides the
main contribution of this chapter: the generalised formulations for the implementation of
stretch-based material models in the isogeometric Kirchhoff-Love shell model. Through-
out this section, reference is made to the equations of [320] for comparison purposes.

The section is structured as follows: section 3.3.1 provides the basics for the derivation
of the stretch-based constitutive relations. Thereafter, section 3.3.2 and section 3.3.3 pro-
vide the derivations for incompressible and compressible material models, respectively, in
the stretch-based formulations. These formulations are the novelty of the present chapter.

3.3.1 General Relations
Assuming Ψ(𝝀), relations for the stress and material tensor are derived in terms of the
(normalised) eigenvector bases (equation (3.16)):

𝐒 =
3
∑
𝑖,𝑗=1

𝑆𝑖𝑗 𝒗𝑖 ⊗𝒗𝑗 , 𝓒 =
3
∑

𝑖,𝑗,𝑘,𝑙=1
𝒞 𝑖𝑗𝑘𝑙 𝒗𝑖 ⊗𝒗𝑗 ⊗𝒗𝑘 ⊗𝒗𝑙 . (3.24)
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These equations are valid for 3D continua and hence need to bemodified to incorporate
the through-thickness stress components. Reading equation (3.8), 𝐶𝛼𝛽 = 𝑔𝛼𝛽 but 𝐶33 ≠
𝑔33 = 1 to avoid violation of the plane stress condition. To correctly incorporate the plane-
stress condition (𝑆33 = 0), the material tensor 𝓒 is modified using static condensation,
which implies that the material tensor �̂� corrected for plane-stress is defined by [320]:

̂𝒞 𝛼𝛽𝛾𝛿 = 𝒞 𝛼𝛽𝛿𝛾 − 𝒞 𝛼𝛽33𝒞 33𝛿𝛾

𝒞 3333 . (3.25)

For incompressible materials, this term is derived analytically using the incompressibility
condition (𝐽 = 1), whereas for compressible materials, it is corrected iteratively.

When 𝐒 and 𝓒 are known, these tensors are transformed to the bases �̊�𝑖 ⊗ �̊�𝑗 and
�̊�𝑖 ⊗ �̊�𝑗 ⊗ �̊�𝑘 ⊗ �̊�𝑙 , respectively. This will be discussed in section 3.4.3.

The derivative of any scalar function with respect to the deformation tensor 𝐂 can be
written as a derivative with respect to the stretch by applying the chain rule [252]:

𝜕(⋅)
𝜕𝐂 =

3
∑
𝑖=1

𝜕(⋅)
𝜕𝜆2𝑖

𝜕𝜆2𝑖
𝜕𝐂 =

3
∑
𝑖=1

𝜕(⋅)
𝜕𝜆2𝑖

𝒗𝑖 ⊗𝒗𝑖 =
3
∑
𝑖=1

1
2𝜆𝑖

𝜕(⋅)
𝜕𝜆𝑖

𝒗𝑖 ⊗𝒗𝑖 . (3.26)

From this, it follows that:

𝑆𝑖𝑗 = {
1
𝜆𝑖

𝜕Ψ
𝜕𝜆𝑖

, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

(3.27)

which shows that the coefficients of the stress tensor are purely diagonal, and thus 𝑆𝑖𝑖 ,
𝑖 = 1, ..., 3 refers to the non-sero components of 𝐒.

Remark 3.3.1. From equation (3.16) and equation (3.26), it follows that

𝜕𝐂
𝜕(𝜆2𝑖 )

= 𝒗𝑖 ⊗𝒗𝑖 =
𝜕𝜆2𝑖
𝜕𝐂 . (3.28)

Due to the fact that the eigenvector basis with 𝒗𝑖 is orthogonal and normalised (i.e., orthonor-
mal), the product of the basis vectors 𝒗𝑖 spans the identity tensor: 𝐈 = 𝒗𝑖 ⊗𝒗𝑖 .

Furthermore, it can also be shown that for the material tensor, the following holds
[23, 215, 252, 462, 513]:

𝒞 𝑖𝑗𝑘𝑙 = 1
𝜆𝑘

𝜕𝑆𝑖𝑖
𝜕𝜆𝑘

𝛿 𝑗𝑖 𝛿 𝑙𝑘 +
𝑆𝑗𝑗 −𝑆𝑖𝑖
𝜆2𝑗 −𝜆2𝑖

(𝛿𝑘𝑖 𝛿 𝑙𝑗 +𝛿 𝑙𝑖 𝛿𝑘𝑗 )(1−𝛿 𝑗𝑖 ). (3.29)

where the indices (𝑖, 𝑗,𝑘, 𝑙) refer to specific components of the fourth-order material ten-
sor, thus no summation over the indices is applied. The first part of 𝒞 𝑖𝑗𝑘𝑙 represents the
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normal components (diagonal elements), and the second part denotes the shear compo-
nents (off-diagonal elements). In the formulation of the component-based counterpart of
this equation ([320, eq. 36]), these parts are not explicitly visible since the spectral form
by definition uses the principal directions of the deformation tensor, whereas shear and
normal contributions are mixed in the curvilinear form of the material tensor. Note that
for the second part of this equation, the case 𝜆𝑖 = 𝜆𝑗 results in an undefined result. Hence,
using L’Hopital’s rule, this limit case can be identified:

lim𝜆𝑗→𝜆𝑖
𝑆𝑗𝑗 −𝑆𝑖𝑖
𝜆2𝑗 −𝜆2𝑖

= lim𝜆𝑗→𝜆𝑖

𝜕𝑆𝑗𝑗
𝜕𝜆𝑗

− 𝜕𝑆𝑖𝑖
𝜕𝜆𝑗

2𝜆𝑗
= 1
2𝜆𝑖

(𝜕𝑆
𝑗𝑗

𝜕𝜆𝑗
− 𝜕𝑆𝑖𝑖
𝜕𝜆𝑗

). (3.30)

Since 𝐽 = 𝜆1𝜆2𝜆3, the derivatives of 𝐽 are:

𝜕𝐽
𝜕𝜆𝑖

= 𝐽
𝜆𝑖
, 𝜕2𝐽

𝜕𝜆𝑗𝜕𝜆𝑗
= (1−𝛿 𝑗𝑖 )

𝐽
𝜆𝑖𝜆𝑗

. (3.31)

3.3.2 Incompressible Material Models
For incompressible materials, the incompressibility condition (𝐽 = 1) is enforced using a
Lagrange multiplier 𝑝 in the strain energy density function [252, 320]:

Ψ(𝜆𝑖) = Ψ𝑒𝑙(𝜆𝑖) −𝑝(𝐽 − 1). (3.32)

where Ψ𝑒𝑙 is the original strain energy density function. Using equation (3.27), the stress
tensor becomes:

𝑆𝑖𝑖 = 1
𝜆𝑖
(𝜕Ψ𝑒𝑙
𝜕𝜆𝑖

− 𝜕𝑝
𝜕𝜆𝑖

−𝑝 𝜕𝐽
𝜕𝜆𝑖

). (3.33)

Again, summation over repeated indices is not performed. Comparing 𝑆𝑖𝑖 with the component-
based result in [320, eq. 41] shows that all components can easily be obtained using substi-
tution in equation (3.26). To comply with the plane-stress condition (𝑆33 = 0), the equation
to be solved for the Langrange multiplier 𝑝 using the incompressibility condition (𝐽 = 1)
denotes:

1
𝜆3

(𝜕Ψ𝑒𝑙
𝜕𝜆3

−𝑝 𝜕𝐽
𝜕𝜆3

) = 0, (3.34)

which implies, using the derivative of 𝐽 from equation (3.31):

𝑝 = ( 𝜕𝐽
𝜕𝜆3

)
−1 𝜕Ψ𝑒𝑙

𝜕𝜆3
= 𝜆3

𝜕Ψ𝑒𝑙
𝜕𝜆3

. (3.35)

It can easily be shown that equation (3.35) is similar to the expression of 𝑝 in the component-
based form [320, eq. 46] using 𝜆23 = 𝐶33. The derivative of the stress tensor with respect
to the stretch is required to find the material tensor, as observed in equation (3.29). From
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equation (3.33) it follows that:

𝜕𝑆𝑖𝑖
𝜕𝜆𝑗

= 𝜕
𝜕𝜆𝑗

( 1
𝜆𝑖

𝜕Ψ
𝜕𝜆𝑖

) = 1
𝜆𝑖

𝜕2Ψ
𝜕𝜆𝑖𝜕𝜆𝑗

−𝛿 𝑗𝑖
1
𝜆2𝑖

𝜕Ψ
𝜕𝜆𝑖

= 1
𝜆𝑖
( 𝜕2Ψ𝑒𝑙
𝜕𝜆𝑖𝜕𝜆𝑗

− 𝜕𝑝
𝜕𝜆𝑖

𝜕𝐽
𝜕𝜆𝑗

− 𝜕𝑝
𝜕𝜆𝑗

𝜕𝐽
𝜕𝜆𝑖

(3.36)

−𝑝 𝜕2𝐽
𝜕𝜆𝑖𝜕𝜆𝑗

−𝛿 𝑗𝑖
1
𝜆𝑖
(𝜕Ψ𝑒𝑙
𝜕𝜆𝑖

−𝑝 𝜕𝐽
𝜕𝜆𝑖

)),

where the incompressibility condition (𝐽 = 1) is used again and where no summation over
repeated indices is applied. Note that the Kronecker delta 𝛿 𝑗𝑖 covers the case when 𝑖 = 𝑗.
The derivative of 𝑝 follows from equation (3.35) and reads:

𝜕𝑝
𝜕𝜆𝑖

= 𝜆3
𝜕2Ψ𝑒𝑙
𝜕𝜆3𝜕𝜆𝑖

+𝛿3𝑖
𝜕Ψ𝑒𝑙
𝜕𝜆3

. (3.37)

Again, this result can be compared to its component-based counterpart in [320, eq. 47],
and using equation (3.26), it can be observed that these equations are similar. Substituting
equations (3.31), (3.35) and (3.37) and 𝐽 = 1 into equations (3.33) and (3.36) then yields:

𝑆𝛼𝛼 = 1
𝜆𝛼

(𝜕Ψ𝑒𝑙
𝜕𝜆𝛼

− 𝜆3
𝜆𝛼

𝜕Ψ𝑒𝑙
𝜕𝜆3

), (3.38)

𝜕𝑆𝛼𝛼
𝜕𝜆𝛽

= 1
𝜆𝛼

[ 𝜕2Ψ𝑒𝑙
𝜕𝜆𝛼𝜕𝜆𝛽

− 1
𝜆𝛽

(𝜆3
𝜕2Ψ𝑒𝑙
𝜕𝜆3𝜕𝜆𝛼

+𝛿3𝛼
𝜕Ψ𝑒𝑙
𝜕𝜆3

)

− 1
𝜆𝛼

(𝜆3
𝜕2Ψ𝑒𝑙
𝜕𝜆3𝜕𝜆𝛽

+𝛿3𝛽
𝜕Ψ𝑒𝑙
𝜕𝜆3

)−𝜆3
𝜕Ψ𝑒𝑙
𝜕𝜆3

(1−𝛿𝛽𝛼 )
𝜆𝛼𝜆𝛽

(3.39)

−𝛿𝛽𝛼
1
𝜆𝛼

(𝜕Ψ𝑒𝑙
𝜕𝜆𝛼

− 1
𝜆𝛼

𝜆3
𝜕Ψ𝑒𝑙
𝜕𝜆3

)].

Here, summation over repeated indices is not performed. Comparison with the invariant-
based formulation shows that 𝜆−1𝑖 in front of the second term in equation (3.38) translates
to ̄𝐶 𝑖𝑗 in [320, eq. 49]. Using these identities, the material tensor can be derived from
equation (3.29). For the static condensation term, reference is made to equation (3.25),
hence the components𝒞 𝛼𝛽33,𝒞 33𝛼𝛽 , and𝒞 3333 need to be evaluated. From equation (3.29)
it follows that:

𝒞 𝛼𝛽33 = 1
𝜆3

𝜕𝑆𝛼𝛼
𝜕𝜆3

𝛿𝛽𝛼 = − 1
𝜆3𝜆2𝛼

[𝜆3
𝜕2Ψ𝑒𝑙
𝜕𝜆23

+2𝜕Ψ𝑒𝑙
𝜕𝜆3

]𝛿𝛽𝛼 , (3.40)

𝒞 33𝛾𝛿 = 1
𝜆𝛾

𝜕𝑆3
𝜕𝜆𝛾

𝛿𝛿𝛾 = − 1
𝜆3𝜆2𝛾

[𝜆3
𝜕2Ψ𝑒𝑙
𝜕𝜆23

+2𝜕Ψ𝑒𝑙
𝜕𝜆3

]𝛿𝛿𝛾 , (3.41)

𝒞 3333 = 1
𝜆3

𝜕𝑆3
𝜕𝜆3

= − 1
𝜆33

[𝜆3
𝜕2Ψ𝑒𝑙
𝜕𝜆23

+2𝜕Ψ𝑒𝑙
𝜕𝜆3

], (3.42)
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such that the static condensation term becomes:

𝒞 𝛼𝛽33𝒞 33𝛾𝛿

𝒞 3333 = −
1

𝜆23𝜆2𝛼𝜆2𝛾
[𝜆3 𝜕

2Ψ𝑒𝑙
𝜕𝜆23

+2 𝜕Ψ𝑒𝑙
𝜕𝜆3

]
2

1
𝜆33
[𝜆3 𝜕

2Ψ𝑒𝑙
𝜕𝜆23

+2 𝜕Ψ𝑒𝑙
𝜕𝜆3

]
𝛿𝛽𝛼 𝛿𝛿𝛾 (3.43)

= − 1
𝜆2𝛼𝜆2𝛾

[𝜆3
𝜕2Ψ𝑒𝑙
𝜕𝜆23

+2𝜕Ψ𝑒𝑙
𝜕𝜆3

]𝛿𝛽𝛼 𝛿𝛿𝛾 . (3.44)

Using this result, the in-plane incompressible material tensor can be evaluated as:

𝒞 𝛼𝛽𝛾𝛿 = 1
𝜆𝛾

𝜕𝑆𝛼𝛼
𝜕𝜆𝛾

𝛿𝛽𝛼 𝛿𝛿𝛾 +
𝑆𝛽𝛽 −𝑆𝛼𝛼
𝜆2𝛽 −𝜆2𝛼

(𝛿𝛾𝛼 𝛿𝛿𝛽 +𝛿𝛿𝛼 𝛿
𝛾
𝛽 )(1−𝛿

𝛽𝛼 )

− 1
𝜆2𝛼𝜆2𝛾

[𝜆3
𝜕2Ψ𝑒𝑙
𝜕𝜆23

+2𝜕Ψ𝑒𝑙
𝜕𝜆3

]𝛿𝛽𝛼 𝛿𝛿𝛾 , (3.45)

where the second term should be replaced by equation (3.30) if 𝜆𝛼 = 𝜆𝛽 .

3.3.3 Compressible Material Models
For compressible models, the Jacobian determinant 𝐽 is not necessarily equal to 1. As
a consequence, the deformation gradient 𝐅 and deformation tensor 𝐂 are modified such
that 𝐅 and 𝐂 are a multiplicative decomposition of a volume-changing (dilational) part
depending on 𝐽 and a volume-preserving (distortional) part depending on the modified
deformation gradient and deformation tensors, �̇� and �̇�, respectively [188]:

�̇� = 𝐽−
1
3 𝐅, �̇� = 𝐽−

2
3𝐂. (3.46)

The modified deformation gradient and deformation tensor have determinants that are
equal to 1 (corresponding to volume preservation), meaning:

det{�̇�} = �̇�1�̇�2�̇�3 = 1, det{�̇�} = 1, (3.47)

where the modified principal stretches �̇�𝑖 are defined as:

�̇�𝑖 = 𝐽−
1
3 𝜆𝑖 . (3.48)

Consequently, the invariants of the modified deformation tensor �̇� become:

̇𝐼1 = 𝐽−2/3𝐼1, ̇𝐼2 = 𝐽−4/3𝐼2, ̇𝐼3 = 1, (3.49)

with 𝐼𝑖 the invariants of the deformation tensor 𝐂. With �̇�, �̇� and ̇𝐼𝑘 as defined above,
the strain energy density function Ψ(𝐂) for a compressible material can be described in
a decoupled form, separating the response in an isochoric (or distortional) elastic part
Ψiso(�̇�) and an volumetric (or dilational) elastic part Ψvol(𝐽 ) [188, 252, 631]:

Ψ(𝝀) = Ψiso(�̇�) +Ψvol(𝐽 ). (3.50)
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The volumetric elastic part Ψvol is required to be strictly convex and equal to zero if and
only if 𝐽 = 1 and �̇� = 𝐈 [252].

For compressiblematerials, the plane stress condition is incorporated by solving 𝑆33 = 0
for 𝐶33 using Newton linearisations [320, 324]:

𝑆33 + 1
2𝒞

3333Δ𝐶33 = 0, (3.51)

where 𝐶33 is incrementally updated by 𝐶(𝑛+1)
33 = 𝐶(𝑛)

33 +Δ𝐶(𝑛)
33 with the increment on itera-

tion 𝑛:
Δ𝐶(𝑛)

33 = −2
𝑆33(𝑛)
𝒞 3333
(𝑛)

. (3.52)

In each iteration, the updated stress tensor 𝐒 and material tensor 𝓒 can be computed,
and iterations are continued until the plane stress condition is satisfied within a certain
tolerance, i.e., ||𝑆33|| < tol. When converged, static condensation can be performed for the
material tensor using equation (3.25). Rather than using 𝐶(0)

33 = 1, [320], 𝐶(0)
33 = 𝐽−20 is used

for incompressible materials, although the difference between the two approaches is neg-
ligible.

Using equation (3.48), any volumetric strain energy density function for incompress-
ible materials can be transformed to its compressible material equivalent by substituting
equation (3.48) into equation (3.50) and by selecting a volumetric component Ψvol. Static
condensation (equation (3.25)) is performed before transforming the material tensor.

3.4 Implementation Aspects
In this section, recall the assembly of the nonlinear system for isogeometric Kirchhoff-Love
shells (section 3.4.1) as well as the computation of the eigenvalues and eigenvectors of the
deformation tensor 𝐂 (section 3.4.2) is recalled. Then, details about the transformation of
the stress and material tensors 𝐒 and 𝓒 from spectral to curvilinear bases (section 3.4.3)
are provided.

3.4.1 System Assembly
For the implementation of Kirchhoff-Love shells, recall that the vector of internal forces
and the tangential stiffness matrix read [319, 320]:

𝐹 int𝑟 = ∫Ω
(�̄�⊤ 𝜕 ̄𝜺

𝜕𝑢𝑟
+�̄�⊤ 𝜕 ̄𝜿

𝜕𝑢𝑟
)dΩ, (3.53)

𝐾𝑟𝑠 = ∫Ω
((�̄�0 𝜕 ̄𝜺

𝜕𝑢𝑠
+ �̄�1 𝜕 ̄𝜿

𝜕𝑢𝑠
) 𝜕 ̄𝜺
𝜕𝑢𝑟

+ �̄�⊤ 𝜕2 ̄𝜺
𝜕𝑢𝑟𝜕𝑢𝑠

(3.54)

+(�̄�1 𝜕 ̄𝜺
𝜕𝑢𝑠

+ �̄�2 𝜕 ̄𝜿
𝜕𝑢𝑠

) 𝜕 ̄𝜺
𝜕𝑢𝑟

+�̄�⊤ 𝜕2 ̄𝜿
𝜕𝑢𝑟𝜕𝑢𝑠

)dΩ. (3.55)
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Here, it should be noted that the matrices ̄𝓓𝑘 , 𝑘 = 0,1,2, are the 𝑘th thickness moments of
thematerial tensor represented as a 3×3matrix, and �̄� and �̄� are the zero-th and first thick-
ness moments of the stress tensor, see [320]. The thickness integrals are, in the present
chapter and in [320], computed using numerical through-thickness integration with four
Gaussian points. As discussed in [480], the matrices ̄𝓓1 can differ in the variations of the
normal force tensor �̄� and the moment tensor �̄� depending on the analytic projected or
directly decoupled alternatives for thickness integration.

3.4.2 Eigenvalue Computation
The eigenvalues of tensor quantity can be computed by solving equation (3.15) or, alter-
natively, by computing the eigenvalues of the matrix that results from the computation of
𝐂 = 𝐶𝑖𝑗 �̊� 𝑖 ⊗ �̊�𝑗 , including the outer product. Since 𝜆23 = √𝐶33 is decoupled by construction,
it suffices to compute 𝜆21 and 𝜆22 by computing the eigenvectors and eigenvalues of the
3×3 matrix following from the computation of 𝐂 = 𝐶𝛼𝛽 �̊�𝛼 ⊗ �̊�𝛽 . This computation results
in three eigenpairs (eigenvalues and eigenvectors), of which one eigenpair contains the
zero vector due to the decoupled construction. The other two eigenpairs (𝜆𝛼 ∈ ℝ,𝒗𝛼 ∈ ℝ3)
are the in-plane principal stretches and their directions.

3.4.3 Tensor Transformation
Since the stretch-based stress and material tensor are derived in spectral form (i.e., in the
eigenvector space), a transformation towards the curvilinear basis is required in order to
use these entities in further computations. Recall that the spectral forms of 𝐒 and 𝓒 are:

𝐒 =
3
∑
𝑖=1

𝑆𝑖𝑖 𝒗𝑖 ⊗𝒗𝑖 , 𝓒 =
3
∑

𝑖,𝑗,𝑘,𝑙=1
𝒞 𝑖𝑗𝑘𝑙 𝒗𝑖 ⊗𝒗𝑗 ⊗𝒗𝑘 ⊗𝒗𝑙 . (3.56)

The invariant-based stress and material tensors are defined on a curvilinear basis as fol-
lows:

𝐒 =
3
∑
𝑖,𝑗=1

𝑆𝑖𝑗 �̊�𝑖 ⊗ �̊�𝑗 𝓒 =
3
∑

𝑖,𝑗,𝑘,𝑙=1
𝒞 𝑖𝑗𝑘𝑙 �̊�𝑖 ⊗ �̊�𝑗 ⊗ �̊�𝑘 ⊗ �̊�𝑙 . (3.57)

Since the strain tensors (c.f. equation (3.17)) are defined in the curvilinear basis, it is
convenient to define the quantities in the variational form (c.f. equation (3.18)) defined in
the curvilinear basis. Hence, the stretch-based stress and material tensors are transformed
to the undeformed covariant curvilinear basis by:

̃𝑆𝑖𝑗 =
3
∑
𝑝,𝑞=1

𝑆𝑝𝑞(𝒗𝑝 ⋅ �̊� 𝑖)(𝒗𝑞 ⋅ �̊�𝑗),

̃𝒞 𝑖𝑗𝑘𝑙 =
3
∑

𝑝,𝑞,𝑟 ,𝑠=1
𝒞 𝑝𝑞𝑟𝑠(𝒗𝑝 ⋅ �̊� 𝑖)(𝒗𝑞 ⋅ �̊�𝑗)(𝒗𝑟 ⋅ �̊�𝑘)(𝒗𝑠 ⋅ �̊� 𝑙),

(3.58)
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where ̃𝑆𝑖𝑗 and ̃𝒞 𝑖𝑗𝑘𝑙 are the coefficients of the stress and material tensors in the curvilinear
basis.

Obviously, the tensor transformation only needs to be computed for non-zero compo-
nents of 𝒞 𝑝𝑞𝑟𝑠 . For incompressible material models, the plane-stress correction for 𝐶33 is
applied analytically, which implies that the transformations only need to be applied for
indices ranging from 𝛼,𝛽,𝛾 ,𝛿 = 1,2, thus the transformation consists of mapping 24 = 16
entries. However, it is known that for hyperelastic materials, the contravariant compo-
nents of the material tensor, 𝒞 𝑖𝑗𝑘𝑙 , posses minor and major symmetry [252, 631], i.e.

𝒞 𝑎𝑏𝑐𝑑 = 𝒞 𝑏𝑎𝑐𝑑 = 𝒞 𝑎𝑏𝑑𝑐 minor symmetry, (3.59)
= 𝒞 𝑐𝑑𝑎𝑏 major symmetry, (3.60)

so that only six unique components exist for the 2 × 2 × 2 × 2 tensor. Furthermore, equa-
tion (3.29) implies that the non-zero components of𝒞 𝑖𝑗𝑘𝑙 are of the form𝒞 𝑖𝑖𝑖𝑖 ,𝒞 𝑖𝑖𝑗𝑗 ,𝒞 𝑖𝑗𝑖𝑗 ,
and 𝒞 𝑖𝑗𝑗𝑖 , of which the last two are equal by virtue of the minor symmetry property. This
implies that the 2 × 2 × 2 × 2 tensor has only four uniquely defined components, namely
𝒞 1111, 𝒞 1122, 𝒞 2222, and 𝒞 1212.

For compressible material models, the static condensation term is computed on the
spectral basis, i.e., on the tensor 𝓒, before it is transformed to the covariant undeformed
tensor basis. From equation (3.52), it can be seen that the iterative procedure to find 𝐶33 re-
quires the computation of𝒞 3333, 𝒞 𝛼𝛽33, and𝒞 33𝛼𝛽 , where the last two are equal by virtue
of the major symmetry property. Reusing the minor and major symmetries, the computa-
tion is reduced to four distinct components, namely 𝒞 1133, 𝒞 2233, 𝒞 1233, and 𝒞 3333.

Accordingly, it can be concluded that for incompressible materials, four and for com-
pressible materials, eight unique components of the spectral material tensor need to be
computed when exploiting minor and major symmetry, as well as the nature of equa-
tion (3.29). In summary, the transformations give rise to certain additional costs, which
can be limited, however, by exploiting symmetry properties efficiently.

3.5 Numerical Experiments
For benchmarking purposes, the results of four numerical experiments have been used
for verification and validation of the presented formulations for incompressible and com-
pressible material models. For the uniaxial tension and pressurised balloon benchmarks
(sections 3.5.1 and 3.5.2, respectively), analytical solutions are available, therefore they
will serve as verification of the stretch-based material model formulations. Combining
the present method with (extended) arc-length methods, the collapsing behaviour of a
truncated conical shell [23] (section 3.5.3) and the wrinkling of a stretched thin sheet (sec-
tion 3.5.4) are simulated.

In order to verify the presented isogemetric Kirchhoff–Love formulation for a stretch-
based Ogden material with its FEM couterpart, the conical shell collapse (section 3.5.3)
is incorporated. Finally, the approach of this chapter is applied to the modelling of the
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wrinkling of a thin sheet subject to tension. The models have been implemented in the
open-source library G+Smo (Geometry + SimulationModules) [294, 376]. More information
on the implementation herein is provided in chapter 8 of this dissertation. Download in-
structions for the code related to this chapter can be found in the supplementary material
of [587].

In the numerical experiments, compressible and incompressible formulations of the
Neo-Hookean (NH), Mooney-Rivlin (MR), and Ogden (OG) material models have been
used. The Neo-Hookean models are given by (compressible and incompressible, respec-
tively):

Ψ(𝐂) = 𝜇
2(𝐽

− 2
3 𝐼1 −3)+Ψvol(𝐽 ), (3.61)

Ψ(𝐂) = 𝜇
2 (𝐼1 −3). (3.62)

The Mooney-Rivlin models are given by [393, 475] (compressible and incompressible, re-
spectively):

Ψ(𝐂) = 𝑐1
2 (𝐽−

2
3 𝐼1 −3)+

𝑐2
2 (𝐽−

4
3 𝐼2 −3)+Ψvol(𝐽 ), (3.63)

Ψ(𝐂) = 𝑐1
2 (𝐼1 −3)+

𝑐2
2 (𝐼2 −3). (3.64)

For Ogden models, the following formulations are used (compressible and incompressible,
respectively):

Ψ(𝝀) =
𝑁
∑
𝑝=1

𝜇𝑝
𝛼𝑝

𝐽−
1
3 (𝜆𝛼𝑝1 +𝜆𝛼𝑝2 +𝜆𝛼𝑝3 −3)+Ψvol(𝐽 ), (3.65)

Ψ(𝝀) =
3
∑
𝑞=1

(
𝑁
∑
𝑝=1

𝜇𝑝
𝛼𝑝

(𝜆𝛼𝑝𝑞 −1)). (3.66)

For all models, the following volumetric part of the strain energy density function is
adopted:

Ψvol = 𝐾𝒢(𝐽 ) = 𝐾𝛽−2(𝛽 log(𝐽 ) + 𝐽−𝛽 −1). (3.67)
To check the consistency of invariant-based models (i.e., the NH and MR models), the in-
variants can be replaced by equations (3.12) to (3.14) to obtain stretch-based forms, which
are thus equivalent to the component-based form from [320]. Unless stated otherwise, for
the compressible models, 𝛽 = −2 and for the Mooney-Rivlin model, 𝑐1/𝑐2 = 7 [475] is used.
For the Ogden model, the coefficients from [570] are re-scaled to the value of 𝜇:

𝜇1 =
6.300
𝜇0

𝜇, 𝛼1 = 1.3,

𝜇2 =
0.012
𝜇0

𝜇, 𝛼2 = 5.0,

𝜇3 = −0.100𝜇0
𝜇, 𝛼3 = −2.0,

(3.68)
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𝐿

𝑊

𝑥

𝑦 𝜎𝑡

Figure 3.1: Geometry for the uniaxial tension case. The filled geometry represents the deformed configuration,
and the dashed line indicates the undeformed geometry. The bottom side of the undeformed sheet is fixed in
𝑦-direction and the left side of the sheet is fixed in 𝑥-direction. The applied load is 𝜎𝑡 , where 𝜎 is the actual
Cauchy stress and 𝑡 is the thickness of the sheet.

where 𝜇0 = 4.225.

3.5.1 Uniaxial Tension
The first benchmark case is the uniaxial tension of a material block. A block with dimen-
sions 𝐿 ×𝑊 × 𝑡 = 1 × 1 × 0.001 [m3] is considered. The shear modulus is 𝜇 = 𝐸/(2(1 + 𝜈)),
where 𝐸 and 𝜈 are the Young’s modulus and Poisson ratio, respectively, such that 𝜇 =
1.5 ⋅ 106 [N/m2]. The block is modelled by shell elements, i.e., the 𝐿 ×𝑊 plane is consid-
ered, and all edges are restrained in a vertical direction (𝑧 = 0). The left edge (𝑥 = 0) is
restrained in the 𝑥-direction, and on the right edge (𝑥 = 𝐿), a distributed load 𝜎𝑡 is applied.
The bottom edge (𝑦 = 0) is restrained in the 𝑦-direction, and the top edge (𝑦 = 𝐵) is free to
move (see figure 3.1).

In figure 3.2, the results for uniaxial tension are depicted. For both compressible and
incompressible materials, the analytical solution for the Cauchy stress is obtained from
[252, ex. 1]. The numerical and analytical solutions for incompressible and compress-
ible materials show a perfect match for all quantities studied (thickness decrease 𝜆3, axial
Cauchy stress 𝜎 , and Jacobian determinant 𝐽 ). Note that the Jacobian determinant for
incompressible materials is equal to 1 and hence not shown. The residual norms of the
non-linear iteration convergence for the invariant-based and stretch-based Neo-Hookean
and Mooney-Rivlin models as well as the stretch-based Ogden model are equal in all it-
erations (see table 3.1), showing that the present formulation provides exactly the same
rates of convergence as the invariant-based method. Last but not least, Newton iterations
converge with optimal speed (second-order convergence rate).

3.5.2 Pressurised Balloon
The response of a pressurised spherical balloon is used for benchmarking purposes as well.
The analytical pressure formulation is obtained from [252, eq. 6.132]. The numerical model
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Table 3.1: Residual norms per iteration for the 10th load-step for uniaxial tension for all material models in
compressible and incompressible forms. For the Neo-Hookean andMooney-Rivlinmodels, the iteration residuals
are provided for the stretch-based and invariant-based approaches. For the Ogden model, only the results for
the stretch-based formulations are given, since no invariant-based formulation exists. For the Neo-Hookean
and Mooney-Rivlin models, results are only observed in the last iteration due to the machine precision of the
arithmetic.

It. Neo-Hookean Mooney-Rivlin Ogden
Stretch Invariant Stretch Invariant Stretch

Incompressible

1 2.033 ⋅ 10−4 2.033 ⋅ 10−4 4.021 ⋅ 10−3 3.999 ⋅ 10−3 4.442 ⋅ 10−2
2 1.129 ⋅ 10−6 1.129 ⋅ 10−6 2.248 ⋅ 10−5 2.253 ⋅ 10−5 1.313 ⋅ 10−6
3 3.575 ⋅ 10−11 3.575 ⋅ 10−11 7.106 ⋅ 10−10 7.229 ⋅ 10−10 4.149 ⋅ 10−11
4 2.554 ⋅ 10−16 6.929 ⋅ 10−16 5.088 ⋅ 10−16 1.776 ⋅ 10−15 1.602 ⋅ 10−16

Compressible

1 1.617 ⋅ 10−3 1.617 ⋅ 10−3 2.100 ⋅ 10−3 2.100 ⋅ 10−3 5.215 ⋅ 10−3
2 2.296 ⋅ 10−7 2.296 ⋅ 10−7 2.890 ⋅ 10−6 2.890 ⋅ 10−6 1.759 ⋅ 10−7
3 9.443 ⋅ 10−13 9.440 ⋅ 10−13 1.344 ⋅ 10−11 1.344 ⋅ 10−11 2.584 ⋅ 10−13
4 1.153 ⋅ 10−15 1.252 ⋅ 10−16 1.115 ⋅ 10−15 1.988 ⋅ 10−16 1.625 ⋅ 10−15

results are based on follower pressures, i.e., 𝒇 = 𝑝0𝒂3, where 𝒂3 is the unit normal in the
current configuration. The balloon is modelled as a quarter of a hemisphere, of which the
bottom point is fixed in all directions, and on the sides a symmetry condition is applied by
clamping the sides in normal direction and restriction deflections orthogonal to the sym-
metry boundary (see figure 3.3). The geometry is modelled by 2 elements over the height
and 2 elements over the quarter-circumference, both of quadratic order.

For 𝑅 = 10 [m], 𝑡 = 0.1 [m] and 𝜇 = 4.2255 ⋅ 105 [N/m2], a perfect agreement is obtained
for all presented material models in comparison to the analytical solutions figure 3.4.

In table 3.2, the total CPU times are presented, related to system assembly for different
material models for different mesh refinement levels and quadratic order for 𝑝0 = 104. The
assembly times for both the invariant-based formulations and for the stretch-based for-
mulations are given for the Neo-Hookean and Mooney-Rivlin material models, whereas
the stretch-based formulation is only available for the Ogden model. The total number of
nonlinear iterations is the same in all cases, and so is the number of assembly operations.
The table shows that the stretch-based formulations are slower than the invariant-based
formulations, which is expected given the requirement for the transformation of the basis
of the deformation tensor. It can also be seen that the Ogden model requires significantly
more CPU time than the other models, which is due to the large number of terms in the
strain energy density function.

3.5.3 Conical Shell Collapse
A collapsing conical shell (or frustrum) is presented as a benchmark for modelling strong
non-linearities [23]. A conical shell with height 𝐻 = 1[m] and top radius 𝑟 = 1[m], bottom
radius 𝑅 = 2 [m] and thickness 𝑡 = 0.1 [m] as depicted in figure 3.5 is considered. Since
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Figure 3.2: Results for uniaxial tension for compressible (C, left column) and incompressible materials (I, right
column), where the first row presents the thickness decrease 𝜆3, the second row the axial Cauchy stress or true
axial stress 𝜎 , and the last row the Jacobian determinant 𝐽 for compressible materials, all against the stretch 𝜆.
The material models that are used are the Neo-Hookean (NH), the Mooney-Rivlin (MR), and the Ogden (OG)
material models, and comparisons are made to analytical (A) solutions from [252, ex. 1].

the reference solution models the frustrum axisymmetrically, a quarter of the geometry is
modelled with 32 quadratic elements over the height and one quadratic element over the
quarter-circumference to represent axial symmetry. The corresponding material model is
of the Ogden type and has the following parameters:

𝜇1 = 6.300 [N/m2], 𝛼1 = 1.3,
𝜇2 = 0.012 [N/m2], 𝛼2 = 5.0,
𝜇3 = −0.100 [N/m2], 𝛼3 = −2.0,

implying that 𝜇 = 4.225 [N/m2]. Two sets of boundary conditions are considered for this
geometry. In both sets, the bottom of the shell (Γ2) is hinged, hence the displacements
are restricted in all directions. The top shell edge (Γ1) is either kept rigid (no 𝑥 and 𝑦 dis-
placements) or free, referred to as constant or variable radius, respectively [23]. On the
top edge, a uniform load 𝑝 is applied, providing a uniform displacement Δ. Due to symme-
try, only one quarter of the geometry is modelled, which means that symmetry boundary
conditions are applied on the 𝑥 = 0 and 𝑦 = 0 planes (Γ3, Γ4, see figure 3.5), restricting in-
plane deformations normal to the boundaries and restricting rotations on the boundary
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Figure 3.3: Geometry of the inflated balloon with
4 quadratic elements. Symmetry conditions are
applied to the boundaries Γ1, Γ2, and Γ4, which
means that rotations around these boundaries and
displacements in the plane normal to the bound-
aries are fixed. The bottom of the balloon (Γ3) is an
edge with a radius of 0.01 and is fixed in all direc-
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Figure 3.4: Inflation of a balloon. The vertical
axis depicts the internally applied pressure, and
the horizontal axis depicts the stretch 𝜆1 = 𝜆2 = 𝜆.
The different lines and markers represent differ-
ent material models, including Neo-Hookean (NH),
Mooney-Rivlin (MR), and Ogden (OG). The radius
of the sphere is 𝑅 = 10[m], and the thickness of the
sphere is 𝑡 = 0.1 [m].

Table 3.2: Total CPU assembly times (seconds) for the different material models (invariant-based where ap-
plicable) for different mesh sizes (#El.) for the inflated balloon benchmark. All results are obtained for the
incompressible material models.

#El. Neo-Hookean Mooney-Rivlin Ogden
Invariant Stretch Invariant Stretch

1 0.18 0.13 0.18 0.13 0.41
4 0.42 0.28 0.43 0.29 1.07
16 1.42 0.93 1.45 0.94 3.95
64 6.19 4.55 6.69 4.35 18.49
256 40.67 26.77 44.10 28.60 119.65
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Figure 3.5: Geometry of the collapsing truncated conical shell with top and bottom radii 𝑅1 and 𝑅2, height𝐻 and a
line load 𝑝 on Γ1. On boundaries Γ3 and Γ4, symmetry conditions are applied. Boundary Γ1 is either constrained in
𝑥 and 𝑦 directions (fixed radius) or free (variable radius). Boundary Γ2 is constrained. The geometry is modelled
using 32 quadratic elements over the height.

by applying clamped boundary conditions as described in [319]. The quarter-conical shell
is modelled with 32 quartic shell elements over the width.

Loads are applied using displacement-control (DC) or arc-length control. In the for-
mer case, displacements are applied on the top side of the cone, and the deformation of the
cone as well as the corresponding load on the top boundary are computed. In the latter
case, Crisfield’s spherical arc-length procedure [125] is used with extensions for resolving
complex roots [329, 660]. If this method does not converge to an equilibrium point, the
step size is bisected until a converged step is found. After this step, the step size is reset
to its original value [583].

Figures 3.6 and 3.7 present the result of the collapsing conical shell (constant and vari-
able radius, respectively) of the present study and the reference results from [23]. The
results for the displacement-controlled (DC) solution procedure show that the difference
between the used material models is negligible since the actual strains are relatively small.
The results also agree with the displacement-controlled reference results of [23], and mi-
nor differences between the results might be a result of FE shear locking as involved in
the reference results. Since more steps have been used for the displacement-controlled
calculations, sharp corners in the curve can be observed for Δ ∼ 1.9 for constant radius
and Δ ∼ 1.8 for variable radius.

An arc-length-based calculation was used as well. From the results, one can observe
the revelation of the collapsing mechanism of the conical shell. For both cases (constant
and variable radius), an almost anti-symmetric pattern in the load-deflection space can
be observed, which initiates and finishes at the kinks in the curve that was found with
the displacement-control procedure. For the constant-radius shell, figure 3.6a shows two
loops of large magnitude. In figures 3.6a and 3.7a, it can be seen that the collapsing be-
haviour of the conical shell consists of states in which multiple waves in radial direction
occur. For both cases, it can be seen that after the loops with the highest force amplitude,
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(a) Load-displacement diagram. The inset is given to provide more detail of the curve.
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Figure 3.6: Result of the collapsing conical shell with constant radius; (a) load-displacement diagram; (b) unde-
formed geometries matching with the points indicated with capital letters in the diagram. The lines represent
solutions obtained using the Arc-Length Method (ALM), and the markers represent solutions obtained by dis-
placement control (DC). Note that the solutions for the NH and MR models overlap on most parts of the path.
The material models are Neo-Hookean (NH), Mooney-Rivlin (MR), and Ogden (OG). Since the variation between
the material models is rather small for the DC solutions, only the results for the OG material model are given.
The reference results (Ref.) are obtained from [23].
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Figure 3.7: Result of the collapsing conical shell with variable radius; (a) load-displacement diagram; (b) unde-
formed geometries matching with the points indicated with capital letters in the diagram. The lines represent
solutions obtained using the Arc-Length Method (ALM), and the markers represent solutions obtained by dis-
placement control (DC). The material models are Neo-Hookean (NH), Mooney-Rivlin (MR), and Ogden (OG).
Since the variation between the material models is rather small for the DC solutions, only the results for the OG
material model are given. The reference results (Ref.) are obtained from [23].
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Figure 3.8: Modelling geometry for the uniaxially loaded restrained sheet. The sheet has length 𝐿 and width 𝑊 .
The strain of the sheet due to load 𝑃 is denoted by 𝜀.

the shell and its collapse path invert and continue on the path that can be obtained with
displacement control.

To the best of the authors’ knowledge, the collapsing of a conical shell was not in-
vestigated before. Complex load-displacement paths from figures 3.6a and 3.7a show that
displacement-controlled simulations in this case ignore the collapsing behaviour of the
shell with multiple limit points. The authors highly encourage further investigations into
this benchmark for verification and validation.

3.5.4 Wrinkling of a Stretched Sheet
As an application of the model, the wrinkling phenomenon of a stretched, thin membrane
(see figure 3.11) is considered. Scaling laws based on experiments were first published in
[91, 92], and analytical formulations related to this problem were established in [449]. Nu-
merical results to this problem have been established for sheets with different aspect ratios
𝛽 and different dimensionless thicknesses 𝛼 [191, 233, 346, 403, 427, 551, 601, 658]. In most
numerical studies, Neo-Hookean or Mooney-Rivlin models were used to model the wrin-
kling phenomenon since strains usually reach high values (typically 𝜀 ∼ 10−50%). In this
chapter, tension wrinkling is modelled for the sake of benchmarking using incompress-
ible Neo-Hookean, Mooney-Rivlin, and Ogden models and isogeometric Kirchhoff–Love
shells, which is a novelty to the best of the authors’ knowledge. In the first part of this
section, the model is benchmarked on a restrained sheet without wrinkling formation,
and material parameter determination is performed. Thereafter, the results of wrinkling
simulations are presented.

Material test
Related to the first benchmark in the work of [480] and on the experiments of [427], a ten-
sile load is applied on a strip of which the short edges are fixed and the long edges are free
(see figure 3.8). The focus is on the non-domensional load versus end-point displacement
in the longitudinal (load and displacement) direction.

Firstly, for the geometric parameters, 𝐿 = 9 [mm], 𝑊 = 3 [mm], and 𝑡 = 0.3 [mm] are
used, leading to 𝐿/𝑊 = 3 and 𝑡/𝑊 = 0.1. The material has Poisson’s ratio 𝜈 = 0.5, and for
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the NH material model, a Young’s modulus of 𝐸 = 30[kPa] is involved, and for the MR ma-
terial model, one of 𝐸 = 90[kPa] leads to 𝜇 = 10[kPa] and 𝜇 = 30[kPa], respectively. For the
MR model, 𝑐1/𝑐2 = 1/2, such that 𝑐1 = 1/9 and 𝑐2 = 2/9. Scaling according to equation (3.68)
is applied for the Ogden material model, and 8 × 8 quadratic elements are used. A good
match with the results of the directly decoupled method of [480] for the incompressible
Neo-Hookean and Mooney-Rivlin models can be observed in figure 3.9a. Note that the
forces in the reference paper are normalised by 𝐸 = 3𝑐1 for both the Neo-Hookean and
Mooney-Rivlin models, whereas in the present simulations, the forces are normalised by
𝐸 = 3𝜇 (since 𝜈 = 0.5 in the comparison with [480]).
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(a) Benchmarking results comparing to the reference re-
sults (Ref.) from [480], which are obtained numerically.
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(b) Benchmarking results for comparison with [427] (Ref.).
Experimental results are depicted by markers for different
aspect ratios 𝐿/𝑊 of the sheet. Numerical results from
[427] are not included since they are indistinguishable
from the present MR results.

Figure 3.9: Uniaxial tension of a restrained sheet using incompressible material models. The dimensionless force
is obtained by normalising the applied force 𝑃 by the Young’s modulus 𝐸 and the cross-sectional area 𝐴.

In figure 3.10, convergence plots of the present model (NH and OG stretch-based
models) with respect to the relative error in the strains given a nondimensional load of
𝑃/𝐸𝐴 = 0.5 are provided. The errors are plotted with respect to the Richardson extrapola-
tion from the three finestmeshes since analytical solutions to the problem are not available.
The results obtained for the NHmodel obtained from the invariant-based form are exactly
the same and hence not provided here. The figures show that the convergence of the
method is around second-order, independent of the order of the spline basis. Reference
papers [320, 480] do not provide estimates of the order of convergence for the invariant-
based material models or convergence plots for similar simulations. Hence, further com-
parison and investigations on the order of convergence for such membrane-dominated
responses for shells with nonlinear material models are recommended.
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(a) Neo-Hookean (NH): the orders of convergence follow-
ing from Richardson extrapolation are 2.11 (𝑝 = 2), 2.15
(𝑝 = 3) and 2.17 (𝑝 = 4).
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(b) Ogden (OG): the orders of convergence following from
Richardson extrapolation are 2.27 (𝑝 = 2), 2.40 (𝑝 = 3) and
2.52 (𝑝 = 4).

Figure 3.10: Convergence rate of the restrained sheet under uniaxial tension with values from [480] for different
material models (a-b). The error is relative error 𝜖 = |𝜀num −𝜀𝑅 |/𝜀𝑅 where 𝜀num is the numerical value of the strain
and 𝜀𝑅 is the Richardson-extrapolated value of the strain related to the last three meshes, all for a dimensionless
force 𝑃/𝐸𝐴 = 0.5. The orders of convergence following from the Richardson extrapolation are provided in the
captions below the subfigures.

Secondly, the numerical model is compared to the experimental results from a simi-
lar setup as depicted in figure 3.8 [427]. The corresponding geometric parameters are 𝐿 =
280[mm],𝑊 =140[mm] and 𝑡 = 0.14[mm], leading to 𝐿/𝑊 = 2 and 𝑡/𝑊 = 103. Thematerial
models are incompressible, and for the NHmaterial model, a parameter 𝜇 = 1.91⋅105 [Pa] is
used, while for the MR model, the parameters 𝑐1 = 3.16 ⋅ 105 [Pa] and 𝑐2 = 1.24 ⋅ 105 [Pa] are
used. The results are depicted in figure 3.9b, from which it can be seen that there is excel-
lent agreement between the numerical results from [427] (obtained using the ABAQUS S4R
element) and the experimental results. In addition, the depicted fit for the Ogden material
model was found using parameters 𝛼1 = 1.1[-], 𝜇1 = 1.0𝜇0 [Pa], 𝛼2 = −7[-], 𝜇2 = −0.003𝜇0 [Pa],
𝛼3 = −3 [-] and 𝜇3 = −0.4𝜇0 [Pa] with 𝜇0 = 1.91 ⋅ 105 Pa.

Wrinkling simulations
For the wrinkling simulations, the work of [427] is followed, with the same parameters for
the Mooney-Rivlin and Ogden models as in figure 3.9b. The model setup for the wrinkling
simulations is depicted in figure 3.11. The modeling domain is depicted in the shaded area
and surrounded by boundaries Γ𝑘 , 𝑘 = 1, .., 4. Firstly, the boundary Γ1 is free, meaning that
no displacement constraints are involved. Furthermore, the boundary at Γ2 is clamped
(matching the adjacent control points parallel to the symmetry axes), and displacements
in 𝑦-direction and out-of-plane displacements are restricted. The displacements in the
𝑥-direction are all equal over Γ2. Symmetry is imposed over Γ4 by clamping the edges
and by restricting deformations orthogonal to the axes (𝑢𝑥 = 0). Lastly, anti-symmetry is
imposed over Γ3 by restricting displacements in vertical direction and orthogonal to the
boundary (𝑢𝑦 = 0). Similar to [427], an anti-symmetry condition is applied over Γ3 since
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Figure 3.11: Modelling geometry for the wrinkled sheet. The sheet is modelled as only a quarter using symmetry
conditions on Γ3 and Γ4. The side Γ1 is free and the side Γ2 is clamped and fixed in all direction except the
𝑥-direction. The sheet has length 𝐿 and width 𝑊 . The strain of the sheet due to load 𝑃 is denoted by 𝜀.

the symmetric and anti-symmetric wrinkling patterns can appear at the same critical load
[191, 233]. For continuation, Crisfield’s spherical arc-length method [125] is used with an
extension for approaching bifurcation points [632], branch switching [193], and complex-
root resolving [329, 660], all summarised and applied to IGA in [583].

Furthermore, for comparison, results from LS-DYNA (R11.0) and ANSYS (R19.1) sim-
ulations are presented for the same geometry and a Mooney-Rivlin model with the same
parameters; however, 𝜈 = 0.499 in the LS-DYNA simulations since incompressible mate-
rials (𝜈 = 0.5) are not implemented. A displacement control approach is employed with
an initial perturbation based on the first buckling mode corresponding to a tension load
situation, perturbed with a factor of 10−4. In LS-DYNA, the Hughes-Liu, the Hughes-Liu
selective/reduced, and the fully integrated shell elements are used, all with 4 quadrature
points through-thickness and a shear correction factor equal to zero [364]. The results
for the ANSYS SHELL181 element [11] are obtained using default options, which include
reduced integration and hour-glassing control. For both the LS-DYNA and ANSYS simu-
lations, mesh refinements were applied until convergence.

From figure 3.12a, a large difference between the different solvers and between the
material models can be observed. Firstly, it can be concluded that the MR results from
the isogeometric Kirchhoff–Love shell correspond most with the results obtained with
LS-DYNA. Additionally, these results show good correspondence with the experimental
results both in the low strain regime (until 𝜀 ∼ 0.08) as well as towards restabilisation of the
wrinkles (between 𝜀 ∼ 0.2 and 𝜀 ∼ 0.3), where only the maximum amplitude is slightly un-
derestimated and the restabilisation point (i.e., the point where the wrinkles vanish again)
is predicted too early. Secondly, it can be observed that there is a large difference between
the results from IGA, LS-DYNA, and ANSYS. Although different shell options in the FEA
libraries have been varied (e.g., reduced or full integration, shear correction factors), the
origin of these differences is yet unknown to the authors and requires further investiga-
tion. Lastly, significant differences between the Ogden and Mooney-Rivlin results can
be observed, although there are similarities in the material behaviour in figure 3.9b. From
this, it can be concluded that material fitting possibly needs to be done using experimental
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(a) Strain-amplitude diagram of the tension wrinkling of a thin sheet. The vertical axis represents the maximum amplitude
normalised by the shell thickness 𝑡 and the horizontal axis represents the strain 𝜀 of the sheet. The present model is used to obtain
the Mooney-Rivlin (MR) and Ogden (OG) results. The fully integrated (FI), Hughes-Liu (H-L), and Hughes-Liu Selective/Reduced
(H-L S/R) results are obtained using LS-DYNA, and the SHELL181 results are obtained using ANSYS. The experimental results
(Exp.) from Panaitescu et al. [427] are plotted as a reference.
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Normalised wrinkling amplitude 𝜁 /𝑡 [−]
(b) Contour plot of out-of-plane displacements 𝑤 for dif-
ferent strains 𝜀 for the MR model.
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(c) Contour plot of out-of-plane displacements 𝑤 for dif-
ferent strains 𝜀 for the OG model.

Figure 3.12: Wrinkling formation in a thin sheet subject to tension.

tests of different loading configurations, e.g., testing the bending response of the material.
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3.6 Conclusions and Recommendations
This chapter provides mathematical formulations to accurately and efficiently model thin
rubbers and several biological tissues by combining stretch-based material formulations
such as the Ogden material model and smooth spline formulations of the isogeometric
Kirchhoff-Love shell. The formulations apply to compressible and incompressible mate-
rial models and are based on an eigenvalue computation to obtain the principal stretches
and their direction (i.e., the spectral basis). The spectral stress and material tensors are
transformed to the curvilinear basis accordingly, with limited computational costs due to
tensor symmetries.

The results from numerical experiments with Neo-Hookean and Mooney-Rivlin mate-
rial models, which can be represented in terms of invariants as well as in terms of stretches,
show that identical iteration residuals and correct Newton-convergence rates have been
obtained. This confirms that the stretch-based and invariant-based shell formulations are
equivalent. For these models, it is also shown that the present formulation leads to higher
CPU times due to the projection of the stress and material tensor; therefore, the advantage
of the present formulation is mainly related to stretch-based material models (e.g., the Og-
den model) and not to models that can be expressed explicitly in terms of the curvilinear
tensor components of the deformation tensor (e.g., the invariant-based Neo-Hookean and
Mooney Rivlin models). The analytical benchmarks have shown very good agreement,
confirming that the formulations and implementation are correct.

Employing (extended) arc-length methods in combination with the present model,
the collapsing behaviour of a truncated conical shell and the wrinkling behaviour of a
stretched thin sheet are investigated. In the case of the collapsing truncated conical shell,
the Ogden model was used in combination with either displacement-controlled or arc-
length-controlled loads on the top boundary. The displacement-controlled results show
good agreement with reference results from the literature. Using the arc-length method,
the previously unnoticed response of the cone during collapse was obtained while over-
lappingwith the displacement-controlled results on the stable part of the equilibrium path.

The present formulations are also used to model the phenomenon of wrinkling of a
stretched thin sheet. To the best of the authors’ knowledge, such simulations have only
been published for finite element methods and not with Ogden material models. Hence,
an Ogden material model is fitted, based on previously published experimental data and
from the Mooney-Rivlin material relation, and applied isogeometric Kirchoff-Love shells
to this case.

The result of the wrinkling case, which was also modelled using commercial finite el-
ement codes, shows that large deviations between commercial finite element codes are
observed. The results of our model are in good agreement with the Hughes-Liu shells (re-
duced and full integration) in LS-DYNA. Furthermore, it was found that theMooney-Rivlin
model provides more accurate results than the Ogden material model, although their fits
in the restrained tension test are similar. Based on the variation between the results from
the Ogden and Mooney-Rivlin material models and the results obtained from LS-DYNA
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and ANSYS, it is concluded that the results for this benchmark are sensitive to differences
in element assumptions. This motivates the future use of this case as a challenging bench-
mark problem.

As a topic for future research, it is suggested to develop analytical projection and di-
rect decoupling [480] methods of the constitutive relations in order to prevent numeri-
cal through-thickness integration (i.e., eigenvalue computations for all through-thickness
Gaussian points). These improvements could lead to a significant reduction in computa-
tional times.
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3.A Result Reproduction
For the sake of reproducibility of the results in this chapter, this appendix provides brief
instructions on the use of the software developed along with this thesis. The full software
is available as part of the Geometry + Simulation Modules. For more detail on the contri-
butions to this software library, and its installation, the reader is referred to chapter 8.

Table 3.3 provides per figure in this chapter the name of the file to run along with the
arguments to be passed to obtain these figures.

Table 3.3: File name and run arguments required for the reproducibility of the figures in this chapter. Arguments
with a single dash (-) require an argument. See chapter 8 for more detail about the software and installation
instructions.

Figure Run File
Arg. Description Values

Figure 3.2 benchmark_UniaxialTension
-M Material model 1: NH, 2: MR, 4: OG (with I 3)
-I Implementation 1: Analytical, 2: Generalised, 3: Spectral
-c Compressibility 0: Incompressible, 1: Compressible

Table 3.1 Iteration numbers corresponding to load step 9 from benchmark_UniaxialTension

Figure 3.4 benchmark_Balloon
-M Material model 1: NH, 2: MR, 4: OG (with I 3)
-I Implementation 1: Analytical, 2: Generalised, 3: Spectral

Figure 3.6a benchmark_FrustrumALM (for the ALM results)
Figure 3.7a benchmark_FrustrumDC (for the DC results)

-t Test case 0: figure 3.6a, 1: figure 3.7a
-M Material model 1: NH, 2: MR, 4: OG (with I 3)
-I Implementation 1: Analytical, 2: Generalised, 3: Spectral
-N Number of load steps

Figure 3.9a benchmark_MaterialTest
Figure 3.9b -t Test case 0: Figure 3.9b, 1: Figure 3.9a

-M Material model 1: NH, 2: MR, 4: OG (with I 3)
-I Implementation 1: Analytical, 2: Generalised, 3: Spectral

Figure 3.10 benchmark_MaterialTestConv
-M Material model 1: NH, 2: MR, 4: OG (with I 3)

‘ -I Implementation 1: Analytical, 2: Generalised, 3: Spectral
-r Number of uniform refine-

ments
6

-e Number of degree eleva-
tions

1: 𝑝 = 2, 2: 𝑝 = 3, 3: 𝑝 = 4

Figure 3.12a benchmark_TensionWrinkling
-M Material model 1: NH, 2: MR, 4: OG (with I 3)
-I Implementation 1: Analytical, 2: Generalised, 3: Spectral
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4
Isogeometric Membrane Modelling

using Hyperelastic Tension Field
Theory

The previous chapter, chapter 3, presents hyperelastic material models isogeometric Kirchhoff-
Love shells and applies these models to simulate wrinkles in a thin membrane subject to ten-
sion. However, as the mesh resolution depends on the wrinkling wave length, shell models
become expensive for fine wrinkles as the required mesh size decreases. As a remedy, wrin-
kles can be solved implicitly by modifying the kinematic or constitutive relationship locally
based on the taut, slack, or wrinkled state derived from a so-called tension field. This chapter
presents a model for implicit wrinkling analysis for general hyperelastic materials, applicable
to wrinkling simulations under large strains. The model is an extension of a previously pub-
lished model for linear elastic materials, and it is applied to isogeometric membrane elements,
but it is applicable to other discretisations. Using four benchmark problems – comparing our
results to literature and isogeometric Kirchhoff–Love shell simulations – it is demonstrated
that the presented model is able to converge with the expected order of convergence in the
case of Newton–Raphson iterations when the tension field is fixed in space. For other prob-
lems, the model accurately approximates the mean surface of a wrinkled membrane with a
reduced number of degrees of freedom compared to the shell simulation. In conclusion, the
model presented in this chapter provides an alternative to explicit shell modelling for hypere-
lastic membrane wrinkling simulations, whenever global structural response instead of local
wrinkling amplitudes are of one’s interest. If necessary, the reader is referred to section 2.3.2
for a full derivation of the isogeometric Kirchhoff–Love shell model, to section 2.4.1 for more
information about static solution methods and to section 2.5 for more literature related to
wrinkling.

This chapter is in preparation to be submitted as a journal paper.
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4.1 Introduction
Wrinkling is a phenomenon that is omnipresent around us and appears at different scales:
it influences the thermo-conductivity of graphene on the nanoscale [148] and the reflec-
tivity of solar sails on the metre scale [486]. Wrinkling shapes floating leaves [643] and
plays an important role in cosmetics, for example in wound healing processes [527]. In
engineering, the wrinkling simulation is relevant in the design of airbags [209, 383], sails
[466], parachutes [548], and floating solar platforms [583]. Membrane wrinkling is influ-
enced by balancing potential energy stored in bending deformations, membrane deforma-
tions, or in fluid or solid foundations, as discussed in the seminal works of Cerda et al.
[92] and Pocivavsek et al. [442]. For further reference on the study of wrinkling from a
physics perspective, the reader is referred to the review papers by Wang et al. [611] on
tension-induced wrinkles, by Tan et al. [550] on wrinkles in curved surfaces, by Ma et al.
[370] on wrinkles in membranes with elasticity gradients, by Paulsen [434] on wrinkles in
membranes with low bending stiffness and high membrane stiffness, and by Li et al. [345]
for a complete but less recent review on wrinkling.

For engineering applications where wrinkling is an relevant factor, accurate and effi-
cient numerical modelling of wrinkling patterns becomes of great importance. In general,
the numerical modelling can be done in different ways: by explicitly modelling the wrin-
kling amplitudes and wave lengths using shell models, by using reduced-order models
based on the Föppl-Von Kármán plate equations, or by implicitly embedding the effects of
wrinkling in element formulations.

Firstly, the modelling of membrane wrinkling can be done using mathematical models
that account for the physics of thin films, including both membrane and bending effects.
Plate and shell models are particularly suited to simulate wrinkling patterns, whereas
membrane models lacking bending stiffness cannot capture wrinkle formations. Many
studies on the physics of wrinkling employed commercial finite element methods to nu-
merically investigate wrinkling under different conditions [179, 349, 367, 382, 403, 404,
427, 524, 531, 578, 628, 650, 651]. In addition, dedicated numerical models for the mod-
elling of wrinkling patterns have been developed. For initially flat geometries, the Föppl-
Von Kármán (FvK) model incorporating out-of-plane displacements and linear bending
strains has been applied [191, 233, 322, 346, 359, 514, 611, 652]. This FvK model has
been extended for hyperelastic materials, orthotropy, and general anisotropic properties
[190, 192, 599, 603, 609, 610]. Another model based on Koiter’s non-linear plate theory,
proposed by Steigmann [520], has been used to compute wrinkling cases involving shear,
holes, annuli, graphene, and reinforced plates [451, 551–554, 626]. In order to find wrin-
kling patterns, different algorithms searching for equilibrium solutions have been used,
including static methods like the dynamic relaxation method and Newton–Raphson, as
demonstrated by Taylor [551], or continuation methods such as the Arc-Length Method
[125, 469] and the Asymptotic Numerical Method (ANM) [103–105, 132, 400]. In general,
the advantage of models explicitly modelling wrinkling amplitudes and wave lengths is
that they resemble actual physics. However, when wrinkling wave lengths decrease, the
mesh size required to find the solutions typically decreases as well, implying increased
computational costs.
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Secondly, the so-called Fourier reduced model is a technique where the Föppl-Von Kár-
mán model is discretised using Fourier series expansions. Consequently, the model pro-
vides a multi-scale model where the large Fourier modes capture the macroscopic defor-
mations and the high-frequency content captures the wrinkling patterns. This technique,
introduced by Damil et al. [133–135], is efficient as it can predict wrinkling patterns with
few degrees of freedom, but it is inaccurate along boundaries. A remedy to that is to
combine it with full shell models [266]. Detailed reviews of this approach are given by
Potier-Ferry et al. [443] and Huang et al. [266]. And recent works include the extension to
cases with non-uniform wrinkling orientations [314] and the combination with the ANM
path following method [564]. Although the Fourier reduced model provides a reduction
in degrees of freedom, potentially independent of the wrinkling wave length, the applica-
bility of the method has not been fully demonstrated yet.

Thirdly, when modelling wrinkles implicitly, the goal is not necessarily to establish
the actual wrinkling pattern, but to estimate wrinkling sensitive parts of the structure
instead. Such models are typically driven by a so-called tension field [325, 374, 375, 465,
592, 593, 593], describing the state of parts of a membrane by being either taut, slack, or
wrinkled. Tension fields can be defined based on principal stresses, principal strains, or
a combination of those, as discussed by Kang & Im [300, 301] and Roddeman et al. [478],
among others. Depending on the tension field, constitutive or kinematic equations can
be modified to embed wrinkling effects into numerical methods; see the works of Le Mei-
tour et al. [332] and Miyazaki [390] for an overview. For example, Pipkin [438, 439] and
Steigmann & Green [521] proposed to modify the strain energy density function based
on the tension field, for which variational methods [395–397] and interior point models
[146] have been derived, and extensions for anisotropic and hyperelastic models have been
proposed [18, 19, 176, 380]. In addition, material matrix modifications instead of strain en-
ergy density modifications have been developed [3, 278, 279, 300, 301, 356]. Alternatively,
modification schemes based on deformation tensor modifications instead of constitutive
relation modifications were proposed by Roddeman et al. [476–478], and applied to or-
thotropic materials [399, 457]. Efficient implementations of this model were presented by
Lu et al. [365] and Nakashino & Natori [401], the latter authors applying it to isogeometric
membrane elements as well [402]. Although the model based on modifications of the de-
formation tensor provides a more generic approach, it has not been applied to hyperelastic
material modelling, to the best of the authors’ knowledge. Although implicit models do
not provide wrinkling amplitudes, post-processing methods for recovering wrinkling am-
plitudes have been proposed in the computer graphics community [95, 99, 288, 392, 515].

In this chapter, the wrinkling model of Nakashino & Natori [401, 402] is extended to
hyperelastic materials. To this end, the model of Roddeman et al. [477] is used, where
the deformation gradient is modified for a wrinkled material and, as a consequence, the
stress and material tensors are modified based on the tension field in the membrane. The
extension to hyperelastic materials introduces extra terms in the modified material tensor
due to the dependency of the wrinkling stresses on the strain tensor. Although the for-
mulations derived in this work apply to finite element methods, they are applied in the
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context of isogeometric analysis [268], as has been done by Nakashino et al. [402]. Since
finite bending stiffness is essential in the modelling of wrinkling amplitudes, reference
solutions are computed using the isogeometric Kirchhoff-Love shell model [319] with ex-
tensions to hyperelasticity [320, 587].

The chapter is outlined as follows: In section 4.2, the isogeometric membrane formu-
lation is introduced. This element is equivalent to an isogeometric Kirchhoff-Love shell
[319] without bending contributions. Section 4.3 recalls the original model by Nakashino
&Natori [401, 402] for linear elastic materials to introduce the original concept. Thereafter,
in section 4.4, the model of Nakashino et al. [402] is extended for hyperelastic materials.
In section 4.5, the numerical implementation of the model is discussed, and in section 4.6,
numerical benchmark results are provided. Lastly, section 4.7 provides conclusions and
recommendations for future work.

4.2 Isogeometric Membrane Formulation
In this section, the isogeometric membrane formulation is derived. The primary purpose
is to introduce the notations for geometric, kinematic, and constitutive quantities together
with the variational formulation for a membrane. Since the membrane closely relates to
parts of the Kirchhoff-Love shell, the notations are based on the ones used in [320, 587].
That is, basis vectors are denoted by lower-case bold and italic letters, e.g., 𝒂; second-order
tensors are denoted by upper-case bold letters, e.g., 𝐀; discrete vectors or second-order
tensors in Voight notation are denoted by upper-case bold and italic letters, e.g., 𝑨; and
matrices are denoted by upper-case letters, e.g., 𝐴. If needed, the notation [𝐴] is used to
emphasise a matrix. Lastly, Greek sub- and superscripts take values of 1,2, while Latin
sub- and superscripts take values of 1,2,3.

Consider surfaces ̊𝒙(𝜃1, 𝜃2) and 𝒙(𝜃1, 𝜃2) = ̊𝒙(𝜃1, 𝜃2) +𝒖(𝜃1, 𝜃2) denoting points in the
undeformed and deformed configurations of a membrane, respectively, with 𝜃𝛼 , 𝛼 = 1,2
the parametric coordinates of the surface and 𝒖(𝜃1, 𝜃2) the deformation vector field. Con-
sequently, the covariant basis vectors of the deformed and undeformed configurations are
defined by ̊𝒂𝛼 and 𝒂𝛼 , respectively, given by

̊𝒂𝛼 = 𝜕 ̊𝒙
𝜕𝜃𝛼 , (4.1)

and similar for the deformed configuration 𝒙 . In addition, ̊𝑎𝛼𝛽 = ̊𝒂𝛼 ⋅ ̊𝒂𝛽 are the coefficients
of the covariant metric tensor. The vectors ̊𝒂𝛼 and 𝒂𝛼 denote the contravariant basis
vectors of the undeformed and deformed membrane surfaces, with identity ̊𝒂𝛼 ⋅ ̊𝒂𝛽 = 𝛿𝛽𝛼
(similar for the basis vectors 𝒂𝛼 ) with 𝛿𝛽𝛼 = 1 if 𝛼 = 𝛽 and 0 otherwise. The contravariant
basis vectors are constructed via the metric tensor:

̊𝒂𝛼 = [ ̊𝑎𝛼𝛽 ]−1 ̊𝒂𝛽 , (4.2)

where [ ̊𝑎]−1 denotes the inverse of the metric tensor coefficient matrix [ ̊𝑎]. For the de-
formed configuration, the same relation holds between 𝒂𝛼 and 𝒂𝛼 .
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Remark 4.2.1. Contrary to the coordinate system for Kirchhoff-Love shells [319], the through
thickness coordinate 𝜃3 is omitted for the isogeometric membrane, assuming small thickness.
Therefore, it is assumed that deformations are constant through the thickness of the mem-
brane.

4.2.1 Kinematic Equation
The deformation gradient 𝐅 or the deformation tensor 𝐂 relate ̊𝒙 with 𝒙 as follows:¨

𝐅 = 𝒂𝛼 ⊗ ̊𝒂𝛽 , 𝐂 = 𝐅⊤𝐅 = 𝑎𝛼𝛽 ̊𝒂𝛼 ⊗ ̊𝒂𝛽 . (4.3)

Using these quantities, the Green-Lagrange strain tensor 𝐄 is defined by

𝐄 = 1
2(𝐅

⊤𝐅− 𝐈) = 1
2(𝐂− 𝐈) = 1

2(𝑎𝛼𝛽 − ̊𝑎𝛼𝛽) = 𝐸𝛼𝛽 ̊𝒂𝛼 ⊗ ̊𝒂𝛽 , (4.4)

where 𝐈 = ̊𝑎𝛼𝛽 ̊𝒂𝛼 ⊗ ̊𝒂𝛽 is the identity tensor. The second Piola-Kirchhoff stress tensor 𝐒 is
defined through the constitutive relation; see section 4.2.2.

4.2.2 Constitutive Relation
The relation between the Green-Lagrange strain tensor 𝐄 to the second Piola-Kirchhoff
stress tensor 𝐒. In the following, the indices 𝑖, 𝑗,𝑘, 𝑙 = 1,…,3 are used, representing the co-
variant and contravariant bases related to three parametric directions: parameters 𝜃1 and
𝜃2 represent the in-plane surface coordinates, and 𝜃3 represents the through-thickness
coordinate in the direction of the unit normal vector ̂𝒂3.

For linear elastic materials, the stress and strain tensors are simply related via the
following relation:

𝐒 = 𝓒 ∶ 𝐄 = 𝑆𝑖𝑗 ̊𝒂𝑖 ⊗ ̊𝒂𝑗 , (4.5)

where the coefficients of the stress tensor, 𝑆𝑖𝑗 , are given by 𝑆𝑖𝑗 = 𝒞 𝑖𝑗𝑘𝑙𝐸𝑘𝑙 . For a Saint
Venant-Kirchhoff material with Lamé parameters 𝜆 and 𝜇, the coefficients of the material
tensor are given by:

𝒞 𝑖𝑗𝑘𝑙 = 2𝜆𝜇
𝜆 +2𝜇 ̊𝑎𝑖𝑗 ̊𝑎𝑘𝑙 +𝜇( ̊𝑎𝑖𝑘 ̊𝑎𝑗𝑙 + ̊𝑎𝑖𝑙 ̊𝑎𝑗𝑘). (4.6)

For hyperelastic materials, the constitutive relationship is defined through the strain en-
ergy density function Ψ(𝐂) or Ψ(𝐄). In particular, the coefficients of the second Piola-
Kirchhoff stress tensor are given by

𝑆𝑖𝑗 = 2 𝜕Ψ
𝜕𝐶𝑖𝑗

= 𝜕Ψ
𝜕𝐸𝑖𝑗

. (4.7)

Thematerial tensor𝒞 𝑖𝑗𝑘𝑙 is not required in the derivation of the tensor 𝐒; however, it plays
a role in the definition of the variation of the stress tensor, 𝛿𝐒, as shown in equation (4.21).
In terms of the strain energy density function, the coefficients of the material tensor are
defined by

𝐶 𝑖𝑗𝑘𝑙 = 𝜕𝑆𝑖𝑗
𝜕𝐶𝑘𝑙

= 4 𝜕2Ψ
𝜕𝐶𝑖𝑗𝜕𝐶𝑘𝑙

. (4.8)
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As for the isogeometric Kirchhoff-Love shell, through thickness deformation is neglected,
meaning that 𝐶33 = 1. This violates the plane stress condition (𝑆33 = 0) since 𝑆33 = 𝜕Ψ

𝜕𝐶33
≠ 0.

To satisfy the plane stress condition, the normal deformation 𝐶33 needs to be modified. As
described for hyperelastic shells in [320], this can be done analytically for incompressible
materials using the property that the Jacobian determinant, given by:

𝐽 =
√
|𝑎𝛼𝛽 |
| ̊𝑎𝛼𝛽 | √

𝐶33, (4.9)

is unity, i.e., 𝐽 = 1. For compressible materials, the plane stress condition is iteratively
satisfied, as discussed in [320]. Finally, static condensation of the material tensor results
in the in-plane material tensor �̂�𝛼𝛽𝛾𝛿 [320]:

�̂�𝛼𝛽𝛾𝛿 = 𝒞 𝛼𝛽𝛾𝛿 − 𝒞 𝛼𝛽33𝒞 33𝛾𝛿

𝒞 3333 . (4.10)

For incompressible materials, it can be found that the coefficients of the statically con-
densed material tensor are [320]:

𝒞 𝛼𝛽𝛾𝛿 = 4 𝜕2Ψ
𝜕𝐶𝛼𝛽𝜕𝐶𝛾𝛿

+4 𝜕
2Ψ

𝜕𝐶233
𝐽−40 𝑎𝛼𝛽𝑎𝛾𝛿 −4 𝜕2Ψ

𝜕𝐶33𝜕𝐶𝛼𝛽
𝐽−20 𝑎𝛾𝛿 −4 𝜕2Ψ

𝜕𝐶33𝜕𝐶𝛾𝛿
𝐽−20 𝑎𝛼𝛽

+2 𝜕Ψ
𝜕𝐶33

𝐽−20 (2𝑎𝛼𝛽𝑎𝛾𝛿 +𝑎𝛼𝛾𝑎𝛽𝛿 +𝑎𝛼𝛿𝑎𝛽𝛾 ) (4.11)

Lastly, the tensor 𝝈 = 𝐽−1𝐅⊤𝐒𝐅 is the Cauchy stress tensor, which is used for stress
recovery.

Example 4.2.1. For a Neo-Hookean material model with Ψ(𝐂) = 1
2𝜇(𝐼1(𝐂) − 3), where 𝜇 is

Lamé’s second parameter, equation (4.11) simplifies to

�̂�𝛼𝛽𝛾𝛿 = 𝜇𝐽−20 (2𝑎𝛼𝛽𝑎𝛾𝛿 +𝑎𝛼𝛾𝑎𝛽𝛿 +𝑎𝛼𝛿𝑎𝛽𝛾 ). (4.12)

4.2.3 Variational Formulation
The variational formulation for membranes follows from a variation of the internal and
external energy contributions. For derivation of the variational formulation for isogeo-
metric membranes, the reader is referred to [402] or to works on the Kirchhoff-Love shell
[319, 320] omitting the bending stiffness contributions. The elastic energy is given by

𝒲int = −12 ∫Ω⋆
𝐒 ∶ 𝐄dΩ⋆ . (4.13)

Here, Ω⋆ = Ω×[−𝑡/2, 𝑡/2] denotes the integration domain, with 𝑡 the thickness of the mem-
brane and Ω the surface domain. Taking the Gateaux derivative with respect to the dis-
placements 𝒖, the variation of the internal elastic energy is:

𝛿𝒲int = −∫Ω⋆
𝐒 ∶ 𝛿𝐄dΩ⋆ = −∫Ω⋆

𝐍 ∶ 𝛿𝐄dΩ⋆ , (4.14)
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where the tensor 𝐍 denotes the membrane force tensor, obtained by integrating the stress
tensor 𝐒 through the thickness of the membrane. Since the thickness of the membrane is
small (see remark 4.2.1), the thickness integral becomes:

𝐍(𝜃1, 𝜃2) = ∫[−𝑡/2,𝑡/2]
𝐒(𝜃1, 𝜃2, 𝜃3)d𝜃3 ≈ 𝑡𝐒(𝜃1, 𝜃2, 0). (4.15)

The external virtual work is provided by the following:

𝛿𝒲ext = ∫Ω
𝛿𝒖 ⋅ 𝒇 (𝒖)dΩ+∫𝜕Ω

𝒈 ⋅ 𝛿𝒖dΓ , (4.16)

where 𝒇 (𝒙) is a vector representing a follower-load acting on a point on the deformed
surface 𝒙(𝜃1, 𝜃2) and 𝒈 is a line load acting on the boundary 𝜕Ω. When the sum of the
internal and external virtual work is zero, i.e.

𝛿𝒲 (𝒖,𝛿𝒖) = 𝛿𝒲int −𝛿𝒲ext = 0, (4.17)

equilibrium is found. Since 𝛿𝒲 (𝒖,𝛿𝒖) is non-linear, solving the equation requires lin-
earization. The second variation of the internal energy 𝒲int in the system is given by:

𝛿2𝒲int(𝒖,𝛿𝒖,Δ𝒖) = −∫Ω
𝛿𝐍 ∶ 𝛿𝐄+𝐍 ∶ 𝛿2𝐄dΩ. (4.18)

Here, 𝛿2𝐄 denotes the second variation of the Green-Lagrange strain tensor. Since the
external virtual work from equation (4.16) depends on the solution 𝒖, its second variation
is non-zero and given by:

𝛿2𝒲ext(𝒖,𝛿𝒖,Δ𝒖) = ∫Ω
𝛿𝒖 ⋅ 𝒇 ′(𝒖,Δ𝒖)dΩ. (4.19)

For a follower pressure, 𝒇 = 𝑝 ̂𝒂3, and its variation is 𝒇 ′ = 𝑝 ̂𝒂′3(𝒖,Δ𝒖). Here ̂𝒂3(𝒖) and
̂𝒂′3(𝒖,Δ𝒖) are the unit normal vector and its variation, respectively, which can be found in

the derivation of the Kirchhoff–Love shell [319]. Furthermore, the variation of the normal
force tensor is:

𝛿𝐍 = ∫Ω
𝛿𝐒dΩ. (4.20)

Here, the variation of the second Piola-Kirchhoff stress tensor is defined as:

𝛿𝐒 = 𝓒 ∶ 𝛿𝐄. (4.21)

Equations (4.18) and (4.21) show that given the variations 𝛿𝐄 and 𝛿2𝐄, the first and second
variations of the internal energy 𝛿𝑊int and 𝛿2𝒲int from equations (4.17) and (4.18) can be
found. Since the deformed configuration 𝒙 is unknown, the problem needs to be discre-
tised such that the variations of 𝐄 can be defined.
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4.2.4 Discretisation
Discretisation of the variational problem in equation (4.17) is achieved by discretising the
undeformed and deformed configurations ̊𝒙 and 𝒙 , respectively. In the context of isoge-
ometric analysis, this is done by choosing splines as a basis for the geometry, i.e., by de-
scribing the geometries as a weighted sum of basis functions 𝜑𝑖(𝜃1, 𝜃2) and control points
̊𝒙ℎ𝑖 and 𝒙ℎ𝑖 , respectively:

̊𝒙ℎ(𝜃1, 𝜃2) =∑
𝑘
𝜑𝑘(𝜃1, 𝜃2) ̊𝒙ℎ𝑘 ,

𝒙ℎ(𝜃1, 𝜃2) =∑
𝑘
𝜑𝑘(𝜃1, 𝜃2)𝒙ℎ𝑘 .

(4.22)

The superscript ℎ indicates a discretisation of the undeformed and deformed geometries,
̊𝒙 and 𝒙 , respectively. Using the same basis for ̊𝒙ℎ and 𝒙ℎ, the discrete displacement vec-

tor 𝒖ℎ is given as the difference between the two, i.e., 𝒖ℎ = 𝒙ℎ − ̊𝒙ℎ. Since the variational
formulation is expressed in terms of the displacement field 𝒖, the variations of the con-
trol points of the field 𝒖ℎ are the virtual displacements in the discrete system, hence the
unknowns. In the sequel, the subscripts 𝑟 and 𝑠 denote the indices of the components
of conveniently numbered degrees of freedom of 𝒖ℎ incorporating the spatial dimensions
of the surface. Furthermore, the notation (⋅)𝑟 = 𝜕(⋅)𝜕𝑢𝑟 is used for derivatives, and the
superscript ℎ is omitted. Following from equation (4.22), the variation of the deformed
geometry is given by

𝒙,𝑟 =∑
𝑘
( ̊𝒙𝑘,𝑟 +𝒖𝑘,𝑟) =∑

𝑘
𝜑𝑘𝒖𝑘,𝑟 = 𝒖,𝑟 , (4.23)

where the last equality follows from the fact that the undeformed configuration is trivially
independent of the deformation field 𝒖. Similarly, the derivatives of the covariant basis
vectors 𝒂𝛼 of the discrete deformed configuration 𝒙ℎ, see equation (4.23), are:

𝒂𝛼,𝑟 = ( 𝜕𝒙𝑘𝜕𝜃𝛼 ),𝑟
=∑

𝑘

𝜕𝜑𝑘
𝜕𝜃𝛼 𝒖𝑘,𝑟 . (4.24)

As a consequence, the variation of the surface metric tensor of the deformed configuration,
𝑎𝛼𝛽 , becomes:

𝑎𝛼𝛽,𝑟 = (𝒂𝛼 ⋅ 𝒂𝛽)𝑟 = 𝒂𝛼,𝑟 ⋅ 𝒂𝛽 +𝒂𝛼 ⋅ 𝒂𝛽,𝑟 . (4.25)

Since the undeformed configuration is invariant to the deformation field 𝒖, the first vari-
ation of the membrane strain tensor 𝜺 from equation (4.4) becomes

𝐸𝛼𝛽,𝑟 =
1
2𝑎𝛼𝛽,𝑟 . (4.26)

Similarly, the second variation of the deformed configuration, the deformed surface metric
tensor, and the membrane strain can be derived. Starting with the first variation of the
deformed configuration from equation (4.23), the second variation becomes

𝒙,𝑟𝑠 =∑
𝑘
𝜑𝑘𝒖𝑘,𝑟𝑠 = 0. (4.27)
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The second variation of 𝒖𝑘 is zero since the components of these nodal weights are linear
in 𝑢𝑟 . Similarly, 𝒂𝛼,𝑟𝑠 = 0. As a consequence, the second variation of the surface metric
tensor in the deformed configuration, 𝑎𝛼𝛽 , becomes

𝑎𝛼𝛽,𝑟𝑠 = 𝒂𝛼,𝑟𝑠 ⋅ 𝒂𝛽 +𝒂𝛼,𝑟 ⋅ 𝒂𝛽,𝑠 +𝒂𝛼,𝑠 ⋅ 𝒂𝛽,𝑠 +𝒂𝛼 ⋅ 𝒂𝛽,𝑟𝑠 ,= 𝒂𝛼,𝑟 ⋅ 𝒂𝛽,𝑠 +𝒂𝛼,𝑠 ⋅ 𝒂𝛽,𝑠 . (4.28)

Again, since the undeformed configuration is invariant to the deformation field 𝒖, the
second variation of the membrane strain tensor becomes

𝐸𝛼𝛽,𝑟𝑠 =
1
2𝑎𝛼𝛽,𝑟𝑠 (4.29)

Since 𝐸𝛼𝛽,𝑟 and 𝐸𝛼𝛽,𝑟𝑠 are the discrete variations of 𝛿𝐄 and 𝛿2𝐄, respectively, the dis-
crete residual and Jacobian can be derived. The discrete residual vector follows from equa-
tion (4.17) with equations (4.14) to (4.16) and (4.26):

𝑅𝑟 (𝒖) = ∫Ω
𝐍(𝒖) ∶ 𝐄,𝑟 (𝒖)dΩ−∫Ω

𝒇 (𝒖) ⋅ 𝒖,𝑟 dΩ. (4.30)

Furthermore, the discrete Jacobianmatrix follows from equation (4.18)with equations (4.14),
(4.15), (4.19), (4.20), (4.26) and (4.29):

𝐾𝑟𝑠 = ∫Ω
𝐍,𝑠(𝒖) ∶ 𝐄,𝑟 (𝒖)+𝐍(𝒖) ∶ 𝐄,𝑟𝑠(𝒖)dΩ−∫Ω

𝒇 (𝒖),𝑠 ⋅ 𝒖,𝑟 dΩ. (4.31)

Here, the product 𝐀 ∶ 𝐁 denotes an inner product of two second-order tensors. Further-
more, the contribution of the displacement-dependent load 𝒇 (𝒖) requires a derivative, de-
fined as 𝒇 (𝒖),𝑠 = 𝑝 ̂𝒂3,𝑠 for a follower pressure, where ̂𝒂3,𝑠(𝒖) is the discrete derivative of the
surface normal vector ̂𝒂3(𝒖), which can be found in the derivations of the Kirchhoff–Love
shell [319]. The contribution 𝒇 (𝒖) ⋅ 𝒖,𝑟𝑠 = 0 since 𝒖,𝑟𝑠 = 0 [316]. Given the discretisation
of 𝒙 and ̊𝒙 using splines, see equation (4.22), and given the residual and Jacobian from
equations (4.30) and (4.31), respectively, only the definition of the stress tensor 𝐒 and the
material tensor 𝓒 are remaining undefined. In sections 4.3 and 4.4, definitions for 𝐒 and
𝓒 are provided, incorporating the wrinkling model of Nakashino & Natori [401] for linear
elasticity and incorporating the extension for hyperelastic materials, which is the novelty
of this chapter.

4.2.5 Implementation
Since the tensors 𝐄 and 𝐒 are symmetric second-order tensors, they can be written in
Voight notation:

𝑺 = [𝑆11 𝑆22 𝑆12]⊤ , 𝑬 = [𝐸11 𝐸22 2𝐸12]⊤ . (4.32)

As a consequence, the material tensor is represented in Voight notation as well, using
equation (4.21):

𝑪 = [
𝒞 1111 𝒞 1122 𝒞 1112
𝒞 2211 𝒞 2222 𝒞 2212
𝒞 1211 𝒞 1222 𝒞 1212

] . (4.33)
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Using Voight notation for the tensors 𝐄, 𝐒, and𝓒, the second-order tensor inner products
∶ in equations (4.21), (4.30) and (4.31) can simply be evaluated as matrix-vector products
and vector inner-products. In sections 4.3.4 and 4.4.3, the elastic and hyperelastic constitu-
tive laws for wrinkling are provided in Voight notations for fast computer implementation.

4.3 Linear Elastic Wrinkling Model
In the linear elastic wrinkling model, the taut, wrinkling, and slack conditions are gov-
erned by a modification of the deformation gradient and consequently the strain, stress,
and material tensors, following the model originally proposed by Roddeman et al. [477,
478]. This model lays the foundation of the wrinkling model proposed by Nakashino &
Natori [401], which was later implemented for isogeometric membranes [402]. This model
is presented with the assumption that the material behaviour is linear; therefore, it is re-
ferred to herein as the linear elastic wrinkling model. In this section, an overview of
the linear elastic wrinkling model proposed by Nakashino & Natori [401] is provided. In
section 4.4, the linear elastic wrinkling model will be extended to hyperelastic material
models.

In general, tension field-based models rely on the definition of a tension field 𝜙 over
the domain. A tension field classifies the stress state in a membrane as either slack, taut, or
wrinkled, depending on the deformation tensor 𝑪. In general, three different definitions of
the tension field are used in the literature: based on principal strains, principal stresses, or
combinations of those (mixed), in this chapter represented by 𝜙𝐸 , 𝜙𝑆 , and 𝜙𝑀 , respectively.
These tension fields are defined as:

𝜙𝐸 =
⎧
⎨
⎩

Taut if𝐸𝑝,1 > 0
Slack if𝐸𝑝,2 ≤ 0
Wrinkled otherwise

, 𝜙𝑆 =
⎧
⎨
⎩

Taut if 𝑆𝑝,1 > 0
Slack if 𝑆𝑝,2 ≤ 0
Wrinkled otherwise

,

𝜙𝑀 =
⎧
⎨
⎩

Taut if 𝑆𝑝,1 > 0
Slack if𝐸𝑝,2 ≤ 0
Wrinkled otherwise

, (4.34)

where 𝑆𝑝,1 and 𝑆𝑝,2 are the principal stresses such that 𝑆𝑝,1 ≤ 𝑆𝑝,2 and 𝐸𝑝,1 and 𝐸𝑝,2 are
the principal strains such that 𝐸𝑝,1 ≤ 𝐸𝑝,2. Given the tension field, tension field models
typically modify the stress tensor 𝐒 and consequently the material tensor 𝓒 based on the
tension field:

𝐒 = {
0 if 𝜙 = Slack
𝐒 if 𝜙 = Taut
𝐒′ if 𝜙 = Wrinkled

, 𝓒 = {
0 if 𝜙 = Slack
𝓒 if 𝜙 = Taut
𝓒′ if 𝜙 = Wrinkled

, (4.35)

where 𝐒′ is a modified stress tensor. This modified stress tensor can be obtained in dif-
ferent ways, either by adjusting the constitutive or kinematic equations provided by the
tension field. For example, the work of [6] modifies the Ogden constitutive relation based
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on the tension field 𝜙𝑆 , whereas [401] modifies the kinematic equation based on 𝜙𝑀 . In
this chapter, the approach of [401] is followed. As discussed in the work of Kang & Im
[300], the definition of the tension field using 𝜙𝑀 has advantages over 𝜙𝐸 and 𝜙𝑆 .

4.3.1 Kinematic Equation
Given the deformation gradient 𝐅, the modified deformation gradient [477, 478] is given
by

𝐅′ = (𝐈+𝑏�̂� ⊗ �̂�) ⋅ 𝐅. (4.36)
Here, 𝐈 is the second-order identity tensor, and 𝑏 is the measure of the amount of ‘wrin-
kliness’ [365, 401, 478], by definition 𝑏 > 0. Furthermore, �̂� is the unit vector transverse
to the wrinkles. Using the modified deformation tensor, the modified strain tensor can be
computed, given by:

𝐄′ = 𝐸′𝛼𝛽 ̊𝒂𝛼 ⊗ ̊𝒂𝛽 = 1
2(𝐅

′⊤ ⋅ 𝐅′ − 𝐈) = 𝐄+𝐄𝑊 , (4.37)

where 𝐄 = 𝐅⊤𝐅− 𝐈 = 𝐂− 𝐈 is the Green-Lagrange strain with

𝐂 = 𝐶𝛼𝛽 ̊𝒂𝛼 ⊗ ̊𝒂𝛽 = 𝑎𝛼𝑎𝛽 ̊𝒂𝛼 ⊗ ̊𝒂𝛽 , (4.38)

being the deformation tensor. 𝐄𝑊 is the wrinkling strain, given by

𝐄𝑊 = 1
2𝑏(𝑏 +2)

̂�̂� ⊗ ̂�̂�. (4.39)

Here, �̂� = 𝒘 ⋅ 𝐅 = 𝑤𝑎 ̊𝒂𝛼 is the projection of �̂� onto the undeformed contravariant basis.
Introducing the rotation 𝜗 and magnitude 𝑎 ≠ 0 of the projected wrinkling direction �̂�
using �̂�1 = 𝑎𝑛1 and �̂�2 = 𝑎𝑛2 using 𝑛1 = cos𝜗 and 𝑛2 = sin𝜗 , the coefficients of thewrinkling
strain tensor can be written as

𝐸′𝛼𝛽 = 𝐸𝛼𝛽 +
1
2(𝐅

′⊤𝐅′ − 𝐈) = 𝐸𝛼𝛽 +𝛾𝑛𝛼𝑛𝛽 , (4.40)

where 𝛾 = 1
2𝑎

2𝑏(𝑏 + 1). In this definition of the strain tensor 𝐄′, the wrinkling strain am-
plitude 𝛾 and the angle of the wrinkles 𝜗 are unknown. Through the uniaxial tension
condition for wrinkled materials, these unknowns will be determined in the next subsec-
tion.

4.3.2 Constitutive Relation
Since the definition of the strain tensor 𝐄 changes for the wrinkled state of the membrane,
the constitutive relation from equation (4.5) also changes. For linear materials, the wrin-
kled stress tensor 𝐒′ simply becomes:

𝐒′ = 𝓒 ∶ 𝐄′ = 𝓒 ∶ (𝐄+𝐄𝑊 ), (4.41)

Where 𝐄𝑊 depends on the unknowns 𝛾 and 𝜗 , as in equation (4.40). This equation can
also be written in terms of the component of the stress tensor 𝐒′ = 𝑆′𝛼𝛽 ̊𝒂𝛼 ⊗ ̊𝒂𝛽 :

𝑆′𝛼𝛽 = 𝒞 𝛼𝛽𝛾𝛿 (𝐸𝛾𝛿 +𝛾𝑛𝛾𝑛𝛿 ) = 𝑆𝛼𝛽 +𝛾𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿 . (4.42)
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For a wrinkled membrane, an uniaxial tension state is assumed [356], meaning the stress
orthogonal to the wrinkles should vanish,

𝜎 ′ ⋅𝒘 = 0, (4.43)

And the stress parallel to the wrinkles should be positive

𝒕 ⋅ 𝜎 ′ ⋅ 𝒕 = 0. (4.44)

Here, 𝜎 ′ = 1
det𝐅′ 𝐅

′𝐒′𝐅′⊤ is the modified Cauchy stress tensor. The uniaxial tension condi-
tion in equation (4.43) can be written as

𝐒′ ⋅𝒘 = 0, (4.45)

Using the components 𝑛𝛼 and 𝑛𝛽 , the conditions equations (4.43) and (4.44) can be written
as [365, 401]:

𝑆′𝛼𝑛𝛼𝑛𝛽 = 0,
𝑆′𝛼𝛽𝑚𝛼𝑛𝛽 = 0,
𝐸′𝛼𝛽𝑚𝛼𝑚𝛽 > 0,

(4.46)

Here, 𝑚𝛼 = 𝜕𝑛𝛼 /𝜕𝜗 . From equation (4.42), the uniaxial tension condition equation (4.46)
becomes:

𝑆𝛼𝛽𝑛𝛼𝑛𝛽 +𝛾𝒞 𝛼𝛽𝛾𝛿𝑛𝛼𝑛𝛽𝑛𝛾𝑛𝛿 = 0,
𝑆𝛼𝛽𝑚𝛼𝑛𝛽 +𝛾𝒞 𝛼𝛽𝛾𝛿𝑚𝛼𝑛𝛽𝑛𝛾𝑛𝛿 = 0. (4.47)

From the first line of equation (4.47), the variable 𝛾 can be found as:

𝛾 = − 𝑆𝛼𝛽𝑛𝛼𝑛𝛽
𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽

, (4.48)

and substituting 𝛾 in the second line of equation (4.47), the following equation is found:

𝑓 (𝜗) ≡ 𝑆𝛼𝛽𝑚𝛼𝑛𝛽 +𝛾𝒞 𝛼𝛽𝛾𝛿𝑚𝛼𝑛𝛽𝑛𝛾𝑛𝛿 = 0. (4.49)

The only unknown in this equation is the angle 𝜗 , thus the equation can be solved by
root finding. The root 𝜗 of 𝑓 (𝜗) = 0 must satisfy the uniaxial tension conditions equa-
tions (4.43) and (4.44). Since 𝑓 (𝜗) follows from equation (4.43), the first uniaxial tension
condition is satisfied when the root is found. The condition for positive stress along the
wrinkling direction, i.e., equation (4.44), is satisfied by selecting the feasible root. In the
work of [356], the bounds of an interval for the root that satisfies equation (4.44) are de-
rived, such that a bounded root finding algorithm, e.g., Brent’s method [71], can be used.
If the procedure to find the root 𝜗 fails on the prescribed interval, the domain [0,2𝜋] can
be subdivided into sub-intervals [𝜗𝐴, 𝜗𝐵) ∈ [0,2𝜋], and Brent’s method can be started for
each sub-interval [𝜗𝐴, 𝜗𝐵) ∈ [0,2𝜋] that satisfies 𝑓 (𝜗𝐴)𝑓 (𝜗𝐵) < 0. The root 𝜗 = 0 is a root if
and only if lim𝜗→0 𝑓 (𝜗)𝑓 (2𝜋 −𝜗) < 0. As soon as the angle 𝜗 is found, the wrinkling strain
𝐄′ from equation (4.40) and the wrinkling stress 𝐒′ from equation (4.42) can be computed.
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4.3.3 Variational Formulation
In the variational equation from equation (4.17), the variation of the strain tensor 𝐄 and
stress tensor 𝐒, respectively 𝛿𝐄 and 𝛿𝐒, are required. For the taut state, the variations re-
main unchanged, as seen in equation (4.35). In the slack state, the stress tensor and its
variation are equal to zero, hence the variation of the internal energy becomes zero. For
the wrinkling state, the variations of 𝐄′ and 𝐒′ need to be found.

Firstly, the variation of 𝐄′ is independent of the constitutive law [401]. Here, it is
shown that the contribution of the virtual wrinkling strain, 𝛿𝐄𝑊 , in the variational for-
mulation is zero, since the product of the wrinkling stress tensors 𝐒′ and 𝛿𝐄𝑊 is zero.
Physically, this means that the wrinkling strain corresponds to the rigid body movements
to stretch the wrinkled membrane, hence not altering the strain energy.

Secondly, the variation of 𝐒′ needs to be found. Taking the variation of equation (4.42),
it follows that:

𝛿𝑆′𝛼𝛽 (𝐄) = d𝑆′𝛼𝛽
d𝐸𝜎𝜏

𝛿𝐸𝜎𝜏 = 𝒞 ′𝛼𝛽𝜎𝜏 𝛿𝐸𝜎𝜏

= (𝜕𝑆
𝛼𝛽

𝜕𝐸𝜎𝜏
+ d𝛾
d𝐸𝜎𝜏

𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿 +𝛾𝒞 𝛼𝛽𝛾𝛿 d(𝑛𝛾𝑛𝛿 )
d𝐸𝜎𝜏

)𝛿𝐸𝜎𝜏 .
(4.50)

The full derivative of 𝛾 with respect to 𝐸𝜎𝜏 can be found using the definition of 𝛾 from
equation (4.48):

d𝛾
d𝐸𝜎𝜏

= 𝜕𝛾
𝜕𝐸𝜎𝜏

+ 𝜕𝛾
𝜕𝜗

𝜕𝜗
𝜕𝐸𝜎𝜏

. (4.51)

The derivative of (𝑛𝛾𝑛𝛿 ) to 𝐸𝜎𝜏 directly follows from the definitions of 𝑛𝛼 and𝑚𝛼 and
a chain rule,

d(𝑛𝛾𝑛𝛿 )
d𝐸𝜎𝜏

= 𝜕(𝑛𝛾𝑛𝛿 )
𝜕𝜗

𝜕𝜗
𝜕𝐸𝜎𝜏

= (𝑚𝛾𝑛𝛿 +𝑛𝛾𝑚𝛿)
𝜕𝜗
𝜕𝐸𝜎𝜏

. (4.52)

The derivative of 𝛾 with respect to 𝜗 follows from equation (4.48):

𝜕𝛾
𝜕𝜗 = −

(𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽)(𝑆𝛼𝛽 𝜕(𝑛𝛼𝑛𝛽 )
𝜕𝜗 )−(𝑆𝛼𝛽𝑛𝛼𝑛𝛽)(𝒞 𝛼𝛽𝛾𝛿( 𝜕(𝑛𝛾𝑛𝛿 )𝜕𝜗 𝑛𝛼𝑛𝛽 +𝑛𝛾𝑛𝛿 𝜕(𝑛𝛼𝑛𝛽 )𝜕𝜗 ))

(𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽)
2

= −
𝛾𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿 𝜕(𝑛𝛼𝑛𝛽 )𝜕𝜗
𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽

,
(4.53)

where equations (4.47), (4.48) and (4.52) are used in the second equality. Furthermore, the
derivative 𝜕𝛾

𝜕𝐸𝛼𝛽
follows directly from equation (4.48)

𝜕𝛾
𝜕𝐸𝜎𝜏

= − 𝒞 𝛼𝛽𝜎𝜏𝑛𝛼𝑛𝛽
𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽

. (4.54)
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Lastly, the derivative of the angle 𝜗 with respect to the strain tensor component 𝐸𝜎𝜏 can
be found by using equation (4.49)

𝜕𝑓
𝜕𝐸𝜎𝜏

+ 𝜕𝑓
𝜕𝜗

𝜕𝜗
𝜕𝐸𝜎𝜏

= 0, (4.55)

giving:
𝜕𝜗
𝜕𝐸𝜎𝜏

= − 𝜕𝑓
𝜕𝐸𝜎𝜏

(𝜕𝑓𝜕𝜗 )
−1
. (4.56)

The derivative of 𝑓 with respect to 𝐄 directly follows from equation (4.49):

𝜕𝑓
𝜕𝐸𝜎𝜏

= 𝒞 𝛼𝛽𝜎𝜏𝑚𝛼𝑛𝛽 −
𝜕𝛾
𝜕𝐸𝜎𝜏

𝒞 𝛼𝛽𝛾𝛿𝑚𝛾𝑛𝛿𝑛𝛼𝑛𝛽 , (4.57)

and the derivative of 𝑓 with respect to 𝜗 follows from equation (4.49) as well:

𝜕𝑓
𝜕𝜗 = 𝑆𝛼𝛽 𝜕(𝑚𝛼𝑛𝛽 )

𝜕𝜗 + 𝜕𝛾
𝜕𝜗 𝒞

𝛼𝛽𝛾𝛿𝑚𝛼𝑛𝛽𝑛𝛾𝑛𝛿 +𝛾𝒞 𝛼𝛽𝛾𝛿(𝜕(𝑚𝛼𝑛𝛽 )
𝜕𝜗 𝑛𝛾𝑛𝛿 +𝑚𝛼𝑛𝛽

𝜕(𝑛𝛾𝑛𝛿 )
𝜕𝜗 ),

(4.58)
Where the derivative of𝑚𝛼𝑛𝛽 with respect to 𝜗 can be easily obtained from the definitions
of 𝑚𝛼 and 𝑛𝛼 : 𝜕(𝑚𝛼𝑛𝛽 )

𝜕𝜗 = −𝑛𝛼𝑛𝛽 +𝑚𝛼𝑚𝛽 . (4.59)

Using equations (4.53) to (4.58), the variation of 𝐒 from equation (4.50) is found, as well
as the definition of the modified material tensor 𝓒′.

4.3.4 Implementation
As discussed in the work of Nakashino & Natori [401], the modifications of the stress and
material tensor for the wrinkling model, see equations (4.42) and (4.50), can be expressed
in terms of matrix-vector multiplications when employing Voight notation for the stress
and strain tensors, 𝐒 and 𝐄, respectively, see equations (4.32) and (4.33). Following the
notation of Nakashino & Natori [401], the terms 𝑛𝛼 and 𝑚𝛼 are collected in the following
vectors:

𝒏1 = [𝑛1𝑛1 𝑛2𝑛2 2𝑛1𝑛2]⊤ ,
𝒏2 = [𝑛1𝑚1 𝑛2𝑚2 𝑛1𝑚2 +𝑚1𝑛2]⊤ = 1

2
𝜕𝒏1
𝜕𝜗

𝒏3 = [𝑚1𝑚1 −𝑛1𝑛1 𝑚2𝑚2 −𝑛2𝑛2 2(𝑚1𝑚2 −𝑛1𝑛2)]⊤ = 𝜕𝒏2
𝜕𝜗 ,

𝒏4 = [𝑚1𝑚1 𝑚2𝑚2 2𝑚1𝑚2]⊤ = 𝒏3 +𝒏1.

(4.60)

Using equation (4.60), thewrinkled stress and strain tensors from equations (4.40) and (4.42)
are written in Voight notation as

𝑺′ = 𝑺 +𝛾𝑪 ⋅𝒏1, (4.61)
𝑬′ = 𝑬 +𝛾𝒏1. (4.62)
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Furthermore, using the Voight notation of the stress and strain tensor coefficients (equa-
tion (4.32)) together with equation (4.60), the formulations in equation (4.46) become:

𝑺′ ⋅ 𝒏1 = 0,
𝑺′ ⋅ 𝒏2 = 0,
𝑬′ ⋅ 𝒏4 > 0.

(4.63)

Following from these relations, the equations equation (4.48) and equation (4.49) are writ-
ten in Voight notation as

𝛾 = − 𝑺 ⋅𝒏1
𝒏⊤1 ⋅ 𝑪 ⋅𝒏1

, (4.64)

𝑓 (𝜗) = 𝑺 ⋅𝒏1 −𝛾𝒏⊤2 ⋅ 𝑪 ⋅𝒏1. (4.65)

To compute the wrinkling material tensor 𝑪′ in Voight notation, the derivatives from
equations (4.53) to (4.55) need to be expressed in terms of 𝑬 , 𝑺, 𝑪, and 𝒏𝑘 , 𝑘 = 1,…,4; see
equations (4.32), (4.33) and (4.60). The derivative of 𝛾 with respect to 𝜗 from equation (4.53)
becomes:

𝜕𝛾
𝜕𝜗 = −2𝛾 𝒏

⊤2 ⋅ 𝑪 ⋅𝒏1
𝒏⊤1 ⋅ 𝑪 ⋅𝒏1

. (4.66)

Furthermore, the derivative of 𝛾 with respect to 𝑬 becomes (see equation (4.54)):

[ 𝜕𝛾𝜕𝑬 ] = − 𝑪 ⋅𝒏1
𝒏⊤1 ⋅ 𝑪 ⋅𝒏1

, (4.67)

where the bracket [⋅] is used to stress that 𝜕𝛾
𝜕𝑬 is a vector with the derivatives of 𝛾 with

respect to 𝐸𝛼𝛽 ordered in Voight notation. To obtain the derivative of 𝜗 with respect to 𝑬 ,
the derivatives of 𝑓 with respect to 𝜗 and 𝑬 are used, as in equation (4.56). The derivative
of 𝑓 with respect to 𝑬 is a vector as well. Following from equation (4.55), it is given by:

[𝜕𝑓𝜕𝑬 ] = 𝑪 ⋅𝒏2 +(𝒏⊤2 ⋅ 𝑪 ⋅𝒏1)[
𝜕𝛾
𝜕𝑬 ], (4.68)

and the derivative of 𝑓 with respect to 𝜗 is obtained from equation (4.58):

𝜕𝑓
𝜕𝜗 = (𝒏⊤4 ⋅ 𝐒) +

𝜕𝛾
𝜕𝜗 (𝒏

⊤2 ⋅ 𝑪 ⋅𝒏1)+𝛾(𝒏⊤4 ⋅ 𝑪 ⋅𝒏1 +2𝒏⊤2 ⋅ 𝑪 ⋅𝒏2). (4.69)

Using equations (4.68) and (4.69), the derivative of 𝜗 with respect to 𝑬 in Voight notation
is simply obtained by scalar division, using equation (4.56):

[𝜕𝜗𝜕𝑬 ] = [𝜕𝑓𝜕𝑬 ]/
𝜕𝑓
𝜕𝜗 . (4.70)

Using the definition of 𝒞 ′ from equation (4.50), the matrix 𝑪′ can be expressed in
linear algebra operations using the scalars and vectors defined in equations (4.66), (4.67)
and (4.70):

𝑪′ = 𝑪(𝐈+𝒏1 ⊗[
𝜕𝛾
𝜕𝑬 ]+

𝜕𝛾
𝜕𝜗 𝒏1 ⊗[

𝜕𝜗
𝜕𝑬 ]+2𝛾𝒏2 ⊗[

𝜕𝜗
𝜕𝑬 ]). (4.71)
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By using the definition of the tension field 𝜙 from equation (4.34), the stress and ma-
terial tensors are defined using equation (4.35). Therefore, the assembly of the residual
and Jacobian from equations (4.30) and (4.31), respectively, involves computing the ten-
sion field and inserting the corresponding option from equation (4.35) on each integration
point.

Remark 4.3.1. The modification scheme presented in this section, originally proposed by
Nakashino & Natori [401], provides an analytical derivation of the derivative𝓒′ of the wrin-
kling stress tensor 𝐒′. Consequently, the definitions in equation (4.35) are consistent and
should provide optimal convergence in Newton–Raphson iterations. However, the definition
of 𝐒′ in equation (4.35) depends on the tension field 𝜙 from equation (4.34). The dependency of
𝐒′ on 𝜙 is not included in its derivative, and therefore the convergence behaviour of Newton–
Raphson iterations can be suboptimal or diverging.

4.4 Hyperelastic Wrinkling Model
In this section, the novelty of this chapter is presented. The theory from Nakashino & Na-
tori [401], recalled in the previous section section 4.3, is extended to hyperelastic materials.
The outline of this section is similar to the outline of section 4.3, but since the assumption
for hyperelastic materials only affects the constitutive relation, the kinematic equations
are as in section 4.3, hence not included in this section. The present section primarily
presents the differences with the elastic theory from section 4.3, first for the constitutive
relation for the wrinkled membrane and then for the variational formulation.

4.4.1 Constitutive Relation
The derivation in section 4.3 assumes a linear elastic constitutive model in equation (4.42).
In the case of non-linear hyperelastic material models, the constitutive relation is defined
by a strain energy density function Ψ(𝐂) (see equation (4.7)), where 𝐂 = 𝐅⊤𝐅 = 𝑎𝛼𝛽 ̊𝒂𝛼 ⊗ ̊𝒂𝛽
is the deformation tensor (see equation (4.38)). In order to derive the wrinkling stress for
hyperelastic materials, denoted by 𝐒′ = 𝐒(𝐄′), the stress tensor is linearized around the
Green-Lagrange strain 𝐄, i.e.

𝐒′ = 𝐒(𝐄′) = 𝐒(𝐄+𝐄𝑊 ) = 𝐒(𝐄)+ 𝜕𝐒
𝜕𝐄 ∶ 𝐄𝑊 +𝒪(𝐄2𝑊 ) = 𝐒(𝐄)+𝓒(𝐄) ∶ 𝐄𝑊 +𝒪(𝐄2𝑊 )

≈ 𝐒(𝐄)+𝓒(𝐄) ∶ 𝐄𝑊 ,
(4.72)

In the second last equality, the definition of the material tensor 𝓒(𝐄) from equation (4.8)
is used. The definition in equation (4.72) is similar to equation (4.42) when the Taylor
expansion is truncated and the contribution of 𝒪(𝐄2𝑊 ) is neglected under the assumption
that 𝐄2𝑊 is small . Therefore, equivalent to equation (4.42), the coefficients of the wrinkling
stress tensor 𝐒′ are given by:

𝑆′𝛼𝛽 (𝐄) = 𝑆𝛼𝛽 (𝐄)+𝛾𝒞 (𝐄)𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿 . (4.73)
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Following from the hyperelastic modified wrinkling strain tensor from equation (4.72), the
hyperelastic counterpart of equation (4.47) is derived:

𝑆𝛼𝛽 (𝐄)𝑛𝛼𝑛𝛽 +𝛾𝓒(𝐄)𝛼𝛽𝛾𝛿𝑛𝛼𝑛𝛽𝑛𝛾𝑛𝛿 = 0,
𝑆𝛼𝛽 (𝐄)𝑚𝛼𝑛𝛽 +𝛾𝓒(𝐄)𝛼𝛽𝛾𝛿𝑚𝛼𝑛𝛽𝑛𝛾𝑛𝛿 = 0. (4.74)

From these equations, the hyperelastic counterpart of equation (4.48) is straightforward:

𝛾(𝐄) = − 𝑆𝛼𝛽 (𝐄)𝑛𝛼𝑛𝛽
𝒞 𝛼𝛽𝛾𝛿 (𝐄)𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽

, (4.75)

as well as the equation for 𝑓 (𝜗):
𝑓 (𝜗 ,𝐄) ≡ 𝑆𝛼𝛽 (𝐄)𝑚𝛼𝑛𝛽 +𝛾(𝐄)𝒞 𝛼𝛽𝛾𝛿 (𝐄)𝑚𝛼𝑛𝛽𝑛𝛾𝑛𝛿 = 0. (4.76)

Like in the linear expression in equation (4.49), the result in equation (4.76) is also de-
pendent on 𝐄, which is fixed while finding the root. In this way, the same root-finding
procedure can be applied as discussed for the linear elastic model.

4.4.2 Variational Formulation
For the hyperelastic model, the variation of the wrinkling stress tensor 𝐒′ is derived from
equation (4.73):

𝛿𝑆′𝛼𝛽 (𝐄) = 𝜕𝑆′𝛼𝛽
𝜕𝐸𝜎𝜏

𝛿𝐸𝜎𝜏 = 𝒞 ′𝛼𝛽𝜎𝜏 𝛿𝐸𝜎𝜏

= (𝜕𝑆
𝛼𝛽

𝜕𝐸𝜎𝜏
+ 𝜕𝛾
𝜕𝐸𝜎𝜏

𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿 +𝛾
𝜕𝒞 𝛼𝛽𝛾𝛿

𝜕𝐸𝜎𝜏
𝑛𝛾𝑛𝛿 +𝛾𝒞 𝛼𝛽𝛾𝛿 𝜕(𝑛𝛾𝑛𝛿 )

𝜕𝐸𝜎𝜏
)𝛿𝐸𝜎𝜏 .

(4.77)
Compared to equation (4.50), the expression in equation (4.77) contains an extra term with
the derivative of the material tensor 𝓒 with respect to the strains 𝐄. This derivative can
be written in terms of the deformation tensor 𝐂 following equation (4.4)

𝜕𝒞 𝛼𝛽𝛾𝛿

𝜕𝐸𝜎𝜏
= 2𝜕𝒞

𝛼𝛽𝛾𝛿

𝜕𝐶𝜎𝜏
. (4.78)

Considering equations (4.52) and (4.54), the derivatives of 𝛾 and 𝑓 with respect to 𝐄, see
equations (4.53) to (4.56) and (4.58), need to be re-defined due to the dependency of 𝐒 and
𝓒 on 𝐄. Starting with 𝛾 , the derivative with respect to the strain tensor 𝐄 becomes:

𝜕𝛾
𝜕𝐸𝜎𝜏 = −

(𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽 )(𝒞 𝛼𝛽𝜎𝜏𝑛𝛼𝑛𝛽 ) − (𝑆𝛼𝛽𝑛𝛼𝑛𝛽)( 𝜕𝒞
𝛼𝛽𝛾𝛿

𝜕𝐸𝜎𝜏
𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽)

(𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽)
2

= −
𝒞 𝛼𝛽𝜎𝜏𝑛𝛼𝑛𝛽 +𝛾 𝜕𝒞 𝛼𝛽𝛾𝛿

𝜕𝐸𝜎𝜏
𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽

𝒞 𝛼𝛽𝛾𝛿𝑛𝛾𝑛𝛿𝑛𝛼𝑛𝛽
.

(4.79)
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Furthermore, the derivative of the root equation (4.76) with respect to the strain becomes:

𝜕𝑓
𝜕𝐸𝜎𝜏

= (𝒞 𝛼𝛽𝜎𝜏𝑚𝛼𝑛𝛽 +
𝜕𝛾
𝜕𝐸𝜎𝜏

𝒞 𝛼𝛽𝛾𝛿𝑚𝛾𝑛𝛿𝑛𝛼𝑛𝛽 +𝛾
𝜕𝒞 𝛼𝛽𝜎𝜏

𝜕𝐸𝜎𝜏
𝑚𝛾𝑛𝛿𝑛𝛼𝑛𝛽). (4.80)

Since the other derivatives with respect to 𝜗 (see equations (4.53) and (4.58)) do not change
for hyperelasticmaterials, equations (4.52) and (4.56) can be evaluated using equations (4.53),
(4.58), (4.79) and (4.80), given the derivative of𝓒with respect to 𝐄. Since𝓒 depends on the
strain energy density function Ψ(𝐂) (see equation (4.8)), its derivative can be computed
analytically. However, when static condensation to satisfy the plane-stress criterion is
performed numerically, which could be the case for compressible materials [320, 587], it
is not straightforward to compute the derivative of𝓒. Alternatively, the analytical expres-
sion for the statically condensed material tensor (see equation (4.10)) can become lengthy,
making the analytical derivation of its derivative a tedious exercise. As an alternative to
analytical derivation of the material tensor, it can therefore be opted to use finite differ-
ences or automatic differentiation to obtain the derivative of 𝓒 with respect to the strain.
In example 4.4.1, the analytical derivative of𝓒with respect to 𝐄 for a statically condensed
incompressible Neo-Hookean material model is provided.

Example 4.4.1. From example 4.2.1, it follows that for an incompressible Neo-Hookean ma-
terial model,

𝜕𝒞 𝛼𝛽𝛾𝛿

𝜕𝐸𝜎𝜏
= 2𝜕𝒞

𝛼𝛽𝛾𝛿

𝜕𝐶𝜎𝜏
= 𝜇 𝜕(𝐽

−20 )
𝜕𝐶𝜎𝜏

(2𝑎𝛼𝛽𝑎𝛾𝛿 +𝑎𝛼𝜉 𝑎𝛽𝜂 +𝑎𝛼𝜂𝑎𝛽𝜉 )+𝜇𝐽−20
𝜕

𝜕𝐶𝜎𝜏
(2𝑎𝛼𝛽𝑎𝛾𝛿 +𝑎𝛼𝜉 𝑎𝛽𝜂 +𝑎𝛼𝜂𝑎𝛽𝜉 ).

(4.81)
Since 𝐽 20 = |𝑎𝛼𝛽 |/| ̊𝑎𝛼𝛽 | and since 𝜕𝐽0

𝜕𝜎𝜏 = 𝐽
2𝑎

𝜎𝜏 [252], the derivative of 𝐽−20 is

𝜕(𝐽−20 )
𝜕𝐶𝜎𝜏

= −𝐽−20 𝑎𝜎𝜏 . (4.82)

Furthermore, the derivative of the contravariant metric tensor 𝑎𝛼𝛽 is given by

𝜕𝑎𝛼𝛽
𝜕𝐶𝜎𝜏

= −12(𝑎
𝛼𝜎𝑎𝛽𝜏 +𝑎𝛼𝜏𝑎𝛽𝜎). (4.83)

Using equations (4.82) and (4.83), the derivatives in equation (4.81) can be evaluated, and
the analytical expression for 𝜕𝒞 𝛼𝛽𝛾𝛿 /𝜕𝐸𝜎𝜏 for the incompressible Neo-Hookean material is
found.

4.4.3 Implementation
As for the linear elastic model, the modified wrinkling model for hyperelastic materials
can be expressed in terms of linear algebra operations using the Voight notation of the
strain, stress, and material tensor as a basis (see equations (4.32) and (4.33)). First of all,
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the derivative of 𝛾 with respect to the strain tensor 𝐄 for hyperelastic materials becomes,
following from equation (4.79),

[ 𝜕𝛾𝜕𝑬 ] = −
𝑪 ⋅𝒏1 +𝛾𝒏⊤1 ⋅ [ 𝜕𝓒𝜕𝐄 ] ⋅𝒏1

𝒏⊤1 ⋅ 𝑪 ⋅𝒏1
. (4.84)

Moreover, using equation (4.80), the derivative of 𝑓 with respect to 𝐄 for hyperelastic
materials becomes:

[𝜕𝑓𝜕𝑬 ] = 𝑪 ⋅𝒏2 +(𝒏⊤2 ⋅ 𝑪 ⋅𝒏1)[
𝜕𝛾
𝜕𝑬 ]+𝛾𝒏

⊤2 ⋅ [
𝜕𝓒
𝜕𝐄 ] ⋅𝒏1. (4.85)

Both expressions in equations (4.84) and (4.85), as well as the extra contribution of [𝜕𝓒/𝜕𝐄]
in equation (4.77), contain the inner-product of 𝜕𝓒/𝜕𝐄with𝒏1. Instead of storing [𝜕𝓒/𝜕𝐄]
and multiplying it in both expressions with 𝒏1, the product [𝜕𝓒/𝜕𝐄] ⋅𝒏1 can also be stored
as a matrix:

[𝜕𝓒𝜕𝐄 ⋅𝒏1] = [ 𝜕𝓒
𝜕𝐸11

⋅ 𝒏1 𝜕𝓒
𝜕𝐸22

⋅ 𝒏1 𝜕𝓒
𝜕𝐸12

⋅ 𝒏1] . (4.86)

Using equations (4.84) to (4.86) together with equations (4.66), (4.69) and (4.70), the mod-
ified material tensor for hyperelastic wrinkled materials employing Voight notations, 𝑪′,
can be computed, based on equation (4.77):

𝑪′ = 𝑪(𝐈+𝒏1 ⊗[
𝜕𝛾
𝜕𝑬 ]+

𝜕𝛾
𝜕𝜗 𝒏1 ⊗[

𝜕𝜗
𝜕𝑬 ]+2𝛾𝒏2 ⊗[

𝜕𝜗
𝜕𝑬 ])+𝛾[

𝜕𝓒
𝜕𝐄 ⋅𝒏1]. (4.87)

Similar to the linear elastic wrinkling modification scheme from section 4.3, the mod-
ified tensors 𝑺′ and 𝑪′ can be used in the definition in equation (4.35) depending on the
tension field, evaluated per quadrature point. In addition, the remark in remark 4.3.1 re-
garding the variation of the stress tensor with respect to the tension field also applies for
the hyperelastic model.

4.5 Numerical Solution Strategies
To obtain the solution 𝒖 to the variational formulation equation (4.17), discretised by the
residual from equation (4.30), different solution strategies can be adopted. In this section,
a brief overview of the Newton–Raphson and the Dynamic Relaxation methods employed
in the numerical examples is given.

Firstly, the Newton–Raphson method solves the system of equations

𝐾(𝒖𝑘)Δ𝒖𝑘+1 = −𝑹(𝒖𝑘), (4.88)

for Δ𝒖𝑘+1 given 𝒖𝑘 and updating 𝒖𝑘+1 = 𝒖𝑘 +Δ𝒖𝑘+1 in iteration 𝑘. Here, 𝐾 is the Jacobian
of the system from equation (4.31) and 𝑹 is the residual vector from equation (4.30). Typi-
cally, the iterations are terminated if the update norm is ‖Δ𝒖𝑘 ‖/‖Δ𝒖0‖ < 𝜖Δ𝒖 or if the relative
residual norm is ‖𝑹(𝒖𝑘)‖/‖𝑹(𝒖0)‖ < 𝜖𝑹 . Although the Newton–Raphson iterations provide
second-order convergence towards the solution 𝒖, the convergence region is bounded,
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meaning that the method is guaranteed to converge only for an initial guess 𝒖0 sufficiently
close to the final solution 𝒖. Furthermore, if the Jacobian matrix 𝐾 is not exact, the speed
of convergence can be decreased and the convergence region can shrink. In the case of
the methods presented by Nakashino & Natori [401] and in this chapter, the variation of
the stress tensor with respect to the tension field is not included in the Jacobian (see re-
mark 4.3.1), possibly deteriorating the convergence behaviour.

A commonly used alternative for Newton–Raphson iterations for solving problems in-
volving wrinkling stabilities is the Dynamic Relaxation (DR) method [421]. In this method,
a dynamic system with artificial stiffness and damping is solved. The advantages of the
dynamic relaxation method are that it is robust given a sufficiently small step size and
that it only requires the residual vector 𝑹. However, its convergence is very slow. For
the mass contribution, the dynamic relaxation method is often used with lumped mass, to
avoid solving a linear system [32]. The mass is typically scaled with a factor that can be
used to tune themethod [429]. Furthermore, damping contributions can be added using an
appropriate scaling technique, summarised by Rodriguez et al. [479] and Rezaiee-Pajand
& Estiri [467]. Alternatively, one can use the so-called kinetic damping approach, elimi-
nating the velocities in the system when the kinetic energy reaches a peak [32, 33, 508].
In this chapter, the DR method with kinetic damping is used with a row-lumped mass
matrix and a scaling parameter 𝛼 tuning the speed of convergence of the DR iterations.
Typically, the DR iterations are terminated if the relative residual norm is below a tol-
erance ‖𝑹(𝒖𝑘)‖/‖𝑹(𝒖0)‖ < 𝜖𝑹 , or if the relative kinetic energy is below a certain tolerance
𝐸𝐾𝑘 /𝐸𝐾0 < 𝜖𝐸𝐾 .

4.6 Numerical Experiments
In this section, four benchmarks are presented for verification of the model presented in
this chapter. The benchmarks are selected from previous works on hyperelastic wrinkling
simulations. Firstly, an uniaxial tension test is performed to verify the implementation of
the model, based on the examples in the works of Kiendl et al. [320] and Verhelst et al.
[587]. In this case, the full domain is in wrinkling condition, hence the tension field does
not change during the iterations. Secondly, the inflation of a square membrane is modelled
in section 4.6.2, inspired by the work of Diaby et al. [152]. Thirdly, section 4.6.3 provides an
example of a planar annular sheet in which the inner boundary is pulled out of the plane
and twisted. This benchmark is inspired by the example given by Taylor et al. [551] for
linear elastic materials modified using a hyperelastic material model. Lastly, section 4.6.4
models a cylindrical surface subject to large axial strain and a radial twist to demonstrate
the capabilities of the present model on conic surfaces under large strains. For all bench-
marks, a wrinkling simulation resolving wrinkling amplitudes is provided as a reference,
along with results from the literature if available. The former are generated using isogeo-
metric Kirchhoff-Love shells with hyperelastic constitutive models [319, 320, 587].

In the sequel, different hyperelastic material models are used. The compressible and
incompressible Neo-Hookean (NH) andMooney-Rivlin (MR) material models are given by
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the following strain energy density functions:

Ψ(𝐂) = 𝜇
2(𝐽

− 2
3 𝐼1 −3)+Ψvol(𝐽 ) NH Compressible, (4.89)

Ψ(𝐂) = 𝜇
2 (𝐼1 −3), NH Incompressible, (4.90)

Ψ(𝐂) = 𝑐1
2 (𝐽−

2
3 𝐼1 −3)+

𝑐2
2 (𝐽−

4
3 𝐼2 −3)+Ψvol(𝐽 ), MR Compressible, (4.91)

Ψ(𝐂) = 𝑐1
2 (𝐼1 −3)+

𝑐2
2 (𝐼2 −3), MR Incompressible. (4.92)

Here, 𝜇 is the second Lamé parameter, defined as 𝜇 = 𝐸/(2(1 + 𝜈)) and 𝑐1 and 𝑐2 are the
coefficients controlling the Mooney-Rivlin model via 𝜇 = 𝑐1 + 𝑐2. Furthermore, Ψvol the
volumetric strain energy density function using bulk modulus 𝐾 and parameter 𝛽 = −2:

Ψvol = 𝐾𝒢(𝐽 ) = 𝐾𝛽−2(𝛽 log(𝐽 ) + 𝐽−𝛽 −1). (4.93)

For the incompressible Neo-Hookean material model, the analytical derivative of the ma-
terial tensor is implemented, whereas for the other material models a finite-difference
technique is used to obtain this term.

4.6.1 Square subject to Tension
As a first example, a uniaxial tension test is performed on a squaremembrane, see figure 4.1
for the model parameters inspired by Kiendl et al. [320] and Verhelst et al. [587]. The uni-
axial tension test is performed both with an increasing load and with the value given
in figure 4.1. The load stepping simulation provides a load displacement curve, which
will be used against the implementation in our previous work [587], replicating analytical
solutions. The simulation with the fixed value of the line load 𝑝 is used to assess the con-
vergence in Newton–Raphson iterations. This is used to confirm the correct derivation
and implementation of the modified stress and material tensors 𝑺′ and 𝓒′. The tests are
performed for compressible and incompressible Neo-Hookean (NH) and Mooney-Rivlin
(MR) material models; see equations (4.89) to (4.92).

Figure 4.2 presents the results of the uniaxial tension test. In the top figures, the stretch
𝜆 is plotted against the applied line load 𝑝 for the compressible and incompressible Neo-
Hookean and Mooney-Rivlin material models. In the bottom figures, the convergence is
presented using the current and previous relative residual norms, ‖𝑅𝑖+1‖/‖𝑅0‖ and ‖𝑅𝑖‖/‖𝑅0‖,
respectively. The load-displacement curves (top) show that the tension field theory modi-
fication scheme accurately predicts the constitutive behaviour of the membrane compared
with the original model. Furthermore, the convergence plots (bottom) show that for com-
pressible and incompressible Neo-Hookean and Mooney-Rivlin models, the convergence
rate is optimal, i.e., quadratic, for Newton–Raphson iterations, but flattens out due to ma-
chine precision.

4.6.2 Square subject to Inflation
In the next example, the inflation of a square membrane is modelled (see figure 4.3). This
example is inspired by the works of Diaby et al. [152], among others. In most previous
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Γ1

Γ2

Γ3

Γ4

𝐿

𝑊

𝑥
𝑦

𝑝

Geometry

𝐿, 𝑊 1.0 [m]
𝑡 1.0 [mm]

Material
Neo-Hookean or Mooney-Rivlin

𝜇 1.5 [MPa]
𝜈 0.45 (comp.) [−]

0.50 (incomp.) [−]
𝐸 2𝜇(1+𝜈) [MPa]
𝑐1/𝑐2 7.0 [−]

Boundary Conditions

Γ1 𝑢𝑦 = 0
Γ2,Γ3 Free
Γ4 𝑢𝑥 = 0

Loads

𝑝 1.0 [MPa]

Figure 4.1: Set-up for the uniaxial tension benchmark problem. In the figure on the left, the filled geometry
represents the deformed configuration, and the dashed line indicates the undeformed geometry. The load 𝑝
indicates a line load acting on the undeformed geometry. The table on the right provides the parameter values
for the specific benchmark problem for Neo-Hookean (NH) and Mooney-Rivlin (MR) materials.

works, the inflated square membrane was modelled using linear elastic models [114, 279,
301, 402, 662], but in the work of Diaby et al. [152] the case was used with a hyperelastic
Neo-Hookean material model, which is adopted in this chapter as well. Furthermore, the
inflation is modelled using a surface loading 𝒇 (𝒖) = 𝑝�̂�, see equation (4.16), with the pres-
sure 𝑝 = 5000 [Pa]. The simulation is solved in two stages, inspired by Diaby et al. [152],
to ensure bounded equilibrium iterations for the membrane. First, an in-plane boundary
load of 𝑝 = 5000 [Pa] orthogonal to the boundary is applied to Γ1 and Γ4 to pre-stretch
the membrane. Thereafter, the pressure is applied to the pre-stretched domain, and the
boundary load is removed. The equilibrium iterations are performed using a two-stage
procedure with the Dynamic Relaxation method followed by Newton–Raphson iterations
(see section 4.5). The threshold for the dynamic relaxation method is 𝜖𝑹 = 10−2 and the
threshold for the Newton–Raphson iterations is 𝜖𝑹 = 10−4.

Figure 4.4 depicts the results of the inflated square membrane. As can be seen in fig-
ure 4.4a, the membrane inflates into a pillow-shape with wrinkles along the free bound-
aries. Indeed, figure 4.4b shows that the tension field in the boundary regions indicates
wrinkling, whereas the other parts are in a taut state, which is in line with similar ob-
servations as in [402]. The contour lines on the 𝑧 = 0-plane, see figure 4.4c, show large
differences in the wrinkling pattern, varying the number of elements and the degree of
the basis for the Kirchhoff–Love shell model. However, themembranemodel using the ten-
sion field theory modification for hyperelastic materials as presented accurately captures
the wrinkling mid-plane and is consistent across mesh refinement and degree elevation.
The numerical results in table 4.1 show that the mid-point and corner-point displacements



4.6 Numerical Experiments

4

C
on

st
it
ut
iv
e
M
od

el
lin

g

117

0 5 10
0

0.5

1

1.5

⋅107

Stretch 𝜆

A
pp

lie
d
Lo

ad
𝑝

Incompressible

NH
NH - TFT
MR
MR - TFT

0 5 10
Stretch 𝜆

Compressible
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‖𝑅𝑖+1‖/‖𝑅0‖

‖𝑅 𝑖
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2
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10−4 10−2 100

1
2

‖𝑅𝑖+1‖/‖𝑅0‖

MR

Figure 4.2: Results for the uniaxial tension benchmark problem from figure 4.1. The top figures depict the stretch
𝜆 versus the applied load 𝑝. The bottom figures present the convergence of the relative residual norm ‖𝑹𝑖 ‖/‖𝑹0‖ for
a load step with 𝑝 = 1.0[MPa], with the triangle indicating second-order convergence. The results are depicted for
Neo-Hookean (NH) and Mooney-Rivlin (MR) materials with the parameters from figure 4.1. The lines indicate
the results without a tension field theory (TFT) modification, and the markers indicate the results including the
modification proposed in this chapter.

Γ1

Γ2Γ3

Γ4

𝐿 𝐿

𝑀

𝐴

𝑝

𝑥𝑦
𝑧

Geometry

𝐿 √1.22/2 [m]
𝑡 0.1 [mm]

Material
Compressible Neo-Hookean

𝐸 588 [MPa]
𝜈 0.4 [−]

Boundary Conditions

Γ1 𝑢𝑥 = 0
Γ2,Γ3 𝑢𝑧 = 0
Γ4 𝑢𝑦 = 0

Loads

𝑝 5000 [Pa]

Figure 4.3: Problem definition for a square membrane with diagonal length 1.2 [m] subject to pressure 𝑝. The
membrane is modelled using in-plane symmetry boundary conditions on Γ1 and Γ4. Furthermore, the sides
Γ2 and Γ3 have restricted 𝑧-displacement. The square membrane has a Neo-Hookean material model with the
parameters provided in the table on the right.
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Table 4.1: Results for the inflated square membrane; see figure 4.3 for the problem parameters; for the Kirchhoff–
Love (KL) shell resolving actual wrinkles; and for the membrane model using the tension field theory (TFT)
modifications proposed in this chapter. The reference results are provided as the vertical displacement in the
mid-point 𝑀 , 𝑢𝑧,𝑀 , and as the horizontal displacement along the 𝑥-axis in the point 𝐴, 𝑢𝑥,𝐴. The results are
compared with the work of Diaby et al. [152].

KLShell Membrane (TFT) Diaby et al. [152]

# elements 64 256 1024 64 256 1024 25 625

𝑢𝑧,𝑀 𝑝 = 2 0.2093 0.2197 0.2231 0.2167 0.2181 0.2187 0.2144 0.2245𝑝 = 3 0.2133 0.2173 0.2205 0.2138 0.2190 0.2190

𝑢𝑥,𝐴 𝑝 = 2 0.0236 0.0252 0.0282 0.0312 0.0302 0.0298 0.0265 0.0307𝑝 = 3 0.0251 0.0270 0.0293 0.0278 0.0299 0.0296

of themembrane rapidly converge for the tension fieldmembrane simulation, compared to
the shell simulation. The final values of both simulations show small differences between
the results obtained by the KL shell model and the membrane TFT model and slightly big-
ger differences with the results obtained by the shell model of Diaby et al. [152], possibly
because of the lower degree finite element method and the lower number of elements used
there.

4.6.3 Annulus Subject to Tension and Twist
As a next example, an annular planar surface subject to an out-of-plane translation and a
twist of 90∘ of the inner-boundary Γ𝑖 is modelled, see figure 4.5. The example is inspired by
the work of Taylor et al. [551] using the same geometric dimensions but different material
parameters. An incompressible Neo-Hookean material model with the strain energy den-
sity function from equation (4.90) is used as constitutive model, with the parameters from
figure 4.5. Furthermore, the example is solved using a Dynamic Relaxation method with
tolerance 𝜖 = 10−1 followed by a Newton method with tolerance 𝜖 = 10−6. The geometry is
modelled using 4 patches representing a quarter annulus of degree 𝑝 = 2 with 16 elements
in both directions per patch for the Kirchhoff–Love shell simulation and 8 elements in
both directions for the tension field theory membrane simulation. The interfaces of the
patches are smoothened with 𝐶1 continuity using basic interface smoothing.

Figure 4.6 shows the results for the hyperelastic annulus subject to a vertical displace-
ment and a rotation at the inner boundary. Firstly, figure 4.6a and figure 4.6b show a
qualitatively good comparison between the wrinkled region given by the Kirchhoff–Love
shell model and the tension field from the membrane model. Indeed, as shown by the
contours in figure 4.6d, the tension field theory membrane model accurately predicts the
average of the wrinkles given by the wrinkling simulation using the shell model, which
is as expected from the construction of the model. Furthermore, it should be noted that
the wrinkling deformations depicted in figure 4.6 have four times more elements than the
tension field theory model.
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(a) Top view of a quarter of the inflated square membrane
for 1024 elements with degree 𝑝 = 3 using the KL shell.

(b) Top view of a quarter of the inflated square membrane
for 1024 elements with degree 𝑝 = 3 using the membrane
model with tension field theory modifications. The black
colour represents a taut region, and the grey colour repre-
sents a wrinkled region.

256 elements

𝑝 = 2
𝑝 = 3
KL Shell
TFT Membrane

1024 elements

𝑝 = 2
𝑝 = 3
KL Shell
TFT Membrane

(c) Contour lines at 𝑧 = 0 for the inflated square membrane for a mesh with 256 elements (left) and with 1024 elements (right)
for degrees 𝑝 = 2 and 𝑝 = 3. The results of the shell simulation are depicted as solid lines, and the membrane tension field theory
results are represented by dashed lines. The coloured lines highlight a certain number of elements and degrees, using symmetry
for the horizontal and vertical directions, for the purpose of compactness. The grey lines indicate the other non-highlighted
lines.

Figure 4.4: Results for the squaremembrane subject to a pressure load fromfigure 4.3. (a) represents the deformed
shape from a Kirchhoff–Love shell simulation, providing wrinkles. (b) provides the deformed shape from a
membrane simulation with the proposed tension field theory modification scheme, together with the tension
field. (c) provides the contours of the deformation for bothmodels for different numbers of elements and degrees.
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Γ𝑖

Γ𝑜
ϴ

𝑅𝑜
𝑅𝑖

𝑢𝑧

Geometry

𝑅𝑖 62.5 [mm]
𝑅𝑜 250 [mm]
𝑡 0.05 [mm]

Material
Incompressible Neo-Hookean

𝐸 1.0 [GPa]
𝜈 0.5 [−]

Boundary Conditions

ϴ 𝜋/2 [rad]
𝑢𝑧 125 [mm]

Figure 4.5: Problem definition for an annulus with inner radius 𝑅𝑖 and outer radius 𝑅𝑜 subject to a vertical
translation 𝑢𝑧 and a rotation ϴ on the inner boundary Γ𝑖 while being fixed on the outer boundary Γ𝑜 . The
annulus has a Neo-Hookean material model with the parameters provided in the table on the right.

4.6.4 Cylinder Subject to Tension and Twist
Similar to the previous example regarding the pulled hyperelastic annulus (see section 4.6.3),
the next benchmark models a cylinder subject to a translation along its length and a ro-
tation around its centre axis (see figure 4.7). As for the annulus in section 4.6.3, an in-
compressible Neo-Hookean material model is used. Furthermore, the problem is solved
using a Dynamic Relaxationmethodwith tolerance 𝜖 = 10−1 followed by a Newtonmethod
with tolerance 𝜖 = 10−6, and the geometry is modelled with 4 patches representing a quar-
ter of a cylinder with degree 𝑝 = 2 and 16 elements per patch in both directions for the
Kirchhoff–Love shell simulation and 8 elements per patch in both directions for the ten-
sion field theory membrane simulation. The interfaces of the patches are smoothed with
𝐶1 continuity using basic interface smoothing. Although there are similarities in the prob-
lem set-up between the annulus from section 4.6.3 and the cylinder benchmark, it should
be noted that the case of the cylinder involves larger strains, hence this example is more
suitable for hyperelastic material models.

Figure 4.8 shows the results for the hyperelastic cylinder subject to a combined ex-
tension and rotation, as described in figure 4.7. The wrinkling results from the Kirchhoff–
Love shell model are presented in figures 4.8a and 4.8c, respectively, as a side and top view.
Furthermore, the tension field from the modification scheme proposed in this chapter is
provided in figure 4.8b. Comparing figure 4.8a with figure 4.8b shows that the present
model captures the envelope of the wrinkles qualitatively well. In addition, figure 4.8d
shows that the dashed contour lines approximate the mean of the wrinkles, as expected
based on the model of Roddeman et al. [477, 478]. As for the hyperelastic annulus, the
results of the cylinder also have four times more elements for the shell model compared
to the tension field theory model.
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(a) Side view of the deformed annulus using the Kirchhoff–
Love shell model.

(b) Side view of the deformed annulus using the tension
field theory membrane model. The black region denotes a
taut, and the gray region denotes a wrinkled region.

(c) Top view of the deformed annulus using the Kirchhoff–
Love shell model.

(d) Contour lines for parametric coordinates 𝜉𝑟 ∈
{0.5,0.7,0.9} (outside to inside) such that 𝜉𝑟 = 0 corresponds
to 𝑅𝑜 and 𝜉𝑟 = 1 with 𝑅𝑖 . The solid lines represent the
Kirchhoff-Love shell results, and the dashed lines rep-
resent the tension field theory membrane results. The
colours are used to indicate the different patches.

Figure 4.6: Results of the example with an annulus with fixed outer boundary andwith an inner boundary subject
to a translation and a rotation, see figure 4.5. A side view (a) and a top view (c) of the wrinkled membrane using
the Kirchhoff–Love shell simulation are provided, as well as the deformed geometry from the tension field theory
membrane simulation with the tension field for colouring (b). Furthermore, contour lines of the deformation for
different parametric coordinates are provided; see (d).
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𝑢𝑥

ϴ
𝑅

𝐻

×

𝑧
𝑦
𝑥

Geometry

𝑅 250 [mm]
𝐿 1.0 [m]
𝑡 0.05 [mm]

Material
Incompressible Neo-Hookean

𝐸 1.0 [GPa]
𝜈 0.5 [−]

Boundary Conditions

ϴ 𝜋/2 [rad]
𝑢𝑥 1.0 [m]

Figure 4.7: Problem definition for an cylinder with inner radius 𝑅 and length 𝐿 subject to an elongation 𝑢𝑥 and a
rotation ϴ on the right boundary Γ𝑟 while being fixed on the left boundary Γ𝑙 . The cylinder has a Neo-Hookean
material model with the parameters provided in the table on the right.
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(a) Side view of the deformed annulus using the Kirchhoff–
Love shell model.

(b) Side view of the deformed annulus using the tension
field theory membrane model. The black region denotes
a taut region, and the grey region denotes a wrinkled re-
gion.

(c) Top view of the deformed annulus using the Kirchhoff–
Love shell model.

(d) Contour lines for parametric coordinates 𝜉𝑥 ∈
{0.50,0.75} (left to right) such that 𝜉𝑥 = 0 and 𝜉𝑥 = 1 cor-
respond to the left and right of the cylinder, respectively.
The solid lines represent the Kirchhoff-Love shell results,
and the dashed lines represent the tension field theory
membrane results. The colours are used to indicate the
different patches.

Figure 4.8: Results of the example with an annulus with fixed outer boundary andwith an inner boundary subject
to a translation and a rotation, see figure 4.5. A side view (a) and a top view (c) of the wrinkled membrane using
the Kirchhoff–Love shell simulation are provided, as well as the deformed geometry from the tension field theory
membrane simulation with the tension field for colouring (b). Furthermore, contour lines of the deformation for
different parametric coordinates are provided; see (d).
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4.7 Conclusions

Aiming for efficient modelling of membrane wrinkling, this chapter presents a modifi-
cation strategy for wrinkled hyperelastic membranes through implicit modelling. The
model extends the work of Nakashino &Natori [401, 402], who presented the modification
scheme for linear elastic membranes based on tension fields. The modification scheme for
hyperelastic membranes presented in this chapter uses the assumptions from Roddeman
et al. [477, 478], implying a modification of the deformation tensor rather than the consti-
tutive model. As a consequence, the kinematic equation changes. Assuming a non-linear
constitutive relation, the introduction of the wrinkling strain tensor adds contributions
to the stress and material tensors, including dependency on the derivative of the material
tensor with respect to the strain tensor. Since the latter term can be difficult to obtain
due to condensation of the through-thickness strains for incompressible and compressible
material models, it is computed through finite differences in the present work. Since the
modification scheme is defined through derivatives of the strain energy density function,
it can be used for general hyperelastic materials.

The presentmodel is verified using a series of benchmarks. The isogeometric Kirchhoff–
Love shell formulation is used as a reference for wrinkling computations. The proposed
tension field theory-based (TFT)membrane is implemented in isogeometric finite elements
as well, although the formulations do not necessarily depend on high geometric continu-
ity. The first benchmark problem involves an uniaxial tension test, verifying the speed
of convergence for a fixed tension field. The second benchmark demonstrates applica-
tion on an inflatable hyperelastic membrane, showing good mesh convergence in terms of
displacements compared to the shell model. Third, the TFT model applied to an annular
geometry subject to displacement and rotation of the inner boundary shows a good com-
parison with the shell model, similar to the linear model from Taylor et al. [551]. Similar
to the annular membrane, a new benchmark problem is provided using a cylinder that is
elongated and rotated along its central axis. In this case, the TFT membrane model pro-
vides great similarity with the shell model. Concluding, the benchmarks demonstrate the
validity and applicability of the proposed model. It should be noted that the use of the
Dynamic Relaxation method in combination with the Newton–Raphson method is neces-
sary in some situations due to evolving tension fields during the iterations, making the
Newton–Raphson methods diverge with a poor initial guess.

As for the linear elastic model from Nakashino & Natori [401], the present model re-
lies on a tension field evaluated given a certain deformation. If the tension field is subject
to large changes during iterations, the convergence behaviour of the model deteriorates
since the changing tension field is not included in the variation of the wrinkling stress. In
future work, it is recommended to incorporate the tension field into the derivative of the
wrinkling stress. Furthermore, an equivalent for the Dynamic-Relaxation method com-
bined with Newton–Raphson methods for quasi-static simulations could be investigated
as well, starting with the explicit arc-length method from Lee et al. [333].



4.A Result Reproduction

4

C
on

st
it
ut
iv
e
M
od

el
lin

g

125

4.A Result Reproduction
For the sake of reproducibility of the results in this chapter, this appendix provides brief
instructions on the use of the software developed along with this thesis. The full software
is available as part of the Geometry + Simulation Modules. For more detail on the contri-
butions to this software library, and its installation, the reader is referred to chapter 8.

Table 4.2 provides per figure in this chapter the name of the file to run along with the
arguments to be passed to obtain these figures. The benchmark problems in this chapter
make use of a single executable to run most of the examples. The executable takes an XML
input file defining the whole problem.

Table 4.2: File name and run arguments required for the reproducibility of the figures in this chapter. Ar-
guments with a single dash (-) require an argument while double-dashed arguments (--) are switches. See
chapter 8 for more detail about the software and installation instructions. The XML files are located in
gsStructuralAnalysis/filedata/pde/.

Figure Run File
Arg. Description Values

Figure 4.2 static_shell_XML
-i Input file uniaxial_tension_1p.xml†

†Different material models can be (un)commented in this file
--NR Use Newton–Raphson solver

Table 4.1 benchmark_Pillow
Figure 4.4 -e Number of degree elevation steps 1: 𝑝 = 2,

2: 𝑝 = 3
-r Number of uniform refinement steps 4: 256 elements,

5: 1024 elements
-a Mass tuning factor of Dynamic–Relaxation solver 1e14
--TFT Use Tension-Field Theory
--NR Use Newton–Raphson solver
--DR Use Dynamic–Relaxation solver

Figure 4.6 static_shell_multipatch_XML
-i Input file annulus_4p.xml
-e Number of degree elevation steps 1: 𝑝 = 2,

2: 𝑝 = 3
-r Number of uniform refinement steps 4: 256 elements,

5: 1024 elements
--NR Use Newton–Raphson solver
--DR Use Dynamic–Relaxation solver

Figure 4.8 static_shell_multipatch_XML
-i Input file cylinder_4p.xml

cylinder_4p_TFT.xml
-e Number of degree elevation steps 1: 𝑝 = 2,

2: 𝑝 = 3
-r Number of uniform refinement steps 4: 256 elements,

5: 1024 elements
--NR Use Newton–Raphson solver
--DR Use Dynamic–Relaxation solver
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5
Goal-Adaptive Meshing of

Isogeometric Kirchhoff–Love Shells
In this chapter, an adaptive isogeometric method for Kirchhoff–Love shell modelling is de-
veloped. This adaptive isogeometric method is a combination of an error estimator and a
mesh refinement algorithm, with the goal of optimally allocating degrees of freedom. The
error estimator used in this chapter is based on the so-called Dual-Weighted Residual (DWR)
method. This uses a pre-defined goal functional, e.g., the displacement at a point or an eigen-
frequency, and provides an estimate for the error in terms of this goal functional with respect
to a converged solution. The DWR error contributions can be computed as a field over the
computational domain, making them suitable as an error estimator for the adaptive meshing
method. Using the Dörfler marking and suitably graded Truncated Hierarchical B-splines
(THB-splines), a marking and meshing strategy is developed for combined refinement and
coarsening of the computational domain. The developed goal-adaptive isogeometric method
for Kirchhoff–Love shell models is applied to various structural analysis problems, including
modal analysis, buckling analysis, and non-linear snap-through and bifurcation problems,
showing high accuracy of the DWR estimator and efficient allocation of degrees of freedom
for advanced shell computations. In conclusion, the developed framework demonstrates the
potential of the DWR to serve as an error estimator in several different structural analyses,
with the freedom of choosing goal functionals closely related to engineering practice. If nec-
essary, the reader is referred to section 2.3.2 for a full derivation of the isogeometric Kirchoff–
Love shell formulation, to section 2.4 for the mathematics behind several numerical structural
analysis routines and to section 2.2.1 for a brief background on refinement splines.

This chapter is under revision for the journal Engineering with Computers. A pre-print is available:
[586] H. M. Verhelst, M. Möller, A. Mantzaflaris & J. H. Den Besten, “Goal-Adaptive Meshing of Isogeometric
Kirchhoff–Love Shells”, arXiv:2307.08356 (2023)

https://arxiv.org/abs/2307.08356
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5.1 Introduction
The idea behind isogeometric analysis (IGA) [268] is to bridge the gap between computer-
aided design (CAD) and finite element analysis (FEA). By employing B-splines or non-
uniform rational B-splines (NURBS) as the basis for FEA, IGA not only provides geomet-
rically exact analysis, but the high smoothness of the spline bases also provides high ac-
curacy per degree of freedom [488]. The close link with conventional engineering fields
such as automotive, offshore, aircraft, or civil engineering makes structural analysis with
isogeometric analysis a particular field of interest. Besides the performance of the differ-
ent isogeometric element formulations for thin Kirchhoff–Love shells [5, 319, 320, 587],
moderately thick Reissner-Mindlin shells [43, 45, 263, 317, 516] or thicker solid-like shells
[256, 341] in static and dynamic simulations, conventional engineering disciplines also
rely on accurate modal and (post-)buckling simulations. In addition, the ability to han-
dle complex (multipatch) CAD geometries via trimming [116, 219, 335] or patch coupling
methods [62, 118, 222, 238, 342] improves the applicability of IGA in structural engineer-
ing. For problems with a large number of degrees of freedom or problems with a large
number of load or time steps, mesh adaptivity can play a key role in providing efficient
simulations for industrial applications.

A loop in an adaptive isogeometric method (AIGM) consists of the steps solve the Par-
tial Differential Equation (PDE) at hand, estimate element-wise error contributions, mark
regions for refinement, refine (coarsen) marked regions [79], see figure 5.1. Here, localised
regions can be defined element-wise or function-wise. The AIGM process can be repeated
in an iterative manner (e.g., for static, buckling, or modal analysis) until satisfactory accu-
racy is achieved, or it can be applied iteratively within a time- or load-stepping procedure.
A broad overview of the mathematical foundations of AIGMs is given in [78]. In previous
works, AIGMs were developed for different applications (solve), using different estimation
strategies, marking strategies, and often for mesh refinement, with a few also providing
coarsening strategies [84, 137, 199, 234, 363].

Solve The solve block contains the partial differential equation (PDE) at hand. It can be
a physics-based problem, e.g., to solve shell [13, 116, 117], linear elasticity [590] or
free-surface flow [328] problems. Alternatively, the solve step can involve a non-
physics PDE, e.g., for mesh generation [244].

Estimate Determination of localised errors is done in the estimate block. In the works
[13, 116, 117], an error estimator based on a residual-like variational problem in
the so-called bubble-spacewas presented for Kirchhoff plates, Kirchhoff–Love shells,
and trimmed domains. This method has proven a large decrease in CPU time com-
pared to a residual-based error estimator in its strong form, due to its easy paralleli-
sation and the small block structure of the linear system to solve. As an alternative
to this method, error estimation can also be performed in a goal-oriented fashion,
e.g., by the Dual-Weighted Residual (DWR) method. This method has been applied
in the FEA context in various works [102, 200, 228, 229, 229, 230, 391, 460] and was
used in the works [328, 572] for Poisson and free-boundary problems, in [147] for
a geometrically non-linear rod, in [244] for PDE-based domain parametrisations,
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Solve Estimate Mark Refine Transfer

Advance

Until converged

Addition for solution stepping

Adaptive meshing

Classical solution stepping

Figure 5.1: A typical flowchart for an adaptive meshing routine. The classical solution stepping depicts a process
without adaptive meshing. Here, a solution is obtained by the solve, and the solution is advanced (e.g., in time
or load step) and recomputed. The adaptive meshing step denotes the additional operations for mesh adaptivity,
and the Addition for solution stepping includes an additional transfer step in case the adaptive meshing method
is applied to a solution. The Estimate block provides an error estimation with local contributions per element or
per degree of freedom (DoF). The Mark block contains a marking rule that marks regions for refinement based
on a specific rule. The Refine block transforms the current mesh to a new mesh, where regions are refined and
coarsened based on the marking rule. The block Transfer transfers the previous solution to the new mesh so that
it can be used to recompute the present interval on a modified mesh. This recomputation is performed again in
the Solve block and follows through the subsequent blocks until an adaptivity criterion is reached. For example,
a criterion that requires the total error in the mesh to be within certain bounds.

and in [590] for micromechanical modelling of trabecular bone. Goal-oriented re-
finement in general provides localised error estimates by solving a linear adjoint
problem on the current space and an enriched space.

Mark As soon as localised error contributions are known, regions can be marked for re-
finement. This marking is mostly done using the Dörfler marking strategy [160], as
in [79, 84, 200], which involves marking the regions with the largest error contribu-
tions until their sum exceeds a certain percentage of the total error. An alternative
is to mark the regions with an error higher than a threshold (an absolute threshold
based on the maximum error) [13, 202] or based on a relative threshold, taking a
fixed percentage of the total number of cells for refinement. In [202], the latter two
strategies are discussed.

Refine Local refinement for adaptive meshing in isogeometric analysis is enabled by the
use of Hierarchical B-splines (HB-splines) [591], Truncated Hierarchical B-splines
(THB-splines) [202, 203], or T-splines [36], amongst other spline constructions, which
are reviewed in [236]. HB-splines provides a nested, linearly dependent space that
violates the partition of unity property. To preserve the latter, THB-splines have
been introduced in [203]. For (T)HB-splines, suitable grading to generate admissi-
ble meshes should be taken into account in order to guarantee a bounded error [79],
for which algorithms have been presented in [67]. In the work of [235], a distinc-
tion is made between greedy and safe refinement, the former being a refinement of
cells with a 1-level difference with adjacent cells and the latter being a refinement
complying with the refinement neighbourhoods defined in [79]. Besides adaptive
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meshing for solving PDEs [84, 137, 199, 234, 244, 363], THB-splines have also been
successfully applied in the context of fitting [66, 323].

Transfer The transfer from previous time/load steps onto a new mesh can be done using
different methodologies. In the work of [234], different least-squares approaches
are provided. Furthermore, quasi-interpolation [205, 519] is a technique that can be
used to transfer solutions between hierarchical meshes.

In this chapter, goal-oriented adaptive refinement for isogeometric thin shell analysis
is employed, to facilitate THB-adaptive meshing for a variety of structural analysis prob-
lems. The developed framework is versatile in terms of the goal functional being used and
provides an adaptive meshing strategy for linear an non-linear static, modal, buckling and
post-buckling problems. In brief, the contribution of the chapter is threefold. Firstly, the
Dual-Weighted Residual (DWR) method is used to derive novel error estimators for struc-
tural shell analysis, given goal functionals based on displacements, (principal) stresses and
strains, forces, and moments. Secondly, the eigenvalue DWR method from [330, 460] is
used for error estimations for modal and buckling analyses. Lastly, the goal functionals
are used to drive an adaptive meshing strategy with suitable grading and efficient transfer
of solutions by quasi-interpolation method on hierarchical spline spaces [205, 519]. This
adaptive meshing strategy is applied to non-linear shell analysis with focus on buckling
problems with snap-through and bifurcation instabilities - being new applications in the
realm of adaptive meshing research for nonlinear shell problems. It should be noted that
the present framework is developed for isogeometric Kirchhoff–Love shells - since it pro-
vides a natural separation of bending and membrane terms - but it is easily adapted for
other shell formulations. By defining a frame work for 2-dimensional parametric domains
and by presenting a wide range of mechanics-inspired goal functionals, the present work
extends an earlier work by [147] for geometrically non-linear rods.

The chapter is structured as follows: In section 5.2, the isogeometric Kirchhoff–Love
shell analysis proposed by [319] is briefly revised, and some basic concepts for struc-
tural analysis computations are given. In section 5.3, the Dual-Weighted Residual (DWR)
method is provided for the isogeometric Kirchhoff–Love shell using the membrane and
flexural strain split. However, it can be used for general elasticity problems. Moreover, the
section provides the DWR method for eigenvalue problems to compute error estimators
for modal and buckling analyses. Thereafter, section 5.4 provides the details for adaptivity
for isogeometric analysis. This includes the concept of Truncated-Hierarchical B-splines
(THB-splines) and admissible refinement. Furthermore, the mark and transfer operations
are described. In section 5.5, a summary of the preceding sections is provided by means of
a global algorithm for the AIGM for structural analysis computations with load-stepping.
In section 5.6, the present work is evaluated on numerical benchmark problems, ranging
from linear problems with analytical solutions to non-linear shell problems. Finally, sec-
tion 5.7 provides conclusions and an outlook based on this work.

5.2 Isogeometric Kirchhoff–Love Shell Analysis
In this section, provide a brief background on the Kirchhoff–Love shell formulation is
provided. For more details on this formulation, the reader is referred to [319, 320, 480, 490,
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587] and to chapter 2 of this dissertation.

5.2.1 Shell Kinematics
Since Kirchhoff–Love shells satisfy the Kirchhoff Hypothesis [461], the coordinates 𝒙 of
any parametric point 𝜽 = (𝜃1, 𝜃2, 𝜃3) in the shell surface can be represented by the surface
position 𝒓(𝜃1, 𝜃2) and contribution in normal direction 𝜃3 ̂𝒂3 as

𝒙(𝜽) = 𝒓(𝜃1, 𝜃2) + 𝜃3 ̂𝒂3, (5.1)

Given the covariant basis of the surface 𝒓 , defined by 𝒂𝛼 ,𝛼 = 1,2 and the orthogonal unit
normal ̂𝒂3, the covariant basis of 𝒙 is defined as follows:

𝒈𝛼 = 𝒙,𝛼 = 𝒂𝛼 +𝜃3 ̂𝒂3,𝛼 , 𝒈3 = 𝒙,3 = ̂𝒂3. (5.2)

Given the second fundamental form 𝑏𝛼𝛽 = ̂𝒂3 ⋅ 𝒂𝛼,𝛽 = −𝒂3,𝛽 ⋅ 𝒂𝛼 and the metric coefficients
defined as

𝑔𝛼𝛽 = 𝒈𝛼 ⋅ 𝒈𝛽 = 𝑎𝛼𝛽 −2𝜃3𝑏𝛼𝛽 , (5.3)

the contravariant basis vectors 𝒈𝛼 can simply be obtained by 𝒈𝛼 = 𝑔𝛼𝛽𝒈𝛽 . The undeformed
configuration 𝒓 and the deformed configuration ̊𝒓 of the surface are related by 𝒓 = ̊𝒓 + 𝒖.
From the defintion of the deformation gradient 𝐅 = 𝒈𝑖 ⊗ �̊� 𝑖 , the deformation tensor 𝐂 can
be obtained:

𝐂 = 𝐅⊤𝐅 = 𝒈𝑖 ⋅ 𝒈𝑗 �̊� 𝑖 ⊗ �̊�𝑗 = 𝑔𝑖𝑗 �̊� 𝑖 ⊗ �̊�𝑗 . (5.4)
Note that the deformation tensor is defined in the contravariant undeformed basis �̊� 𝑖 ⊗ �̊�𝑗 .
For Kirchhoff–Love shells, it is known that 𝑔𝛼3 = 𝑔3𝛼 = 0, hence this implies 𝐶𝛼3 = 𝐶3𝛼 =
0, since 𝑔33 = 1, which implies 𝐶33 to be one and meaning that the thickness remains
constant under deformation. As a result, the Green-Lagrange strain tensor 𝐄 = 𝐸𝛼𝛽 �̊�𝛼 ⊗�̊�𝛽
and its decomposition to membrane and bending contributions (𝜀 and 𝜅, respectively) is
[319, 320]:

𝐸𝛼𝛽 =
1
2(𝑔𝛼𝛽 − �̊�𝛼𝛽) =

1
2((𝑎𝛼𝛽 − ̊𝑎𝛼𝛽 ) − 2𝜃3(𝑏𝛼𝛽 − �̊�𝛼𝛽))

= 𝜀𝛼𝛽 +𝜃3𝜅𝛼𝛽 .
(5.5)

5.2.2 Constitutive Relation
The constitutive relations for the Kirchhoff–Love shell relate the Green-Lagrange strain
tensor 𝐄 to the second Piola-Kirchhoff stress tensor 𝐒. For linear elastic materials, this is
achieved by:

𝑆𝛼𝛽 = 𝒞 𝛼𝛽𝛾𝛿𝐸𝛾𝛿 (5.6)

where 𝓒 = 𝒞 𝛼𝛽𝛾𝛿 �̊�𝑖 ⊗ �̊�𝑗 ⊗ �̊�𝑘 ⊗ �̊�𝑙 is the material tensor, which takes for linear materials
the form 𝒞 𝛼𝛽𝛾𝛿 = 4 𝜆𝜇

𝜆+2𝜇 �̊�
𝛼𝛽 �̊�𝛾𝛿 +2𝜇(�̊�𝛼𝛿 �̊�𝛽𝛾 + �̊�𝛼𝛾 �̊�𝛽𝛿) [208]. For non-linear hyperelastic

constitutive relations, the stress and material tensors are derived from the 3D constitu-
tive relations for (in)compressible materials and due to through-thickness integration, the
shell normal force and bending moment tensors 𝐍 = 𝑁 𝛼𝛽 �̊�𝛼 ⊗ �̊�𝛽 and 𝐌 = 𝑀𝛼𝛽 �̊�𝛼 ⊗ �̊�𝛽 ,
respectively, are defined as

𝑁 𝛼𝛽 (𝒖) = ∫𝑇
𝑆𝛼𝛽 (𝒖)d𝜃3 , 𝑀𝛼𝛽 (𝒖) = ∫𝑇

𝜃3𝑆𝛼𝛽 (𝒖)d𝜃3 , (5.7)
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where 𝑇 = [−𝑡/2, 𝑡/2] is the through-thickness domain. For more details on hyperelastic
material models, the reader is referred to [320, 480] and specifically for stretch-based ones
to [587].

5.2.3 Variational Formulation
The shell internal and external equilibrium equations in variational form are derived by
the principle of virtual work [319, 320]. The weak formulation follows from the principle
of virtual work with virtual displacements 𝝓:

Find 𝒖 ∈ 𝕊 s.t.𝒲 (𝒖,𝝓) ∶= 𝛿𝑊 int −𝛿𝑊 ext

= ∫Ω
𝐍(𝒖) ∶ 𝜺′(𝒖,𝝓)+𝐌(𝒖) ∶ 𝜿′(𝒖,𝝓)dΩ−∫Ω

𝒇 (𝒖) ⋅𝝓 dΩ,
∀𝝓 ∈ 𝕊

(5.8)

With 𝒇 (𝒖) the surface load acting on the mid-surface, for the sake of generality defined
as a function of the displacements 𝒖 (e.g. a follower pressure 𝑝 gives 𝒇 (𝒖) = 𝑝 ̂𝒂3(𝒖)). Fur-
thermore, 𝜺′(𝒖,𝝓) and 𝜿′(𝒖,𝝓) are the virtual strain components given displacements 𝒖
and being linear with respect to variation 𝝓, hence 𝒲 (𝒖,𝝓) is also linear in its second
argument. The coefficients of the variations of the membrane force and bending moment
tensors are

(𝑛′)𝛼𝛽 (𝒖,𝝓) = ∫𝑇
𝒞 𝛼𝛽𝛾𝛿 (𝒖)d𝜃3 𝜀′𝛾𝛿 (𝒖,𝝓)+∫𝑇

𝜃3𝒞 𝛼𝛽𝛾𝛿 (𝒖)d𝜃3 𝜅′𝛾𝛿 (𝒖,𝝓),

(𝑚′)𝛼𝛽 (𝒖,𝝓) = ∫𝑇
𝜃3𝒞 𝛼𝛽𝛾𝛿 (𝒖)d𝜃3 𝜀′𝛾𝛿 (𝒖,𝝓)+∫𝑇

(𝜃3)2𝒞 𝛼𝛽𝛾𝛿 (𝒖)d𝜃3 𝜅′𝛾𝛿 (𝒖,𝝓).
(5.9)

Linearizing the virtual work from equation (5.8) provides the continuous equivalent of the
Jacobian or tangential stiffness matrix for Newton iterations which will be performed to
solve the non-linear weak formulation equation (5.8) in a discrete setting [490]:

𝒲 ′(𝒖,𝝓,𝝍) ∶= ∫Ω
𝐍′(𝒖,𝝍) ∶ 𝜺′(𝒖,𝝓)+𝐍(𝒖) ∶ 𝜺″(𝒖,𝝓,𝝍)

+𝐌′(𝒖,𝝍) ∶ 𝜿′(𝒖,𝝓)+𝐌 ∶ 𝜿″(𝒖,𝝓,𝝍)dΩ
−∫Ω

𝒇 ′(𝒖,𝝍) ⋅𝝓 dΩ,
(5.10)

where 𝜺″(𝒖,𝝓,𝝍) and 𝜿(𝒖,𝝓,𝝍) are the second variations of the membrane and bending
strains and 𝒇 ′ is the first variation of the applied force, being nonzero when the force
is depending on the displacements 𝒖. For the details on these formulations, the reader is
referred to previous publications [208, 319, 490]. It should be noted that in the undeformed
case, 𝒖 = 0, the internal membrane forces and bending forces, 𝐍(𝒖) and𝐌(𝒖), respectively,
vanish. As a result, the continuous equivalent for the linear stiffness matrix is:

̊𝒲 ′(𝝓,𝝍) = ∫Ω
�̊�′(𝝍) ∶ ̊𝜺′(𝝓)+ �̊�′(𝝍) ∶ ̊𝜿′(𝝓)dΩ−∫Ω

𝒇 ′(𝝍) ⋅𝝓 dΩ, (5.11)
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where the ̊⋅ denotes tensors and functions on the undeformed geometry, i.e. with 𝒖 = 0.

In our implementation, the tangent stiffness matrix is computed using appropriate
Gauss-Lengendre quadrature for each element in the hierarchical mesh. It should be noted
that more efficient numerical integration approaches exist [204, 424, 425] for hierarchical
splines that might further reduce the computational cost.

5.2.4 Structural Analysis
In the present chapter, different goal functionals will be provided for different structural
analysis applications. Therefore, the different structural analysis types are briefly recalled.
Firstly, in case of static analysis, the problem as in equation (5.8) is solved. In case of quasi-
static analysis, load and/or displacement steps are performed successively and in each step,
a static solve is performed. Typically, one writes equation (5.8) for load-control as

Find 𝒖 ∈ 𝕊 s.t.𝒲 (𝒖,𝝓,𝜆) ∶= 𝛿𝑊 int −𝜆𝛿𝑊 ext

= ∫Ω
𝐍(𝒖) ∶ 𝜺′(𝒖,𝝓)+𝐌(𝒖) ∶ 𝜿′(𝒖,𝝓)dΩ−∫Ω

𝜆𝒇0 ⋅ 𝝓 dΩ,
∀𝝓 ∈ 𝕊,𝜆 ∈ ℝ,

(5.12)

where 𝜆 is the load factor scaling the reference load 𝒇0. Quasi-static simulations can be
solved using simple load or displacement controlled schemes, using arc-length continu-
ation such as Riks’ method or Crisfield’s method [124, 469]. When quasi-static analysis
is performed for post-buckling analysis, one or multiple bifurcation points are passed by
definition. On a bifurcation point, the determinant of the tangential stiffness matrix 𝐾 is
equal to zero, hence this matrix is singular. To cope with instabilities, a priori perturba-
tions can be applied to the geometry, or a procedure for approximating singular points
[633] can be used. In our previous work, more details are provided on arc-length contin-
uation for post-buckling analysis without the use of a priori perturbations [583].

In the case of modal analysis and buckling analysis, a generalised eigenvalue problem
needs to be solved. These eigenvalue problems have the general form

find (𝜇,𝒗) ∈ ℝ×𝕊 s.t.𝒜(𝒗,𝝓) = 𝜇ℬ(𝒗,𝝓) ∀𝝓 ∈ 𝕊 (5.13)

Where 𝜇 provides the eigenfrequency in modal analysis and the critical load factor in
buckling analysis and where 𝒗 denotes the vibration or buckling mode shape. The opera-
tors 𝒜 and ℬ are bi-linear. For buckling analysis, 𝒜(𝒗,𝝓) = 𝒲 ′(𝒖𝐿, 𝒗,𝝓) and ℬ(𝒗,𝝓) =
𝒲 ′(0,𝒗,𝝓)with 𝒖𝐿 the pre-buckling solution given load 𝜆𝐿. For modal analysis,𝒜(𝒗,𝝓) =
𝒲 ′(0,𝒗,𝝓) and ℬ(𝒗,𝝓) =ℳ(𝒗,𝝓) with ℳ the mass operator:

ℳ(𝒗,𝝓) = ∫Ω
𝜌𝒗𝝓 dΩ (5.14)

Where 𝜌 is the mass density over the surface.
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5.3 Dual-Weighted Residual method
This section elaborates on the Dual-Weighted Residual (DWR) method [29, 39], which is
used in the Estimate step of figure 5.1. The DWR method is a method to compute the a
posteriori error of a solution in terms of a given goal functional of interest by solving a
linear dual problem. The DWR method provides a global estimate of the error, but given
a partition of unity of the spline space, it can be used to provide an error contribution per
basis function.

5.3.1 General Framework
The general framework of the dual weighted residual (DWR) method is presented by [29,
39, 229]. For the sake of completeness, a brief overview of the DWR method is provided
here. Consider the following non-linear problem to solve:

find𝒖 ∈ 𝕊 s.t.𝒲 (𝒖,𝝓) = 0∀𝝓 ∈ 𝕊, (5.15)

where 𝒲 (𝒖,𝝓) is a semi-linear operator (linear in the second argument), 𝒖 is the solu-
tion, 𝝓 is a test function, and 𝕊 is a suitably chosen vector space, including 𝒖 ∈ 𝕊. The
approximation of 𝒖, denoted by 𝒖ℎ, can be found by solving the discrete counterpart of
equation (5.15):

find𝒖ℎ ∈ 𝕊𝑝ℎ s.t.𝒲 (𝒖ℎ,𝝓ℎ) = 0∀𝝓ℎ ∈ 𝕊𝑝ℎ, (5.16)

where 𝒖ℎ and 𝝓ℎ are the discrete counterparts of 𝒖 and 𝝓, respectively, and the space
𝕊𝑝ℎ ⊂ 𝕊 is a function space on the (isogeometric) mesh 𝒯 𝑝

ℎ (Ω)with mesh size ℎ and order 𝑝
covering the computational domain Ω. The solution to this problem is typically obtained
by iteratively solving

find𝝓ℎ ∈ 𝕊𝑝ℎ s.t.𝒲 ′(𝒖ℎ,𝝓ℎ,𝝍ℎ) = ℛ(𝒖ℎ,𝝍ℎ) ∀𝝍ℎ ∈ 𝕊𝑝ℎ, (5.17)

while updating the discrete solution. Here, the residual is defined as

𝓡(𝒖ℎ,𝝓ℎ) = −𝓦(𝒖ℎ,𝝓ℎ). (5.18)

Let us now define a non-linear and differentiable goal functional 𝓛(𝒖) or quantity of
interest, such that

Δ𝓛(𝒖ℎ) =𝓛(𝒖)−𝓛(𝒖ℎ). (5.19)

Then, from Proposition 4.1 of [231], it follows that:

Δ𝓛(𝒖ℎ) =𝓡(𝒖ℎ, 𝝃 − 𝝃ℎ) ≈ 𝓡(𝒖ℎ, ̃𝝃 − 𝝃ℎ). (5.20)

Here, the solutions 𝝃 ∈ 𝓢 and 𝝃ℎ ∈ 𝓢𝑝
ℎ are the exact and discrete solutions to the adjoint

problem defined using the mean value linearizations of 𝓦 and 𝓛, see Equations 10 to
12 of [231]. Since the exact dual solution 𝝃 is not available, it is approximated by ̃𝝃 ∈ �̃�.
The discrete dual solution 𝝃ℎ ∈ 𝓢𝑝

ℎ is obtained by solving the following discrete adjoint
problem:

find 𝝃ℎ ∈ 𝓢𝑝
ℎ s.t.𝓦′(𝒖ℎ, 𝜻ℎ, 𝝃ℎ) =𝓛′(𝒖ℎ, 𝜻ℎ) ∀𝜻ℎ ∈ 𝓢𝑝

ℎ. (5.21)
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The approximation ̃𝝃 ∈ �̃� is obtained by solving the adjoint problem in an enriched space,
i.e.

find ̃𝝃ℎ ∈ �̃�𝑝
ℎ s.t.𝓦′(𝒖ℎ, ̃𝜻ℎ, ̃𝝃ℎ) =𝓛′(𝒖ℎ, ̃𝜻ℎ) ∀ ̃𝜻ℎ ∈ �̃�𝑝

ℎ, (5.22)

with ̃𝝃ℎ and ̃𝜻ℎ the dual solution and test functions on the enriched space �̃�𝑝
ℎ, respectively.

A choice for �̃�𝑝
ℎ is to use the same mesh as for 𝓢𝑝

ℎ, with the same regularity but with a
higher degree, i.e. �̃�𝑝

ℎ = 𝓢𝑝+1
ℎ . This is easily achieved using spline bases. When using B-

Splines, one can repeat all knots of the knot vector an extra time compared to the original
basis, such that 𝓢𝑝

ℎ ⊂ 𝓢
𝑝+1
ℎ ⊂ 𝓢 is a nested space.

Finally, using equation (5.20) together with the dual solution 𝝃ℎ ∈ 𝕊𝑝ℎ and the enriched
dual solution ̃𝝃ℎ ∈ �̃�𝑝ℎ, an estimate for the global error with respect to the goal functional
ℒ can be obtained. To obtain the local element-wise error estimations 𝑟𝑖 for element
𝜔𝑖 ∈ 𝒯 𝑝

ℎ (Ω), such that

Δℒ(𝒖ℎ) = ℛ(𝒖ℎ, ̃𝝃ℎ −𝝃ℎ) = ∑
𝜔𝑖∈𝒯 𝑝

ℎ (Ω)
𝑟𝑖 . (5.23)

Element-wise integration of equation (5.20) is simply performed to obtain 𝑟𝑖 . However, as
discussed in section 5.4.3 it can be beneficial to have strictly positive element error con-
tributions for element labelling. One can either take the absolute values of 𝑟𝑖 or integrate
the squared norm of the integrand in equation (5.20) to ensure the positivity of element
error contributions. Obviously, the sum of the element errors would not be equal to Δℒ .

For Kirchhoff–Love shells specifically, the operator𝒲 (𝒖,𝝓) and its linearisation𝒲 ′(𝒖,𝝓,𝝍)
are used to perform the DWR analysis.

5.3.2 Eigenvalue Problems
When the problem of interest is an eigenvalue problem, the DWR routine is slightly dif-
ferent. Here, the works [29, 39, 102, 200, 201, 330] are followed to give a brief overview
of the DWR method for eigenvalue problems. Let us consider the following eigenvalue
problem:

find (𝜇,𝑽 ) ∈ ℝ×𝕊 s.t.𝒜(𝑽 ,𝝓) = 𝜇ℬ(𝑽 ,𝝓) ∀𝝓 ∈ 𝕊. (5.24)
Here, 𝒜 andℬ are bi-linear operators. For uniqueness of the problem, the discrete eigen-
vectors 𝒗ℎ are normalised by the condition [330]

𝓑(𝒗,𝒗) = 1. (5.25)

Typically, discretizing the system gives the following:

find (𝜇ℎ, 𝒗ℎ) ∈ ℝ×𝓢𝑝
ℎ s.t.𝓐(𝒗ℎ,𝝓ℎ) = 𝜇𝓑(𝒗ℎ,𝝓ℎ) ∀𝝓ℎ ∈ 𝓢𝑝

ℎ, (5.26)

where the eigenpairs ̂𝒗ℎ = (𝜇ℎ, 𝒗ℎ) are the solutions of the eigenvalue problem. In addition,
the adjoint eigenvalue problem is defined by the eigenvalue problem [29]:

find (𝜂,𝝍) ∈ ℝ×𝓢 s.t.𝓐(𝝍,𝝓) = 𝜂𝓑(𝝍,𝝓) ∀(𝝓) ∈ 𝓢, (5.27)
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for which the normalization similar to equation (5.25) is used for the dual eigenvectors 𝝍
𝓑(𝒗,𝝍) = 1. (5.28)

To derive the DWR method for the eigenvalue problem in equation (5.24), the func-
tional 𝒱 (⋅, ⋅) is defined, such that the following problem should be solved:

Find ̂𝑽 = (𝜇,𝑽 ) ∈ ℝ×𝕊 s.t.
𝒱 ( ̂𝑽 , �̂�) = 𝜇ℬ(𝑽 ,𝝓)−𝒜(𝑽 ,𝝓)+ 𝜏(ℬ(𝑽 ,𝑽 )−1) = 0,

∀�̂� = (𝜏 ,𝝓) ∈ ℝ×𝕊,
(5.29)

where the normalisation condition from equation (5.25) is enforced weakly. The discrete
counterpart of this equation reads:

Find ̂𝑽ℎ = (𝜇ℎ,𝑽ℎ) ∈ ℝ×𝕊𝑝ℎ s.t.
𝒱 ( ̂𝑽ℎ, �̂�ℎ) = 𝜇ℬ(𝑽ℎ,𝝓ℎ) −𝒜(𝑽ℎ,𝝓ℎ) + 𝜏ℎ(ℬ(𝑽ℎ,𝑽ℎ) − 1) = 0,

∀�̂�ℎ = (𝜏ℎ,𝝓ℎ) ∈ ℝ×𝕊𝑝ℎ.
(5.30)

Furthermore, a goal function for the eigenvalues is defined as follows:

ℒ( ̂𝑽 ) = 𝜇 = 𝜇ℬ(𝑽 ,𝑽 ), (5.31)

giving
Δℒ(�̂�ℎ) = 𝜇 −𝜇ℎ. (5.32)

Using the non-linear functional 𝒱 and the goal functional ℒ , the same derivations as in
section 5.3.1 can be followed to find a system of equations to solve the DWR eigenvalue
problem. The Gateaux derivative of 𝒱 , denoted by 𝒱 ′, is given by:

𝒱 ′( ̂𝑽 , �̂�, �̂�) = 𝜂ℬ(𝑽 ,𝝍)+𝜇ℬ(𝝍,𝝓)−𝒜(𝝍,𝝓)+ 𝜏(ℬ(𝒗,𝝍)+ℬ(𝝍,𝒗)), (5.33)

where the derivatives 𝒜 ′(𝝍,𝝓) and ℬ′(𝝍,𝝓) are equal to the bi-linear operators 𝒜(𝒖,𝝓)
and ℬ(𝒖,𝝓) themselves. Furthermore, the solution around which the linerisation is per-
formed is denoted by ̂𝑽 = (𝜇,𝑽 ), the test functions are denoted by �̂� = (𝜏 ,𝝓), and the trial
functions are denoted by �̂� = (𝜂,𝝍). Furthermore, the linearisation of the goal functional
equation (5.31) is

ℒ ′( ̂𝑽 , �̂�) = 𝜂ℬ(𝑽 ,𝑽 )+𝜇[ℬ(𝑽 ,𝝍)+ℬ(𝝍,𝑽 )], (5.34)

such that the adjoint eigenvalue problem, analoguously to equation (5.21), given by

Find �̂� = (𝜏 ,𝝓) ∈ ℝ×𝓢 s.t.𝓥′( ̂𝒗, �̂�, �̂�) = 𝓛′( ̂𝒗, �̂�)∀�̂� = (𝜂,𝝍) ∈ ℝ×𝓢, (5.35)

becomes [29, 330]:

Find �̂� = (𝜏 ,𝝓) ∈ ℝ×𝓢 s.t.
𝜂𝓑(𝒗,𝝓)+𝜇𝓑(𝝍,𝝓)−𝓐(𝝍,𝝓)+ 𝜏(𝓑(𝒗,𝝍)+𝓑(𝝍,𝒗)) = 𝜂𝓑(𝒗,𝒗)+

𝜇[𝓑(𝒗,𝝍)+𝓑(𝝍,𝒗)],
∀�̂� = (𝜂,𝝍) ∈ ℝ×𝓢.

(5.36)
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This equation can be simplified to obtain the following [29, 330]:

Find �̂� = (𝜏 ,𝝓) ∈ ℝ×𝓢 s.t.
𝜇𝓑(𝝍,𝝓)−𝓐(𝝍,𝝓)+𝜂[𝓑(𝒗,𝝓)−𝓑(𝒗,𝒗)] + (𝜏 −𝜇)[𝓑(𝒗,𝝍)+𝓑(𝝍,𝒗)] = 0,

∀�̂� = (𝜂,𝝍) ∈ ℝ×𝓢.
(5.37)

Using the normalizations from equations (5.25) and (5.28) and the fact that equation (5.27)
solves the same equation as equation (5.24), it follows that equation (5.37) is solved by
equation (5.27) [29].

Using equations (5.15), (5.20) and (5.32) with 𝓦 = 𝓥 according to equation (5.29)
and with 𝝍 denoting the dual eigenvector and 𝜂 the dual eigenvalue, the error estimation
according to the DWR method for an eigenvalue problem is

Δ𝓛( ̂𝒗ℎ) = 𝓐(𝒗ℎ,𝝍 −𝝍ℎ) − 𝜇ℎ𝓑(𝒗ℎ,𝝍 −𝝍ℎ) + (𝜂−𝜂ℎ)(𝓑(𝒗ℎ, 𝒗ℎ) − 1), (5.38)

for ̂𝑽ℎ = (𝜇ℎ,𝑽ℎ) ∈ ℝ×𝕊𝑝ℎ, �̂�ℎ = (𝜂ℎ,𝝍ℎ) ∈ ℝ×𝕊𝑝ℎ and �̂� = (𝜂,𝝍) ∈ ℝ×𝕊 . The exact adjoint
solution �̂�ℎ is again approximated by solving equation (5.27) on an enriched space �̃�𝑝ℎ ⊂ 𝕊,
�̃�𝑝ℎ ⊃ 𝕊𝑝ℎ, providing (�̃�ℎ, ̃𝝍ℎ) ∈ ℝ × �̃�𝑝ℎ. In [230], different choices for constructing �̃�𝑝ℎ are
given, including an ℎ-refinement and a 𝑝-refinement. As in the work of [244], the second
approach is used in the present chapter, with the same mesh as for 𝕊𝑝ℎ, but with a higher
order and with the same regularity, i.e., �̃�𝑝ℎ = 𝕊𝑝+1ℎ as it introduces less degrees of freedom
compared to an ℎ-refinement.

As specified at the end of section 5.2.4, the DWR method for modal analysis requires
𝒜(𝑽 ,𝝓) =𝒲 ′(0,𝑽 ,𝝓) andℬ(𝑽 ,𝝓) =ℳ(𝑽 ,𝝓). For buckling analysis,𝒜(𝑽 ,𝝓) =𝒲 ′(𝒖𝐿,𝑽 ,𝝓)
and ℬ(𝑽 ,𝝓) = 𝒲 ′(0,𝑽 ,𝝓) with the first operator defined as a pre-buckling solution 𝒖𝐿.

5.3.3 Goal Functionals for Isogeometric Kirchhoff–Love Shells
The remainder of this section focuses on defining the goal functional ℒ(𝒖), see equa-
tion (5.19), together with its variation ℒ ′(𝒖) such that the dual problem (equation (5.21))
can be solved and the error estimate (equation (5.20)) can be computed.

In general, the goal functional can be defined at a point, on a boundary, or over the
domain:

ℒ(⋅) = ∫Ω
𝑙(⋅,𝒙)dΩ, Domain-wise, (5.39)

ℒ(⋅) = ∫𝜕Ω
𝑙(⋅,𝒙)dΓ , Boundary-wise, (5.40)

ℒ(⋅) = ∑
𝑖∈ℐ

𝑙(⋅,𝒙𝑖), Point-wise, (5.41)

whereΩ denotes the integration domain, 𝜕Ω a side ofΩ, andℐ a set of indices correspond-
ing to points 𝒙𝑖 ∈ Ω. Furthermore, 𝑙(⋅,𝒙𝑖) denotes a goal functional summant or integrand,
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Table 5.1: Overview of the goal functionals. Here 𝒖ℎ = 𝒖(𝒙) is the discrete deformation tensor depending on
position coordinate 𝒙 , 𝐂ℎ = 𝐂(𝒖ℎ) is the deformation tensor based on 𝒖ℎ, and 𝐂(𝝓′

ℎ) = 𝐂′(𝒖ℎ,𝝓) is its variation,
𝒯 (𝐀) is the transformation of a second-order tensor 𝐀 from the undeformed contravariant basis to the basis
spanned by the principal directions. Note that the variation [𝒯 (𝐀)]′ of 𝒯 (𝐀) is 𝒯 (𝐀′), since the spectral
decomposition of the deformation tensor itself is just a linear change of tensor basis.

Displacement norm 𝑙‖𝒖‖(𝒖ℎ) = ‖𝒖ℎ(𝒙)‖2 𝑙′‖𝒖‖(𝒖ℎ,𝝓ℎ) = 2𝒖ℎ ⋅ 𝝓ℎ
Displacement-component 𝑙𝒖𝑖 (𝒖ℎ) = 𝒖ℎ(𝒙) ⋅ 𝒆𝑖 𝑙′‖𝒖‖(𝒖ℎ,𝝓ℎ) = 𝒆𝑖 ⋅ 𝝓ℎ

Stretch-norm 𝑙‖𝝀‖(𝒖ℎ) = ‖𝒯 (𝐂ℎ)‖2 𝑙′‖𝝀‖(𝒖ℎ,𝝓ℎ) = 2𝒯 (𝐂ℎ) ⋅ 𝝓ℎ
Stretch-component 𝑙𝝀𝑖 (𝒖ℎ) = 𝒯 (𝐂ℎ) ⋅ 𝒆𝑖 𝑙′‖𝝀‖(𝒖ℎ,𝝓ℎ) = 𝒆𝑖 ⋅𝒯 (𝐂′

ℎ)
Tensor-norm 𝑙‖𝐀‖(𝒖ℎ) = ‖𝐀‖2 𝑙′‖𝐀‖(𝒖ℎ,𝝓ℎ) = 2𝐀 ⋅𝝓ℎ
Tensor-component 𝑙𝐀𝑖 (𝒖ℎ) = 𝐀 ⋅ 𝒆𝑖 𝑙′‖𝐀‖(𝒖ℎ,𝝓ℎ) = 𝒆𝑖 ⋅𝐀

which has a variation denoted by 𝑙′(⋅,𝝓𝒙𝑖). The variation ofℒ , denoted byℒ ′(⋅,𝝓,𝒙𝑖), di-
rectly follows from 𝑙′(⋅,𝝓𝒙𝑖) due to the linearity of integrals and summation. In addition,
two different types of goal functional integrands are classified, resulting in norm-based
and component-based goal functionals. In the former case, 𝑙 is of the form 𝑙 = ‖𝐀‖2 with
variation 𝑙′ = 2𝐀⋅𝐀′. For component-based goal functionals, 𝑙 = 𝐀⋅𝒆𝑖 is defined, with vari-
ation 𝑙′ = 𝐀′ ⋅ 𝒆𝑖 . Here, 𝒆𝑖 is a unit vector in direction 𝑖. In table 5.1 some goal functional in-
tegrands or summants 𝑙(⋅,𝒙𝑖) are provided. Together with their variations 𝑙′(⋅,𝝓𝒙𝑖), these
provideℒ ′(⋅,𝝓,𝒙𝑖) due to the linearity of integrals and summation. The tensor-based goal
functionals refer to goal functionals that could be used for any second-order tensor, e.g.,
the membrane strain tensor 𝜺(𝒖) or the flexural moment tensor 𝐌(𝒖).

5.4 Coarsening and Refinement using THB Splines
This section elaborates on the coarsening and refinement of isogeometric meshes using
THB-splines. In particular, this section elaborates on theMark, Refine, and Transfer blocks
of figure 5.1. Firstly, section 5.4.1 will provide a brief background on THB-splines, which
enable the Refine step of the adaptive meshing flowchart. Then, section 5.4.2 elaborates
on methods for suitable grading for refinement meshes, which is required to provide ad-
missible refinement with (Truncated) Hierarchical B-spline ((T)HB) bases, given labelled
elements. Section 5.4.3 elaborates on the labelling method for the Mark step, given an
element-wise error distribution, taking admissibility into account. Lastly, section 5.4.4
elaborates on the quasi-interpolation method that is used to Transfer the solution of one
solution step to the next. The notations in this section will be closely related to those used
in [67, 84].

5.4.1 (T)HB-Splines
Refinement of B-splinemeshes can be done using (Truncated) Hierarchical B-splines ((T)HB-
splines), of which the details can be found in [203, 591]. The conceptual idea behind (T)HB-
splines is that they are constructed from a sequence of 𝑁 nested tensor B-spline spaces in
different levels 𝑙 = 0, ...,𝑁 −1, denoted by 𝑉 0 ⊂ 𝑉 1 ⊂, ...,𝑉𝑁−1 with associated bases𝔹ℓ of de-
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Figure 5.2: Principles of refinement for different spline bases. The top plots represent the basis on level 0, op-
tionally with (to be) refined functions given in red color. The bottom plots illustrate the refined bases: uniform
refinement (left), hence level 1; HB-refinement (middle); and THB-refinement (right) with truncated basis func-
tions in blue color. The line 𝒬 represents the elements of the basis. The unrefined unique knot vector in all cases
is Ξ = {0,1/8,2/8,…,7/8,1}, and the degree of the basis is 2. All bases are generated with the open-source IGA
library G+Smo [294].

gree 𝑝 on a grid 𝐺ℓ with elements 𝑄. The parametric domains are defined as Ω =Ω0 ⊇ Ω1 ⊇
... ⊇ Ω𝑁−1 = ∅. By defining the set of active cells by 𝒢 ℓ ∶= {𝑄 ∈ 𝐺ℓ ∶ 𝑄 ⊂ Ωℓ ∧𝑄 ⊄ Ωℓ+1}, the
hierarchical mesh is defined as 𝒬 = {𝑄 ∈ 𝒢 ℓ ∶ ℓ = 0, ...,𝑁 − 1}. In figure 5.2, an illustration
is given for a refined B-spline basis (left), a refined HB-spline basis (middle), and a refined
THB-spline basis (right). For the (T)HB-spline basis, this picture depicts the refinement
of a single basis function, corresponding to the elements in its support. The (T)HB-spline
bases show that for THB-splines, a truncation is performed to ensure partition of unity,
which is discussed in more detail in [203].

5.4.2 Admissible Meshing
The concept of admissible meshing was discussed in [67, 78, 79]. An admissible mesh of
class 𝑚 is a mesh in which the truncated basis functions belong to at most 𝑚 successive
levels, and mesh admissibility ensures that the number of basis functions acting on mesh
elements does not depend on the number of levels in the hierarchy but on the parameter
𝑚. In order to guarantee mesh admissibility for refinement and coarsening operations,
refinement and coarsening neighbourhoods are defined such that admissible meshes can
be constructed recursively, which is discussed in more detail in [67, 78, 79]. Figure 5.3,
illustrates a simple mesh together with the refinement neighbourhood of some selected
elements. The T-refinement neighbourhood 𝒩𝑟 (𝒬,𝑄,𝑚) of element 𝑄 is defined as

𝒩 THB𝑟 (𝒬,𝑄,𝑚) = {𝑄′ ∈ 𝒢 ℓ−𝑚+1 ∶ ∃𝑄″ ∈ 𝑆(𝑄, ℓ −𝑚+2),𝑄″ ⊆ 𝑄′} , (5.42)
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Recursive marking strategy for the marked element of level ℓ on the initial mesh represented in (a).
As a first step, the support extension of the marked element is obtained (b), from which the parents that are
active on level ℓ−1 define the T-neighborhood of the marked cell (c). Starting the same procedure on the marked
cells of level ℓ−1, the support extension can again be obtained (d) with their corresponding parents on level ℓ−2,
marking the T-neighborhood of the marked elements of level ℓ − 1 (e). The complete recursive marking of the
marked element in (a) is depicted in (f).

where 𝑆(𝑄,𝑘) is the multi-level support extension with respect to level 𝑘.

The coarsening neighbourhood 𝒩𝑐(𝑄) of element 𝑄 ∈ 𝐺ℓ is defined by [84]. When
coarsening element 𝑄ℓ, the coarsening neighbourhood ensures that the newly activated
basis functions are not active on the surrounding basis functions of level ℓ +𝑚. In other
words, if element 𝑄 of level ℓ is the element to be coarsened, then the coarsening neigh-
bourhood is defined by

𝒩𝑐(𝒬,𝑄,𝑚) ∶= {𝑄′ ∈ 𝒢 ℓ+𝑚−1 ∶ ∃𝑄″ ∈ 𝒢 ℓ and 𝑄″ ⊂ 𝑃(𝑄), with 𝑄′ ∈ 𝑆(𝑄″, ℓ)} , (5.43)

must be empty. Here, 𝑃(𝑄) denotes the parent of 𝑄, i.e., the unique cell 𝑄′ ∈ 𝐺ℓ−1 such
that 𝑄 ⊂ 𝑄′. Note the small difference with respect to the definition given in [84] since
the coarsening neighbourhood in their work is defined for the element �̂� of level ℓ which
will be activated, i.e., �̂� is the parent of 𝑄 for which the coarsening neighbourhood is
defined here. Given the definition in equation (5.43) and given a set of elements marked for
refinement ℳ𝑟 , a coarsening neighbourhood checking elements marked for refinement,
can be defined:

𝒩 𝑟𝑐 (𝒬,𝑄,𝑚,ℳ𝑟 ) ∶= {𝑄′ ∈ 𝒢 ℓ+𝑚−2 ∶ 𝑄′ ∈ℳ𝑟 , ∃𝑄″ ∈ 𝒢 ℓ−1 and 𝑄″ ⊂ 𝑃(𝑄),
with 𝑄′ ∈ 𝑆(𝑄″, ℓ − 1)}. (5.44)

In other words, this is the coarsening neighbourhood that checks whether for element 𝑄
of level ℓ to be coarsened, there are elements in the marked set ℳ𝑟 that will be part of
the coarsening neighbourhood as soon as they are refined; thus, it uses equation (5.43)
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Given the mesh from figure 5.3-(f), the coarsening neighbourhoods are given in (a)-(c) of this figure.
The cell marks the cell of level ℓ that is marked for coarsening to its parent, and the cells mark cells that
are marked for refinement. The ring around the cell marked for coarsening depicts the region that should be
checked for the coarsening neighborhood. That is, it defines the region that should not contain cells of level ℓ+1
(for 𝒩𝑐 ) or cells of level ℓ that are marked for refinement (for 𝒩 ′𝑐 ). The cells for which 𝒩𝑐 = ∅ are marked in (d),
and the cells with 𝒩 ′𝑐 = ∅ are marked in (e). The final mesh after refinement and coarsening is depicted in (f).
The coarsened elements that satisfy 𝒩𝑐 ∪𝒩 ′𝑐 = ∅ are marked as coarsened elements.

with ℓ − 1. This neighbourhood ensures that coarse labelling can be performed in accor-
dance with the Dörfler marking strategy without refining first. This avoids computing
element-error contributions on an in-between mesh that has been refined first. Obvi-
ously, if another element with the same parent as 𝑄 is marked for refinement, no coars-
ening should take place. An element can be coarsened if 𝒩 𝑟𝑐 (𝒬,𝑄,𝑚,ℳ𝑟 ) = ∅. Com-
bining both neighbourhoods, an element 𝑄 of level ℓ can be coarsened if and only if
̂𝒩𝑐(𝒬,𝑄,𝑚,ℳ𝑟 ) = 𝒩𝑐(𝒬,𝑄,𝑚)∪𝒩 𝑟𝑐 (𝒬,𝑄,𝑚,ℳ𝑟 ) = ∅. In figure 5.4, the coarsening neigh-

bourhood is illustrated for a simple mesh.

5.4.3 Labeling Methods
Let �̃� be the ordered set of 𝒬 such that 𝑒𝑘 ≥ 𝑒𝑘+1 ∀𝑘 ∈ �̃�, where 𝑒𝑘 denotes the error of
element 𝑘. Then, the Dörfler marking strategy [160] is defined as the elements 𝑄𝑖 ∈ �̃�, 𝑖 =
0, ..., 𝑘 such that the sum of their respective errors is smaller than a fraction 𝜌𝑟 of the total
element error 𝑒 = ∑𝑖 𝑒𝑖 :

ℳDörfler𝑟 = {𝑄𝑖 ∈ 𝒬 ∶
𝑖
∑
𝑘=0

𝑒𝑘 < 𝜌𝑟 𝑒}. (5.45)

This marking strategy, however, does not take into account the contributions of the ele-
ments that are marked because they are part of a refinement neighbourhood of a marked
element 𝑄𝑖 ∈ ℳ𝑟 . Therefore, the index set ℐ 𝐾𝑟 is defined as the set of element indices
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whose span contains elements 𝑄𝑘 ∈ �̃� and their refinement neighbourhoods:

ℐ 𝐾𝑟 ∶= {𝑘 ∈ 1, ...,𝐾 ∶ 𝒩𝑟 (𝑄𝑘 ,𝒬,𝑚)∪𝑄𝑘 , 𝑄𝑘 ∈ �̃�}, (5.46)

and define 𝜅𝑟 as the maximum index for which the sum of all elements with indices 𝑖 in
ℐ 𝜅𝑟𝑟 is smaller than the error tolerance 𝜌𝑟 𝑒:

𝜅𝑟 ∶= argmax ∑
𝑖∈ℐ 𝐾𝑟

𝑒𝑖 < 𝜌𝑟 𝑒, (5.47)

such that the Dörfler marking, including refinement neighbourhoods,

ℳ𝑟 = {𝑄𝑘 ∈ 𝒬 ∶ 𝑘 ∈ ℐ 𝜅𝑟𝑟 }. (5.48)

For marking a set of coarsening elements, ℳ𝑐 , the Dörfler marking procedure can be
followed again. The original Dörfler marking strategy would be coarsening the elements
𝑄𝑖 ∈ 𝒬 such that their total element error is smaller than a fraction of the total element
error 𝜌𝑐𝑒, with coarsening parameter 𝜌𝑐 :

ℳDörfler𝑐 = {𝑄𝑖 ∈ 𝒬 ∶
𝑁
∑
𝑘=𝑖

𝑒𝑘 < 𝜌𝑐𝑒}. (5.49)

Similar to marking for refinement, the marking rule for coarsening can be specified more
precisely by including admissible coarsening. In this case, the elements forwhich ̂𝒩𝑐(𝒬,𝑄,𝑚,ℳ𝑟 ) =
∅ holds are added to the sum of marked elements. Therefore, let us define the index set
𝒥𝐾 that contains all elements 𝑄𝑘 ∈ 𝒬 for which the admissible coarsening condition holds,
starting from the element with the smallest error, i.e., 𝑄𝑁 .

ℐ 𝐾𝑐 ∶= {𝑘 ∈ 1, ...,𝐾 ∶ ̂𝒩𝑐(𝒬,𝑄,𝑚,ℳ𝑟 ) = ∅, 𝑄𝑁−𝑘−1 ∈ �̃�}. (5.50)

Similar to 𝜅𝑟 , 𝜅𝑐 is defined as the maximum index for which the sum of all elements with
indices 𝑖 in ℐ 𝜅𝑐𝑐 is smaller than the error tolerance 𝜌𝑐𝑒:

𝜅𝑐 ∶= argmax ∑
𝑖∈ℐ 𝐾𝑟

𝑒𝑖 < 𝜌𝑐𝑒, (5.51)

such that the Dörfler marking strategy, taking into account coarsening admissibility, is
defined as

ℳ𝑐 = {𝑄𝑘 ∈ 𝒬 ∶ 𝑘 ∈ ℐ 𝜅𝑐𝑐 }. (5.52)

An alternative to the Dörfler marking strategy is a strategy where a given fraction
of the total number of elements is marked. In that case, the formulations from equa-
tions (5.48) and (5.52) would still hold, but in equations (5.46) and (5.50) the indices 𝜅𝑟
and 𝜅𝑐 are defined by the sum of the marked elements in respectively ℐ 𝐾𝑟 and ℐ 𝐾𝑐 .

Whether to mark a set for refinement or coarsening, i.e., to construct ℳ𝑟 and ℳ𝑐 ,
depends on the global error Δℒ following from the DWR method and user-defined tol-
erances for refinement and coarsening. Let tol𝑟 be the tolerance for refinement and tol𝑐
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the tolerance for coarsening, such thatℳ𝑟 ≠ ∅ if and only if Δℒ > tol𝑟 andℳ𝑐 ≠ ∅ if and
only if Δℒ < tol𝑟 . As a consequence, if tol𝑟 ≥ tol𝑐 , refinement and coarsening are never
performed simultaneously. If tol𝑟 < tol𝑐 a band with bandwidth tol𝑐 − tol𝑟 is defined, in
which refinement and coarsening are performed simultaneously, In the present work, tol-
erances are defined such that the latter condition is satisfied, and the adaptivity iterations
are terminated when Δℒ ∈ [tol𝑟 , tol𝑐], i.e.:

{
ℳ𝑟 = ∅, ℳ𝑐 ≠ ∅ ifΔℒ < tol𝑟 ,
ℳ𝑟 ≠ ∅, ℳ𝑐 = ∅ ifΔℒ > tol𝑐 ,
ℳ𝑟 ≠ ∅, ℳ𝑐 ≠ ∅ if tol𝑟 ≥ Δℒ ≥ tol𝑐 ,

(5.53)

given tol𝑟 ≤ tol𝑐 .

Note that the total element error 𝑒 and the total estimated error of the system of equa-
tions Δℒ are not necessarily the same, since the element error measure 𝑒𝑘 can be defined
in different ways. In the case of the DWR method, a natural choice is to choose 𝑒𝑘 as
the element-wise integrals of Δℒ from equation (5.20). However, integrating the squared
norm of the integrand from equation (5.20) would yield strictly positive element errors,
making the ordering of the set of element errors simple.

5.4.4 Quasi-Interpolation
In the discrete setting, the solution of the problem 𝒖ℎ is represented by the THB-spline
basis 𝝓𝑖 ∈ 𝕊𝑝ℎ together with the solution coefficients 𝛼𝑖 ∈ ℝ. In the case of analyses with
multiple solution steps (e.g., dynamic or quasi-static analysis), mesh refinements can be
performed after each solution step. As a consequence, the solution at load step 𝑘 + 1 is
defined on another set of basis functions { ̄𝝓𝑖} ∈ 𝕊𝑝ℎ with corresponding coefficients ̄𝛼𝑘𝑖
compared to the previous solution at step 𝑘. In order to transfer the coefficients 𝛼𝑘𝑖 to the
new basis, an interpolation scheme needs to be used.

Interpolation on a spline basis can be a costly part of the simulation. Global interpo-
lation implies that the contributions of all basis functions are taken into account in the
interpolation. This requires solving a large, dense system. An efficient way of interpo-
lating spline coefficients on a hierarchical basis is a so-called quasi-interpolation scheme
[205, 519]. Here, on each level of the hierarchical basis, a quasi-interpolant is constructed.
This quasi-interpolant interpolates a given function 𝑓 over the support of each basis func-
tion individually to find the coefficient related to that basis function. More precisely, given
a function 𝑓 ∈ 𝐶(Ω0), the quasi-interpolant for level ℓ is defined as

Λℓ(𝑓 ) =
𝑁
∑
𝑖=1

𝜆𝑖,ℓ(𝑓 )𝐵𝑖,ℓ, ℓ = 0,…,𝑛 −1, (5.54)

where the coefficients 𝜆𝑖,ℓ are suitable linear functionals on 𝐶(Ω0). Across all levels ℓ =
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0,…,𝑁 −1, the interpolant for the function becomes:

Λ(𝑓 ) =
𝑁−1
∑
ℓ=0

∑
𝑖∈ℐℓ,Ω𝑛

𝜆𝑖,ℓ(𝑓 )𝐵𝑖,ℓ(𝒯 (Ω𝑛)), (5.55)

where 𝐵𝑖,ℓ is a THB spline of level ℓ constructed on domain Ω𝑛 . For any basis function
𝐵𝑖,ℓ, the coefficient 𝜆𝑖,ℓ is found by locally interpolating the function 𝑓 onto all active basis
functions 𝐵𝑗,ℓ, 𝑗 ∈ 𝒥 in the support of 𝐵𝑖,ℓ. This gives coefficients 𝜆𝑗,ℓ, 𝑗 ∈ 𝒥 , of which
coefficient 𝑖 gives 𝜆𝑖,ℓ. This quasi-interpolation scheme is used in the present framework to
express the solution obtained from the previous load-step in terms of the newly, adaptively
refined and coarsened, basis.

5.5 Algorithmic Overview
In figure 5.1, the adaptive isogeometric method for solution-stepping problems has been
presented. Based on sections 5.2 to 5.4, a summarised workflow for adaptive isogeometric
shell analysis is depicted in figure 5.5 and algorithm 1.

The Solve block involves solving the non-linear isogeometric Kirchhoff–Love shell
equation from equation (5.16). This variational formulation involves geometric and ma-
terial non-linearities and can potentially also involve load non-linearities. After solving
the Kirchhoff–Love shell problem, the discrete solution vector 𝒖ℎ is passed to the Estimate
block. Here, the DWR method is solved by computing the adjoint problem in the primal
space (equation (5.21)) and in the enriched space (equation (5.22)). Then, the element-wise
error estimate can be obtained by integrating equation (5.20) element-wise. The element-
wise errors 𝑒𝑘 can be passed to theMark block, where elements are marked for refinement
(equation (5.52)) if the total error Δℒ is larger than a lower (refinement) tolerance tol𝑟 and
a coarsening marking (equation (5.52)) is performed if the total error is above an upper
(coarsening) tolerance tol𝑐 . This implies that if tol𝑐 < Δℒ < tol𝑟 , a combined coarsening
and refinement step is performed, as described in equation (5.53). In this case, the coars-
ening marking from equation (5.52) is performed given ℳ𝑟 . Given the elements marked
for refinement and coarsening, collected in ℳ𝑟 and ℳ𝑐 , respectively, the mesh can be
Adapted. In order to start the solution interval again, the start point should be Trans-
ferred to the new mesh, and the governing equation can be solved again. If the error is
not in the interval [tol𝑟 , tol𝑐] or if the number of refinement iterations 𝑖 exceeds the maxi-
mum number of refinement iterations, 𝐼max. If the total error is in the interval [tol𝑟 , tol𝑐]
or if the number of refinement iterations 𝑖 exceeds the maximum number of refinement
iterations, 𝐼max, the solution can be advanced, e.g., using a load-stepping or an arc-length
method. Thereafter, the governing equations can be Solved again. Note that if 𝐼max = 1, no
inner iterations for adaptive meshing are performed.
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Solve
Eq. (5.16)

Estimate
Eqs. (5.21),
(5.22), (5.20)

𝒖ℎ Mark
Eqs. (5.52),
(5.48), (5.53)

𝑒𝑘 Adapt
Fig. (5.2)

ℳ𝑟
ℳ𝑐

Transfer
Eq. (5.55)

Advance

while Δℒ ∉ [tol𝑟 , tol𝑐] and 𝑖 < 𝐼max do

Addition for solution stepping

Adaptive meshing

Classical solution stepping

Figure 5.5: A graphical summary of the adaptive meshing flowchart from figure 5.1 used in the present work. The
equations that are used in each step are indicated in the blocks. The adaptive meshing iterations are performed
within each solution step until the total error Δℒ is contained in the interval [tol𝑟 , tol𝑐], tol𝑟 < tol𝑐 , following
the tolerances in section 5.4.3. In case of convergence, the solution is advanced, e.g., with an arc-length iteration.
Algorithm 1 provides an algorithm corresponding to this flow chart.

Algorithm 1 An algorithmic summary of the goal-adaptive meshing routine employed in
the present work. Figure 5.5 provides a graphical summary of this algorithm.

1: for loadsteps do
2: while Δℒ ∉ [tol𝑙 , tol𝑢] and 𝑖 < 𝐼max do
3: Compute the primal solution 𝒖ℎ (Eq. (5.16))
4: Compute the dual solution, 𝝃ℎ given 𝒖ℎ (Eq. (5.21))
5: Compute the enriched dual solution, ̃𝝃ℎ given 𝒖ℎ (Eq. (5.22))
6: Compute the total error estimation Δℒ according to Eq. (5.20) and find the

element-wise errors 𝑒𝑘 and the total element error 𝑒.
7: if Δℒ > tol𝑟 then
8: Mark elements for refinement into ℳ𝑟 using 𝑒, see Eq. (5.48).
9: end if

10: if Δℒ < tol𝑐 then
11: Mark elements for coarsening into ℳ𝑐 using 𝑒, see Eq. (5.52).
12: end if
13: Refine all 𝑄 ∈ℳ𝑟 using THB-splines, see Fig. 5.2
14: Coarsen all 𝑄 ∈ℳ𝑐 using THB-splines, see Fig. 5.2
15: Transfer the solutions required to start the new solution step to the new mesh

using Quasi-Interpolation, see Eq. (5.55).
16: end while
17: Advance the solution to the next solution step
18: end for

Solve

Estimate

Mark

Adapt

Transfer

Advance
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5.6 Numerical Examples
In this section, several numerical examples are presented. The examples represent differ-
ent applications of the theory presented in this chapter, and, without loss of generality, all
employ isogeometric Kirchhoff–Love shells. The first three examples illustrate the perfor-
mance of the DWR error estimator, and the last three examples demonstrate the use of this
error estimator for adaptive meshing. More precisely, the numerical examples performed
in this section, as well as their purpose, are:

Linear static analysis of a square plate (section 5.6.1) A simple example of linear Kirchhoff-
Love shell theory is presented. In this case, error estimators using the DWRmethod
are computed for different goal functionals and verified using the actual error com-
puted from manufactured solutions. The goal of this benchmark problem is to eval-
uate the accuracy of the error estimators in linear static analysis.

Modal analysis of a circular plate (section 5.6.2) Since the analytical eigenvalues and
eigenmodes are known for this case, the goal of this benchmark problem is to verify
the error estimator for a vibration eigenvalue problem, given in equation (5.26) with
the stiffness and mass operators 𝒜(𝒗,𝝓) = 𝒲 ′(0,𝒗,𝝓) and ℬ(𝒗,𝝓) =ℳ(𝒗,𝝓).

Linear buckling analysis of a square plate (section 5.6.3) Analytical critical buckling
loads and mode shapes are also known in this case. Therefore, the goal of this
benchmark problem is to provide verification for the buckling error estimator from
equation (5.26) with the buckling operators 𝒜(𝒗,𝝓) = 𝒲 ′(𝒖𝐿, 𝒗,𝝓) and ℬ(𝒗,𝝓) =
ℳ(𝒗,𝝓).

Non-linear analysis of a pinched thin plate (section 5.6.4) In this example, a thin plate
with very low bending stiffness subjected to an out-of-plane load is analysed. The
error estimator is used to provide mesh adaptivity to compare to uniform refine-
ment. The goal of this benchmark problem is to evaluate the performance of the
DWR method as a driver for adaptive meshing in a static load case with geometric
non-linearities.

Snap-through instability of a cylindrical roof (section 5.6.5) Thesnap-through behaviour
of a cylindrical roof is considered in this example. The benchmark problem is a
well-known application of arc-length methods and shells. The goal of solving this
problem is to test the full adaptive solution stepping procedure from figure 5.5 on a
benchmark problem.

Wrinkling analysis (section 5.6.6) In the last example, the procedure from figure 5.5 is
applied to the modelling of membrane wrinkling. This problem contains geometric
non-linearities and material non-linearities. The results are compared to uniform
refinements to evaluate the efficiency of adaptive meshing for such applications.
The goal of this example is to demonstrate the use of the adaptive meshing routine
from figure 5.5 on a complex load-stepping problem with geometric and material
non-linearities.

In the following subsections, the short-hand notationsℒan =ℒ(𝒖an),ℒnum =ℒ(𝒖num),
Δℒan = ℒan −ℒnum and Δℒnum = ℛ(𝒖num, ̃𝝃ℎ −𝝃ℎ) (see equation (5.20)) are used, given
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𝑥𝑦
𝑧𝑊

𝐿

𝒇

𝒖 = 0

Geometry

𝐿 1 [m]
𝑊 1 [m]
𝑡 0.01 [m]

Material
Saint-Venant Kirchhoff

𝐸 106 [Pa]
𝜈 0.3 [-]

Boundary Conditions

𝒖 0

Loads

𝒇 See equation (5.56) [Pa]

Figure 5.6: Geometry and parameters for the example of a unit-square plate with a distributed vertical load 𝒇
given by equation (5.56). The displacements are fixed on all edges.

the analytical and numerical solutions 𝒖an and 𝒖num, respectively. Furthermore, where
relevant, the parameters 𝜌𝑟 , 𝜌𝑐 , tol𝑟 , and tol𝑐 (see equations (5.48), (5.52) and (5.53)) are
fixed per example. A study on finding optimal values for these parameters is out of the
scope of this chapter. Lastly, all simulations are performed using the open-source Geom-
etry+Simulation modules [294].

5.6.1 Linear Static Analysis of a Square Plate
For the linear shell example, let us consider a flat plate with unit dimensions 𝐿 =𝑊 = 1[m],
a thickness of 𝑡 = 10−2 [m] and with material parameters 𝐸 = 106 [Pa], 𝜈 = 0.3, which is
clamped on all sides; see figure 5.6. A load vector of

𝒇 = 2𝐸𝐴𝑡3
1−𝜈2 (𝑥

4 −2𝑥3 +3𝑥2 −2𝑥 +𝑦4 −2𝑦3 +3𝑦2 −2𝑦 +12𝑥2𝑦2

−12𝑥2𝑦 −12𝑥𝑦2 +12𝑥𝑦 + 1
3)𝒆𝑧 (5.56)

is applied, based on the manufactured solution given by

𝒖an = 𝐴𝑥2(𝑥 −1)2𝑦2(𝑦 −1)2𝒆𝑧 . (5.57)

Using this manufactured solution, any goal functional ℒan can be evaluated. Solving the
primal problem for this linear shell example gives 𝒖num, which can be used to compute
the DWR error estimate of Δℒnum.

In figure 5.7, the results for the linear shell problem are given. The title of each column
represents the goal function that is used for error estimation in this column. The top row
provides the errors Δℒan and Δℒnum with respect to a uniformly refined mesh size. As
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10−12

10−6

100 1
2

1
4Δℒ

∫Ω ‖𝒖‖dΩ ∫Ω 𝜆2 dΩ ∫Ω ‖𝜺(𝒖)‖dΩ ∫Ω𝐍(𝒖) ⋅ 𝒆1 dΩ

10−2 10−1 100
0.9

1

1.1

ℎ

Δℒ
nu

m
/Δ
ℒ a

n

10−2 10−1 100
ℎ

10−2 10−1 100
ℎ

𝑝 = 2, DWR 𝑝 = 3, DWR
𝑝 = 2, exact 𝑝 = 3, exact

10−2 10−1 100
ℎ

Figure 5.7: Linear static analysis of a clamped plate with a uniformly distributed load according to equation (5.56)
according to a manufactured solution from equation (5.57). The top row provides Δℒ against the uniform mesh
size ℎ. The bottom row presents the efficiency of the error estimators against the mesh size ℎ. The markers
represent error estimates computed via the DWR method, and the lines represent the exact error, i.e., the error
of the numerical solution with respect to the analytical solution. The results are given for goal functionals
(from left to right) ℒ = ∫Ω ‖𝒖‖dΩ (displacement norm), ℒ = ∫Ω 𝜆2 dΩ (second principal stretch), ℒ = ∫Ω ‖𝜺(𝒖)‖dΩ
(membrane strain norm) and ℒ = ∫Ω𝐍(𝒖) ⋅ 𝒆1 dΩ (first component of membrane force).

can be seen in this figure, Δℒnum quickly converges to Δℒan for different spline orders
𝑝. In addition, the bottom row of figure 5.7 provides the efficiency of the error estimator,
given by Δℒnum/Δℒan. These figures confirm the convergence of the DWR estimates
to the analytical goal functional errors for all considered goal functionals. Only for the
membrane strain norm goal functional, the error estimate for coarse meshes is inaccurate.
This can possibly be explained by the in-plane shear strain that cancels out over the whole
domain but does contribute to the norm ‖𝜺‖.

Concluding, the linear shell benchmarks show that for different goal functionals, the
DWR method provides an accurate estimation of the error Δℒ of the goal functional ℒ ,
starting at relatively small mesh sizes of ℎ < 10−1.

5.6.2 Modal Analysis of a Circular Plate
As a next example, the vibration modes of a circular plate with clamped boundary condi-
tions are computed. The geometry with boundary conditions is illustrated in figure 5.8.
The circular plate has a unit diameter and a thickness 𝑡 = 10−2 [m], Young’s modulus
𝐸 = 106 [Pa], Poisson’s ratio 𝜈 = 0.3 and density 𝜌 = 1 [kg/m3]. The analytical solutions
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Z
𝑥𝑦

𝑧 𝑅

𝒖 = ∇𝒖 ⋅n = 0

Geometry

𝑅 0.5 [m]
𝑡 0.01 [m]

Material
Saint-Venant Kirchhoff

𝐸 106 [Pa]
𝜈 0.3 [-]
𝜌 1 [kg/m3]

Boundary Conditions

𝒖 = ∇𝒖 ⋅ ̂𝒂3 0

Figure 5.8: Geometry and parameters for a vibrating circular plate with a clamped boundary.

for the eigenfrequencies of the circular plate are obtained by

𝜔𝑛 = 𝛾 2𝑛 √𝐷/𝜌𝑡, (5.58)

where 𝛾𝑛 is the 𝑛th root of the equation (𝐼𝑚−1(𝛾𝑅)−𝑚/𝑅𝐼𝑚(𝛾𝑅))𝐽𝑚(𝛾𝑅)−𝐼𝑚(𝛾𝑅)(𝐽𝑚−1(𝛾𝑅)−
𝑚/𝑅𝐽𝑚(𝛾𝑅)) = 0 following from a separation of variables solution [583], 𝑅 is the radius of
the plate, and 𝐷 = 𝐸𝑡3/(12(1 − 𝜈2)) = 9.16 ⋅ 10−8 is the flexural rigidity. As stated in sec-
tion 5.3.2, the goal functional of eigenvalue problems is given in equation (5.31), and
requires the eigenvalue problem in equation (5.24) to be solved with linear operators
𝒜(𝒗,𝝓) = 𝒲 ′(0,𝒗,𝝓) and ℬ(𝒗,𝝓) =ℳ(𝒗,𝝓), see equations (5.10) and (5.14).

Figure 5.9 presents the first four eigenmodes in the top row. Furthermore, Δℒan and
Δℒnum as a function of the element size for the uniformly refined domain are given in the
middle row for the first four eigenmodes. These plots show that the approximation for the
error Δℒnum approximates Δℒan. In the bottom row of figure 5.9, the efficiencies also
show that the approximation converges to an efficiency equal to 1. However, for the 𝑝 = 4
line, the efficiency degrades when the ‘exact’ error obtained by the analytical solution ap-
proaches values around 10−11, which is attributed to the approximation of the roots 𝛾𝑖 and
the precision of the eigenvalue solver.

Concluding, the modal analysis benchmark shows that the DWR method provides ac-
curate estimation of the eigenfrequency error for different considered mode shapes.

5.6.3 Linear Buckling Analysis of a Square Plate
Similar to modal analysis, DWR error estimation for buckling analysis also relies on the
formulations in section 5.3.2. The difference with the modal analysis error estimation is
that the buckling analysis error estimation involves the solution of a pre-buckling solution
and no mass matrix. As an example for buckling analysis, a square simply supported
plate is considered, see figure 5.10, with a Saint-Venant Kirchhoff constitutive law with
Young’s modulus 𝐸 = 106 [Pa] and Poisson’s ratio 𝜈 = 0.3 [-]. The dimensions of the plate
are 𝐿×𝑊 ×𝑡 = 1×1×0.01 [m3]. The plate is subject to a distributed line load of 𝜎𝑡 in both
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Mode 1 Mode 2 Mode 3 Mode 4
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10−2 10−1 100
ℎ

10−2 10−1 100
ℎ

𝑝 = 2, DWR 𝑝 = 3, DWR 𝑝 = 4, DWR
𝑝 = 2, exact 𝑝 = 3, exact 𝑝 = 4, exact

10−2 10−1 100
ℎ

Figure 5.9: Modal analysis of a circular plate. The top row provides the mode shapes from mode 1 up to 4.
The mid row provides Δℒ against the uniform mesh size ℎ, and the bottom row provides the efficiency of the
error estimators against the mesh size ℎ. The markers represent error estimates computed via the DWR method,
and the lines represent the exact error, i.e. the error of the numerical solution with respect to the analytical
solution. The eigenfrequencies for modes 1 up to 4 are, respectively, 𝜔1 = 9.56 ⋅ 10−4 [Hz], 𝜔2 = 4.14 ⋅ 10−3 [Hz],
𝜔3 = 1.11 ⋅ 10−2 [Hz] and 𝜔4 = 1.45 ⋅ 10−2 [Hz].
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𝜎𝑡

𝑥𝑦
𝑧𝑊

𝐿

𝑢𝑦 = 𝑢𝑧 = 0

𝑢𝑧 = 0
𝑢𝑧 = 0

𝑢𝑥 = 𝑢𝑧 = 0

Geometry

𝐿 1 [m]
𝑊 1 [m]
𝑡 0.01 [m]

Material
Saint-Venant Kirchhoff

𝐸 106 [Pa]
𝜈 0.3 [-]

Boundary Conditions

𝑢𝑥 = 𝑢𝑧 0 𝑥 = 0, 𝑦
𝑢𝑧 0 𝑥 = 𝐿, 𝑦
𝑢𝑦 = 𝑢𝑧 0 𝑥 , 𝑦 = 0
𝑢𝑧 0 𝑥 , 𝑦 = 𝑊

Loads

𝜎𝑡 Variable

Figure 5.10: Geometry and parameters for the plate buckling example. A distributed load of 𝜎𝑡 is acting on two
boundaries in two different directions, and the other boundaries are simply supported and fixed in an out-of-
plane direction.

directions. The analytical solution for the buckling load with 𝑚 half waves in 𝑥-direction
and 𝑛 half waves in 𝑦-direction for a square plate with sides 𝐿 and with equal loads is
given in [293] and reads:

𝜎𝑚,𝑛𝑐 𝑡 = 𝐷𝜋2
𝐿2 (𝑚2 +𝑛2), (5.59)

with𝐷 = 𝐸𝑡3/12(1−𝜈2) the flexural rigidity of the plate. Using this expression, the first four
unique modes are, indexed in ascending order: 𝜎1,1𝑐 𝑡 = 𝜎1𝑐 𝑡 = 1.808 [N/m], 𝜎2,1𝑐 𝑡 = 𝜎1,2𝑐 𝑡 =
𝜎2𝑐 𝑡 = 4.519 [N/m], 𝜎2,2𝑐 𝑡 = 𝜎3𝑐 𝑡 = 7.230 [N/m], 𝜎3,1𝑐 𝑡 = 𝜎1,3𝑐 𝑡 = 𝜎4𝑐 𝑡 = 9.038 [N/m].

Figure 5.11 depicts the analytical error Δℒan and the DWR error estimate Δℒnum as
a function of the mesh size ℎ for uniform refinements. Both errors are normalised with
the analytical value of the critical buckling load. As can be seen in this figure, the DWR
prediction of the error converges with a rate of convergence of 2(𝑝 − 1) for all degrees 𝑝
until it reaches values of around 10−10, after which the errors stagnate and increase again
(in particular for 𝑝 = 4). This behaviour is similar to the behaviour observed in [358] and
can be attributed to the round-off errors as discussed. These errors occur when the num-
ber of degrees of freedom is large enough and the machine precision is limited. In the
case of a buckling simulation, where the non-linear stiffness operator is constructed on
an initial solution of a linear simulation, the influence of round-off errors is expected to
occur sooner. In addition, it can also be seen that the error computed using the analytical
solution stagnates. This is due to the fact that the numerical approximation of the critical
buckling load shows small variations depending on the solution to the linear problem that
is solved to obtain the tangential stiffness matrix to compute the generalised eigenvalue
problem for buckling. For the results presented in figure 5.11, the load 𝜎𝑡 = 10−4 [N/m]
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Figure 5.11: Buckling analysis of a square plate with simply supported boundary conditions. The top row pro-
vides the mode shapes from mode 1 up to 4. The bottom row provides Δℒ against the uniform mesh sise ℎ. The
markers represent error estimates computed via the DWR method, and the lines represent the exact error, i.e.,
the error of the numerical solution with respect to the analytical solution. The critical loads for unique modes
1 up to 4 are, respectively, 𝜎1,1𝑐 𝑡 = 𝜎1𝑐 𝑡 = 1.808 [N/m], 𝜎2,1𝑐 𝑡 = 𝜎1,2𝑐 𝑡 = 𝜎2𝑐 𝑡 = 4.519 [N/m], 𝜎2,2𝑐 𝑡 = 𝜎3𝑐 𝑡 = 7.230 [N/m],
𝜎3,1𝑐 𝑡 = 𝜎1,3𝑐 𝑡 = 𝜎4𝑐 𝑡 = 9.038 [N/m].

was used to compute the buckling linearisation.

5.6.4 Non-Linear Analysis of a Pinched Thin Plate
In the next example, a square membrane subject to a point load in the middle and with
corners fixed in all directions is considered; see figure 5.12. The membrane is modelled
with a Saint-Venant Kirchhoff constitutive law with Young’s modulus 𝐸 = 1.0 [𝑀𝑃𝑎] and
a Poisson ratio 𝜈 = 0.3. The thickness of the membrane is 𝑡 = 10−3 [mm], and the length
and width are 𝐿×𝑊 = 1×1[mm]. The simulation is performed on a quarter of the domain,
employing symmetry conditions as depicted in figure 5.12. A load of 𝑃 = 4 ⋅ 10−7 [N] is
applied in the centre of the sheet. The static load case is solved using an arc-length method
to ensure convergence of the solution. Furthermore, an adaptive refinement strategy is
employedwith admissible refinement. The jump parameter𝑚 is set to 2, and themaximum
number of refinement levels is 8 or 11, which equals a tensor basis level with 28 × 28 =
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𝑥𝑦
𝑧𝑊

𝐿

𝒖 = 0

𝒖 = 0

𝒖 = 0

𝒖 = 0
𝑃
symm

symm

Geometry

𝐿 1 [m]
𝑊 1 [m]
𝑡 1 ⋅ 10−3 [m]

Material
Saint-Venant Kirchhoff

𝐸 1.0 [MPa]
𝜈 0.3 [-]

Boundary Conditions

𝒖 0 At corners

Loads

𝑃 4 ⋅ 10−7 [N]

Figure 5.12: Geometry and parameters for a square thin plate subject to a point load 𝑃 in the middle. The plate is
fully constrained in every corner. Because the problem is symmetric, only a quarter of the domain is modelled.
Hence, symmetry conditions are applied. On the 𝑥-aligned symmetry axis, this implies that 𝑢𝑦 = 𝜕𝑢𝑧

𝜕𝑦 = 𝜕𝑢𝑥
𝜕𝑦 = 0

and on the 𝑦-aligned symmetry axis, this implies that 𝑢𝑥 = 𝜕𝑢𝑧
𝜕𝑥 = 𝜕𝑢𝑦

𝜕𝑥 = 0.

Figure 5.13: Deformed surface from the benchmark presented in figure 5.12. The result is the last solution from
the adaptive meshing routine with deformation norm goal-functional, of which the results are presented in
figure 5.14.

256×256 or 211 ×211 = 2048×2048 elements, respectively. The refinement parameter is set
to 𝜌𝑟 = 0.5. The goal functionals considered in this case are based on displacements as well
as principal stresses:

ℒ(𝒖) = ∫Ω
‖𝒖‖dΩ,

ℒ(𝒖) = ∫Ω
𝝈𝑝 ⋅ 𝒆𝑦 dΩ.

(5.60)

Figure 5.13 presents the deformed membrane for the last step of the adaptive simula-
tion. Furthermore, figure 5.14 presents the estimated error Δℒ given the goal functionals
in equation (5.60) for the uniform refinement as well as for the adaptive refinement sim-
ulation with a maximum level of 8 or 11. Moreover, figures 5.15 and 5.16 provide the
absolute element-wise errors for the adaptive refinement simulation and for the uniform
refinement series for both considered goal functionals. The contour lines in these error
fields represent the vertical deflection of the sheet.
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From all the provided results, it can be observed that the adaptive mesh provides for
both goal functionals an efficient converging mesh, where the accuracy per degree of free-
dom is higher compared to uniformly refined meshes. However, it can also be seen that
the total error Δℒ is not strictly decreasing for both goal functionals. The bottom plots of
figure 5.14 indicate that this point is closely related to the maximum depth that is reached:
the percentage of the total element error 𝑒 that can still be refined rapidly decreases, mean-
ing that the only elements that are still available for refinement are the ones that have an
insignificant contribution to the total element error 𝑒, deeming refinement of these ele-
ments meaningless. It can be seen from figures 5.15 and 5.16 that the maximum element
depth is reached in the corner where the sheet is fixed. After themaximum level is reached,
the refined elements start distributing over the diagonal of the domain and in the top-left
corner, where the load is applied. For both goal functionals, figure 5.14 shows that some
further decrease in the total error Δℒ can be gained after the maximum error is reached,
but that it is most effective to increase the maximum refinement depth. Comparing the
error fields and meshes for both goal functionals (see figures 5.15 and 5.16), it can be seen
that the second-principal stress-based error field shows narrower error bands in the finest
depicted uniform refinement error fields than the displacement-based error estimator. As
a consequence, the corresponding adaptive meshes show that the elements indeed tend to
be broader distributed along the diagonal of the domain in the case of displacement-driven
refinement (figure 5.15).

Concluding, the non-linear shell benchmark shows that an adaptive meshing strat-
egy provides accurate solutions on meshes with a small number of degrees of freedom
compared to uniform meshes. Furthermore, the benchmarks show the importance of re-
finement levels, meaning that convergence of the adaptive meshing strategy vanishes as
soon as the elements contributing to a large extent to the total error are at the lowest al-
lowed level. This stresses the relevance of spline constructions that allow for deep levels
of refinement with moderate computational costs.

5.6.5 Snap-Through Instability of a Cylindrical Roof
In order to present the results of the adaptive isogeometric method developed in this chap-
ter for quasi-static problems, hence completing full cycles in figure 5.1, the well-known
benchmark of a collapsing cylindrical roof [530] subject to a point load is considered. The
goal of this benchmark problem is to evaluate whether the presented adaptive isogeo-
metric method provides DoF-wise efficient solutions compared to solutions with uniform
refinements.

The geometry for the benchmark problem is presented in figure 5.17. Here, the radius
of the roof is 𝑅 = 2.540[m], the angle is 𝜃 = 0.1 [rad] and the length and thickness are,
respectively, 𝐿 = 0.508 [m] and 𝑡 = 6.35 ⋅ 103 [mm]. Moreover, the material properties are
𝐸 = 3102 [MPa] and 𝜈 = 0.3 [-] for a Saint-Venant Kirchhoff material. Only a quarter of
the roof is modelled, as depicted in figure 5.17, because of symmetry. The simulation is
performed using the Crisfield arc-length method [124] with arc-length Δ𝐿 = 25 and zero
force-scaling. The goal functional that is used for error evaluation and adaptivity is based
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10−6

10−5

10−4

Δℒ

ℒ = ∫Ω ‖𝒖‖dΩ
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10−5

ℒ = ∫Ω𝝈𝑝 ⋅ 𝒆𝑦 dΩ
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#DoFs
Adaptive (8) Adaptive (8), blocked
Adaptive (11) Adaptive (11) blocked
Uniform

Figure 5.14: Estimated error convergence (top) and the percentage of the total element error 𝑒 that is available
for refinement (bottom) against the number of degrees of freedom (DoFs) for adaptively and uniformly refined
meshes with respect to the goal functionals from equation (5.60). The markers labelled with a black border are
the markers for which the mesh is plotted in figures 5.15 and 5.16. The filled markers represent points where
refinement is not blocked, and the empty markers represent points where refinement is blocked because the
maximum refinement depth is reached. Note that the errors are computed before refinement; hence, blocked
elements in iteration 𝑖 have an effect on the error computation in iteration 𝑖 + 1.



5

A
da

pt
iv
e
Si
m
ul
at
io
n

156 5 Goal-Adaptive Meshing of Isogeometric Kirchhoff–Love Shells

𝑒𝑘 /Δℒ
(a) Uniform refinement

𝑒𝑘 /Δℒ 2

(b) Adaptive refinement with maximum level 8.

𝑒𝑘 /Δℒ 2

(c) Adaptive refinement with maximum level 11.

Figure 5.15: Normalised element error values 𝑒𝑘 /Δℒ for uniformly (a) and adaptively (b, c) refined meshes using
goal-function ℒ(𝒖) = ∫Ω ‖𝒖‖dΩ. The meshing steps increase from left to right. The contour lines represent the
displacement of the membrane, with intervals of 0.1 [mm]. The bottom right corners of the pictures indicate the
fixed corner, and the top left corners are the corners where the load is applied.
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𝑒𝑘 /Δℒ
(a) Uniform refinement.

𝑒𝑘 /Δℒ 2

(b) Adaptive refinement with maximum level 8.

𝑒𝑘 /Δℒ 2

(c) Adaptive refinement with maximum level 11.

Figure 5.16: Normalised element error values 𝑒𝑘 /Δℒ 2 for uniformly (a) and adaptively (b, c) refinedmeshes using
goal-function ℒ(𝒖) = ∫Ω𝝈𝑝 ⋅ 𝒆𝑦 dΩ. The meshing steps increase from left to right. The contour lines represent
the displacement of the membrane, with intervals of 0.1 [mm]. The bottom right corners of the pictures indicate
the fixed corner, and the top left corners are the corners where the load is applied.
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𝐿

𝑥𝑦
𝑧
𝑅

𝜗

𝒖 = 0

𝒖 = 0

symm

𝐴

𝜆𝑃 Geometry

𝐿 0.508 [m]
𝑅 2.540 [m]
𝑡 6.35 ⋅ 10−3 [m]
𝜗 0.1 [rad]

Material
Saint-Venant Kirchhoff

𝐸 3102 [MPa]
𝜈 0.3 [-]

Boundary Conditions

𝒖 0 At corners

Loads

𝑃 3 ⋅ 103 [N]

Figure 5.17: Geometry and parameters for a cylindrical roof with a point load 𝑃 in the middle. The bottom-right
corner of each domain corresponds to the point 𝐴: the reference point for which the 𝑧-displacements are plotted.
The roof is free on the curved edges and simply supported (𝒖 = 0) on the straight edges. As a consequence, the
problem is symmetric, and a quarter of the domain is modelled. On the 𝑥-aligned symmetry axis, this implies
that 𝑢𝑦 = 𝜕𝑢𝑧

𝜕𝑦 = 𝜕𝑢𝑥
𝜕𝑦 = 0, and on the 𝑦-aligned symmetry axis, this implies that 𝑢𝑥 = 𝜕𝑢𝑧

𝜕𝑥 = 𝜕𝑢𝑦
𝜕𝑥 = 0.

on the norm of the flexural strain tensor over the whole domain ℒ = ∫Ω ‖𝐌(𝒖)‖dΩ. The
jump parameter for admissible meshing is set to 𝑚 = 2. The mesh will be refined when
Δℒ > tol𝑟 and coarsened when Δℒ < tol𝑐 . As discussed in section 5.5, tol𝑟 < tol𝑐 such that
the mesh is refined and coarsened simultaneously when Δℒ ∈ [tol𝑟 , tol𝑐], which is also the
condition for termination. The maximum number of mesh adaptivity iterations is set to 5
in this case. The tolerances tol𝑟 and tol𝑐 are determined based on the results of uniformly
refined simulations with 16× 16 (918 DoFs) and 32× 32 elements (3366 DoFs) by taking a
wide band around the error envelopes in figure 5.18 excluding peaks. The tolerances are
(tol𝑟 , tol𝑐) = (10−10, 10−8). It should be noted that these tolerances can also be based on re-
quirements in engineering, or they can be determined during the computations; both are
beyond the scope of this chapter. The refinement parameter is set to 𝜌𝑟 = 0.5, the coars-
ening parameter to 𝜌𝑐 = 0.05, and the maximum refinement level is 11. The adaptive and
uniform meshes are modelled with bi-cubic B-spline basis functions (i.e., 𝑝 = 3).

In figure 5.19, the results of a simulation of the collapsing roof for the adaptive mesh
are plotted in a ‖𝒖‖, 𝜆𝑃 , 𝑤𝐴-space. Reference solutions for the present benchmark problem
are typically given in the 𝜆𝑃 , 𝑤𝐴-space, but since the solution curve is not bijective, an al-
ternative coordinate ‖𝒖 is used to represent solutions for this benchmark problem. This is
motivated by the projection of the solutions 𝜆𝑃 and 𝑤𝐴 projected against ‖𝒖‖ in figure 5.19.
The results of [530] are provided as a reference.

In figure 5.18, the error and the number of degrees of freedom are plotted against
‖𝒖‖. The error envelopes for the uniform meshes show that a large peak occurs around
‖𝒖‖ = 0.2, relating to the first limit point of the collapse of the roof, as seen by the mark-
ers in figure 5.19. Additionally, it can be seen that the present algorithm providing mesh
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Figure 5.18: Errors (top) and number of degrees of freedom (DoFs, bottom) for the goal functional ℒ =
∫Ω ‖𝐌(𝒖)‖dΩwith tolerances tol𝑟 = 10−10 and tol𝑐 = 10−8 for the collapsing roof subject to the displacement norm
‖𝒖‖. The grey region represents the region Δℒ ∈ [tol𝑟 , tol𝑐] where refinement and coarsening are performed and
where the adaptivity iterations are terminated. Above the grey region, only refinement is performed, and below
the grey region, only coarsening is performed.

adaptivity manages to keep the error within specified bounds (see figure 5.18, top), except
on the peak just before ‖𝒖‖ where the maximum number of adaptivity iterations is insuf-
ficient. Furthermore, it has consistently fewer degrees of freedom than the uniform mesh
with 32 × 32 elements. In figure 5.20, a selection of meshes is provided. The meshes are
provided as a series of four consecutive meshes around the limit points of the solution
curve, as indicated in figure 5.19, and are depicted in increasing order from left to right for
the first (top) and second (bottom) limit points. The black-bordered markers in figures 5.18
and 5.19 indicate the points of which the meshes are shown. From the first row of meshes
in figure 5.20, it can be seen that the first limit point requires relatively fine meshes and
that the elements start concentrated around point 𝐴 and its diagonal opposite and spread
out on the bottom symmetry boundary as the snapping takes place. Furthermore, in the
bottom row of figure 5.20, it can be seen that the second limit point does not require many
elements; hence, the number of elements is slowly decreasing throughout this section of
the load-displacement curve. For a complete overview of the mesh in each load step, the
reader is referred to Video 1 in the supplementary material of [586].

Concluding, this example shows that the goal-adaptive meshing procedure is capable
of keeping the error in terms of a goal function within pre-defined bounds for a solution-
stepping simulation with limit-point instabilities. Throughout the simulation, the proce-
dure maintains a relatively high efficiency per degree of freedom compared to uniform
meshes. It should be noted, however, that the adaptive refinement iterations require a
higher computational demand. Therefore, the next and final example provides a proce-
dure where no adaptivity iterations are performed.
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0 20 40 −1
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𝑤𝐴 𝜆𝑃 (×103)
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‖

Ref.
Adaptive
Mesh points

Figure 5.19: Projection the adaptively refined result from the commonly used 𝜆𝑃,𝑤𝐴-space [530] onto the dis-
placement norm ‖𝒖‖. The solid lines correspond to the results obtained by the adaptively refined mesh, the
triangular markers correspond to points of which the mesh is provided in figure 5.20, and the cross-markers
(Ref.) indicate the reference result from [530].

Point 7 Point 8 Point 9 Point 10

Point 34 Point 35 Point 36 Point 37

𝑒/Δℒ 2

Figure 5.20: Meshes corresponding to the points marked in figures 5.18 and 5.19 by the black-bordered marks.
The point 𝐴 marks the point where the load is applied in figure 5.17. The top row of meshes corresponds to
the first limit point in figure 5.19, and the bottom row corresponds to the second limit point. The meshes are
ordered from left to right for increasing solution steps. The elements are coloured according to the squared error
𝑒𝑘 normalised by the total error Δℒ , i.e., 𝑒𝑘 /Δℒ 2.
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5.6.6 Wrinkling Analysis
As a last example, the wrinkling analysis of a thin membrane subjected to a tensile load is
considered. This problem is inspired by [91, 92, 427] and was previously modelled using
isogeometric Kirchhoff–Love shells in [587], to which the reader is referred for a detailed
problem set-up. The goal of this benchmark in the present chapter is to demonstrate the
use of the goal-adaptive meshing procedure on a bifurcation problem with geometric and
material non-linearities.

Given the geometry in figure 5.21, a quarter of the domain is considered with a sym-
metry boundary condition on Γ4 and an antisymmetry condition on Γ3. Furthermore, the
boundary Γ1 is free, and on Γ2 the 𝑥-displacement is constant, and a horizontal load is ap-
plied on this side. The sheet has dimensions 𝐿 = 280[mm],𝑊 =140[mm], and 𝑡 = 0.14[mm]
such that 𝐿/𝑊 = 2 and 𝑡/𝑊 = 103. Furthermore, the material is modelled using a Mooney-
Rivlin material model with a strain energy density function:

Ψ(𝐂) = 𝑐1
2 (𝐼1 −3)+

𝑐2
2 (𝐼2 −3) (5.61)

and with parameters 𝑐1 = 3.16 ⋅ 105 [Pa] and 𝑐1 = 1.24 ⋅ 105 [Pa]. Reference solutions are
given by [587] for isogeometric Kirchhoff–Love shell analysis and using ANSYS and LS-
DYNA FEA models, respectively. Furthermore, [427] provides experimental data on the
maximum amplitude with respect to the strain of the sheet. In the present chapter, the
reference simulations are performed on uniform cubic meshes with 32×32 and 64×64 el-
ements, respectively.

For the adaptive simulation, a THB spline mesh with initially 32×32 elements is used,
and mesh adaptivity is activated after wrinkling initiation since the errors in the pre-
wrinkling regime are small due to the lack of out-of-plane deformations of the sheet.
The goal-functional is a displacement-based functional on the 𝑧-component, i.e., ℒ(𝒖) =
∫Ω𝒖 ⋅𝒆𝑧 dΩ. The tolerances for refinement and coarsening are tol𝑟 = 10−14 and tol𝑐 = 10−10,
respectively, and they are chosen based on the error envelope of the uniform refinement.
The adaptive meshing parameters are chosen as (𝜌𝑟 , 𝜌𝑐) = (0.5,0.005). These parameters
are chosen based on the behaviour of the global error in the first load steps after bifurca-
tion. Contrary to the previous example in section 5.6.5, there are no refinement iterations
performed within the load step. This means that the refinement and coarsening opera-
tions are performed after the load step based on the magnitude of the error compared to
the tolerances. Furthermore, when the error is below a tolerance of 𝜌𝑐,min, the initial mesh
is used again. This is done to prevent further coarsening after re-stabilisation of the wrin-
kles, i.e., the moment when the wrinkles have disappeared. For the refinement algorithm,
the maximum depth of the THB grid is fixed to 11 levels, and the jump parameter is set to
𝑚 = 2. The wrinkling simulation is performed using the Crisfield arc-length method [124]
with a quadratic procedure to compute the mode shape at the bifurcation [633]. This pro-
cedure is further described in [583].

In figure 5.22, the results for an adaptive isogeometric wrinkling simulation are pro-
vided. The top figure provides the normalised wrinkling amplitude with respect to the
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(1+ 𝜖)𝐿

𝐿

𝑊

Γ1
Γ2

Γ3
Γ4

𝑃

𝑥
𝑦

Geometry

𝐿 280 [mm]
𝑊 140 [mm]
𝑡 0.14 [mm]

Material
Incompressible Mooney–Rivlin

𝑐1 3.13 ⋅ 105 [Pa]
𝑐2 1.24 ⋅ 105 [Pa]

Boundary Conditions

𝒖 Free At Γ1
𝑢𝑦 = 𝑢𝑧 = 𝜕𝑢𝑧

𝜕𝑥 0 At Γ2
𝑢𝑦 = 𝜕𝑢𝑥

𝜕𝑦 = 𝜕𝑢𝑧
𝜕𝑦 0 At Γ3

𝑢𝑥 = 𝜕𝑢𝑥
𝜕𝑥 = 𝜕𝑢𝑧

𝜕𝑥 0 At Γ4
Loads

𝑃 Variable

Figure 5.21: Geometry and parameters for the wrinkling problem. The boundary Γ1 is free, the boundary Γ2
is fixed in the 𝑦 and 𝑧-directions, and rotations around the 𝑦-axis are fixed. The boundaries Γ3 and Γ4 have
symmetry conditions applied.

strain of the sheet (𝜖), compared to the IGA and ANSYS SHELL181 element reference re-
sults from [587] as well as the experimental results from [427]. The figure in the middle
provides the error estimate in terms of the goal functional ℒ with respect to the strain of
the sheet, and the bottom figure provides the number of degrees of freedom with respect
to the strain of the sheet. Firstly, the results from both uniform meshes show that the
error estimate Δℒ is close to zero when the wrinkles initiate, since the sheet is perfectly
flat. As soon as the wrinkles form, the error estimate becomes non-zero, and it peaks at
the moment of re-stabilisation (i.e., the moment when the amplitude vanishes). After re-
stabilisation, the error estimate is low but slightly higher than before wrinkling, probably
because the sheet is not numerically flat.

The adaptive meshing simulations show that even with zero inner iterations for mesh
adaptivity, the adaptive mesh provides accurate results for a relatively small number of
degrees of freedom. Just after wrinkling initiates, the adaptive meshing error peaks due
to the coarsening of a large number of elements (as can be seen by the drop of degrees of
freedom in the bottom figure). However, the mesh adaptively refines until it reaches the
grey region in the middle figure, where combined refinement and coarsening imply that
the error balances around tol𝑐 , i.e., the upper bound of the marked region. Towards the
end of the wrinkling phase, the error increases for the uniformly refined mesh, explaining
the increase in the number of degrees of freedom for the adaptive mesh. Nevertheless,
the adaptive mesh provides more accurate results compared to the 64×64 uniform mesh,
which has fewer degrees of freedom.

In figure 5.23, a selection of meshes from both adaptive simulations are provided,
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Figure 5.22: The non-dimensional maximal wrinkling amplitude max(𝜁 )/𝑡 (top), the goal functional error Δℒ
(mid), and the number of degrees of freedom of the computational mesh (bottom) with respect to the strain of
the sheet 𝜖. The markers with a black border represent the points at which the meshes are provided in figure 5.23.
The coloured lines are the solutions obtained by the present model with a Mooney-Rivlin material model with
uniform or adaptive meshes. For the adaptive simulation, the parameters (𝜌𝑟 , 𝜌𝑐) = (0.5,0.005) are used. The
solid line in the top figure is a SHELL181 result obtained using ANSYS; the dotted line in the top figure is a result
obtained using the fully integrated shell in LS-DYNA; and the dashed line with markers represents experimental
data obtained by [427] (Ref.).
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Point 8 Point 9 Point 10 Point 11

Point 39 Point 40 Point 41 Point 42

𝑒𝑘 /Δℒ 2 𝑢𝑧 /𝑡 [−]

Figure 5.23: Normalised element errors (left) and the normalised wrinkling amplitude (right) for the wrinkling
benchmark plotted on the undeformed geometry with the corresponding elements.

specifically for thewrinkling initiation and re-stabilisation points. For a complete overview
of the mesh in each load step, the reader is referred to Video 2 in the supplementary ma-
terial of [586]. The evolution of the meshes shows that the mesh elements concentrate
around the wrinkles (bottom-right) and in the top-left corner, which represents the cor-
ner between the clamped edge (top) and the free edge. The former is expected since the
employed goal functional is based on out-of-plane deformations. However, the fact that
the mesh concentrates around the top-left corner is non-intuitive, but it shows that this
area is important to reduce the global error in terms of the out-of-plane deformations.
Furthermore, it can be seen that around the re-stabilisation of the wrinkles, the mesh con-
centrates around the bottom-left corner, indicating that this corner is of importance in
accurately modelling the wrinkling amplitudes in the whole domain.

Concluding, the wrinkling benchmark shows the potential of mesh adaptivity for such
applications. With fewer degrees of freedom, the THB-spline mesh is able to approximate
the solution around a pre-defined error, even though the selection of the refinement and
coarsening parameters and the tolerances have not been optimised in this study.

5.7 Conclusions
This chapter presents an adaptive method for isogeometric Kirchhoff–Love shells. The
main contributions of this chapter are a goal-adaptive error estimator for isogeometric
Kirchhoff–Love shells using the Dual-Weighted Residual method and a slightly modified
suitably graded refinement scheme taking into account refined elements in the definition
of the coarsening neighbourhood.
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Using the Dual-Weighted Residual method and given a pre-defined goal functional
(e.g., the second-principal stress integrated over the domain), an estimator for the error in
terms of this goal functional can be defined. The adjoint problem that needs to be solved
on the original mesh and on a nested degree-elevated (‘enriched’) mesh has been defined
for the isogeometric Kirchhoff–Love shell. In addition, the operators for modal and linear
buckling analysis have been derived, implying an additional generalised eigenvalue prob-
lem to be solved on the enriched mesh. For suitable grading, the works of [67, 78, 79, 84]
have been closely followed. In order to be able to refine and coarsen in the same iteration,
refined elements have been added to the original definition of the coarsening neighbor-
hood.

To assess the proposed adaptive isogeometric method for Kirchhoff–Love shells, a few
numerical benchmark problems have been evaluated. Linear static analysis, provided an
analytical solution, has been used to evaluate the DWR error estimators. The eigenvalue
problems for modal and buckling analyses have been evaluated on, respectively, the prob-
lems of circular plate vibration and square plate buckling. Based on the linear, modal, and
buckling analyses with analytical solutions, it can be concluded that the DWR estimator
for Kirchhoff–Love shells can be used with several goal functionals and in several appli-
cations, as it provides high accuracy with respect to the exact errors.

Using the problem of a pinched membrane, the error estimator has been used to adap-
tively refine a mesh in a non-linear example. From this example, it can be concluded that,
despite the challenging non-linear problem, high accuracy per DoF can be obtained com-
pared to uniformly refined meshes based on different goal functionals. Lastly, the adaptive
isogeometric method from the present chapter has been evaluated in solution-stepping
problems for structural instabilities. Firstly, the method was applied to the limit-point
instability problem of the collapse of a cylindrical roof. Here, inner adaptivity iterations
were performed for each load step until the error was located at a desired interval. Again,
the present method provides high accuracy per degree of freedom. In addition, it was
shown that the method is indeed able to provide adaptive meshes with respect to a pre-
defined interval for a given goal functional. The last benchmark problem involves the
tension-wrinkling bifurcation instability of a thin membrane. In this benchmark problem,
adaptive meshing has been applied in the post-buckling regime based on wrinkling ampli-
tudes. Here, no adaptivity iterations within the load steps were performed, showing that
the method is still able to provide good adaptivity with respect to the pre-defined toler-
ances. Also, the results of the wrinkling error estimators show that the error peaks in the
re-stabilisation phase, where the highest deviation with experimental results is observed.

Future developments for the present method include the application on multi-patch
domains, both coupled with penalty methods as well as with globally continuous bases as
presented in [182] to handle more complex geometries. Furthermore, structural dynam-
ics have been left out of the scope of this chapter, since the DWR method for dynamic
problems requires backwards-in-time evaluation of the adjoint problem, which is ideally
combined with parallel-in-time methods like ParaReal or MGRIT [180]. Lastly, future
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work can be done on the (adaptive) determination of the adaptive meshing parameters.
On the one hand, one can apply the present method to real-world engineering applica-
tions, bringing realistic goal functionals and margins into the adaptivity algorithm. On
the other hand, advanced schemes for triggering pure or combined refinement or coarsen-
ing, together with their parameters, can be further investigated.

5.A Result Reproduction
For the sake of reproducibility of the results in this chapter, this appendix provides brief
instructions on the use of the software developed along with this thesis. The full software
is available as part of the Geometry + Simulation Modules. For more detail on the contri-
butions to this software library, and its installation, the reader is referred to chapter 8.

Table 5.2 provides per figure in this chapter the name of the file to run along with the
arguments to be passed to obtain these figures.
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Table 5.2: File name and run arguments required for the reproducibility of the figures in this chapter. Arguments
with a single dash (-) require an argument while double-dashed arguments (--) are switches. See chapter 8 for
more detail about the software and installation instructions. The XML files with the mesher options are in
gsStructuralAnalysis/filedata/options/.

Figure Run File
Arg. Description Values

Figure 5.7 example_shell3D_DWR
-e Number of degree elevation steps 1: 𝑝 = 2, 2: 𝑝 = 3
-r Number of uniform refinements 6
-g, -c Goal functional (-g)

and its component (-c)
1,9: ∫Ω ‖𝒖‖dΩ, 2,1: ∫Ω 𝜆2 dΩ
3,9: ∫Ω ‖𝜺(𝒖)dΩ
7,0: ∫Ω ‖𝐍𝜀(𝒖) ⋅ 𝒆1 dΩ

Figure 5.9 example_shell3D_DWR_modal
-e Number of degree elevation steps 1: 𝑝 = 2, 2: 𝑝 = 3, 3: 𝑝 = 4
-r Number of uniform refinements 7
-i Mode index 0: Mode 1, 1: Mode 2,

3: Mode 3, 5: Mode 4

Figure 5.11 example_shell3D_DWR_buckling
-e,-r See example_shell3D_DWR_modal
-i Mode index 0: Mode 1, 1: Mode 2,

3: Mode 3, 4: Mode 4

Figures 5.13 example_PinchedMembrane_DWR
to 5.16 -r Number of adaptive refinements 15

Number of uniform refinements 6
-g, -C Goal functional (-g)

and its component (-C)
1,9: Displacement norm,
6,2: Second principal stress

-A Adaptive refinement 0: Uniform, 1: Adaptive
-O Options file (for adaptive meshing)

shell_mesher_options_Membrane.xml, shell_mesher_options_Membrane_max8.xml
--loop Perform refinement loops

Figure 5.18 benchmark_Roof_DWR
Figure 5.20 -T Target error 1e-9

-B Error bandwidth 0.1
-g, -C Goal functional (-g)

and its component (-C)
9,9: Bending moment norm

-O Adaptive meshing options shell_mesher_options_Roof.xml
--adaptMesh Perform refinement loops

Figure 5.22 benchmark_Wrinkling_DWR
Figure 5.23 -r Number of initial uniform refinements 5: 32×32, 6: 64×64,

-T Target error 1e-12
-B Error lower-bound multiplier 0.1
-D Coasening error limit 1e-19
-g, -C Goal functional (-g)

and its component (-C)
1,2: 𝑥-displacement

-O Adaptive meshing options shell_mesher_options_Wrinkling.xml
--adaptMesh Perform refinement loops
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6
An Adaptive Parallel Arc-Length

Method
Where the previous chapter, chapter 5, presents a novel adaptive method for spatial adaptiv-
ity, this chapter focuses on the quasi-static domain. As discussed in the preliminaries of this
dissertation, in particular in section 2.4, arc-length methods play an important role in quasi-
static post-buckling analysis. However, arc-length methods are serial processes, hence not
benefiting from the increasing development in parallelisation of today’s scientific computing
facilities. In this chapter, a novel parallelisation of arc-length methods is presented, where
the parallelisation is independent of the number of solution branches. The method is inspired
by parallel time-integration methods, where solution intervals are computed and corrected
by a refined interval in parallel afterwards. When an interval is computed with satisfactory
accuracy, no more corrections are performed. This method, referred to as the Adaptive Par-
allel Arc-Length Method (APALM) is adaptive by design to facilitate its parallelism, and the
concept is easily extended for bifurcation problems. The performance of the method is demon-
strated using isogeometric Kirchhoff–Love shells on problems with snap-through and pitch-
fork instabilities and applied to analyse snapping instabilities in a snapping meta-material.
Computational time is compared with serial implementations as well as an Adaptive Serial-
Parallel Arc-Length Method (ASPALM) to show the scaling of the parallelisation. The results
show that the APALM is able to provide solutions in the same computational time as an or-
dinary serial arc-length method without inherent adaptivity, i.e., the APALM provides more
detail at the same time. Furthermore, the APALM shows to be robust in challenging snapping
and bifurcation problems considered in this chapter. If necessary, the reader is referred to
section 2.4.4 for background information on arc length methods.

This chapter under revision for the journal Computers & Structures. A pre-print is available:
[584]H.M. Verhelst, J. H. Den Besten &M.Möller, “AnAdaptive Parallel Arc-LengthMethod”, arXiv:2303.01075
(2023)

https://arxiv.org/abs/2303.01075
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6.1 Introduction
Over the last decades, computational power has increased exponentially. In the last year,
most improvements were due to an increasing number of threads per processing unit
rather than an increase in single-thread performance [483]. The trend of increasing logi-
cal cores with stagnating single-threaded performance calls for parallelisation of existing
codes to improve computational efficiency, amongst which numerical algorithms in com-
putational mechanics. In the field of computational mechanics, parallelisation in the spa-
tial domain is common practice by using shared-memory assembly routines or distributed-
memory parallelisation using domain decomposition of meshes. Parallelisation can also
be achieved in linear solvers or in the temporal domain using parallel-in-time solvers [196]
in the case of dynamic analyses or using parallel continuation for quasi-static or continu-
ation problems - the latter two being sequential by nature.

For quasi-static problems, continuation methods can be used when the solution of an
equation or a system of equations is desired, given the varying parameters of the system.
Such methods, typically referred to as Arc-Length Methods (ALMs), are widely used for
(but not limited to) the analysis of the stability of structures. The Riks and Crisfield meth-
ods [124, 469] are commonly used and in combination with bifurcation algorithms [633],
whereas ALMs provide a valuable tool in the analysis of the collapse and post-buckling
behaviour of structures. Recent developments for ALMs include a new displacement-
controlled formulation [445], an improved predictor scheme [295], and automatic explo-
ration techniques [561, 630]. Like time-stepping methods, ALMs are sequential by nature,
meaning that the solution at a point is obtained from the solution at a previous point ob-
tained previously.

Amongstmany parallel time-integration schemes, Parareal is a parallel time-integration
method proposed by [354] and works with a two-level parallel correction scheme of time
intervals. The method starts with a series of solutions obtained in serial with a large
time step, after which each sub-interval is computed with a finer time step such that a
new solution is found at the end-point of the time interval. A multi-level extension of
Parareal is proposed in [180] and is referred to as Multi-Grid Reduced in Time (MGRIT).
This method is similar to Parareal but applies the two-level approach recursively. As a con-
sequence, multi-grid-like cycles can be used to correct previously computed sub-intervals.
This method has not only been applied to dynamic problems but also to the training of
neural networks [129] and [242]. Alternative methods for parallel time integration are
reviewed in the work of [196].

Compared to temporal parallelisation methods, parallelisation of ALMs has received
less attention in the academic community. As ALMs are typically used for explorations of
solutions across branches, parallel evaluation of branches can be performed as soon as the
starting point (and tangent) of each branch is known. The number of branches related to
a problem, however, depends typically on the problem that is solved; hence, the parallel
scalability of ALMs over branches is not guaranteed. Parallelisation within a branch is en-
abled by the Parallel AdaptiveMethod for Pseudo-Arclength Continuation (PAMPAC) [17].
This method works with multiple predictors (with different step sizes) and consequently
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correctors to select an optimal step size, which can be performed in parallel. The PAMPAC
method focuses on selecting a maximal step size for the ALM for which the method does
not converge.

In this chapter, a parallelisation of the arc-length method is presented that is indepen-
dent of the physical nature of the underlying problem. That is, the method is developed
such that the parallelisation can be performed within the branches. In addition to paralleli-
sation, the presented arc-length scheme also provides inherent adaptivity; therefore, the
method is referred to as the Adaptive Parallel Arc Length Method (APALM). The working
principle of the APALM is based on a multi-level approach – inspired by MGRIT methods
– where a coarse serial approximation of the solution space is refined in parallel until a
measure of convergence is achieved. Contrary to PAMPAC, the present method does not
maximise the step size for convergence of the ALM iterations, but instead the paralleli-
sation is based on convergence of the solution sub-intervals. Without loss of generality,
the method is developed given a constraint equation for the arc-length method; thus, it is
generalised for the Riks and Crisfield methods, amongst other methods available.

The outline of this chapter is as follows: Section 6.2 provides a background on arc-
length methods. In section 6.3, the parallelisation of arc-length methods is presented,
referred to as the APALM. Thereafter, section 6.4 provides algorithms for non-intrusive
implementation of the APALM, given an implementation of an existing ALM. Section 6.5
provides numerical benchmark problems and an application to the analysis of a snapping
meta-material, inspired by [455]. Finally, section 6.6 provides conclusions on the presented
method.

6.2 Arc-Length Methods
In this section, the concept of arc-lengthmethods is presented for the sake of completeness.
For a detailed overview, one can consult references [124, 456, 469, 472]. Let 𝑹(𝒖,𝜆) = 0 be a
non-linear system of equations to be solved, with 𝒖 the solution to the system of equations
given a parameter 𝜆. For structural analyses, 𝒖 is typically a vector containing discrete
displacements of the degrees of freedom, and 𝜆 is a factor scaling the magnitude of an
applied load 𝑃 , i.e.

𝑹(𝒖,𝜆) = 𝑵(𝒖)−𝜆𝑷, (6.1)

where 𝑵(𝒖) is a vector of internal forces, depending on the deformation 𝒖. For incre-
mental analyses, i.e., quasi-static analyses, a series of solutions 𝒘𝑖 = (𝒖𝑖 , 𝜆𝑖) is obtained
by computing increments Δ𝒘𝑖 = (Δ𝒖𝑖 ,Δ𝜆𝑖) such that 𝒘𝑖+1 = 𝒘𝑖 +Δ𝒘𝑖 and equation (6.1) is
satisfied for 𝒘𝑖+1. These solutions can be obtained by Newton iterations: i) fixing 𝜆 and
finding 𝒖 (load control); ii) fixing some degrees of freedom in 𝒖 and finding all 𝒖 and 𝜆
(displacement control); or iii) constraining 𝜆 and 𝒖 and solving for both (arc-length con-
trol); see figure 6.1. In the case of arc-length control, the increment Δ𝒘 is measured by an
increment length 𝑑(Δ𝒘)

𝑑(Δ𝒘) = Δ𝒖⊤Δ𝒖+Ψ2Δ𝜆2𝑷⊤𝑷, (6.2)
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‖𝒖
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(b) Displacement control
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𝑓 (Δ𝒖,Δ𝜆) = 0

∘
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∘

∘

(c) Arc-length control

Figure 6.1: Load (top left), displacement (top right), and arc-length control (bottom left) for structural analysis
problems. The question mark (?) indicates the iteration where load and displacement control encounter a limit
point. In these situations, the next point obtained is typically difficult to find.

where Ψ is a scaling parameter given in [42, 497]. The increment Δ𝒘 is constrained by the
arc-length Δℓ in the constraint equation

𝑓 (Δ𝒘) = 𝑑(Δ𝒘)−Δℓ = 0. (6.3)

Since 𝑮(𝒖,𝜆) is non-linear, the increment Δ𝒘𝑖 is obtained iteratively, i.e., Δ𝒘𝑖,𝑘+1 = Δ𝒘𝑖,𝑘 +
𝛿𝒘𝑖 with iteration count 𝑘. The constraint equation is solved together with equation (6.1)
in every iteration, yielding the Riks and Crisfield methods [124, 469]

𝑓 (Δ𝒘𝑖,𝑘 ,Δ𝑙) = Δ𝒖⊤𝑖,0Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,0Δ𝜆𝑖,0𝑷⊤𝑷 −Δℓ2 = 0, Riks, (6.4)
𝑓 (Δ𝒘𝑖,𝑘 ,Δ𝑙) = Δ𝒖⊤𝑖,𝑘Δ𝒖𝑖,𝑘 +Ψ2Δ𝜆𝑖,𝑘Δ𝜆𝑖,𝑘𝑷⊤𝑷 −Δℓ2 = 0, Crisfield, (6.5)

where Δ𝒘0 is the increment in the first iteration. The Crisfield method generally performs
well with sharp snap-backs but has the disadvantage that the constraint equation has two
intersections with the path formed by equation (6.1). Hence, a root has to be selected,
which is elaborated in the works [124, 472]. When multiple intersections are found, com-
plex roots are found [85], which can be resolved using one of the methods proposed in
[329, 660]. It should be noted that any other arc-length method can be used within the
scheme proposed in this chapter, as long as the constraint equation is satisfied when the
arc-length step is converged.



6.3 Adaptive Parallel Arc-Length Method

6

A
da

pt
iv
e
Si
m
ul
at
io
n

173

6.3 Adaptive Parallel Arc-Length Method
In this section, our new approach, the APALM, is presented. Firstly, the method is concep-
tualised along with some illustrative figures (section 6.3.1). Secondly, details are provided
on the curve parametrisation and the measurement of errors (section 6.3.2). Lastly, sec-
tion 6.3.3 presents (re-)parametrisation methods for the solution curve. These parametri-
sations will be essential to the data structure of the APALM. It should be noted that the
method described in this section is presented only for one continuation parameter, 𝜆.

6.3.1 Concept
Learning from parallel-in-time methods like Parareal or MGRIT, parallelisation in the
APALM is achieved from a subdivision of the curve length domain. Contrary to MGRIT
and Parareal, where the temporal domain 𝑡 ∈ [𝑇0,𝑇1] is fixed, the APALM will work with
a changing curve length domain 𝑠 ∈ [𝑆0, 𝑆1] depending on the length of the traversed path,
with an underlying fixed parametric domain with parametric coordinate 𝜉 ∈ [0,1]. The
APALM is initialised with an initial coarse grid approximation, in which the parametric
and the curve length domains are subdivided into sub-domains 𝜉 ∈ [𝜉𝑖 , 𝜉𝑖+1] and 𝑠 ∈ [𝑠𝑖 , 𝑠𝑖+1],
respectively, as illustrated in figure 6.2.

In the initialisation phase of the APALM, the first subdivision into sub-intervals is
made (see figure 6.2a). Here, the sizes of the sub-intervals 𝑠 ∈ [𝑠ℓ𝑖 , 𝑠ℓ𝑖+1] are determined
based on the distance measure that is used by the corresponding ALM; see equation (6.2).
Note that the superscript ℓ denotes the ℓth level. Based on the initial curve-length do-
main 𝑠 ∈ [0,𝑆], where 𝑆 is the total length of the initial curve, and the corresponding sub-
intervals, the curve-length domain can be mapped accordingly onto a parametric domain;
see section 6.4 for more details.

With an initialised computational domain, the number of sub-intervals determines
the degree of parallelisation. On any sub-interval, [𝑠ℓ𝑖 , 𝑠ℓ𝑖+1] data at the start-point and end-
point is known, which can be used to initiate an arc-length method to re-compute the
sub-interval with 𝑁 increments, i.e., with an arc-length of Δ𝐿ℓ+1𝑖 = Δ𝐿ℓ𝑖 /𝑁 (see figure 6.2b).

After sub-interval [𝑠ℓ+1𝑖 , 𝑠ℓ+1𝑖+1 ] has been finished, the distance of the end-point of the
sub-interval can be compared to the previously known solution at 𝑠ℓ𝑖+1, which is called
parallel verification of intervals in figure 6.2c. Since the sub-interval is traversed in 𝑁 in-
crements with length Δ𝑠0𝑖 /𝑁 , the triangle inequality with the arc-length measure implies
that there must be a distance greater than or equal to zero between the newly found end-
point and the reference end-point. The more ‘curved’ the domain in-between, the larger
this distance. Based on an error measure (see section 6.3.2), intervals with a relatively
large deviation between the coarse-level arc length and the fine-level arc length are to be
marked for ‘refinement’.

Lastly, the intervals with a too large deviation in the newly computed curve length
need to be reparameterized (see section 6.3.3). This is because the total curve-length
parametrisation is elongated exactly by the distance between the newly computed end-
point and the previously known point. By this means, the reference interval is subdivided
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into 𝑁 + 1 sub-intervals, and the data corresponding to the 𝑁 newly computed point is
stored. For sub-intervals that have an error below the tolerance, only 𝑁 − 1 points are
stored as references, and no reparametrisation takes place. The process is sketched in
figure 6.2d. After reparametrisation, the marked interval can be re-computed, and the pro-
cess can be repeated from figure 6.2b onwards.

Remark 6.3.1 (Difference with parallel-in-time methods). As mentioned, the multi-level
approach that is employed in this method is derived from the idea of parallel-in-time methods.
However, the fundamental difference between time integration and continuation comes from
the fact that time integration methods typically compute the solution on the next time step
with a certain time integration error 𝒪(Δ𝑡𝑝). Parallel-in-time methods rely on this time
integration error to mark solution intervals as converged or not, and additionally, updated
solutions contain smaller time integration errors, so sub-intervals need to be recomputed as
soon as solutions previously in time have been updated.

For arc-length methods, Newton’s method is applied to a system of equations that solves
the arc-length constraint equation together with the discretized system 𝑮(𝒖,𝜆) = 0. Therefore,
the error of the solution that is found after an arc-length increment is independent of the arc-
length increment size but solely depends on the convergence tolerance of Newton’s method.
Therefore, the end-point of an interval does not have to be updated, nor do intervals after
the update be recomputed. This implies, in principle, that parallel corrections of the arc-
length steps are not needed, since the intervals already capture the structural response at
the equilibrium path. However, the parallel corrections are still meaningful to capture the
equilibrium path in desired detail, in the case where the initial step size is chosen very coarse.
As will follow from the results section, cf. section 6.5, the parallel performance increases for
fewer (hence coarser) initial intervals.

Remark 6.3.2 (Path-dependency). The concept presented in this chapter assumes path-
independence of the equation to be solved, in order to assume that from a given starting point
on the equilibrium path, the same end-point could be reached irrespective of the computed
intervals on the path in-between the points. Path-dependent problems are out of the scope of
this paper.

6.3.2 Error Measures
The refinement of computed sub-intervals depends on the distances between the points in
the original (coarse) interval and the newly obtained solutions in this sub-interval. Here,
error measures are presented, that can be used to mark an interval [𝑠ℓ𝑖 , 𝑠ℓ𝑖+1] based on the
obtained solutions {𝑠ℓ+1𝑘 }𝑘=0,...,𝑁 at the finer level. Figure 6.3 presents two possible situa-
tions: a nearly straight interval that would not be marked for refinement, and a curved
interval that would be marked for refinement. Here, the interval is considered ‘curved’
in the discrete solution space if the hyperdimensional path between two solutions differs
from the hyperplane between these solutions. The errors that determine the marking of an
interval for refinement are illustrated in figure 6.3b and can be interpreted as follows: Δ𝐿
is the original arc length between two coarse solutions, Δ𝐿′ is the newly obtained length
between two coarse solutions, the lower distance Δ𝐿 is the distance between the start of
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𝜆

‖𝒖
(𝑡)

‖

𝑠

𝜉
0 1

𝑹(𝒖,𝜆) = 0

1/4 1/2 3/4

(a) Initialisation based on computed reference solu-
tions. Without losing generality, the solutions are sep-
arated by a fixed distance, Δ𝑠. Given their distances, an
initial estimation of the curve length 𝑠 can be produced,
which can be mapped on the parametric domain 𝜉 .

𝜆

‖𝒖
(𝑡)

‖

𝑠

𝜉
0 1

𝑹(𝒖,𝜆) = 0

1/4 1/2 3/41/8 3/8

(b)Parallel computation of intervals. On each interval,
a finer estimate can be performed by splitting the interval
into 𝑛 sub-intervals (𝑛 = 2 here).

𝜆

‖𝒖
(𝑡)

‖

𝑠

𝜉
0 1

𝑹(𝒖,𝜆) = 0

1/4 1/2 3/41/8 3/8

!

(c) Parallel verification of intervals. When the last sub-
interval is computed, the solution is verified with the next
known reference solution (here, the solutions following
from the initial simulations). When the distance is suffi-
ciently small, the segment can be marked as convergent,
and the in-between solutions on the interval can be writ-
ten. The point where the difference is too large is denoted
by !.

𝜆

‖𝒖
(𝑡)

‖

𝑠

𝜉
0 1

𝑹(𝒖,𝜆) = 0

1/4 1/2 3/4

!

(d) Curve-length reparametrisation. For sub-intervals
where the length deviates too much from the previous
length, i.e., where the distance between the last computed
point and the reference is too large (denoted by !), all solu-
tions of the sub-interval are added to the parametrisation,
and the known data points ahead of the newly computed
points are shifted in the curve parametric coordinates.

Figure 6.2: Concept of the APALM. The large open circles represent reference solutions from a previously com-
puted level. The small solid circles represent new data on the interval between two reference solutions, computed
by the arc-length method (here the large dashed circle). The black dashed line indicates the curve estimation for
which the sum is equal to the total curve length.
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𝜆

‖𝒖
(𝜆)

‖

𝑠

𝜉
𝜉 ℓ𝑖 = 𝜉 ℓ+10 𝜉 ℓ𝑖+1 ≈ 𝜉 ℓ+1𝑁𝜉 ℓ+11

𝑠ℓ𝑖 = 𝑠ℓ+10 𝑠ℓ𝑖+1 ≈ 𝑠ℓ+1𝑁

Δ𝐿
Δ𝐿/2 Δ𝐿/2

𝑠ℓ+11

Δ𝐿/2 Δ𝐿/2

Δ𝐿

(a) Nearly straight interval where the small white dot is
sufficiently close to the coarse reference. In this case,
the solution of the second increment is not added to the
parametrisation.

𝜆

‖𝒖
(𝜆)

‖

𝑠

𝜉
𝜉 ℓ𝑖 = 𝜉 ℓ+10 𝜉 ℓ𝑖+1𝜉 ℓ+11 𝜉 ℓ+1𝑁

𝑠ℓ𝑖 𝑠ℓ𝑖+1

Δ𝐿′
Δ𝐿/2 Δ𝐿/2 𝛿𝐿

𝑠ℓ+11 𝑠ℓ+1𝑁

Δ𝐿/2
Δ𝐿/2

Δ𝐿Δ𝐿

𝛿𝐿

(b) Curved interval where the solution of the second in-
crement is Δ𝐿𝑢 away from the coarse reference. In this
case, the distance between the coarse reference points 𝛿𝐿
is smaller than the actually traversed distance Δ𝐿′ .

Figure 6.3: Error measures on a nearly straight interval (a) and a curved interval (b). For the nearly straight
interval, the distance 𝛿𝐿 (see b) is sufficiently small, whereas for the curved interval, it is too big. The measures
Δ𝐿 and Δ𝐿′, Δ𝐿, and 𝛿𝐿 are, respectively, the coarse arc length, the fine arc length, the lower distance, and the
absolute error.

the interval and the last solution at the fine level, and 𝛿𝐿 is the distance between the last
obtained solution on the fine level and the final point on the coarse level. Using these
distances, the total error (𝜀), the lower error (𝜀𝑙 ), and the upper error (𝜀𝑢) can be defined:

𝜀 = (Δ𝐿′ −Δ𝐿)/Δ𝐿, total error, (6.6)

𝜀𝑙 = (Δ𝐿−Δ𝐿)/Δ𝐿, lower error, (6.7)
𝜀𝑢 = (𝜀 − 𝜀𝑙)/Δ𝐿, upper error. (6.8)

Here, the total error is the total difference between the coarse and fine intervals; the lower
error is the contribution of the first𝑁 sub-intervals; and the upper error is the contribution
of 𝛿𝐿 to the total error. Depending on these errors and specified tolerances, refinement
rules can be set up, in particular:

Refine the first 𝑁 intervals ⟷ 𝜀𝑙 > TOL𝑙 , (6.9)
Refine the last interval ⟷ 𝜀𝑢 > TOL𝑢 . (6.10)

6.3.3 Curve (Re-)Parametrisation
As indicated in figure 6.2, the concept of the APALM is supported by the parametrisation of
the solutions of 𝑹(𝒖,𝜆) = 0 by parameterizing the curve length using the increment length
𝑑(Δ𝒘) embedded in the arc-length method. As illustrated in figure 6.2, the APALM maps
solutions 𝒘 to a point on the curve-length domain [0,𝑆], and points on the curve-length
domain are mapped on a parametric domain [0,1].



6.3 Adaptive Parallel Arc-Length Method

6

A
da

pt
iv
e
Si
m
ul
at
io
n

177

Provided a series of solutions from the initialisation phase {𝒘0𝑖 }𝑖=0,...,𝐼 , with 𝐼 denoting
the total number of initial points, and defining solution intervals by Δ𝒘ℓ𝑖 = 𝒘ℓ𝑖+1 −𝒘ℓ𝑖 , each
solution 𝒘0𝑖 can recursively be assigned to the curve-length and parametric domains by

𝑠0𝑖+1 = 𝑠0𝑖 +𝑑(Δ𝒘0𝑖 ), 𝑖 = 1, ..., 𝐼 − 1, 𝑠0 = 0, (6.11)

𝜉 0𝑖 = 𝑠𝑖
𝑠𝐼
, 𝑖 = 0, ..., 𝐼 , (6.12)

where the superscript 0 represents the 0th level. In addition, equation (6.11) guarantees
that 𝑆 = 𝑠𝐼 marks the total length of the curve that has been traversed, measured by the
distance between each solution. Given the curve-length coordinates of each point as an
increasing sequence, the parametric domain can simply be obtained by scaling the domain
back to [0,1]; see equation (6.12). In the following, two ways of adding solutions to the
parametrisation are defined: i) interior insertion, and ii) full insertion and stretching. The
operations are defined given a parent interval [𝑠ℓ𝑖 , 𝑠ℓ𝑖+1) in which a set of new solutions
{𝑠ℓ+1𝑘 }𝑘=0,...,𝑁 , where 𝑠ℓ+10 = 𝑠ℓ𝑖 , is computed, with 𝑁 the total number of points in the inter-
val; see figure 6.4a.

Firstly, the interior insertion operation inserts solutions within the sub-interval, see
figure 6.4b, and is later used for intervals where the error is small. The idea behind this
operation is that the solutions {𝑠ℓ+1𝑘 }𝑘=1,...,𝑁−1 between 𝑠ℓ𝑖 and 𝑠ℓ𝑖+1 are inserted and that the
solution 𝑠ℓ+1𝑁 is not added to the map. In the case of the interior insertion, the points 𝑠ℓ+1𝑘
and their parametric coordinates 𝜉 ℓ+1𝑘 are added by:

𝑠ℓ+1𝑘+1 = 𝑠ℓ+1𝑘 +𝑑(Δ𝒘ℓ+1
𝑘 ), 𝑘 = 0, ...,𝑁 −2, 𝑠ℓ+10 = 𝑠ℓ𝑖 , 𝑠ℓ+1𝑁 = 𝑠ℓ𝑖+1, (6.13)

𝜉 ℓ+1𝑘+1 = 𝜉 ℓ+1𝑘 + (𝜉 ℓ𝑖+1 −𝜉 ℓ𝑖 )
𝑠ℓ+1𝑘+1 − 𝑠ℓ+1𝑘
𝑠ℓ𝑖+1 − 𝑠ℓ𝑖

, 𝑗 = 0, ...,𝑁 −2. (6.14)

Note that 𝒘ℓ+1
𝑘 denotes the 𝑘th solution on level ℓ + 1 on the computed sub-interval, here

[𝑠ℓ𝑖 , 𝑠ℓ𝑖+1].

The full insertion and stretching operation inserts the solutions of the sub-interval, in-
cluding its end point, and also stretches the curve parametrisation (see figure 6.4c), which
is later used for intervals where the error is large, hence intervals that need refinement.
The idea behind this operation is that the solutions {𝑠ℓ+1𝑘 }𝑘=1,...,𝑁−1 between 𝑠ℓ𝑖 and 𝑠ℓ𝑖+1 are
inserted and that the point 𝑠ℓ𝑖+1 is shifted such that 𝑠ℓ𝑖+1 = 𝑠ℓ+1𝑁 and such that all points fur-
ther than 𝑠ℓ𝑖+1 are updated to ̃𝑠ℓ𝑗 by the a shift using the distance between the last computed
solution and the reference solution, i.e. 𝑑(Δ𝒘ℓ+1𝑁 ), Δ𝒘ℓ+1𝑁 = 𝒘ℓ𝑖+1 −𝒘ℓ+1𝑁 :

𝑠ℓ+1𝑘+1 = 𝑠ℓ+1𝑘 +𝑑(Δ𝒘ℓ+1
𝑘 ), 𝑘 = 0, ...,𝑁 −1, 𝑠ℓ+10 = 𝑠ℓ𝑖 , 𝑠ℓ𝑖+1 = 𝑠ℓ+1𝑁 , (6.15)

𝜉 ℓ+1𝑘+1 = 𝜉 ℓ+1𝑘 + (𝜉 ℓ𝑖+1 −𝜉 ℓ𝑖 )
𝑠ℓ+1𝑘+1 − 𝑠ℓ+1𝑘
𝑠ℓ𝑖+1 − 𝑠ℓ𝑖

, 𝑘 = 0, ...,𝑁 −1, (6.16)

̃𝑠ℓ𝑗 = 𝑠ℓ𝑗 +𝑑(𝒘ℓ+1𝑁 ,𝒘ℓ𝑖+1), 𝑗 = 𝑖 + 1, ..., 𝐼 . (6.17)
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𝑠ℓ
𝜉 ℓ

(a) Original domain

𝑠ℓ+1
𝜉 ℓ+1

(b) Interior insertion

𝑠ℓ+1
𝜉 ℓ+1

(c) Full insertion and stretching

Figure 6.4: Domain parametrisations on the curve-length domain 𝑠 and the parameter domain 𝜉 with levels ℓ and
ℓ+1. Figure 6.4a illustrates the original domain, figure 6.4b illustrates the insertion of interior points in the case
of a sufficiently close approximation of the end-point of the domain and figure 6.4c illustrates the full insertion
of all sub-domain solutions combined with the stretching of the curve length domain.

As can be noticed in equation (6.16), the re-scaling of 𝜉 is done using the parametric
length of the original interval at level ℓ, (𝜉 ℓ𝑖+1 − 𝜉 ℓ𝑖 ) and the curve coordinate 𝑠𝑖+1 relative
to the beging point of the interval 𝑠𝑖 with respect to the (updated) total curve length of
the interval 𝑠𝑖+1 − 𝑠𝑖 , which is similar to the well-known chord-length parametrisation in
splines [437].

6.4 Implementation
In this section, data structures and algorithms for the implementation of the APALM
are presented. In section 6.4.1, a data structure is provided for the implementation of
the APALM. Thereafter, section 6.4.2 provides algorithms for the implementation of the
APALM, and section 6.4.3 elaborates on the extension of thesemethods tomultiple branches,
hence enabling arc-length exploration.

6.4.1 Data Structure
Since the APALM is based on a sub-interval approach where the start and end points
of each sub-interval are known, a data structure referencing the sub-intervals is essential.
Since the curve-length coordinate is subject to change after reparametrisation of the curve
and since the curve parameter is fixed, the logical choice is to connect the data to paramet-
ric coordinates. That is, a series of discrete maps is constructed such that solutions, levels,
and curve-length coordinates can be obtained via a parametric point 𝜉 ℓ𝑘 .

Figure 6.5 shows the data structure behind the APALM. Firstly, the data structure con-
tains the map 𝒮(𝜉 ) ∶ [0,1]→ [0,𝑆], which is the map that maps the parametric coordinate
to the curve-length domain. Secondly, the maps𝒰(𝜉) ∶ [0,1]→ℝ𝑛+1 and𝒰 ′(𝜉 ) ∶ [0,1]→
ℝ𝑛+1 map the solution and the previous solution from the parametric domain to the solu-
tion and previous solution domain, respectively. The mapper𝒰 ′(𝜉 ) ∶ [0,1]→ℝ𝑛+1 is con-
structed in order to construct the predictor of the ALM. Lastly, the mapℒ(𝜉) ∶ [0,1]→ℕ



6.4 Implementation

6

A
da

pt
iv
e
Si
m
ul
at
io
n

179

𝑠

𝜉

𝑙

𝒘
𝒘′

𝒮(𝜉𝑖)Ξ(𝑠𝑖) ℒ(𝜉𝑗)
𝒰(𝜉𝑘)

𝒰 ′(𝜉𝑘)

𝐴0 𝐴1𝑄𝑚 𝑄𝑛

Figure 6.5: The data structure behind the APALM.The axes represent data sets, which are monotonically increas-
ing when the axis has an arrow. Solid arrows represent mappers from one axis to another, and dashed arrows
represent data references. The mappers Ξ(𝑠𝑖) and 𝒮(𝜉𝑖) map between the curve parametrisation and the curve
length axes. The former takes a curve length 𝑠𝑖 and returns the curve parameter 𝜉𝑖 , and the latter maps the
inverse. The mappers 𝒰(𝜉𝑘) and 𝒰 ′(𝜉𝑘) return the solution 𝒘𝑗 and the previous solution (𝒘′)𝑗 , respectively,
given a parametric coordinate 𝜉𝑗 , and the mapper ℒ(𝜉𝑗 ) returns the level on which the coordinate 𝜉𝑗 was com-
puted. The guess is a data reference to the previous solution. The thick solid intervals represent running jobs
assigned with an ID, and the thick dashed intervals represent queued intervals. Each interval is represented by
a start-point and an end-point tuple (𝜉𝑙 , 𝜉𝑙+1). The red lines, squares, and arrows represent the submit operation
when solutions are added to the data structure.

is a map that can be used to obtain the level of a parametric point, which is optional but
can be useful to limit the method to a certain depth.

6.4.2 Algorithms
Given the underlying data structure of the APALM (see section 6.4.1), algorithms are
defined for its implementation. Firstly, it is assumed that the APALM is based on an
ALM with possibly a black-box implementation, striving for the non-intrusiveness of the
method. The required routines for the underlying ALM are:

• 𝒘ℓ𝑖+1 ← step(𝒘ℓ𝑖 ,Δ𝒘ℓ𝑖Δ𝐿): Performs a step with length Δ𝐿 starting at point 𝒘ℓ𝑖 and
returns the new solution𝒘ℓ𝑖+1. Given the current solution and the previous solution,
a predictor for the initial iteration that employs Δ𝒘ℓ𝑖 = 𝒘ℓ𝑖 −𝒘ℓ𝑖−1 could be available,
as well as one for a cold start, i.e., Δ𝒘ℓ𝑖 = 0.

• Δ𝑠←distance(𝒘ℓ𝑖 ,𝒘ℓ𝑗): gets the distance between two points𝒘ℓ𝑖 and𝒘ℓ𝑗 , using equa-
tion (6.2) with Δ𝒘ℓ𝑖 = 𝒘ℓ𝑖 −𝒘ℓ𝑗 .

In the following, three implementations are presented. The first implementation is a se-
rial implementation without communication but with queueing, referred to as the Adap-
tive Serial Arc-Length Method (ASALM). The serial implementation provides the building
blocks for the hybrid implementation and the parallel implementation. The hybrid imple-
mentation, referred to as the Adaptive Serial-Parallel Arc-Length Method (ASPALM), is a
hybrid version of the APALM where parallel corrections are performed after a serial solve
has finished. The parallel implementation, on the other hand, starts parallel corrections
as soon as the first interval has been initialised; hence, there is no separation between a
serial phase and a parallel phase. The parallel implementation is the final APALM.
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Serial implementation
The global workflow for a serial APALM, i.e., the ASALM, is illustrated in algorithm 2. As
seen in this algorithm, the initialisation is performed using a serialSolve routine, which
defines the initial solution sequence {𝒘0𝑖 }𝐼𝑖=0 with 𝐼 steps on level ℓ = 0. In addition, this
routine also provides a sequence of curve-length coordinates, {𝑠0𝑖 }𝐼𝑖=0. Based on these se-
quences, the mappers from figure 6.5 and a queue 𝑄 are initialised in the initializeMap
routine. Given the queue 𝑄, the correctQueueSerial routine provides a sequence of solu-
tions {𝒘𝑖} and of curve parameters {𝑠𝑖} spanning multiple levels, hence the superscript ℓ is
omitted.

Algorithm 2Global ASALM routine (ASALM).The ASALMfirst consists of a serial solve of the whole curve length
domain, followed by an evaluation of subintervals.
Input: Δ𝐿, 𝐼

1: {𝒘0𝑖 }𝐼𝑖=0, {𝑠0𝑖 }𝐼𝑖=0 ← serialSolve(Δ𝐿, 𝐼 )
2: 𝑄 ← initializeMap({𝒘0𝑖 }𝐼𝑖=0, {𝑠0𝑖 }𝐼𝑖=0)
3: {𝒘𝑖}, {𝑠𝑖} ← correctQueueSerial(𝑄)

Output: {𝒘𝑖}, {𝑠𝑖}, {𝜉𝑖}

Using basic ALM routines, algorithm 3 defines an algorithm to obtain in serial a coarse
approximation to initialise the ASALM. Optionally, a stability computation can be per-
formed after the arc-length step, which could lead to a specialised solution towards a bi-
furcation point. This allows for automatic exploration of bifurcation diagrams [561, 630]
and is discussed more in detail in section 6.4.3.

Algorithm 3 Serial solve (serialSolve). This routine provides the initial step for the APALM/ASALM, i.e., the
solution data {𝒘ℓ𝑖 }𝑖=0,...,𝐼 and the corresponding curve-length parameters {𝑠ℓ𝑖 }𝑖=0,...,𝐼 on level ℓ = 0.
Input: Δ𝐿, 𝐼

1: Initialise 𝒘ℓ0, 𝑠ℓ0 = 0
2: 𝒘ℓ1 ←step(𝒘ℓ0, 0,Δ𝐿) ▷ Compute first solution
3: 𝑠1 ←Δ𝐿
4: for 𝑘 = 1, ..., 𝐼 − 1 do
5: 𝒘ℓ

𝑘+1,Δ𝑠ℓ𝑘+1 ←initiate(𝒘ℓ
𝑘 ,Δ𝒘ℓ

𝑘−1,Δ𝐿) ▷ Compute new solution
6: 𝑠ℓ𝑘+1 = 𝑠ℓ𝑘 +Δ𝑠ℓ𝑘+1 ▷ Compute curve coordinate
7: end for

Output: {𝒘ℓ𝑖 }𝐼𝑖=0, {𝑠ℓ𝑖 }𝐼𝑖=0

In algorithm 3, the initiate routine (see algorithm 4) computes an arc-length interval
and returns a new point 𝒘ℓ

𝑘 and the traversed distance Δ𝑠ℓ𝑘 , provided the previous point
𝒘ℓ
𝑘−1, the previous solution interval Δ𝒘ℓ

𝑘 and the intended arc-length step size Δ𝐿 and
using the step and distance functions. Typically, Δ𝑠ℓ𝑘 is equal to Δ𝐿 unless the arc-length
step does not converge and needs to be bisected.

As soon as a set of solution data and curve parameters, {𝒘ℓ𝑖 }𝑖=0,...,𝐼 and {𝑠ℓ𝑖 }𝑖=0,...,𝐼 , re-
spectively, are known, the initialisation of the parallel computations can take place. In this
initialisation, the maps from figure 6.5 are constructed and a queue 𝑄 of jobs is created,
c.f. algorithm 5.
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Algorithm 4 Initiation of an interval (initiate). Given a previous solution 𝒘ℓ
𝑘 , the previous step size 𝒘ℓ

𝑘−1, and
the desired arc-length Δ𝐿, this routine returns a new solution 𝒘ℓ

𝑘+1 and a distance with respect to the previous
solution 𝒘ℓ

𝑘 , denoted by Δ𝑠ℓ𝑘+1.
Input: 𝒘ℓ

𝑘 , 𝒘ℓ
𝑘−1, Δ𝐿

1: Δ𝒘ℓ
𝑘 = 𝒘ℓ

𝑘 −𝒘ℓ
𝑘−1 ▷ Compute previous step

2: 𝒘ℓ
𝑘+1 ←step(𝒘ℓ

𝑘−1,Δ𝒘ℓ
𝑘 ,Δ𝐿) ▷ Compute new solution

3: Δ𝑠ℓ𝑘+1 ←distance(𝒘ℓ
𝑘+1,𝒘ℓ

𝑘) ▷ Compute curve coordinate
Output: 𝒘ℓ

𝑘+1, Δ𝑠ℓ𝑘+1

Algorithm 5 Parallel initialisation (initializeMap). Within this algorithm, the maps 𝒰 , 𝒰 ′, 𝒮 , and Ξ are con-
structed from a series of solutions and corresponding curve length coordinates, {𝒘ℓ𝑖 }𝐼𝑖=0 and {𝑠ℓ𝑖 }𝐼𝑖=0, respectively,
both on level ℓ = 0. Furthermore, the queue 𝑄 is initialised by adding all subintervals to the queue.

Input: {𝒘ℓ𝑖 }𝐼𝑖=0, {𝑠ℓ𝑖 }𝐼𝑖=0
1: Add 𝒘ℓ0 to 𝒰 , 𝑠ℓ0 to 𝒮 , and 𝜉 ℓ0 to Ξ ▷ Add the start of the level 0 solutions to the map 𝒰
2: for 𝑘 = 1, ..., 𝐼 do
3: Add 𝒘ℓ

𝑘 to 𝒰 and 𝒘ℓ
𝑘−1 to 𝒰 ′.

4: Add 𝑠ℓ𝑘 to 𝒮 and 𝜉 0𝑘 to Ξ.
5: Add 𝑄𝑘−1 = [𝜉 ℓ𝑘−1, 𝜉 ℓ𝑘) to Q. ▷ Construct elements of the queue 𝑄
6: end for

Output: 𝑄 = {𝑄𝑘 = [𝜉 ℓ𝑘 , 𝜉 ℓ𝑘+1]}𝑘=0,...,𝐼

After initialisation, the computation of the sub-intervals can take place. This requires
the routine correctQueueSerial as defined in algorithm 6 for fully serial computations.
That is, no communication between manager and worker takes place since everything
will be done on the same node.

Algorithm 6The routine that solves the queue (correctQueueSerial). Given a queue 𝑄, this algorithm takes an
entry from the queue using pop and solves the defined interval using correct. The new solution is added to the
solution maps, and if required, new jobs are added to the queue 𝑄 using submit. The final solutions are collected
from the maps using the collectSolutions routine.
Input: 𝑄

1: while 𝑄 ≠ ∅ do
2: 𝑄, ID, Δ𝐿, 𝒘ℓ𝑖 , 𝒘ℓ𝑖−1,𝒘ℓ𝑖+1← pop(𝑄)
3: {𝑑 ℓ+1𝑘 }𝑘=0,...,𝑁−1, {𝒘ℓ+1

𝑘 }𝑘=0,...,𝑁 , Δ𝐿, 𝛿𝐿← correct(𝑁 ,Δ𝐿0,𝒘ℓ𝑖 ,𝒘ℓ𝑖−1,𝒘ℓ𝑖+1)
4: 𝑄← submit(ID, {𝑑 ℓ+1𝑘 }𝑘=0,...,𝑁−1, {𝒘ℓ+1

𝑘 }𝑘=0,...,𝑁 ,Δ𝐿,𝛿𝐿,𝑄) ▷ Submit the job; adds new jobs to 𝑄 if needed
5: end while
6: {𝒘𝑖}, {𝑠𝑖}← collectSolutions

Output: {𝒘𝑖}, {𝑠𝑖}

The computation of the sub-interval takes place in the correct routine of algorithm 7
and can be used both in a serial and a parallel implementation. Given a number of sub-
intervals 𝑁 , the original distance between the end-points of the interval Δ𝐿0 and the start
point, previous solutions, and reference solutions 𝒘ℓ𝑖 , 𝒘ℓ𝑖−1 and 𝒘ℓ𝑖+1, respectively, this
routine computes a series of solutions of the sub-interval {𝒘ℓ+1

𝑘 }𝑘=0,...,𝑁 , their distances
{𝑑𝑘}ℓ+1𝑘=0,...,𝑁−1 and the distances Δ𝐿 and 𝛿𝐿 for error computation. Note that the distance
Δ𝐿′ can be computed by taking the sum of the distances.

The correctQueueSerial routine includes the pop, submit, and collectSolutions rou-



6

A
da

pt
iv
e
Si
m
ul
at
io
n

182 6 An Adaptive Parallel Arc-Length Method

Algorithm 7 The routine that solves an interval (correct). This routine takes a number of subintervals 𝑁 ,
the desired step length for the total interval, the start point 𝒘ℓ𝑖 , the previous point 𝒘ℓ𝑖−1, and the next point
𝒘ℓ𝑖+1. It returns the solutions on the subinterval and the distances between them, respectively {𝑑 ℓ+1𝑗 }𝑗=0,...,𝑁−1 and
{𝒘ℓ+1𝑗 }𝑗=0,...,𝑁 , as well as the distances Δ𝐿 and 𝛿𝐿. When the step does not converge, it is assumed that step size
modification takes place and that the data points are adjusted accordingly.

Input: 𝑁 , Δ𝐿0, 𝒘ℓ𝑖 , 𝒘ℓ𝑖−1, 𝒘ℓ𝑖+1
1: Initialise output vectors {𝑑 ℓ+1𝑘 }𝑘=0,...,𝑁−1, {𝒘ℓ+1

𝑘 }𝑘=0,...,𝑁
2: Δ𝐿 = Δ𝐿0/𝑁 ▷ Defines the size of the sub-intervals
3: 𝒘ℓ+10 = 𝒘ℓ𝑖
4: Δ𝒘ℓ+1 = 𝒘ℓ𝑖 −𝒘ℓ𝑖−1 ▷ Determine previous arc-length step, to be used to predict the step on ℓ + 1
5: for 𝑘 = 0, ...,𝑁 −1 do
6: 𝒘ℓ+1

𝑘+1 ← step(𝒘ℓ+1
𝑘 ,Δ𝒘,Δ𝐿) ▷ Perform the ALM iteration

7: Δ𝒘 = 𝒘ℓ+1
𝑘+1 −𝒘ℓ+1

𝑘 ▷ Update the solution step
8: 𝑑𝑘 ← distance(𝒘ℓ+1

𝑘+1,𝒘ℓ+1
𝑘 ) ▷ Gets the distance

9: end for
10: 𝛿𝐿← distance(𝒘ℓ𝑖+1,𝒘ℓ+1𝑁 )
11: Δ𝐿← distance(𝒘𝑁 ,𝒘0)
Output: {𝑑 ℓ+1𝑗 }𝑗=0,...,𝑁−1, {𝒘ℓ+1𝑗 }𝑗=0,...,𝑁 , Δ𝐿, 𝛿𝐿

tines. These routines mainly involve read and write operations for the mappers defined in
figure 6.5; hence, only a brief description is provided:

• 𝑄, ID, Δ𝐿, 𝒘ℓ𝑖 , 𝒘ℓ𝑖−1,𝒘ℓ𝑖+1← pop(𝑄): Takes the first available interval from the queue
𝑄 and returns a job ID, an interval length Δ𝐿, the start solution 𝒘ℓ𝑖 , the previous
solution 𝒘ℓ𝑖−1 and the next available solution 𝒘ℓ𝑖+1. It also updates the queue 𝑄
internally by removing the current entry.

• 𝑄← submit(ID, {𝑑ℓ+1𝑘 }𝑘=0,...,𝑁−1, {𝒘ℓ+1
𝑘 }𝑘=0,...,𝑁 ,Δ𝐿,𝛿𝐿,𝑄): Takes a job ID, the series

of solutions {𝒘ℓ+1
𝑘 }𝑘=0,...,𝑁 and their distances {𝑑ℓ+1𝑘 }𝑘=0,...,𝑁−1 and the distances Δ𝐿

and 𝛿𝐿. Using equations (6.6) to (6.8), the errors are computed and solution intervals
are added to the queue 𝑄 if needed.

• {𝒘𝑖}, {𝑠𝑖}← collectSolutions: Based on the underlying mappers, the solutions of
all levels are collected into {𝒘𝑖} and {𝑠𝑖}.

Hybrid implementation
The hybrid implementation of the APALM is referred to as the Adaptive Serial-Parallel
Arc-Length Method (ASPALM), since it is a two-stage method with a serial initalisation
and a parallel correction. This concept is similar to the concept presented for the ASALM,
but communication between the manager and worker processes is added so that the cor-
rection stage can be performed in parallel. To this end, the correctQueueSerial routine
is re-defined into correctQueueParallel and communications between workers and the
manager are defined. In the following, the global solution algorithm for the ASPALM is de-
fined in algorithm 8. As for the ASALM (see algorithm 2), the initialisation is performed
in serial by the serialSolve routine, and the maps are initialised, both by the manager
process. As soon as queue 𝑄 is established, the queue can be processed in parallel. Indeed,
this implies that the worker processes are idle until the queue 𝑄 is fully available.
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Algorithm 8 Global ASPALM routine (ASPALM). The ASPALM first consists of a serial solve of the whole curve
length domain, followed by a parallel evaluation of subintervals. This algorithm is specified for simple manager-
worker parallelisation; more advanced parallelisation schemes, e.g., with multiple managers, are easily achieved.
Input: Δ𝐿, 𝐼

1: if manager then
2: {𝒘ℓ𝑖 }𝐼𝑖=0, {𝑠ℓ𝑖 }𝐼𝑖=0 ← serialSolve(Δ𝐿, 𝐼 ) ▷ See algorithm 3
3: 𝑄 ← initializeMap({𝒘ℓ𝑖 }𝐼𝑖=0, {𝑠ℓ𝑖 }𝐼𝑖=0)
4: {𝒘ℓ𝑖 }, {𝑠ℓ𝑖 } ← correctQueueParallel(𝑄)
5: else
6: Initialise stop=false
7: while stop = false do
8: stop← receiveStop
9: workerCorrect()

10: end while
11: end if
Output: {𝒘𝑖}, {𝑠𝑖}

As seen in algorithm 8, the manager process uses the correctQueueParallel routine;
see algorithm 10. This routine is called by themanager process and sends and receives data
to and from the workers, updates the queue, and heavily relies on communication func-
tions as defined in table 6.1. The communication function sendMetaData can be omitted
for the ASPALM since it is primarily used in the APALM to distinguish between initia-
tion and correction jobs. Furthermore, as described in table 6.1, the routine sendJob can
be called with and without the reference solution 𝒘ℓ𝑖+1, depending whether it is available
(correction) or not (initiation). In the case of the ASPALM, all jobs that are popped from
the queue 𝑄 in the correctQueueParallel routine are by definition correction jobs.

As shown in algorithm 8, the worker processes will perform the workerCorrect from
algorithm 12. This algorithm contains the correction step for any interval that is received
from the communications coming from the manager process. The workerCorrect is exe-
cuted until a stop signal is received from the manager process. The latter is broadcast to all
workers as soon as queue 𝑄 is empty. Table 6.1 gives an overview of the communication
functions that are used for communications between the manager and worker processes
in the hybrid and parallel implementations.

Parallel implementation
Contrary to the serial and hybrid implementations, the fully parallel implementation does
not work with a two-staged procedure of serial initialisation and parallel correction. In-
stead, the fully parallel solve consists of one stage with a single queue consisting of initial-
isation and correction jobs. For the Adaptive Parallel Arc-Length Method (APALM), the
global routine is provided in algorithm 9.

As can be seen in algorithm 9, the manager process in the APALM only initialises the
queue using the initializeQueue routine, and it contains the correctQueueParallel rou-
tine. The former is not specified explicitly since it only initialises a map with zero points
and allocates the maximum number of intervals 𝐼 as well as the interval length Δ𝐿. The
correctQueueParallel routine is given in algorithm 10. It applies meta-data communica-



6

A
da

pt
iv
e
Si
m
ul
at
io
n

184 6 An Adaptive Parallel Arc-Length Method

Table 6.1: Required communications between manager and worker processes for the ASPALM and APALM.

Send/Receive From To Data Description

sendMetaData
receiveMetaData

Manager Worker ID, ℓ Communicates meta-data between the
manager and the worker processes. In
this case, only the ID and the level ℓ are
needed.

sendJob
receiveJob

Manager Worker ID, Δ𝐿0,
𝒘ℓ𝑖 , 𝒘ℓ𝑖−1, ,(𝒘ℓ𝑖+1)

Communicates information to perform
the computation of an interval between
the manager and the worker processes.
The reference solution 𝒘ℓ𝑖+1 is optional
since it is not available for initiation
jobs.

sendData
receiveData

Worker Manager 𝑊𝑗 , ID, {𝑑 ℓ+1𝑗 }𝑗=0,...,𝑁−1,
{𝒘ℓ+1𝑗 }𝑗=0,...,𝑁 , Δ𝐿, 𝛿𝐿

Communicates the data resulting from
a sub-interval computation between
the manager and the worker processes.
The receive communication also pro-
vides the worker from whom the data
is received.

sendStop
receiveStop

Manager Worker
(all)

Boolean Communicates a stop signal between
the manager and the worker processes.

tion, see table 6.1, to the worker processes so that the distinction based on the data level
ℓ in algorithm 9 can be made by the workers. On the side of the worker processes, the
meta-data is received, and if the level is equal to 0, an interval is initiated using work-
erInitiate (see algorithm 11), and if the level is larger than 0, an interval is corrected
using workerCorrect (see algorithm 12); see algorithm 9. Inside the workerInitiate and
workerCorrect routines, communications from the worker to the manager process (see
table 6.1) are included.

6.4.3 Arc-length Exploration
To enable multi-branch parallelisation of APALM, small modifications are required to the
data structure and the algorithms presented in sections 6.4.1 and 6.4.2. The easiest multi-
branch parallelisation is achieved by identifying branch switches only in the serial solve,
such that the initialisation of the APALM can be done across different branches. In this
case, the serial solve is performed on the main branch, and any bifurcation point is stored
such that a restart can be performed from this point; see [630] for details. As soon as such
a bifurcation point is identified, a branch switch can be performed, and a new serial solve
can be started from that point. As a result, a series of solutions {𝒘𝑖}𝐼𝑖=0 is computed for
each branch. Similar to the single-branch case, a data structure and a queue can be ini-
tialised using algorithm 5 per branch. Depending on the parallel configuration, the queues
𝑄𝑏 , 𝑏 = 0, ...,𝑛branches of all branches can be treated separately by multiple manager pro-
cesses, or they can be combined into one large queue𝑄 and handled by one single manager
process. In the latter case, each job will also contain a branch identifier to refer to the cor-
responding data structure.

The advantages of the above approach combiningmulti-branch andwithin-branch par-
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Algorithm 9Global APALM routine (APALM).The APALMfirst consists of a serial solve of the whole curve length
domain, followed by a parallel evaluation of subintervals. This algorithm is specified for simple manager-worker
parallelisation; more advanced parallelisation schemes, e.g., with multiple managers, are easily achieved.
Input: Δ𝐿, 𝐼

1: if manager then
2: 𝑄 ← initializeQueue(Δ𝐿, 𝐼 )
3: {𝒘ℓ𝑖 }, {𝑠ℓ𝑖 } ← correctQueueParallel(𝑄)
4: {𝒘𝑖}, {𝑠𝑖}← collectSolutions
5: else
6: while true do
7: stop← receiveStop
8: if stop then
9: Break loop

10: end if
11: ID, ℓ ← receiveMetaData
12: if ℓ = 0 then
13: workerInitiate()
14: else
15: workerCorrect()
16: end if
17: end while
18: end if
Output: {𝒘𝑖}, {𝑠𝑖}, {𝜉𝑖}

allelisation using the APALM are that the extension from a single-branch APALM to a
multi-branch APALM is straightforward. The disadvantage, however, is that the identifi-
cation of bifurcations is only taken into account in the serial solve step; hence, any bifur-
cations that are identified in the parallel solve will not be taken into account. A remedy
would be to rebuild the map and the data structure on the manager process as soon as a
worker process finds a bifurcation point; this requires all active workers to terminate.
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Algorithm 10 The correctQueueParallel routine, accompanied by the workerCorrect routine from algo-
rithm 12 and communication functions defined in table 6.1. This routine takes the queue 𝑄 and assigns jobs
from the queue to the available workers. Then, while the queue 𝑄 is non-empty, data is communicated to and
from the workers, and solutions are submitted. Note that the pop and submit routines are equivalent to the ones
in algorithm 6.
Input: 𝑄

1: Initialise a pool of worker processes 𝑊 = {𝑊𝑗 , 𝑗 = 1, ...,𝑁workers}
2: while 𝑄 ≠ ∅ and 𝑊 ≠ ∅ do
3: 𝑄, ID, Δ𝐿, 𝒘ℓ𝑖 , 𝒘ℓ𝑖−1, 𝒘ℓ𝑖+1← pop(𝑄) ▷ See line 2 of algorithm 6
4: sendStop(false)
5: sentMetaData(ID, ℓ)
6: sendJob(ID,Δ𝐿0,𝒘ℓ𝑖 ,𝒘ℓ𝑖−1,𝒘ℓ𝑖+1,𝑊𝑗 )
7: Remove 𝑄𝑖 from 𝑄 and 𝑊𝑗 from 𝑊
8: end while
9: ▷ Send jobs to workers when they are available

10: while |𝑊 | ≠ 𝑁workers do
11: 𝑊𝑗 ,ID, {𝑑 ℓ+1𝑗 }𝑗=0,...,𝑁−1, {𝒘ℓ+1𝑗 }𝑗=0,...,𝑁 ,Δ𝐿,𝛿𝐿← receiveDataWorker2Manager

12: 𝑄← submit(ID, {𝑑 ℓ+1𝑗 }𝑗=0,...,𝑁−1, {𝒘ℓ+1𝑗 }𝑗=0,...,𝑁 ,Δ𝐿,𝛿𝐿,𝑄) ▷ See line 4 of algorithm 6
13: Add 𝑊𝑗 to 𝑊
14: while 𝑄 ≠ ∅ and 𝑊 ≠ ∅ do
15: 𝑄, ID, Δ𝐿, 𝒘ℓ𝑖 , 𝒘ℓ𝑖−1, 𝒘ℓ𝑖+1← pop(𝑄)
16: sendStop(false) ▷ The worker always expects a stop signal, now it is false.
17: sentMetaData(ID, ℓ)
18: sendJob(ID,Δ𝐿0,𝒘ℓ𝑖 ,𝒘ℓ𝑖−1,𝒘ℓ𝑖+1,𝑊𝑗 )
19: Remove 𝑄𝑖 from 𝑄 and 𝑊𝑗 from 𝑊
20: end while
21: end while
22: sendStopManager2All(true)
Output: {𝒘𝑖}, {𝑠𝑖}

Algorithm 11 Solve routine for a worker (workerInitiate). This routine performs the initiation steps (see
algorithm 4) on jobs received from the manager, until a stop signal is received. More information on the com-
munication functions can be found in table 6.1.
Input:

1: (ID,Δ𝐿0,𝒘𝑖 ,𝒘𝑖−1,𝒘ref)← receiveJob
2: 𝒘ℓ

𝑘+1,Δ𝑠ℓ𝑘+1 ←initiate(𝒘ℓ
𝑘 ,Δ𝒘ℓ

𝑘−1,Δ𝐿)
3: sendDataWorker2Manager(ID, {𝑑𝑗 }ℓ+1𝑗=0,...,𝑁−1, {𝒘𝑗 }ℓ+1𝑗=0,...,𝑁 ,Δ𝐿)

Output:

Algorithm 12 Solve routine for a worker (workerCorrect). This routine performs correction steps (see algo-
rithm 7) on jobs received from the manager, until a stop signal is received. More information on the communi-
cation functions can be found in table 6.1.
Input:

1: (ID,Δ𝐿0,𝒘𝑖 ,𝒘𝑖−1,𝒘ref)← receiveJob
2: {𝑑 ℓ+1𝑘 }𝑘=0,...,𝑁−1, {𝒘ℓ+1

𝑘 }𝑘=0,...,𝑁 , Δ𝐿, 𝛿𝐿← correct(𝑁 ,Δ𝐿0,𝒘ℓ𝑖 ,𝒘ℓ𝑖−1,𝒘ℓ𝑖+1)
3: sendDataWorker2Manager(ID, {𝑑𝑗 }ℓ+1𝑗=0,...,𝑁−1, {𝒘𝑗 }ℓ+1𝑗=0,...,𝑁 ,Δ𝐿)

Output:
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6.5 Numerical Experiments
In this section, the APALM scheme is demonstrated on a series of benchmark problems.
The first two benchmark problems are structural analysis problems with limit-point insta-
bilities and complex collapsing mechanisms involving strongly curved solution paths. The
third benchmark is a buckling problem containing a bifurcation with multiple branches
to illustrate the concept of the APALM in a multi-branch setting. All benchmark prob-
lems are computed using isogeometric Kirchhoff–Love shell elements based on the works
[319, 320, 587]. Furthermore, a scaling test with respect to the number of worker pro-
cesses is performed for all benchmark problems. Here, a scaling analysis of the ASPALM
is performed to demonstrate the relative computational costs of the serial initialisation
phase compared to the parallel correction phase. Furthermore, a scaling analysis of the
APALM is performed to show the advantage of the fully parallel APALM scheme over
the two-stage ASPALM scheme. For the scaling tests, the communications from table 6.1
are performed using the Message Passing Interface (MPI), and they are performed on the
Delft High Performance Computing Centre (DHPC) [151] with Intel XEON E5-6248R 24C
3.0GHz nodes with 96GB of memory per CPU. The code is made available within the Ge-
ometry + Simulation modules [294] library. More information can be found in chapter 8.

6.5.1 Collapse of a Shallow Roof
The first benchmark problem involves a shallow roof subject to a point load at the mid-
point. The roof is discretized with 4×4NURBS elements of degree 3. The roof is composed
of a lay-up of composites with material properties as presented in figure 6.6, inspired by
[344]. It is modelled using isogeometric Kirchhoff-Love shell elements [319] supporting
composite laminates [238]. A Crisfield ALM is used with an initial arc length of 30 and
a scaling parameter of Ψ = 1. The tolerance of the APALM is set to 𝜀𝑙 = 𝜀𝑢 = 10−2. This
tolerance implies that intervals are marked for refinement when the traversed length is
deviates than 1% of the original interval length. A smaller tolerancewould imply thatmore
elements are marked for refinement and that the corrections are performed up to lower
levels. The material, and load parameters for this benchmark can be found in figure 6.6.
Reference solutions are obtained using a serial arc-length method with a sufficiently fine
increment size.

Figure 6.7 provides the results of the APALM applied to the collapse of the shallow roof.
As can be seen from this figure, the serial computation provides a coarse estimate of the
reference curve. Especially on the first limit point (between 𝜆 ×𝑤𝐴 ∈ [−15,−8] × [20,25]),
the data is sparse, similar to the collapse itself (see inset in figure 6.7). The results of the
APALM show that a lot of refinements are needed to represent the collapsing behaviour
correctly in the region of the inset in figure 6.7. These regions do not necessarily involve
extremely curved paths in the axes of figure 6.7, but the solutions𝒘 are most likely curved
in the higher-dimensional solution space.

In order to assess the parallelisation of the APALM in this example, the test from fig-
ure 6.7 is performed with an increasing number of workers using the ASPALM and the
APALM schemes. The results in table 6.2a show that for the computation with arc-length
parameter Δ𝐿 = 30, the parallel correction step of the ASPALM scales optimally (i.e., with a
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𝑅
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Figure 6.6: The problem definition for the benchmark of the collapsing roof with length 𝐿 = 508[mm], with radius
𝑅 = 2540 [mm], an angle 𝜃 = 10 [rad] with a thickness of 𝑡 = 6.35 [mm]. The boundaries Γ1 and Γ3 have fixed
displacements, and the other sides are free. The material is modelled using a Saint-Venant Kirchhoff laminate
with 𝐸11 = 3300 [N/mm2], 𝐸22 = 𝐸33 = 1100 [N/mm2], 𝐺12 = 𝐺13 = 660 [N/mm2], 𝐸23 = 440 [N/mm2] and 𝜈12 = 𝜈13 =
𝜈23 = 0.25[−] and with lay-up angles [0/90/0]∘. The load is variable with a magnitude 𝑃 = 10[N] andmagnification
factor 𝜆.
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Figure 6.7: Results of the collapsing roof. The figure on the left indicates the full solution path, and the figures
on the right depict the insets indicated in the left figure. The reference and serial solutions are represented by
the solid line and the black markers, respectively. The solutions computed by the APALM are indicated per level.
The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−2 and an increment length of Δ𝐿 = 30.
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Table 6.2: Computational time in [s] for the benchmark of the collapsing roof for the ASPALM and APALM for
different numbers of worker processes. The times for the ASPALM are presented for the serial initialisation and
the parallel correction phases, and the sum of the two is given as the total computational time. The numbers
in the Serial column should theoretically be the same, but they provide a representation of the variation in the
time measurements. The results are presented for simulations with increment lengths Δ𝐿 = 30 (a) and Δ𝐿 = 2.5
(b), and the italic row with 0 workers denotes the ASALM method.

(a) Δ𝐿 = 30

ASPALM APALM
# Serial + Parallel = Total Parallel

0 115.7 195.3 311.1 287.1
1 119.2 209.0 328.2 318.8
2 114.0 100.8 214.8 162.4
4 109.5 46.1 155.6 115.8
8 115.0 27.0 142.1 115.9
16 115.1 17.8 132.9 116.3
32 114.9 15.9 130.8 113.0
64 114.5 13.3 127.8 116.0

(b) Δ𝐿 = 2.5

ASPALM APALM
# Serial + Parallel = Total Parallel

0 507.2 1,778.1 2,285.3 2,187.1
1 500.5 1,757.7 2,258.2 2,310.2
2 447.5 835.3 1,282.9 1,114.0
4 493.4 449.4 942.8 558.1
8 496.8 223.2 720.0 453.9
16 503.3 113.0 616.2 483.6
32 493.2 58.1 551.3 510.9
64 504.2 29.2 533.4 498.3
128 501.0 20.2 521.3 494.7
256 505.5 18.8 524.3 509.6

factor 2) up to around 8 workers, after which the scalability decreases and the parallel cor-
rection phase takes around 15% of the total computational time. Using the APALM scheme,
the total computational time is decreased compared to the ASPALM scheme, and parallel
corrections can be started as soon as the first interval has been initialized. The computa-
tional time of the APALM stagnates around 4 workers, at a computational time similar to
the serial initialisation time for the ASPALM method, showing that adaptive parallel cor-
rections can be performed without significantly more computational costs compared to a
serial arc-length method. When the number of intervals is increased, e.g., by decreasing
the arc-length parameter to Δ𝐿 = 2.5 (table 6.2b), it can be seen that the parallel stage of
the ASPALM scales up to a higher number of workers, in this case 64, up to the point that
it takes around 5% of the total computational time for 256 workers. The APALM again
provides computational times similar to a serial ALM without corrections. The improved
scalability is explained by the fact that the queue is in general longer; therefore, the time
that workers are idle waiting for the last job to be finished is smaller relative to the total
computational time.

6.5.2 Collapse of a Truncated Cone
The second benchmark example is based on [587] and involves the collapsing behaviour
of a truncated cone with a hyperelastic Mooney-Rivlin material model. This benchmark
is based on [23], but in the work of [587], the full collapsing behaviour was revealed us-
ing arc-length methods. The geometry, material, and load specifications can be found in
figure 6.8.

The truncated cone is modelled using a quarter geometry using symmetry conditions
to represent the axisymmetry as used in the original case of [23]. The geometry ismodelled
with 32 NURBS elements of degree 2 over the height. Further, an initial arc length of 0.5
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Figure 6.8: The problem definition for the benchmark of the collapsing truncated cone with inner radii 𝑅1 = 1[m]
and 𝑅2 = 2 [m] and height 𝐻 = 1 [m]. The thickness of the cone is 𝑡 = 0.1 [m]. The cone is modelled by using a
quarter of the geometry, using symmetry conditions on Γ1 and Γ3. The displacements at the bottom boundary (Γ4)
are fixed, and on the top boundary, a variable line load is applied and is variable with magnitude 𝑝 = 1 [N/mm]
and magnification factor 𝜆. The material of the cone is modelled using an incompressible Mooney-Rivlin model
with parameters 𝜇 = 𝑐1 +𝑐2 = 4.225 [N/mm2], 𝑐1/𝑐2 = 7.

is used, and the scaling factor is Ψ = 0. The top boundary Γ2 is free, and on the bottom
boundary Γ4, all displacements are fixed. The other boundaries have symmetric boundary
conditions. The governing material model is an incompressible Mooney-Rivlin material
model with a strain energy density function (with a slight abuse of notation)

Ψ(𝐂) = 𝑐1
2 (𝐼1 −3)+

𝑐2
2 (𝐼2 −3) , (6.18)

with 𝐼1 and 𝐼2 the first and second invariants of the deformation tensor 𝐂 = 𝐅⊤𝐅. More
information on the problem set-up and the material models can be found in [587]. The
reference results are obtained from a serial ALM computation with a sufficiently small
increment size.

The results of the collapsing truncated cone problem are presented in figure 6.9. As
seen in this picture, the serial initialisation provides a coarse approximation of the path
but leaves out details, e.g., the rotated “S”-shaped curve in the inset in figure 6.9. From the
results, it is clear that the APALM focuses its refinement on the curved parts of the path
and reveals the “S”-shaped curve among other features of the path.

Similar to the collapse of the roof, a scaling analysis of the parallel evaluations is per-
formed. The results in table 6.3a verify that, as for the benchmark examplewith the collaps-
ing roof, the scalability of the parallel correction phase scales optimally up to 8 workers,
where the parallel correction phase takes around 15 % of the total computational time
when using 64 workers. When using the APALM scheme, the collapsing cone also shows
that the computation times of the APALM are similar to the times needed for serial initial-
isation, in other words, a classical ALM without adaptive corrections. When the number
of intervals is increased, i.e., when the arc-length parameter is decreased to Δ𝐿 = 0.0625
(table 6.3b), the scalability of the parallel phase of the ASPALM and of the full APALM
reaches further, up to 64 workers.
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Figure 6.9: Results of the collapsing truncated cone. The figure on the left depicts the full solution path, and the
figure on the right depicts the inset indicated in the left figure. The reference and serial solutions are represented
by the solid line and the black markers, respectively. The solutions computed by the APALM are indicated per
level. The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−2 and an increment length of Δ𝐿 = 0.5.

Table 6.3: Computational time in [s] for the benchmark of the collapsing truncated cone for the ASPALM and
APALM for different numbers of worker processes. The times for the ASPALM are presented for the serial
initialisation and the parallel correction phases, and the sum of the two is given as the total computational time.
The numbers in the Serial column should theoretically be the same, but they provide a representation of the
variation in the time measurements. The results are presented for simulations with increment lengths Δ𝐿 = 0.5
(a) and Δ𝐿 = 0.0625 (b), and the italic row with 0 workers denotes the ASALM method.

(a) Δ𝐿 = 0.5

ASPALM APALM
# Serial + Parallel = Total Parallel

0 160.2 244.0 404.2 436.6
1 162.5 247.2 409.7 424.8
2 169.5 130.1 299.6 207.1
4 170.6 68.1 238.7 172.9
8 162.6 43.0 205.6 160.5
16 175.3 32.0 207.3 173.3
32 175.5 27.3 202.8 170.8
64 170.1 23.3 193.4 169.5

(b) Δ𝐿 = 0.0625

ASPALM APALM
# Serial + Parallel = Total Parallel

0 499.7 2,575.9 3,075.6 3,055.3
1 467.5 2,232.5 2,700.0 2,783.8
2 496.3 1,337.0 1,833.2 1,573.4
4 467.8 654.4 1,122.2 789.5
8 490.1 322.6 812.7 489.4
16 467.6 167.6 635.1 496.0
32 494.1 97.1 591.1 483.9
64 491.4 55.7 547.1 493.6
128 485.0 41.5 526.5 494.5
256 493.8 32.9 526.7 491.4
512 491.8 25.8 517.6 488.5
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Figure 6.10: The problem definition for the benchmark of the buckling of a strip with length 𝐿 = 1 [m], width
𝑊 = 0.01[m] and thickness 𝑡 = 0.01[m] subject to a horizontal load withmagnitude 𝑝 = 0.1[N]withmagnification
factor 𝜆. The strip has fixed displacements and rotations at Γ1 and fixed displacements in 𝑦-direction on Γ2
and Γ4. The material is modelled using a Saint-Venant Kirchhoff material model with Young’s modulus 𝐸 =
75 ⋅ 106 [N/mm2] and Poisson ratio 𝜈 = 0 [−].

6.5.3 Strip Buckling
The third example involves a benchmark problem consisting of a bifurcation instability.
The problem consists of a flat strip that is clamped on one edge and free on all the others,
with an in-plane compressive load applied on the free end opposite to the clamped edge;
see figure 6.10 for the problem set-up and [423] for the reference results. The ALM that
is used is a Crisfield method with Ψ = 0, with a pre-buckling arc-length of 5 ⋅ 10−5, a post-
buckling arc-length of 5, and a tolerance of the APALM of 𝜀𝑙 = 𝜀𝑢 = 10−3. The serial ALM
is equipped with an extension for the computation of singular points (Wriggers 1988); see
[583] for more details on this implementation. Using these methods, an initially flat strip
is compressed until the bifurcation point has been computed. As soon as the strip becomes
unstable, the bifurcation point is computed, and a branch switch is performed, marking
the transition between the pre-buckling and post-buckling branches.

The results for the buckled strip are presented in figure 6.11. In this figure, the non-
dimensional horizontal and vertical displacements of the end point are plottedwith respect
to the non-dimensional applied load. In the plots, the pre- and post-buckling branches are
plotted separately for clarity, but the branches should obviously be connected at the bi-
furcation point. As can be seen from the results, a rather coarse serial approximation of
the post-buckling branch gives a good starting point for a multi-level approximation of
the curve, providing additional detail in the sharp corner in 𝑊/𝐿 ∈ [0.7,0.8]. In addition,
it can be seen that the pre-buckling branch requires no more levels than the first, as the
behaviour there is just a linear axial compression, hence the solution path is straight.

As for the previous two benchmark examples, a scaling analysis of the parallel evalu-
ations is performed. The main difference between the previous two examples is that the
present example involves a bifurcation point. However, since the job queue includes the
jobs from all branches together, there is no idle time to wait for a branch to finish be-
fore starting a new branch; hence, it is expected that the parallel scaling for a bifurcation
problem should have the same scaling properties. Indeed, table 6.4a shows that optimal
scaling is achieved in the parallel correction phase of the ASPALM up to 8 nodes, after
which the idle time to wait for the last job to finish significantly impacts the scaling, as
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(a) Non-dimensional out-of-plane displacement of the
beam with respect to the non-dimesional buckling load.
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(b) Non-dimensional in-of-plane displacement (length di-
rection) of the beam with respect to the non-dimensional
buckling load.

Figure 6.11: Results of the buckling of a clamped strip. The left figure provides the out-of-plane displacement of
the free end with respect to the non-dimensional load 4𝑃𝐿2/𝜋2𝐸𝐼 , and the right figure represents the horizontal
displacement of the free end with respect to the same non-dimensional load. In both figures, buckling occurs
when 4𝑃𝐿2/𝜋2𝐸𝐼 = 1 and the axes are split on this point to make the pre- and post-buckling branches both visible.
The simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−3 and a step length of Δ𝐿 = 5 ⋅ 10−5 (pre-buckling)
and Δ𝐿 = 5 (post-buckling).
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Table 6.4: Computational time in [s] for benchmark of the buckled strip using the ASPALM and APALM with
different numbers of worker processes. The times for the ASPALM are presented for the serial initialisation and
the parallel correction phases, and the sum of the two is given as the total computational time. The numbers in
the Serial column should theoretically be the same, but they provide a representation of the variation in the time
measurements. The results are presented for simulations with increment lengths Δ𝐿 = 2.5 (a) and Δ𝐿 = 0.025 (b),
and the italic row with 0 workers denotes the ASALM method.

(a) Δ𝐿 = 2.5

ASPALM APALM
# Serial + Parallel = Total Parallel

0 50.7 171.8 222.0 244.0
1 58.7 198.1 257.0 244.0
2 58.5 102.6 161.0 112.0
4 59.0 51.1 110.0 77.0
8 59.0 27.9 87.0 67.0
16 59.3 24.9 84.0 68.0
32 60.3 23.0 83.0 68.0
64 58.6 24.4 83.0 66.0

(b) Δ𝐿 = 0.025

ASPALM APALM
# Serial + Parallel = Total Parallel

0 963.3 1,963.3 2,926.6 3,017.6
1 1,022.3 2,065.7 3,088.0 3,020.6
2 1,025.0 1,053.7 2,078.7 1,509.7
4 943.9 464.0 1,407.9 1,034.1
8 1,019.5 256.0 1,275.5 1,028.2
16 1,006.2 129.3 1,135.5 1,027.7
32 1,026.6 68.8 1,095.4 1,028.3
64 1,032.7 33.6 1,066.4 1,028.0
128 935.1 18.9 954.0 1,023.5
256 1,012.6 12.0 1,024.6 1,026.8

observed in the other benchmarks. In addition, it is found that the APALM reaches effi-
cient computation of the full adaptive load-displacement curve within the time of a serial
ALM computation, using 8 workers. When increasing the number of curve segments by
decreasing the arc-length parameter to Δ𝐿 = 0.025, it can again be seen that the parallel
scalability increases. Optimal scaling of the parallel correction of the ASPALM is achieved
up to 256 workers, with the correction phase taking only 1% of the total computational
time. The APALM provides an adaptively refined solution curve in the time of a serial
ALM computation, using only 4 to 8 workers.

6.5.4 Snapping Meta-Material
As a final example, the APALM is applied to a problem of larger scale. In particular, the
snapping behaviour of a snapping meta-material is modelled, inspired by [455]. The meta-
material consists of 𝑁𝑥 ×𝑁𝑌 = 3 × 2.5 building blocks (see figure 6.12a) with a snapping
and a bearing segment (see figure 6.12b), and the material is modelled with a compressible
Neo-Hookean material model. The full problem details are provided in figure 6.12. The
snapping behaviour of the meta-material is investigated by using arc-length methods on
the varying load 𝜆𝑃 , with a step size of Δ𝐿 = 5 ⋅ 10−2, until 1.5% strain. The simulation is
modelled using 2D elasticity equations using the plane-stress assumption, which are dis-
cretised using B-splines with mixed degrees 2 and 3 and maximal regularity. The mesh
is uniformly distributed, and the full system of equations has 16563 degrees of freedom.
The simulations are performed using shared-memory parallelisation of the assembly rou-
tines and distributed memory parallelisation of the ASPALM and APALM. For reference,
a displacement-controlled (DC) simulation is performed.

Figure 6.13 depicts the stress-strain curve for the snapping meta-material depicted



6.5 Numerical Experiments

6

A
da

pt
iv
e
Si
m
ul
at
io
n

195

Γ1
𝑊ℎ𝐵

Γ2

𝜆𝑃

ℎ𝑇

𝐻

(a) A snapping meta-material with 3×2.5 building blocks,
of which one is outlined. The total multi-patch consists of
132 patches.
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(b) The snapping building block, composed of 15 patches
outlines in black.

Figure 6.12: The problem definition for the snapping meta material using a grid of 3× 2.5 elements (a) with the
element geometry as defined in (b). The element dimensions are defined using the thickness of the load-bearing
part 𝑡𝑏 = 1.5 [mm] and the thickness of the snapping part 𝑡𝑠 = 1.0 [mm], the thickness of the gap 𝑡𝑔 = 1.0 [mm]
and the thickness of the connectors 𝑡𝑤 = 1.5 [mm], such that the height ℎ = 𝑡𝑏 +𝑡𝑠 +2𝑡𝑔 . The length of the element
is ℓ = 10 [mm], and the amplitude of the cosine wave defining the element shape is given by 𝑎 = 0.3𝑙. Since the
meta-material has 3 × 2.5 elements, the total width is 𝑊 = 3ℓ. The height of the total metamaterial is given by
𝐻 = 3ℎ+2𝑡𝑔 +𝑡𝑠 +ℎ𝐵 +ℎ𝑇 , where ℎ𝐵 = ℎ𝑇 = 5𝑡𝑔 are the buffer zones on the top and the bottom. The thickness of the
specimen (in out-of-plane direction) is 𝑏 = 3 [mm]. The material is defined using a compressible Neo-Hookean
material model with Young’s modulus 𝐸 = 78 [N/mm2] and Poisson ratio 𝜈 = 0.4 [−]. The bottom boundary Γ1 is
fixed using 𝑢𝑥 = 𝑢𝑦 = 0, and the top boundary Γ2 is fixed in the horizontal direction (𝑢𝑥 = 0) and coupled in the
vertical direction 𝑢𝑦 . The load applied on the top boundary is a variable defined by 𝜆𝑃 .
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Figure 6.13: Stress-strain diagram for the snapping meta-material from figure 6.12. The vertical axis depicts
the equivalent stress 𝜎 = 𝜆𝑃/(𝑏𝑊), and the horizontal axis represents the strain 𝜀 = 𝑢𝑦 /𝐻 , where 𝑢𝑦 is the dis-
placement of the top boundary Γ2. The complete curve with the displacement-controlled (DC) results, the points
obtained in serial initialisation, and the line obtained by parallel corrections are presented on the left. The figures
on the right present the points from different hierarchical levels at the inset depicted in the left diagram. The
simulation is performed with a tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−3 and an increment length of Δ𝐿 = 0.05.

in figure 6.12. Firstly, it can be seen that the curve computed using a serial ALM coin-
cides with the curves obtained from DC simulations, but the ALM shows additional snap-
through behaviour on the points where the DC curve has kinks. These kinks coincide with
the instability in the metamaterial. Furthermore, the figure shows that the initial course
approximation at level 0 is refined up to level 4 in the adaptive arc-length method scheme
proposed in this chapter, provided the tolerance of 𝜀𝑙 = 𝜀𝑢 = 10−3. The refinements of the
adaptive scheme are mainly present in the highly curved segments of the load displace-
ment curve. The reader is referred to Video 1 from the supplementary material of [584]
for the deformations corresponding to the stress-strain curve in figure 6.13.

As for the other numerical experiments, the parallelisation properties of the ASPALM
and APALM schemes are investigated. For the snapping meta-material simulation, the
computational times are presented in table 6.5. The results in the table show high compu-
tational times for the ASALM (i.e., the ASPALM and APALM with 0 workers) compared
to the DC simulation. However, the scalability observed in the previous benchmark prob-
lems can also be observed in the simulation of the snapping metamaterial. In fact, the
APALM with 8 workers requires a factor of 4 less computational time, again equivalent
to the computational time required for only the serial initialisation phase of the ASPALM.
Lastly, the case of the snapping meta-material shows that, compared to a naturally serial
displacement-controlled method, the APALM achieves a speed-up of a factor of 2.5 while
providing snapping behaviour with greater accuracy.
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Table 6.5: Computational time in [s] for the example of the snapping meta-material for the ASPALM and APALM
for different numbers of worker processes. The computational time for a displacement-controlled (DC) simula-
tion with step Δ𝑢𝑦 = 0.0005 [𝑚𝑚] is provided as a reference. The times for the ASPALM are presented for the
serial initialisation and the parallel correction phases, and the sum of the two is given as the total computational
time. The numbers in the Serial column should theoretically be the same, but they provide a representation of
the variation in the time measurements. The italic row with 0 workers denotes the ASALM method.

ASPALM APALM DC
# Serial + Parallel = Total Parallel Serial

0 1,571.6 5,204.8 6,776.4 7,022.9 4,400.8
1 1,686.9 4,593.2 6,280.1 5,319.1
2 1,237.5 3,005.9 4,243.4 3,827.9
4 1,742.7 1,548.2 3,290.9 2,137.3
8 1,445.4 717.4 2,162.8 1,711.8
16 1,931.1 352.2 2,283.3 1,632.9
32 1,746.9 219.7 1,966.6 1,755.6

6.6 Conclusions and Outlook
In this chapter, an Adaptive Parallel Arc Length Method (APALM) is presented. Contrary
to existing parallel implementations of the Arc-LengthMethod (ALM), the present method
provides within-branch parallelisation, hence providing scalable parallelisation indepen-
dent of the physics of the problem, i.e., the number of branches. The method employs
a multi-level approach, where parallel corrections are performed on solution intervals
that have been initialised before. Given the sub-intervals provided by the serial compu-
tation, computations with finer arc lengths can be performed and evaluated using suit-
able error measures, marking intervals for further refinement when needed. Employing
the multi-level approach, their implementations are discussed: the Adaptive Serial ALM
(ASALM), the Adaptive Serial-Parallel ALM (ASPALM), and the APALM. The ASALM is
a serial implementation, employing only the inherent adaptivity of the concept provided
in this chapter. The ASPALM is a two-stage approach, separating a serial initalisation of
the full equilibrium path from the parallel corrections. The APALM is a fully parallel im-
plementation, where parallel corrections are performed as soon as the first path segments
have been initialized. Conceptually, the APALM has a higher degree of parallelisation
since the workers are not idle until the full solution curve is obtained. Given a basic step
function and distance computation, the present chapter provides all algorithms necessary
for implementing the APALM with manager-worker parallelisation.

The implementation of the APALM is evaluated using three benchmark problems and
an application example. The first problem involves the collapse of a composite shallow
cylindrical shell. The second problem involves the collapse of a truncated conical rubber
shell, and the third example involves the bifurcation problem of a strip subject to an in-
plane load. Moreover, the method is applied to the modelling of a snapping metamaterial
to investigate its performance on a larger-scale problem. In all examples, it can be ob-
served that the APALM provides an accurate description of the reference solution, given
a (sufficiently) coarse serial initialisation of the curve. Through refinement, the APALM
provides refinements (hence details in the solution), typically on sharp corners in the load-
displacement diagrams. In addition, the bifurcation example also shows that the APALM
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is able to work within an exploration scheme for bifurcations. In all benchmark problems,
the ASPALM and APALM have been used to evaluate the parallelisation of the schemes.
The natural separation of the serial and parallel stages of the ASPALM reveals the scala-
bility of the parallel correction with respect to the number of workers, showing that the
parallel correction can take only a fraction of the total computational time for a larger
number of workers. Furthermore, the comparison between the ASPALM and the APALM
shows that the full parallelisation of the APALM provides a more efficient scheme than
the two-stage approach of the ASPALM, as expected. The benchmarks and example also
show that the APALM provides a full solution curve – including adaptive refinements –
in the same computational time needed to compute only the initialisation of the ASPALM.
This reveals the potential of the APALM: it can provide detailed solution paths without
significantly increasing the computational time. The coarser the initial step size, the more
arc-length intervals are computed during the parallel corrections of the method until a
sufficient; hence, the higher the computational merit of the method to reach a desired
level of detail. Moreover, the scaling analyses also show that the benefits of the APALM
are already achieved with a small number of workers, e.g., 8 workers, making the APALM
interesting on a desktop scale. For larger clusters, the APALM can be employed using
dynamic load balancing within OpenMP.

As the APALM enables parallelisation in the arc-length domain, future applications
of this method include quasi-static computations for solid and fluid dynamics, among
other problems, especially those with a large number of load steps. Therefore, future
works with this method include automatic exploration of solution spaces, e.g., following
the work of [561, 630], or applications with large numbers of degrees of freedom, for in-
stance with phase-field models for fracture mechanics [58]. Other future work includes
combining the APALM with a spatial refinement scheme to enable space-quasi-time re-
finements. MPI scalability and distribution of cores per worker are topics to investigate
for different applications. Another topic for further investigation is the convergence of
the underlying arc-length method for large steps. Since a fewer number of initial inter-
vals reduces the serial initialisation time of the APALM, the parallel performance can be
increased significantly when the initial step size is maximized. For example, the Mixed In-
tegration Point (MIP) method increases the convergence of the ALM, allowing for larger
step sizes. The performance of the MIP is demonstrated for isogeometric Kirchhoff–Love
shells in [340, 343, 371, 372]. Lastly, since the presented APALM is developed for path-
independent problems, an extension to path-dependent problems is a natural direction for
future research.
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6.A Result Reproduction
For the sake of reproducibility of the results in this chapter, this appendix provides brief
instructions on the use of the software developed along with this thesis. The full software
is available as part of the Geometry + Simulation Modules. For more detail on the contri-
butions to this software library, and its installation, the reader is referred to chapter 8.

Table 6.6 provides per figure in this chapter the name of the file to run along with
the arguments to be passed to obtain these figures. problem. For the APALM to work in
parallel, G+Smo needs to be compiled with MPI.

Table 6.6: File name and run arguments required for the reproducibility of the figures in this chapter. Arguments
with a single dash (-) require an argument. See chapter 8 for more detail about the software and installation
instructions.

Figure Run File
Arg. Description Values

Figure 6.7 benchmark_Roof_APALM
Table 6.2 -N Number of arc-length steps 50: Table 6.2a

600: Table 6.2b
-L Arc-length 30: Table 6.2a,

2.5: Table 6.2b
-l Maximum number of APALM levels 6: Table 6.2a,

10: Table 6.2b
-T APALM tolerance 1e-2: Table 6.2a,

1e-4: Table 6.2b

Figure 6.9 benchmark_Frustrum_APALM
Table 6.3 -N Number of arc-length steps 80: Table 6.3a

640: Table 6.3b
-L Arc-length 0.5: Table 6.3a,

0.0625: Table 6.3b
-l Maximum number of APALM levels 6: Table 6.3a,

10: Table 6.3b
-T APALM tolerance 1e-2: Table 6.3a,

1e-4: Table 6.3b

Figure 6.11 benchmark_Beam_APALM
Table 6.4 -N Number of arc-length steps 7: Table 6.4a

550: Table 6.4b
-L Pre-buckling arc-length 5e-5: Table 6.4a,

5e-7: Table 6.4b
-l Post-buckling arc-length 2.5: Table 6.4a,

2.5e-2: Table 6.4b
-l Maximum number of APALM levels 6: Table 6.4a,

10: Table 6.4b
-T APALM tolerance 1e-3: Table 6.4a,

1e-6: Table 6.4b

Figure 6.13 snapping_example_shell_APALM
Table 6.5 snapping_example_shell_DC

-L Load-step size 5e-4: DC,
5e-2: ALM
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7
A Comparison of Smooth

Multi-Patch Basis Constructions for
Isogeometric Analysis

Using spline as a basis for analysis, Isogeometric Analysis (IGA) provides high efficiency
in terms of degrees of freedom compared to Finite Element Methods (FEMs). Furthermore,
the high continuity of spline bases allows for variational formulations with higher-order
derivatives, such as the isogeometric Kirchhoff–Love shell, which requires a 𝐶1-continuous
basis. The construction of a 𝐶1-smooth spline basis on a simply connected domain is straight-
forward by using the tensor-product basis construction, as highlighted also in section 2.2.1.
However, for complex domains, e.g., domains with holes, 𝐶1-smooth isogeometric analysis
is more complicated and can be done using several approaches. In this chapter, a review of
methods to perform IGA on complex domains is presented, and a set of four unstructured
spline constructions for IGA – in particular, the D-Patch, Almost-𝐶1, Analysis-Suitable 𝐺1,
and the Approximate 𝐶1 constructions – are compared qualitatively and quantitatively. The
goal of this comparison is to provide insights into the selection of methods for practical prob-
lems as well as directions for future research. In the qualitative comparison, the properties
of each method are evaluated and compared. In the quantitative comparison, a selection of
numerical examples is used to highlight the different advantages and disadvantages of each
method. In brief, this chapter concludes that among the considered methods, there is not one
best method and some recommendations for future developments in unstructured spline meth-
ods for isogeometric analysis are given. If necessary, the reader is referred to section 2.2.1 for
preliminary information on splines.

This chapter is published as:
[589]H.M. Verhelst, P. Weinmüller, A. Mantzaflaris, T. Takacs & D. Toshniwal, “A Comparison of Smooth Basis
Constructions for Isogeometric Analysis”, Computer Methods in Applied Mechanics and Engineering 419, 116659
(2024)

https://doi.org/10.1016/j.cma.2023.116659
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7.1 Introduction
Present-day engineering disciplines depend on Computer-aided design (CAD) and numer-
ical simulation models for physics for design and analysis. Typically, geometries designed
in CAD are converted tomeshes for analysis with numerical techniques like Finite Element
Methods (FEMs). Since the geometry description in CAD is based on splines, whereas
meshes for simulation are based on linear geometry approximations, geometric data is
lost during this conversion. Isogeometric analysis [268] is the bridge between CAD and
Computer-Aided Engineering (CAE), since it employs splines as a basis for geometric de-
sign and numerical analysis. In practice, an isogeometric analysis and optimisation work-
flow can be seen as depicted in figure 7.1. Starting with a geometry from CAD, as well as
material parameters, boundary conditions, et cetera from CAE, isogeometric simulations,
and eventually geometry or topology optimisation can be performed. The step connecting
the inputs from CAD and CAE is referred to as IGA Setup in figure 7.1. This step takes care
of the preparation for the simulation step, including the pre-processing of the geometry,
if needed, and the construction of the isogeometric discretisation space.

Due to the arbitrary smoothness of spline basis functions, isogeometric analysis has
several advantages over conventional finite element methods. For example: (i) the in-
troduction of 𝑘-refinements, which are proven to provide high accuracy per degree of
freedom [72, 488]; (ii) high accuracy in eigenvalue problems, e.g., for structural vibrations
[122, 269, 270]; or (iii) geometric exactness in parametric design and interface problems,
e.g., applied to the parametric design of prosthetic heart valves [646]. Furthermore, the
𝐶1-smooth discretisation spaces allow to solve equations such as the biharmonic equa-
tion, the Cahn–Hilliard equations, or the Kirchhoff–Love shell equations without intro-
ducing auxiliary variables. However, due to the tensor-product structure of the spline
basis, higher-order smoothness can be enforced easily only on domains that allow simple
patch partitions (e.g., an L-shape or an annulus), whereas on geometrically and topolog-
ically more complicated domains, alternative approaches are required to solve equations
that require basis functions of higher-order continuity.

Formore complicated domains, the IGA setup block in figure 7.1 involves a pre-processing
step of either the geometry, the system of equations, or the solution space to solve the orig-
inal system of equations. In figure 7.2, this pre-processing step is subdivided into three op-
tions: trimmed domain approaches, unstructured splines, and variational coupling meth-
ods. Given an initial geometry (cf. figure 7.3a), the trimmed domain approaches alter the
tensor-product domain by defining parts of the domain that are physical or non-physical
(cf. figure 7.3b). In the case of unstructured splines or variational coupling methods, the
geometry is decomposed into multiple different patches (cf. figure 7.3c), on which con-
tinuity conditions are enforced by constructing a smooth basis (unstructured splines) or
by adding extra terms to the system of equations (variational coupling approaches). In
section 7.2 of this chapter, a review of trimmed domain approaches, unstructured splines,
and variational coupling methods is provided. Examples include immersed methods, de-
generate patches, and Nitsche’s method, respectively. In the case of simple geometries
(and given the right inputs), the methods are identical.
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IGA setup

CAD CAE

Simulation

Optimisation

Figure 7.1: General workflow for solving a physics problem and optimising a geometry or topology coming from
CAD and CAE processes. Starting from CAD and CAE, the IGA Setup is performed. In this block, a computational
basis is extracted from the geometry to be used for simulation. Then, the Simulation block involves the assembly
of the operators of the physics problem on the computational basis coming from the IGA Setup. In cases of shape
or topology optimisation problems, the simulation results are evaluated, and the shape or topology is modified.
From this changed shape and topology, a new computational basis can be obtained, and the process can be
repeated. The IGA Setup block is marked to be elaborated further on in figure 7.2.

As shown in figure 7.2, each class of methods has its own characteristics, and pre-
vious work has provided several comparisons of methods among each other, which are
elaborated more in section 7.2. In the context of the workflow sketched in figure 7.1, un-
structured splines provide a valuable alternative to the other methods since they are con-
structed for a fixed topology, and hence the computational costs of their construction are
not related to changing shapes or moving domains. However, recent developments have
mainly focused on different unstructured spline methods separately, rather than provid-
ing a valuable comparison. Therefore, qualitative and quantitative comparisons of a se-
lection of unstructured spline constructions are provided. Finite, piece-wise polynomial
spline constructions are considered, hence not including rational constructions or infinite
representations, such as subdivision surfaces. More precisely, examples of (globally) 𝐺1-
smooth multi-patch constructions (the Analysis-Suitable 𝐺1 construction of [181] and the
Approximate 𝐶1 construction of [618]), the D-Patch method of [569] and the Almost-𝐶1
construction of [534] are compared, motivated in section 7.2.3. The selected methods are
qualitatively compared based on their properties and quantitatively based on several dif-
ferent examples with biharmonic and Kirchhoff–Love shell equations. The aim of this
chapter is to provide a fair comparison¹ of these methods, providing a good overview of
the strengths and weaknesses of each method in different cases.

The chapter is outlined as follows: In section 7.2, a detailed overview of the meth-
ods appearing in figure 7.2 is provided. In section 7.3, a qualitative analysis of the four
constructions that are discussed in this chapter is provided, while section 7.4 provides a
quantitative analysis of all methods. There, five benchmark problems solving either a bi-
harmonic or a Kirchhoff–Love equation are provided. These benchmark problems serve

¹The authors of the original chapter believe that a comparison like the one presented in this chapter is never fully
unbiased, since the authors have contributed to different methods in previous publications and do not represent
the entire research community.
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Figure 7.2: Inside the IGA Setup block from figure 7.1, three methods are distinguished. Firstly, trimmed domain
approaches use trimming curves or surfaces to identify parts of a tensor-product domain as the actual domain.
However, since elements can be trimmed poorly, specialised quadrature rules and solver preconditioners are
typically needed. Alternatives to trimming are weak coupling or unstructured spline methods. For both classes
of methods, a geometry with a given topology needs to be decomposed into multiple sub-domains (i.e., patches)
via quadrilateral meshing. Given a quadrilateral mesh, weak methods assemble extra penalty terms into the
equation to be solved or add extra equations to be solved to satisfy continuity constraints. Lastly, unstructured
spline constructions can be used to couple multiple domains by constructing a continuous basis. These methods,
however, can only be used onmanifold geometries and conformingmeshes. When these requirements are satisfied,
unstructured spline pre-processing is required before the unstructured spline construction can take place. The pre-
processing is highlighted and will be elaborated on more in figure 7.7 in section 7.3.
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different purposes, and they are compared to determine which method, in which setting,
performs best. In section 7.5, this chapter is concluded based on the findings from the
previous sections, and directions for future research are provided.

7.2 Multi-Patch IsogeometricAnalysis: LiteratureReview
As discussed in the introduction of this chapter, in particular in figure 7.2, three classes
of methods for the modelling of complicated domains can be characterised: trimmed do-
main approaches, variational coupling methods, and unstructured splines. The goal of all
methods is to achieve a certain level of continuity across the whole analysis domain such
that multi-patch isogeometric analysis can be performed, for example, for the Kirchhoff–
Love shell model [319], the biharmonic equation, or the Cahn–Hilliard equation [207]. As
shown in figure 7.3, trimmed domain approaches use the fact that parts of tensor-product
geometries are trimmed away, using trimming curves to separate regions of interest and
regions that should be omitted (see figure 7.3b). Variational coupling approaches and un-
structured splines are defined on multi-patch domains, typically following from a segmen-
tation of the original domain; see figure 7.3c. In the case of variational coupling methods,
the system of equations is enriched with terms that will enforce continuity (typically in a
weak sense) between the patches. In the case of unstructured spline constructions, a basis
is constructed on the multi-patch object, where certain smoothness is enforced strongly.
When starting from a trimmed geometry, the step of creating a multi-patch domain de-
composition (i.e., untrimming) from an arbitrary geometry with an arbitrary topology is a
very important step in the application of weak coupling methods and unstructured spline
constructions, as can be seen in the flowchart in figure 7.2. In this chapter, however, the
topic of untrimming will not be discussed as it is outside the scope of this study. Hence,
the reader is referred to [243, 381] for an overview of these methods.

In this section, an overview of the trimmed domain approaches (section 7.2.1), varia-
tional couplingmethods (section 7.2.2), and unstructured splines (section 7.2.3) is provided.
A fourth method, which will not be discussed in this section, is to introduce auxiliary vari-
ables for derivatives of the solution so that 𝐶1 continuity requirements are reduced to 𝐶0
and standard interface coupling can be used. These so-called mixed formulations are com-
mon in conventional FEM, although recent advances have also been made for Kirchhoff–
Love plates and shells and the biharmonic eigenvalue problem [326, 453, 454].

7.2.1 Trimming Approaches
Trimming is a technique where so-called trimming curves or surfaces separate parts of
tensor-product spline domains to define a geometry. Trimming is a common technique
to represent complex geometries in CAD, and typically, geometries consist of multiple
trimmed patches with boundary and interface curves trimming the actual patches. The
reader is referred to the work [379] for an overview of trimming methods in isogeometric
analysis. Generalising the idea of trimming to techniques where curves or surfaces are
used to define the domain of interest as trimmed domain approaches, several approaches
have been proposed to perform simulations on complex geometries, including the finite
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Ω

(a) Initial geometry

Ωext

Ωint

(b) Trimming

Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Ω7

(c) Domain segmentation

Figure 7.3: Given an initial geometryΩ (a), trimming (b) uses the curves of the boundary of the original geometry
to define the interior domain Ωint and the exterior domain Ωext. An alternative approach for modelling the
domain is to use domain segmentation (c). Here, the domain is decomposed into several patches Ω𝑖 which
together define the full domain Ω.

cell method [173, 431, 492], Cut-FEM [81] or immersed methods [261, 297]. The advantage
of these methods is that the trimmed CAD geometries could be directly used for analysis.
However, when only small parts of the physical domain are cut, leading to small cut ele-
ments, numerical difficulties can occur in the conditioning of the system, leading to solver
instabilities or accuracy problems [145]. Therefore, the analysis of complex trimmed ge-
ometries via methods like the FCM typically requires special quadrature schemes to take
into account small cut cells [156] or preconditioners to stabilise the numerical analysis
[144]. In the context of Kirchhoff–Love shell modelling, isogeometric analysis on trimmed
geometries has been performed in several studies [116, 219, 223], including some with a
focus on multi-patch coupling [115, 116, 118, 224, 335].

7.2.2 Variational Coupling Methods
In this chapter, variational coupling methods are defined as methods that modify the
system of equations to enforce certain continuity across patch interfaces. Examples of
these methods are penalty methods, Nitsche’s methods, mortar methods, or Lagrangian
penalised methods. In the context of Kirchhoff–Love shell analysis, these weak coupling
methods have received a lot of attention in previous studies, and an overview is provided
by [433]. Firstly, an in-plane coupling was proposed in [316] together with a method
for coupling non-manifold patches using the so-called bending strip method [318]. Later,
weak coupling approaches were developed for multi-patch domains. Here, coupling terms
can be added inside the existing variational formulation (referred to as Nitsche’s or penalty
methods) or imposed by Lagrange multipliers (referred to as mortar methods).

Several works on Nitsche techniques (cf. [412]) for isogeometric analysis have been
published, starting from the imposition of boundary conditions [481], towardsmulti-patch
coupling and the coupling of patches [482], and later using a non-symmetric parameter-
free Nitsche’s method [491]. Nitsche’s methods have been applied to Kirchhoff plates
[262], Kirchhoff–Love shells [47, 222, 223], hyperelastic 2D elasticity [170] and the bihar-
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monic equation [618, 619] and for modelling local subdomains [61] for elasticity simu-
lations. The advantages of Nitsche’s methods are that the formulation is variationally
consistent and requires only mild stabilisation, which can be performed automatically by
estimating the stability parameter. However, the involved integral terms are complicated
expressions that impose high implementation and assembly efforts. Therefore, coupling
approaches using only penalisation have been developed [69, 172, 238, 342, 432]. Although
several improvements have been made in these works, the main disadvantage of penalty
methods is that a suitable penalty parameter has to be chosen. Using the super penalty
approach [118, 119], the computation of the penalty parameter can be automated. How-
ever, this method has not yet been tested for non-linear shell problems or on ‘dirty’ ge-
ometries. Both Nitsche’s and penalty methods can be used to couple geometries that are
non-manifold, i.e., geometries that have out-of-plane connections like stiffened structures,
by penalising changes in the angle of patches on an interface. Furthermore, the methods
can handle interfaces with non-matching parameterisations.

Instead of adding coupling terms in the variational form, as is done in Nitsche’s and
penalty methods, mortar methods [48] add extra degrees of freedom by introducing La-
grange multipliers, which are required to resolve additional coupling conditions. The use
of mortar methods to couple non-conforming isogeometric sub-domains was first done by
[240]. In [165], the FEA-based approach of [48] was extended for NURBS-based IGA, but
the aim was to develop a method for 𝐶0-coupling for Reissner-Mindlin shells, hence insuf-
ficient for isogeometric Kirchhoff–Love shells. A mortar method aiming to establish 𝐶1
coupling is given in [62], and amethod that provides𝐶𝑛 continuity was given by [154, 155].
Furthermore, 𝐺1 mortar coupling, referred to as extended mortar coupling, was presented
in [496] for Kirchhoff–Love shells, based on a coupling in the least squares sense. On the
other hand, in [46] a mortar method to enforce 𝐶1 coupling for the biharmonic equation
was developed, where the Lagrange multiplier spaces are constructed similarly to [73] for
𝐶0-coupling. An approach to reduce computational costs involved in finding Lagrange
multipliers is called dual mortaring [623], where Lagrange multipliers are eliminated us-
ing a compact dual basis. This approach has been developed for Bezier elements [664]
and it has been applied for Kirchhoff–Love shells [386], and a bi-orthogonal spline space
has been presented for weak dual mortaring for patch coupling [636]. In [255], a hybrid
method was provided and applied to Kirchhoff plates, which combines mortar methods
and penalty methods. Lastly, a comparison of Nitsche, penalty, and mortar methods is
given by [14]. For a more complete overview of mortar methods for isogeometric analy-
sis, the reader is referred to [241]. In general, mortar methods have the advantage over
Nitsche’s methods that there are no parameters involved and that the implementation
efforts are lower. However, the disadvantage is that a suitable spline space needs to be
found for the Lagrange multipliers [46, 73, 164]. Like Nitsche’s and penalty methods, mor-
tar methods can handle non-matching parameterisations and non-manifold interfaces, the
latter by similar penalisation of interfacing patches.

7.2.3 Unstructured Splines
Compared to weak coupling methods, unstructured spline constructions do not alter the
system of equations to be solved. Instead, the computational basis is modified so that
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it satisfies continuity conditions across patch interfaces. Unstructured splines are typi-
cally constructed for in-plane (i.e., manifold) interfaces and not for out-of-plane (i.e., non-
manifold) interfaces, since the notion of smoothness is uniquely defined only in the former
setting. However, unstructured spline constructions for non-manifold interfaces are pos-
sible, e.g., as in [101, 398, 653] in the context of subdivision. Furthermore, unstructured
spline constructions are typically constructed on conforming interfaces, i.e., interfaces
with matching meshes, but, as long as the patch parameterisations are matching, this can
be overcome by taking the knot vector union of the interface patches. However, the ad-
vantage of unstructured spline constructions is that as soon as the basis is constructed for
a certain untrimmed geometry, there are no additional costs involved other than evalua-
tion costs for changing shapes, which makes unstructured spline bases suitable for shape
optimisation problems. In the case of topology changes or large changes in shape, how-
ever, the mesh topology of the unstructured spline space has to be changed as well. Unlike
weak methods, which are typically based on the introduction of penalties (e.g., in terms
of energy), unstructured spline constructions are typically provided as generic geometric
methods that are applicable to any equation that requires 𝐶1 coupling across multi-patch
interfaces. With the advance of isogeometric analysis, interest in parametrically𝐶1 and ge-
ometrically 𝐺1 splines has grown. An overview of smooth multi-patch discretisations for
isogeometric analysis can be found in [271], and a small overview is provided below. Meth-
ods enforcing parametric continuity, i.e., the type of continuity between mesh elements
within a regular tensor-product spline patch, and methods providing general geometric
continuity, cf. [213], are distinguished. In the following, three types of constructions are
classified, depending on their continuity on patch interfaces, around vertices, and in the
patch interior:

• Patch coupling with geometric continuity on patch interfaces and parametric conti-
nuity inside patches.

• Patch coupling with parametric continuity everywhere.

• Patch coupling with parametric continuity almost everywhere.

Although other constructions outside of these categories exist, e.g., [373, 654], our
review is restricted to the aforementioned categories since the methods considered in sec-
tions 7.3 and 7.4 fall into these categories.

Geometric continuity onpatch interfaces andparametric continuity inside patches
This first category of unstructured spline constructions assumes that a fixed 𝐶0-matching
multi-patch parametrisation is given. On this multi-patch domain, a 𝐶1-smooth isogeo-
metric space is constructed. As shown in [213], for any isogeometric function, the 𝐶1
condition over each interface is equivalent to the 𝐺1 geometric continuity condition of
the graph surface corresponding to the function. If the domain is planar and the patches
are bilinear, then the 𝐶1 constraints can be resolved, and a 𝐶1 spline space was constructed
by [308] and applied to the isogeometric analysis of the biharmonic equation in [302]. It
could be shown in [306] and [214] that 𝐶1 splines over bilinear quadrilaterals and mixed
(bi)linear quadrilateral/triangle meshes possess optimal approximation properties. Fur-
thermore, the work [307] studied the arbitrary 𝐶𝑛-smooth spline space for bi-linear multi-
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patch parameterisations, based on their previously published findings.

Considering general 𝐶0-matching multi-patch domains, the work of [109] introduces
the class of analysis-suitable 𝐺1 (AS-𝐺1) multi-patch parameterisations which includes
bi-linear patches. This AS-𝐺1 condition is in general required to obtain optimal approxi-
mation properties. The condition implies that the glueing data for 𝐺1 continuity is linear,
which is explained in more detail in section 7.3.1. While it could be shown in [304] that
all planar multi-patch domains possess AS-𝐺1 reparametrisations, creating AS-𝐺1 surface
domains is more difficult. Several strategies to achieve this were introduced in [181], thus
making 𝐶1-smooth multi-patch parameterisations applicable to biharmonic equations and
isogeometric Kirchhoff–Love shell models [182]. In the work of [463], the construction of
[109] is used to develop a scaled-boundary model for smooth Kirchhoff–Love shells, simi-
lar to the approach of [15] for Kirchhoff plates.

Alternatively, by constructing an AS-𝐺1 parametrisation, one can relax the smooth-
ness conditions. This was done in [618], where the construction of an approximate 𝐶1
(Approx. 𝐶1) space is presented. The basis construction is explicit and possesses the same
degree-of-freedom structure as an AS-𝐺1 space, but the 𝐶1 condition is not satisfied ex-
actly but only approximately. It defaults to the AS-𝐺1 construction when the AS-𝐺1 re-
quirements are met. In [619], a comparison of the presented space with Nitsche’s method
was performed, yielding optimal convergence results without the need for coupling terms.
More details on the Approx. 𝐶1 method are provided in section 7.3.2.

Parametric continuity everywhere
The starting point for this class of constructions is different from the previous. Here,
smooth splines are created in a parametric sense between neighbouring mesh elements.
Such parametric 𝐶1 conditions are easy to resolve, but they lead to singularities at vertices
of valencies other than four, so-called extraordinary vertices. This is due to the conflict-
ing coupling conditions on partial derivatives around the EVs, which lead to all partial
derivatives vanishing there. Inspired by the Degenerate Patch (D-Patch) approach from
[464], the works of [408, 569] provide 𝐶1 smooth spline spaces for multi-patch geome-
tries with parametric smoothness everywhere. On extraordinary vertices (EVs), which is
a junction between 3 or 5 or more patches (i.e., valence 𝜈 > 2,𝜈 ≠ 4), the original D-Patch
method shows a singularity of the basis in EVs combined with a reduction of degrees of
freedom at this point. An improvement of the D-Patch method was presented in [408]
by splitting elements around the EVs such that every element is associated with four de-
grees of freedom. However, this construction does not have non-negativity and is based
on PHT splines, which have limited smoothness. A new design and analysis framework
for multi-patch geometries was presented in [569], based on D-Patches with T-splines for
refinement and non-negative splines yielding optimal convergence properties. This was
also demonstrated in [89] for isogeometric Kirchhoff–Love shells. In the work [615], it is
motivated that this construction can also be used if only one element around the EV is
isolated. More details on the D-Patch method are provided in section 7.3.3.
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Alternatively, subdivision surface-based constructions lead to unstructured splines
that are parametrically continuous everywhere, cf. [30, 31, 426, 468, 656]. However, such
approaches require an infinite number of polynomial pieces around each EV. Thus, they
are discarded from the comparison. Moreover, in general, their approximation properties
are severely reduced near EVs [533].

Parametric continuity almost everywhere
As mentioned previously, imposing parametric continuity everywhere leads to singulari-
ties at all EVs. Thus, instead of constructing a space with full parametric continuity, spaces
with parametric continuity almost everywhere except around the EVs can also be consid-
ered. This way, one ends up with regular, smooth rings around EVs, which then need to be
filled in some way. Such so-called hole-filling techniques are commonplace in geometric
modelling and can also be used to construct smooth spaces for isogeometric analysis, cf.
[309–313, 407]. This chapter focuses here on the simplest possible way of resolving this
issue, which is to enforce only 𝐶0-smoothness near the EVs and 𝐺1 at the EV, namely the
Almost-𝐶1 construction proposed in [534]. Similar constructions, which enforce no addi-
tional smoothness near EVs, were proposed for mixed quadrilateral and triangle meshes in
[567] and for arbitrary degree multi-patch B-splines with enhanced smoothness (MPBES)
in [74].

The Almost-𝐶1 construction considered here yields piece-wise biquadratic splines that
are 𝐶1 in regular regions and which have reduced smoothness around extraordinary ver-
tices, independent of the valence or the location (i.e., interior or boundary EVs). In contrast
to that, most commonly used hole-filling approaches yield exactly 𝐶1-smooth spaces but
introduce locally polynomials of higher degree or require a higher degree to start with,
such as the construction presented in [378], which converts Catmull–Clark subdivision
surfaces to 𝐺1-smooth piece-wise biquintic elements. While exact smoothness is relevant
for geometric modelling, it is not necessary from an analysis point of view.

7.3 Qualitative Comparison
In the qualitative comparison of this chapter, the focus is on the properties of different un-
structured spline constructions and their implication on the application of these construc-
tions in a workflow, as in figure 7.1. More precisely, the continuity of each construction
and their nestedness properties are discussed, and the aim is to provide a set of require-
ments for the unstructured spline pre-processing block in figure 7.2. Since the qualitative
comparison of the considered methods in this chapter mostly covers the properties of the
methods and their implications, mathematical details about the construction or conver-
gence properties are not provided. For more details, the reader is referred to [181] for the
Analysis-Suitable 𝐺1 (AS-𝐺1) method, which extends the 2D construction from [305], to
[618] for the Approximate 𝐶1 (Approx. 𝐶1) method, to [569] for the Degenerate Patches
(D-Patch), and to [534] for the Almost-𝐶1 method. However, for the qualitative compari-
son, some key terms are introduced as preliminaries.
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(a) A simple mesh with boundary
edges in black and interior edges in
gray. The boundary extraordinary ver-
tices (bEVs), i.e., the vertices on a
boundary with valence 𝜈 ≥ 3, are de-
noted by a black circle, and the interior
extraordinary vertices (iEVs), i.e., inte-
rior vertices with valence 𝜈 ≥ 4,𝜈 ≠ 4,
are denoted by grey circles.

(b) Illustration of the interface tracing
procedure. From each EV, all outgoing
edges are traced as illustrated until an-
other EV or a boundary is hit.

(c) Result of interface tracing from all
the EVs. Every patch is now bounded
by a set of boundary and traced inter-
face curves. All patch corners are cor-
ners where a traced interface and/or a
boundary edge form a corner. Along
the hole, different patches are indi-
cated with different shades of gray. In
the part bottom-right of the hole, ev-
ery face forms a patch since all traced
curves denoted by colours intersect
with other traced curves.

Figure 7.4: Procedure to find a multi-patch segmentation from a given mesh. The original mesh in (a) has 46
vertices, 81 edges, and 45 faces, and the final multi-patch (c) has 20 patches.

Firstly, a quadrilateral mesh (quad mesh) is a mesh of quadrilateral elements, represent-
ing a (planar) surface geometry. The quadrilaterals can be represented by tensor B-splines
of any degree, which can be mapped onto a parametric unit square. Typically, when the
tensor B-spline quadrilaterals have different sizes in different directions or even different
refinement levels, assemblies of these patches are typically referred to as multi-patches.
An example of a multi-patch is given in figure 7.3c. The conversion of a quad-mesh with
many elements to a multi-patch with a smaller number of patches derived from groups of
elements can be done using the procedure described in figure 7.4. Here, a half-edge mesh
is traversed, and elements are collected into groups corresponding to final patches. The
vertices of the elements in one group (i.e., patch) form the control net of the bi-linear patch.

Secondly, for parametrically smooth constructions, different classes of vertices are con-
sidered. For so-called extraordinary vertices (EVs) , these constructions are typically differ-
ent. An interior extraordinary vertex (interior EV ) is a vertex on a quad mesh on which
three or more than four patches meet. The number of patches coming together at a vertex
is referred to as the valence, denoted by 𝜈 . Furthermore, a boundary extraordinary vertex
(boundary EV ) is a vertex on the boundary of the quad mesh with valence 𝜈 ≥ 3. For ge-
ometrically smooth constructions, the construction depends on the geometry around the
vertex rather than the valence of the vertex. Hence, for these constructions, the notion of
EVs is irrelevant.

Lastly, a refinement of a spline space is called nested if the refined spline space is fully
contained in the unrefined space. As a consequence, the geometry is exact under element
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refinement, which is beneficial from an analysis point of view.

7.3.1 Analysis-suitable 𝐺1
The analysis-suitable 𝐺1 (AS-𝐺1) construction is a novel approach in isogeometric anal-
ysis that was introduced for planar geometries and surfaces in [109], but a construction
that extends [305] for planar domains to surfaces is detailed in [181]. This construction
ensures that basis functions at interfaces have 𝐶1 continuity, while basis functions at ver-
tices have 𝐶2 continuity. The approach is based on the concept that 𝐺𝑘-smooth surfaces
can produce 𝐶𝑘-smooth isogeometric functions [213]. When dealing with general 𝐶0-
matching multi-patch domains, the so-called AS-𝐺1 conditions must be satisfied to ensure
optimal approximation. If these conditions are met, a 𝐶1-smooth subspace of the isogeo-
metric space can be constructed that is sufficiently large. Such geometries are referred to
as analysis-suitable geometries. However, it should be noted that the 𝐶1-smooth multi-
patch isogeometric space generally depends on the geometry, as discussed in [303]. To
overcome this issue, an Argyris-like space was proposed in [305], which has a dimension
that is independent of the geometry.

Given an interface between two patches, the 𝐶1 continuity condition at the interface
is defined by a linear combination of tangent vectors and transversal derivatives, which is
referred to as gluing data [109]. The 𝐶1 smooth basis functions at the interface, or more
generally at the edge, can be described by the first-order Taylor expansion of the trace
and the transversal derivative. It is shown in [109] that the ideal choice for the space-
representation of the trace and transversal derivative is 𝕊(𝒑,𝒓 − 1,𝒉)² and 𝕊(𝒑 −1,𝒓 − 2,𝒉),
respectively. These basis functions have local support and are linearly independent, but
they depend on the glueing data and, therefore, on the geometry reparameterisation itself.
To ensure that the basis functions form a 𝐶1-smooth subspace of the isogeometric space
and to maintain the nestedness of the spline spaces, it is necessary to have glueing data
as a linear function that fulfils all analysis-suitable geometries. For instance, all bi-linear
patches meet this requirement. However, if a geometry is not analysis-suitable, it can be
reparameterized using the technique presented in [304].

For any vertices in the quad mesh, describing the 𝐶1 condition is not that straight-
forward. In order to keep it general, the vertex basis functions are constructed by the
𝐶2 interpolation using the 𝐶1 basis functions from the corresponding edges. As a conse-
quence, the vertex basis functions also have local support and are linearly independent.

Summarising, the AS-𝐺1 construction can be constructed by three different, linearly
independent sub-spaces: interior, edge, and vertex space. They can be described as follows:

• Interior space: basis functions that have zero values and derivatives on the patch
edges and vertices.

• Interface space: basis functions that have vanishing function values up to the second
derivatives at the vertices.

²The notation 𝕊(𝒑 = (𝑝,𝑝),𝒓 = (𝑟 , 𝑟),𝒉 = (ℎ,ℎ)) indicates a two-dimensional spline space with 𝑝 as the polynomial
degree, 𝑟 as the regularity, and ℎ as the mesh size in both directions.
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• Vertex space: 𝐶2 interpolating functions at the vertex, i.e., basis functions that have
non-vanishing 𝐶2 data at the vertex.

The AS-𝐺1 construction with the interface and vertex constructions as described above
is fully 𝐶1 over the whole domain. In addition, the AS-𝐺1 construction can only be con-
structed when the degree of the basis is 𝑝 ≥ 3 and the regularity is reduced to 𝑟 ≤ 𝑝 −2.

Figure 7.5a presents a local region around and EV with valence five with line styles
indicating different continuity levels on patch or element boundaries (see the caption of
figure 7.5). For the AS-𝐺1 construction, the continuity at the vertex is 𝐶2 by construction.
Furthermore, the continuity at the interior element interfaces is 𝐶𝑝−2 due to the restriction
on keeping the isoparametric concept. Lastly, since the AS-𝐺1 construction provides a 𝐺1
surface, the patch interfaces are 𝐶1 by construction [213].

In sum, the core ideas behind the AS-𝐺1 construction are as follows:

• Degree, regularity, continuity
The spline space is fully 𝐶1, hence suitable to solve fourth-order problems. However,
the computation of the space requires analysis-suitability of the parameterisation as
well as degree 𝑝 ≥ 3 and regularity 𝑟 ≤ 𝑝 −2 for the basis functions.

• Limitations on construction
The space can be constructed on fully unstructured quadrilateral meshes with both
interior and boundary extraordinary vertices. The construction of the basis func-
tions is independent of the location or valence of the EVs. However, the analysis-
suitability condition imposes a requirement on the geometries on which the con-
struction can be constructed. Furthermore, the geometry parameterisation is not
changed.

• Nestedness
The spline spaces are nested.

• Refinement procedure
The refinement procedure is standard (by knot insertion) since the parameterisation
does not change.

7.3.2 Approximate 𝐶1
TheApproximate 𝐶1 construction [618] provides, as the name suggests, approximately 𝐶1
continuity on interfaces and vertices; more precisely, the construction provides 𝐶1 con-
tinuity in the refinement limit. The Approx. 𝐶1 construction shares similarities with the
AS-𝐺1 construction, but the main difference between the construction of the Approx. 𝐶1
and the AS-𝐺1 spaces is that it relaxes the AS-𝐺1 condition on the geometry, i.e., it al-
lows geometries with non-linear glueing data. In fact, the exact glueing data are splines
with a higher polynomial degree and lower regularity, or even piecewise rational. As a
consequence, trying to extend the construction for AS-𝐺1 parameterisations directly to
non-AS-𝐺1 geometries yields complicated basis functions that are challenging to evalu-
ate and integrate accurately. To overcome this issue and obtain a construction with more
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easily definable basis functions, the glueing data are approximated. However, this approx-
imation means that the 𝐶1 condition is no longer satisfied exactly but only approximately.

By utilising the approximation of the glueing data, the Approximate 𝐶1 construction
incorporates the concept of different spline spaces found in the AS-𝐺1 construction. In
this case, the interior, vertex, and interface basis functions fulfil the same conditions as in
the AS-𝐺1 construction, but the degree and regularity differ between these spaces. Specifi-
cally, the sub-spaces for the AS-𝐺1 construction have 𝑝 ≥ 3 and 𝑟 ≤ 𝑝−2, while the Approx-
imate 𝐶1 construction employs an interior space with 𝑝 ≥ 3 and 𝑟 ≤ 𝑝−1, along with vertex
and interface spaces that have locally reduced smoothness based on the approximation of
the glueing data. Consequently, on the one hand, the Approximate 𝐶1 construction re-
stores the potential for maximal smoothness of isogeometric functions in the refinement
limit, but the nestedness of the basis is lost. On the other hand, the approximation of
the glueing data in the Approximate 𝐶1 construction does not require analysis-suitability
for the optimal convergence rate, unlike the AS-𝐺1 construction. This feature makes the
method applicable to more complex geometries. When the Approximate 𝐶1 construction
is applied to an analysis-suitable geometry with 𝑝 ≥ 3 and 𝑟 ≤ 𝑝 − 2, and the glueing data
approximation is exact, the construction becomes equivalent to the AS-𝐺1 construction.

Figure 7.5b presents a local region around and EV with valence five with line styles
indicating different continuity levels on patch or element boundaries (see the caption of
figure 7.5). For the Approx. 𝐶1 construction on a fully smooth basis (𝑝 ≥ 3 and 𝑟 = 𝑝 − 1),
the interior basis recovers full smoothness on element boundaries, hence 𝐶𝑝−1 continuity.
In the shaded region around the interfaces and the EV, the continuity is locally reduced
by the construction of the locally reduced continuous subspace and the approximation of
the glueing data. Similar to the AS-𝐺1 construction, the continuity on the EV is 𝐶2 by
construction, and the element boundaries are 𝐶1 approximately.

In sum, the core ideas behind the Approx. 𝐶1 construction are as follows:

• Degree, regularity, continuity
The spline space is approximately 𝐶1 and fully 𝐶1 in the limit of refinement. This
makes the spline space suitable to solve fourth-order problems. Contrary to the AS-
G1 construction, the spline space approximates the glueing data, allowing maximal
smoothness in the interior space (𝑟 = 𝑝 −1) for degrees 𝑝 ≥ 3.

• Limitations on construction
The space can be constructed on fully unstructured quadrilateral meshes with both
interior and boundary extraordinary vertices. The construction of the basis func-
tions is independent of the location or valence of the vertices. Contrary to AS-𝐺1,
the analysis-suitability condition is not needed. However, the construction requires
a 𝐺1 condition at the interfaces of surfaces.

• Nestedness
The spline spaces are not nested.



7.3 Qualitative Comparison

7

M
ul
ti
-P
at
ch

M
od

el
lin

g

215

(a) AS-𝐺1 (b) Approx. 𝐶1

Figure 7.5: Schematic representation of the continuity across element boundaries and patch interfaces for the (a)
AS-𝐺1 construction and (b) Approx. 𝐶1 constructions. Thin lines indicate element boundaries, and thick lines
indicate patch interfaces. Solid lines represent 𝐶𝑝−1 continuity, dashed lines represent 𝐶𝑝−2 continuity, thick
dashed lines represent 𝐶1 interfaces, and loosely dashed lines represent approximate 𝐶1 interfaces. A double-
lined circle represents a 𝐶2 continuous vertex; a filled circle represents a singular vertex; and a white filled circle
with a single line represents a 𝐶1 continuous vertex. The shaded area for the Approx. 𝐶1 represents local reduced
continuity.

• Refinement procedure
The refinement procedure is standard since the parameterisation does not change.

7.3.3 D-patch
The relative ease of imposing parametric smoothness for splines has led to the develop-
ment of degenerate Bezier patches, or D-patches [464], which can be used to build 𝐶1
smooth splines on unstructured quadrilateral meshes with no boundary extraordinary ver-
tices. The constructions can be formulated for splines of any bi-degree [271], and there
are no restrictions on their smoothness in the locally-structured regions of the mesh. In
the locally unstructured regions of the mesh (i.e., in a neighbourhood of an extraordinary
vertex), the splines are 𝐶1 smooth and first-order degenerate. Note that this degeneracy
means that the spline spaces are not necessarily 𝐻 2-conforming, but numerical evidence
shows that they can still be used to solve fourth-order problems.

Specifically, the imposition of strong 𝐶1 smoothness around an extraordinary vertex
requires that the splines vanish up to first order at the extraordinary vertex. This degen-
eracy trivially implies matching first derivatives at the extraordinary vertex (since all of
them vanish) but does not imply 𝐶1 smoothness of the resulting spline functions and the
geometries built using them. As shown in [464], additional conditions can be imposed
upon certain higher-order mixed derivatives to ensure this desired 𝐶1 smoothness. Fur-
thermore, the effect of these additional constraints can be localised to a neighbourhood of
the extraordinary vertex by imposing them on a subdivided representation of the splines
[408]. This means that a patch-based representation of 𝐶1 D-patch splines takes functions
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that are in 𝕊(𝒑,𝒓,𝒉/2) on each patch, where almost all basis functions are in 𝕊(𝒑,𝒓,𝒉),
except a few basis functions supported in a neighbourhood of extraordinary points (the
number of basis functions depends on the valence).

The D-patch construction allows for nested refinements of the spline spaces [464]. If
different orders of smoothness are being imposed in locally structured and locally unstruc-
tured regions of the mesh, then nested refinements produce spline spaces with a higher
number of basis functions supported in the vicinity of extraordinary points (the number
depends on the refinement level); see [569] for instance. On the other hand, a patch-based
approach allows for a simpler implementation by limiting the smoothness across patch
interfaces to 𝐶1; the smoothness in patch interiors can still be arbitrarily chosen. How-
ever, special care should be taken when using D-patches with nested refinements – the
degeneracy of the splines near extraordinary vertices means that, with mesh refinements,
the shape regularity of the mesh starts to worsen with refinements, and the finite element
matrices become very ill-conditioned.

In sum, the core ideas behind the D-patch spline construction are the following:

• Degree, regularity, continuity
The spline space is fully 𝐶1. In general, the degeneracy of derivatives means that
the spaces are 𝐻 2-nonconforming, however, numerical evidence supports their use
in solving fourth-order problems. The construction can be formulated for splines
of any degree, and the smoothness away from extraordinary vertices can be chosen
arbitrarily.

• Limitations on construction
The space can be constructed on unstructured quadrilateral meshes with no extraor-
dinary vertices on the boundary.

• Nestedness
The spline spaces can be refined in a nested manner; however, the resulting mesh
has poor shape regularity, and the corresponding finite element matrices may be
very ill-conditioned.

• Refinement procedure
Refinement procedures can be derived from standard B-spline knot insertion.

7.3.4 Almost 𝐶1
Almost-𝐶1 splines are defined on a general, conforming quadrilateral mesh. They are
piece-wise biquadratic and possess mixed smoothness, i.e., they are 𝐶1 in regular regions,
while the smoothness near extraordinary vertices, i.e., vertices with valence different from
four, is reduced. To be precise, they are 𝐶1 smooth at all vertices (including extraordinary
vertices) and across all edges except for the ones emanating from an extraordinary vertex.
Moreover, while they are defined to be biquadratic on all regular elements, they are piece-
wise biquadratic splines (with one inner knot in each direction) on all elements that are
neighbouring an extraordinary vertex. Details can be found in [534]. As a consequence, a
patch-based representation of Almost-𝐶1 splines takes functions that are in 𝕊(2,1,𝒉/2) on
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each patch, where almost all basis functions are in 𝕊(2,1,𝒉), except a few basis functions
supported in a 1-ring neighbourhood of extraordinary points (the number depends on the
valence).

A central feature of Almost-𝐶1 splines is the mixed smoothness imposition described
above. In particular, this choice of mixed smoothness only depends on the current refine-
ment level of the mesh. That is, standard 𝐶1-smoothness is enforced across all edges at
the current refinement level except the ones that are incident upon extraordinary vertices,
where only 𝐶0 smoothness is enforced. Additionally, these smoothness conditions are
combined with 𝐺1 smoothness imposition at each extraordinary vertex. This means that
almost-𝐶1 splines do not yield nested spaces when refining. As a result, the refinement
process essentially amounts to a projection of coarse Almost-𝐶1 splines onto the refined
Almost-𝐶1 spline space. This projection can be chosen in many different ways and can
have a significant impact on the limit surface description as well as isogeometric simula-
tions using these spaces. In [534], a smoothing and refinement procedure is proposed that
results in a 𝐶1-smooth limit surface for sufficiently regular input data.

Let us briefly summarise the refinement procedure here. It is assumed that a quad
mesh and a control point associated with each face of the mesh are given. The initial
smoothing step guarantees that all control points associated to the one ring around an
extraordinary vertex are coplanar. Having given such an initial control point grid, the
geometry is refined using explicit subdivision rules as specified in [534, 567]. The rules
are the same as for quadratic tensor-product B-splines in regular regions and maintain the
coplanarity near extraordinary vertices.

In sum, the core ideas behind the Almost-𝐶1 spline construction are the following:

• Degree, regularity, continuity
The spline space locally reproduces biquadratic polynomials, and it is sufficiently
smooth to be able to solve fourth-order problems.

• Limitations on construction
The splines can be constructed on fully unstructured quadrilateral meshes, in par-
ticular those that contain both interior and boundary extraordinary vertices.

• Nestedness
Since the spaces are not nested, the convergence behaviour of Almost-𝐶1 splines
depends on how the geometry parameterisation is refined.

• Refinement procedure
An initial geometry and a refinement procedure can be constructed in such a way
that the limit geometry parameterisation is normal and continuous everywhere.

Thus, the concept introduced in [534] is quite flexible, since the initial smoothing pro-
cedure and the refinement procedure are not unique and can be tailored to the needs
coming from geometric modeling, e.g., one may want to reproduce Doo-Sabin subdivi-
sion surfaces, thus having to modify the subdivision rule for refinement accordingly. The
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(a) D-Patch (b) Almost-𝐶1

Figure 7.6: Schematic representation of the continuity across element boundaries and patch interfaces for the (a)
D-Patch and (b) Almost-𝐶1. Line styles are as in figure 7.5.

spline space that is introduced on each refinement level can be seen as a simple hole-filling
construction, which is sufficient for numerical analysis.

7.3.5 Conclusions
In this section, a summary of the construction and the properties of the analysis-suitable
𝐺1 (AS-𝐺1), the approximate 𝐶1 (Approx. 𝐶1), the degenerate patches (D-patch), and the
Almost-𝐶1 methods have been provided, referring to the relevant publications for the
mathematical details. For each method, comments have been provided on the degree, reg-
ularity, and continuity of the space, on the limitations of the construction in terms of the
quadrilateral mesh, on the nestedness for refinement, and on the refinement procedure
itself. In addition, figures 7.5 and 7.6 provides detailed information on the local continuity
of the constructions around an extraordinary vertex.

The aim of the qualitative analysis of the methods in this chapter is to provide a com-
parison of a set of properties and requirements of each method and their implications for
their applicability. While the subsections presented before provide a brief description of
the properties of the methods and the reasons behind these properties and requirements,
table 7.1 provides a side-by-side comparison of each method based on the subsections be-
fore. In particular, the table lists the (i,ii) requirements on degree and regularity for the
constructions, iii geometrical or topological limitations if applicable, (iv,v) the continuity
of the constructed bases in the interior and on the interfaces and element boundaries, and
vi nestedness of the constructed basis.

Following from table 7.1, the requirements for construction of the unstructured spline
bases are summarized in figure 7.7 as pre-processing conditions that have to be satisfied
for each unstructured spline construction in the process depicted in figure 7.2. The degree
and regularity conditions (cf. i,ii in table 7.1) must be satisfied for each construction, e.g.,
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Table 7.1: Summary of the requirements for the construction and the properties for each of the considered bases.
The construction requirements include the degree and regularity of the basis used for construction as well as
the geometrical or topological properties of the input geometry. The properties include continuity on interfaces,
vertices, and in the interior of the unstructured spline construction, as well as the nestedness property.

Requirements AS-𝐺1 Approx. 𝐶1 D-Patch Almost-𝐶1

(i) Degree 𝑝 ≥ 3 𝑝 ≥ 3 𝑝 ≥ 3 𝑝 = 2
(ii) Regularity 𝑟 ≤ 𝑝 −2 𝑟 ≤ 𝑝 −1 𝑟 ≤ 𝑝 −1 𝑟 = 1
(v) Geometrical / topo-
logical limitations

Analysis-
suitability

𝐺2 continuity BEVs: 𝜈 ≤ 3, 𝐶1
continuity

𝐶1 continuity

Properties AS-𝐺1 Approx. 𝐶1 D-Patch Almost-𝐶1

(iii) Interface & Vertex
Continuity

𝐶1 𝐶1 in the limit 𝐶1 𝐶1 in the limit

(iv) Interior continu-
ity

𝐶𝑝−2 𝐶𝑝−1 𝐶𝑝−1 𝐶1

(vi) Nestedness Yes No Yes No

by performing projections on suitable spline spaces or by knot insertion routines. Fur-
thermore, the geometric or topological limitations (cf. iii in table 7.1) impose additional
constraints that the geometry must satisfy.
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𝑝 ≥ 3
𝑟 ≤ 𝑝 − 1

𝑝 ≥ 3
𝑟 ≤ 𝑝 − 2

𝑝 ≥ 2
𝑟 ≤ 𝑝 − 1

𝑝 = 2
𝑟 ≤ 𝑝 − 1

From Unstructured Spline Constraints

𝐺2
geometry

Analysis
suitability

𝐶1
geometry &
BEV 𝜈 ≤ 3

𝐶1
geometry

To Unstructured Spline Construction

D-
Pa
tch

Ap
pro
x.
𝐶1

AS
-𝐺
1

Alm
ost

𝐶1

Figure 7.7: Inside the unstructured spline pre-processing block from figure 7.2. The unstructured spline require-
ments are depicted in diamond-shaped blocks for methods AS-𝐺1, Approx. 𝐶1, D-Patch and Almost 𝐶1. The
first row represents requirements on degree 𝑝 and regularity 𝑟 . If not satisfied, the geometry can be projected
onto a space that satisfies the requirement, or degree elevation or reduction steps can be performed together
with refinement operations. The second row depicts the requirements on the geometry parameterization; these
blocks can be satisfied by changing the geometry.

7.4 Quantitative Comparison
In this section, a quantitative comparison between the methods provided in section 7.3
is provided. In addition, variational coupling methods are compared, if applicable. The
quantitative comparison is composed of various benchmark problems, each providing a
different conclusion with respect to the methods considered:

Biharmonic problem on a planar domain (section 7.4.1) Thefirst example entails solv-
ing the biharmonic problem on a planar domain. The goal of this example is to as-
sess the convergence properties of all considered unstructured spline constructions;
hence, the problem will be solved on a simple analysis-suitable geometry without
EVs on the boundary, such that every method from section 7.3 can be applied and
compared to the manufactured solution.

Linear Kirchhoff–Love shell analysis on a surface (section 7.4.2) The second exam-
ple entails solving the Kirchhoff–Love shell equation on curved domains. The goal of
this example is to demonstrate the performance of the unstructured spline construc-
tion for simple shell problems. Therefore, comparisons will be made to single-patch
results and penalty coupling from [238].
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Figure 7.8: Multi-patch decomposition of a simple
domain into six patches. The domain has two EVs
in the interior (valences 3 and 5) and no boundary
EVs.

Table 7.2: Degree 𝑝 and regularity 𝑟 constraints for
each considered method from section 7.3, see ta-
ble 7.1.

𝑝 = 2 𝑝 = 3 𝑝 = 3
𝑝 = 2 𝑟 = 1 𝑟 = 2

D-patch ★ ★ ★
Almost-𝐶1 ★
Approx. 𝐶1 ★ ★
AS-𝐺1 ★
Nitsche/Penalty ★ ★ ★

Spectral analysis on a planar domain (section 7.4.3) In the third example, spectral anal-
ysis of a plate equation is performed. The goal of this example is to assess the spec-
tral properties of the unstructured spline methods compared to a variational ap-
proach and a single patch, since the spectral properties of highly continuous bases
have been demonstrated to be superior over non-smooth bases [121].

Modal analysis of a complex geometry (section 7.4.4) In the fourth example, amodal
analysis is performed on a complex geometry extracted from a quad-mesh. The goal
of this example is to demonstrate the applicability and performance of the unstruc-
tured spline methods on a large-scale, complicated geometry.

Stress analysis in a curved shell (section 7.4.5) Lastly, the fifth example involves the
analysis of stress fields in shells. The goal of this example is to assess the perfor-
mance of unstructured spline constructions and a penalty method when it comes
to stress reconstruction in shells. For the Kirchhoff–Love shell, the stresses are ob-
tained by taking gradients of the deformed geometry, hence of the solution. This
means that for 𝐶1 bases, stresses are 𝐶0. This might be unfavourable in engineering
applications where local stress fields are of importance, e.g., fatigue analysis.

In all examples except the complex geometry in section 7.4.4, the domain decompo-
sition from figure 7.8 is used to decompose a simple domain into a domain with extraor-
dinary vertices in the interior. Domains with EVs on the boundary are left out of scope
since the D-patch construction would change the outer boundaries of the domain; hence,
the comparison would involve a significantly different geometry. Since different methods
have different constraints on the degree and regularity of the basis, different combinations
of the degree 𝑝 and regularity 𝑟 are tested throughout the benchmark problems. In ta-
ble 7.2, the combinations of 𝑝 and 𝑟 and the methods that are compared for these bases are
provided. For the biharmonic problem and the spectral analysis (sections 7.4.1 and 7.4.3),
Nitsche’s method is used for comparison; see [619] for more details. When solving the
Kirchhoff–Love shell equations, the penalty method is used for comparison; see [238] for
more details. In all examples, Dirichlet boundary conditions are applied at the control
points and clamped boundary conditions are applied weakly as in [238]. All results are
obtained using the Geometry + Simulation modules [294, 376] and will be published in a
separate publication.
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As discussed in section 7.3, the D-patch and Almost-𝐶1 constructions involve a pre-
smoothing of the geometry. In the case of mesh convergence results, refinements can
be performed in different ways. On the one hand, the original geometry can be refined,
and a new construction with a new geometry approximation can be performed. On the
other hand, the geometry resulting from the construction at the first refinement level can
be refined in a nested way, such that the geometry does not change after the first mesh.
In the quantitative comparison, all refinements are performed in a nested way, unless
specified otherwise.

7.4.1 Biharmonic Equation on a Planar Domain
The first benchmark entails the biharmonic equation on a planar domain. The purpose
of this example is to assess the convergence properties of the unstructured spline meth-
ods described in section 7.3, following the structure of [619]. The biharmonic equation
is solved on a unit square Ω = [0,1]2 with the patch segmentation from figure 7.8. The
biharmonic equation is defined by

Δ2𝜑 = 𝑓 . (7.1)

In the present example, convergence is analysed with respect to a manufactured solution

�̃�(𝑥1, 𝑥2) = (cos(4𝜋𝑥1) − 1)(cos(4𝜋𝑥2) − 1), (7.2)

such that the right-hand-side function becomes:

𝑓 (𝑥1, 𝑥2) = 256𝜋4(4cos(4𝜋𝑥)cos(4𝜋𝑦)− cos(4𝜋𝑥)− cos(4𝜋𝑦)) (7.3)

Furthermore, on all boundaries of the domain, the manufactured solution and its deriva-
tives are imposed as Dirichlet and Neumann boundary conditions, respectively:

𝜑 = �̃�(𝑥1, 𝑥2)
𝜕𝒏𝜑 = 𝜕𝒏�̃�

}on Γ, (7.4)

where Γ = 𝜕Ω, 𝒏 is the unit outward normal vector on Γ. The biharmonic equation from
equation (7.1) with boundary conditions equation (7.4) can be discretised by obtaining the
weak formulation (see [619]), inserting equation (7.4), and defining an approximation of
the solution 𝜑 as 𝜑ℎ. Furthermore, a weak coupling can be established through Nitsche’s
method. For themathematical details behind the discretisation of the biharmonic equation
and optionally adding Nitsche interface coupling terms, the reader is referred to [618, 619].
For the D-Patch and Almost 𝐶1 constructions, the geometry is smoothed upon construc-
tion. The geometry used for evaluation of the weak formulation is constructed by using an
𝐿2-projection of the geometry from the coarsest space, which is projected onto the smooth
basis of each refinement level. For the D-Patch, the non-negative smoothness matrix for
vertex smoothing is used. Although this matrix produces non-nested meshes, it provides
the highest rates of convergence. Furthermore, the factor 𝛽 (cf. [569, sec. 5.1]) is chosen
as 𝛽 = 0.4 as used by [569], or 𝛽 = 1.2, and halved in each refinement level.

To evaluate the unstructured spline constructions from section 7.3, the numerical ap-
proximation 𝜑ℎ is compared to the manufactured solution �̃� in the 𝐿2-, 𝐻 1-, and𝐻 2-norms
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on the multi-patch segmentation from figure 7.8. The bi-linear segmentation is refined and
degree elevated until the desired degree 𝑝 and regularity 𝑟 from table 7.2 are obtained. In
addition, a Nitsche coupling of the patches is employed for comparison.

The results for the comparison are presented in figure 7.9. For degree 𝑝 = 2 and reg-
ularity 𝑟 = 1, the Almost-𝐶1, D-patch, and Nitsche coupling methods are compared. As
expected, the results show consistency between the Almost-𝐶1, D-patch, and Nitsche’s
methods with expected convergence. The results also show a slight dependency on the
factor 𝛽 for the D-Patch. For degree 𝑝 = 3 and regularity 𝑟 = 1, the Approx. 𝐶1, AS-𝐺1, D-
patch, and Nitsche’s method can be compared. The results of the Approx. 𝐶1 and AS-𝐺1
are exactly the same, since the original geometry is analysis-suitable and contains only
bi-linear patches. Then, applying the Approx. 𝐶1 to an analysis-suitable geometry with
regularity 𝑝 − 2, the approximate glueing data becomes exact, hence the same as in the
AS-𝐺1 construction. The D-patch in this case shows better convergence of the 𝐿2, 𝐻1, and
𝐻2 errors for 𝛽 = 1.2 than for 𝛽 = 0.4. Though, for both choices of 𝛽 , the convergence is
suboptimal, as was observed in the work by [89]. Furthermore, the 𝐿2-norm increases at
the last point of the D-Patch results due to the ill-conditioning of the system of equations.
Lastly, for degree 𝑝 = 3 and regularity 𝑟 = 2, the Approx. 𝐶1, D-patch, and Nitsche’s meth-
ods are compared. The observations are as for the 𝑝 = 3 and 𝑟 = 1 cases.

Overall, the results show expected convergence behaviour for all considered spline
constructions compared to theoretical results and compared to a Nitsche coupling method.
However, theD-Patchmethod does not converge for very finemeshes, due to ill-conditioning
of the system matrix.

7.4.2 Linear Kirchhoff–Love Shell Analysis on a Surface
The linear Kirchhoff–Love shell equations are solved on two geometries to demonstrate
the convergence behaviour of the methods on curved surfaces. To this end, two bench-
mark examples are considered. Firstly, a hyperbolic paraboloid surface is constructed with
shape, inspired by [182]:

𝒓(𝜉1, 𝜉2) = [𝜉1 𝜉2 𝜉 21 −𝜉 22 ] (7.5)
The left side of the hyperbolic paraboloid is clamped (𝒖 = 0), and the other sides are free.
Furthermore, a distributed load with a magnitude of 8000𝑡 is applied with 𝑡 the thickness;
see figure 7.10. Secondly, an elliptic paraboloid-shaped domain is modelled, with equation

𝒓(𝜉1, 𝜉2) = [𝜉1 𝜉2 1−2(𝜉 21 +𝜉 22 )] (7.6)

For this shape, a point load with a magnitude of 108𝑡 is applied in the middle of the domain.
The corners of the domain are only fixed in the vertical 𝑧 direction to allow sliding in the
𝑥𝑦-plane. One corner is fixed in all directions to create a well-posed problem. For both
hyperbolic paraboloid (figure 7.10) and elliptic paraboloid (figure 7.11), the multi-patch
segmentation from figure 7.8 is used. In both cases, the shells are modelled with a thick-
ness of 𝑡 = 0.01 [mm] and with a Saint-Venant Kirchhoff material with Young’s modulus
𝐸 = 200 [GPa] and Poisson’s ratio 𝜈 = 0.3 [-]. The refinement procedure as described in
section 7.4.1 is used for the D-Patch and Almost-𝐶1 constructions.
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Figure 7.9: Errors for the AS-𝐺1, Approx. 𝐶1, D-Patch and Almost-𝐶1 construction for the biharmonic problem
on the domain in figure 7.8. The 𝐿2, 𝐻1 and 𝐻2 errors with respect to the analytical solution are plotted with
different line styles in the top row. Furthermore, all results are plotted against the element size ℎ and the expected
convergence rates are given by the triangles.
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Figure 7.10: Hyperbolic paraboloid shell geome-
try with coordinates 𝒓(𝜉1, 𝜉2) = [𝜉1 𝜉2 𝜉 21 −𝜉 22 ],
𝜉1, 𝜉2 ∈ [−1/2.1/2]. The left-edge of the hyperbolic
paraboloid is clamped, i.e., the displacements and
rotations are zero (𝒖 = 0 and 𝜕𝑢𝑧

𝜕𝑥 = 0).
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Figure 7.11: Elliptic paraboloid shell
geometry with coordinates 𝒓(𝜉1, 𝜉2) =
[𝜉1 𝜉2 1−2(𝜉 21 +𝜉 22 )], 𝜉1, 𝜉2 ∈ [−1/2.1/2].
On the corners of the domain, the vertical
displacements are set to zero 𝑢𝑧 = 0 and one
corner is fixed in-plane as well. Furthermore, a
point load with a magnitude 𝑃 = 108𝑡 is applied in
the middle of the geometry.
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Figure 7.12: Bending energy norm 𝒲 ℎ
int = 1

2𝒖
⊤
ℎ𝐾𝐿𝒖ℎ for the hyperbolic paraboloid geometry from figure 7.10

with a patch segmentation as in figure 7.8. The results are presented for different combinations of the degree
𝑝 and regularity 𝑟 for all unstructured spline constructions. In addition, the results for a penalty method with
parameter 𝛼 ∈ {1,10,100} are provided for comparison.

The results of both analyses are given in figures 7.12 and 7.13. Here, different unstruc-
tured spline constructions are tested on patch bases with different degrees and regulari-
ties, as reported in table 7.2. For each combination of degree 𝑝 and regularity 𝑟 , the energy
norm 𝒲 ℎ

int = 1
2𝒖

⊤
ℎ𝐾𝐿𝒖ℎ is plotted against the number of degrees of freedom, with 𝒖ℎ the

discrete displacement vector and𝐾ℎ the discrete linear stiffness matrix. From the results in
figures 7.12 and 7.13, a few observations can be made. Firstly, the Approx. 𝐶1 and AS-𝐺1
methods show slow convergence on the hyperbolic paraboloid geometry, while the con-
vergence on the elliptic paraboloid geometry is similar to the single-patch convergence.
The slow convergence for the hyperbolic paraboloid shell is also observed in [181]. Since
the results of the same constructions on the elliptic paraboloid geometries do not show
slower convergence, the slow convergence is hypothetically a result of the double curva-
ture with different signs of the shell. Secondly, the D-Patch and Approx. 𝐶1 show compa-
rable convergence to the penaltymethod on both geometries, which is slightly slower than
the convergence of the single-patch results. This is explained by the fact that the degrees
of freedom are more optimally allocated for the single-patch parameterisation. Lastly, the
results obtained by the penalty method for different penalty parameters 𝛼 show conver-
gence with a rate similar to the D-Patch and Almost-𝐶1 methods for penalty parameters
𝛼 ∈ {1,10}. For 𝛼 = 100, the penalty method is still converging to the same solution, but
convergence starts after a few refinement steps

7.4.3 Spectral Analysis on a Planar Domain
In this example, the spectral properties of the unstructured spline constructions on amulti-
patch domain are considered. From [122], it is known that isogeometric analysis has the
advantage over 𝐶0 Finite Element Analysis with respect to spectra for eigenvalue prob-
lems. Smooth isogeometric discretisation provides converging spectra with spline degree
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Figure 7.13: Bending energy norm 𝒲 ℎ
int = 1

2𝒖
⊤
ℎ𝐾𝐿𝒖ℎ for the elliptic paraboloid geometry from figure 7.11 with

a patch segmentation as in figure 7.8. The results are presented for different combinations of the degree 𝑝 and
regularity 𝑟 for all unstructured spline constructions. In addition, the results for a penaltymethodwith parameter
𝛼 ∈ {1,10,100} are provided for comparison.

𝑝, whereas the spectra obtained by 𝐶0 FEA diverge with 𝑝 and typically have optical
branches. Similarly, when patches with 𝐶0 continuity are considered, optical branches
are introduced, and the accuracy of the spectral approximation decreases [406]. In this
benchmark problem, the basis constructions from table 7.2 on figure 7.8 are compared on
their spectral properties. For Nitsche’s method, different values for the coupling parame-
ter are used to assess its influence on the spectrum.

For the problem at hand, a unit-square domainwith parametric layout fromfigure 7.8 is
considered for simplicity. Modal analysis of the plate equation is considered. The stiffness
operator of the free vibration plate equation is similar to the biharmonic equation from
equation (7.1), and the inertia is included on the right-hand side:

𝐷Δ2𝑤 = −𝜌𝑡 𝜕
2𝑤
𝜕𝜏2 (7.7)

Assuming that 𝑤(𝑥,𝑦, 𝜏) is harmonic, i.e. 𝑤(𝑥,𝑦, 𝜏) = �̂�(𝑥,𝑦)exp{𝑖𝜔𝜏} with 𝜔 a frequency,
the equation simplifies to

𝐷Δ2�̂� = 𝜔2 𝜕2�̂�
𝜕𝜏2 . (7.8)

Here, 𝐷 = 𝐸𝑡3/(12(1−𝜈2)) is the flexural rigidity of the plate with 𝐸 = 105 [Pa] the Young’s
modulus of the plate, 𝑡 = 10−2 [m] the thickness and 𝜈 = 0.2 [-] the Poisson’s ratio. Fur-
thermore, 𝜌 = 105 [kg] is the material density. Equation (7.8) is a generalised eigenvalue
problem with eigenpairs (𝜔𝑖 , 𝑣𝑖) where 𝜔𝑖 is the ith eigenfrequency and 𝑣𝑖 the ith mode
shape. The mode shape for a simply supported unit plate with 𝑛 ×𝑚 half-waves is given
by

𝑣𝑛𝑚(𝑥,𝑦) = sin (𝑛𝜋𝑥)sin(𝑚𝜋𝑦) (7.9)
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with the corresponding eigenfrequency

𝜔𝑛𝑚 = (𝑛2 +𝑚2)𝜋2
√

𝐷
𝜌𝑡 . (7.10)

In addition, the numerical solution to equation (7.8) is obtained by solving the following
generalised eigenvalue problem:

𝐷∫Ω
Δ𝑤Δ𝜑 dΩ = 𝜔2𝜌𝑡 ∫Ω

𝑢𝜑 dΩ (7.11)

With 𝜑 a test function, see section 7.4.1. In further representation of the solutions, the in-
dex 𝑖 is employed such that 𝜔𝑖 < 𝜔𝑖+1 and the subscript ℎ is used for numerically obtained
solutions.

Figure 7.14 presents the spectra for different degrees, regularities, and methods. Here,
the vertical axis represents the ratio of the numerically obtained eigenfrequency over the
analytical eigenfrequency with index 𝑖, thus 𝜔ℎ,𝑖/𝜔𝑖 . The horizontal axis represents the
fraction of the eigenfrequency index 𝑖 over the total number of eigenmodes. The total
number of eigenmodes is equal to the number of degrees of freedom in the system. The
results are presented for the degrees and regularities as in table 7.2.

Firstly, the 𝑝 = 2, 𝑟 = 1 plot shows that Nitsche’s method oscillates for all considered
values of the penalty parameter. Furthermore, in the part where it is not oscillating, the
ratio 𝜔𝑖.ℎ/𝜔𝑖 is higher than for the D-patch and Almost-𝐶1 method. Additionally, the
D-patch and Almost-𝐶1 methods show a significant difference with respect to the single
patch result, which is due to the non-Cartesian multi-patch segmentation of figure 7.8 and
the fact that the analytical mode shapes are Cartesian. For the 𝑝 = 3, 𝑟 = 1 and 𝑝 = 3, 𝑟 = 2
bases, similar conclusions can be drawn. Although for the 𝑝 = 3, 𝑟 = 1 case the Approx. 𝐶1
method seems worse than the D-patch method, the opposite is true for 𝑝 = 3, 𝑟 = 2. Hence,
it can be concluded that no method outperforms another, but that all unstructured spline
constructions perform better than Nitsche’s method.

7.4.4 Modal Analysis of a Complex Geometry
The next example of the quantitative analysis in this chapter involves modal analysis on
a larger-scale complex geometry, depicted in figure 7.15a. The goal of this example is to
show the usability of the considered constructions on an off-the-shelf industrial geome-
try. The geometry is represented as a mesh consisting of 15895 vertices, 31086 edges, and
62172 faces. This geometry is converted to bi-linear patches using the procedure discussed
in figure 7.4 in section 7.3. The interface and boundary curves of the patches are given in
figure 7.15b, and the final multi-patch object is given in figure 7.15c. The latter has 3 EVs of
valence 3, 10 EVs of valence 5 and 16 bEVs. Moreover, the material parameters specified
for a steel material. That is, the density of the material is 𝜌 = 7850 ⋅ 10−6 [tonnes/mm3],
and the shell thickness is 𝑡 = 10 [mm], the Young’s modulus is 𝐸 = 210 ⋅ 103 [MPa] and the
Poisson’s ratio is 𝜈 = 0.3 [−]. All the sides of the geometry are kept free, meaning that the
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Figure 7.14: Eigenvalue spectra for the biharmonic eigenvalue problem on the domain from figure 7.8. The
horizontal axes depict the eigenvalue index 𝑖 over the total number of eigenvalues 𝑁 . The vertical axes represent
the numerical eigenvalue 𝜔𝑖,ℎ over the analytical eigenvalue 𝜔𝑖 , both with index 𝑖. The results are plotted for
different combinations of the degree 𝑝 and regularity 𝑟 of the basis. The results for a Nitsche method are given
for different penalty parameters 𝛼 .
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modal analysis results will consist of six modes with zero eigenfrequencies: the rigid body
modes. In the sequel, only the results for deformation modes are listed.

After the creation of the linear multi-patch object, ℎ-, 𝑝-, and 𝑘-refinement steps can
be performed to construct a multi-basis corresponding to the patch layout on which un-
structured splines can be constructed. For the Almost-𝐶1 and D-Patch constructions, the
bases are constructed by refining and elevating the initial linear basis up to the desired
degree and regularity, after which the the Almost-𝐶1 and D-Patch basis and geometry are
computed. An Almost-𝐶1 geometry is provided in figure 7.15c.

The AS-𝐺1 construction requires an analysis-suitable geometry, which can be con-
structed following [181], is based on the planar construction developed in [304]. How-
ever, the geometry from figure 7.15b is only 𝐶0-smooth due to the original linear mesh
it is constructed from. An algorithm to automatically pre-process the geometry to obtain
an analysis-suitable 𝐺1 surface is not yet developed. The algorithm from [181] requires
AS-𝐺1 gluing data, which cannot be prescribed directly on a 𝐶0 surface. If the surface is
not pre-processed to be AS-𝐺1, no suitable gluing data can be found and the basis con-
struction is not applicable. Although the Approx. 𝐶1 construction does not require an
analysis-suitable re-parameterization, it does require 𝐺1 smoothness at the interfaces. If
this condition is not satisfied there exists no 𝐶1 construction that can be approximated by
this method. For both methods, the required pre-processing efforts are non-trivial or not
demonstrated on industrial geometries, and therefore left out of the scope of this chapter³.

Furthermore, penalty methods have been used in the context of modal analysis on a
27 patch composite wind-turbine blade in [238], where the variation of the element size
of interface elements seems rather small. In the present chapter, an attempt was made
to apply the penalty method on the geometry in figure 7.15c, but unidentifiable vibration
modes were obtained, possibly because of the large variation of element lengths across the
interfaces of the domain, challenging the determination of a suitable penalty parameter 𝛼 .

Table 7.3 presents the eigenfrequencies for the first four deformation modes of the
car side panel for the D-Patch and the Almost-𝐶1 constructions with degree 𝑝 = 2 and
regularity 𝑟 = 1 for the Almost-𝐶1 construction and with (𝑝, 𝑟) = (2,1), (𝑝, 𝑟) = (3,1) and
(𝑝, 𝑟) = (3,2) for the D-Patch. Figure 7.16 provides the corresponding mode shapes on the
D-Patch geometry with 𝑝 = 3, 𝑟 = 2 and the mode shapes have been qualitatively matched
to construct table 7.3. From these results, it can be observed that the Almost-𝐶1 and D-
Patch methods provide eigenfrequencies in the same range and that the eigenfrequencies
are mostly converging in the second digit. Moreover, the eigenfrequencies of the D-Patch
and Almost-𝐶1 methods for coarse meshes and 𝑝 = 2, 𝑟 = 1 already provide reasonable
estimates compared to higher degrees and refinements. On the other hand, the results ob-
tained using an ABAQUS S4R element show convergence in the second digit and slightly
lower frequencies than the IGA results, possibly because the FEM uses a different geom-

³In the case of a different starting point for this benchmark, such as a smooth mesh composed of higher-order
quadrilateral elements, e.g. derived from a subdivision surface, instead of a bi-linear mesh, the pre-processing
efforts required for the AS-𝐺1 and Approx. 𝐶1 will be different.
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(a) Original quad mesh with 15895 vertices, 31086 edges, and 62172 faces.

(b) Interface (green) and boundary (red) curves.

(c) Final multi-patch segmentation with 307 patches.

Figure 7.15: Geometry of the side panel of a car. The original mesh (a) is traced with the procedure from figure 7.4,
yielding a set of boundary and interface curves (b). From these curves, the multi-patch segmentation (c) for
isogeometric analysis is constructed following figure 7.4c.
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Table 7.3: Eigenfrequencies of the Almost-𝐶1 and D-Patch constructions for the car geometry in figure 7.15. The
results of an ABAQUS FEA simulation using the S4R element are provided as a reference. The mode shapes are
plotted in figure 7.16.

Method # DoFs Mode 1 Mode 2 Mode 3 Mode 4

Almost-𝐶1, 𝑝 = 2, 𝑟 = 1
13,731 15.740 25.567 43.829 56.654
49,758 15.762 25.564 43.429 56.778
189,654 15.776 25.552 43.269 56.785
740,814 15.774 25.531 43.177 56.746

D-Patch, 𝑝 = 2, 𝑟 = 1
49,437 15.785 25.607 43.641 56.902
189,333 15.780 25.561 43.323 56.807
740,493 15.775 25.533 43.191 56.748

D-Patch, 𝑝 = 3, 𝑟 = 1 136,839 15.749 25.593 43.348 56.786
630,459 15.760 25.581 43.231 56.801

D-Patch, 𝑝 = 3, 𝑟 = 2 71,760 15.771 25.539 43.224 56.744
226,524 15.755 25.582 43.235 56.807

ABAQUS S4R
10mm 126,966 15.303 24.881 42.629 54.887
5mm 440,076 15.224 24.780 42.516 54.627
2.5mm 1,653,030 15.119 24.640 42.338 54.277

etry approximation. Overall, it can be concluded from this benchmark problem that the
Almost-𝐶1 and D-Patch are more robust for industrial and large scale geometries, that are
represented by at least 𝐶0-conforming quadrilateral meshes, compared to the Approx. 𝐶1
and AS-𝐺1 methods due to the pre-processing efforts required by the latter. Furthermore,
these methods are parameter-free, making them robust also with respect to penalty meth-
ods.

7.4.5 Stress Analysis in a Curved Shell
An interesting application for smooth, unstructured spline construction is the use of thin
shell analysis for engineering applications. Not only displacements (section 7.4.2) or vibra-
tions (section 7.4.4) are of interest, but also stress evaluations, for example, fatigue analysis.
In the last example, the performance of all methods in table 7.2 is demonstrated on the eval-
uation of stresses in a curved Kirchhoff–Love shell. Since the Kirchhoff–Love shell formu-
lation is displacement-based, the displacements are 𝐶1 continuous across patch interfaces
for 𝐶1 constructions. The stresses, however, are based on the gradients of the displace-
ments; hence, their continuity theoretically is 𝐶0 for a perfect 𝐶1 coupling. In this ex-
ample, the Von Mises membrane stress field resulting from the 6-patch elliptic paraboloid
from figure 7.13 is considered. The stress fields are plotted for bases with degree and regu-
larity from table 7.2 and additionally for a basis with 𝑝 = 4, 𝑟 = 2. Note that the regularity
𝑟 of these bases is the regularity in the patch interior.

In figure 7.17, the stress fields for the elliptic paraboloid example from figure 7.13 are
provided. From these results, it can immediately be seen that the stress field for a single
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(a) Mode 1

(b) Mode 2

(c) Mode 3

(d) Mode 4

Figure 7.16: Out-of-plane deformations of the first four vibration modes of the side of the car from figure 7.15.
The results on the left represent the results obtained by the D-Patch construction and the results on the right
represent results obtained using ABAQUS (10mm). The mode shapes are all deformation modes warped by the
deformation vector and plotted over the undeformed (transparent) geometry.
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patch parameterisation with basis 𝑝 = 2, 𝑟 = 1 exposes the elements of the basis because of
the 𝐶0 continuity across elements. Similar effects are seen for the D-patch, Almost-𝐶1 and
the penalty method. Increasing the degree of the basis while keeping the regularity the
same results in a 𝑝 = 3, 𝑟 = 1 basis. The element continuity is still 𝐶0 for the stresses, but the
higher continuity of the basis within the element results in a slightly improved stress field,
as can be seen from the single patch, the D-patch, and penalty methods. The Approx. 𝐶1
and AS-𝐺1 methods in addition show a better stress field around the EVs compared to
the D-patch with only small wiggles in the inner contour. Increasing the smoothness by
going to 𝑝 = 3, 𝑟 = 2 shows that the Approx. 𝐶1 method predicts the stress field very well
over the whole domain, but with the wiggles in the inner contour, and that the D-patch
suffers from the singularity at the EVs. Lastly, the 𝑝 = 4, 𝑟 = 2 plots show that the wiggles
in the inner contour are eliminated for the Approx. 𝐶1 and the AS-𝐺1 methods and that
the artefacts of the D-patch around the EV are still there, but to a lesser extent. Finally,
the results of the penalty method in figure 7.17 show it is able to provide an accurate rep-
resentation of the stress fields. As seen from figure 7.13, penalty factors 𝛼 = 1 and 𝛼 = 10
provide good convergence in the bending energy norm. Indeed, the stress fields for the
fixed 64×64 element meshes in figure 7.17 confirm that for these penalty factors, the stress
fields accurately represent the single patch stress fields, despite small artefacts around the
EVs for 𝛼 = 1. For a higher penalty factor of 𝛼 = 100, the stress fields following from the
penalty method are not guaranteed to be accurate, showing the downside of this method.

Overall, the stress analysis for multiple combinations and regularities shows that the
Almost-𝐶1 method is generally unfavourable since it is only applicable for 𝑝 = 2, 𝑟 = 1
hence 𝐶0 stress fields, suffering from a lack of continuity over the whole domain. This
also makes the D-patch as applicable as the Approx. 𝐶1 method in terms of degree and
regularity combinations. Comparing the D-patch with the Approx. 𝐶1 and the AS-𝐺1
methods, it is shown that the D-patch suffers from the singularity in the EVs when re-
constructing stresses, whereas the other two methods are able to recover the stress fields
without problems. Moreover, this example has also shown the advantage of smooth, un-
structured spline constructions for stress analyses since their continuity across (almost) all
of the domain is ensured, contrary to the penalty method. Lastly, this example shows the
advantage of IGA in general over lower-order methods like FEA, since the higher-degree
bases (e.g., 𝑝 = 4, 𝑟 = 2) provide smooth stress fields compared to lower-degree bases (𝑝 = 2,
𝑟 = 1).

7.4.6 Conclusions
In this section, a quantitative comparison of the AS-𝐺1, the Approx. 𝐶1, the D-Patch, and
the Almost-𝐶1 constructions is provided. The methods have been assessed in different
aspects: i) convergence of the biharmonic equation (section 7.4.1); ii) convergence of the
linear Kirchhoff–Love shell (section 7.4.2); iii) eigenvalue spectrum approximation (sec-
tion 7.4.3); iv) application to a large-scale complex geometry (section 7.4.4); and v) the
reconstruction of stress fields (section 7.4.5). From these analyses, the following conclu-
sions can be drawn:

• All methods converge in a theoretical setting to the same solution for the biharmonic
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Figure 7.17: (Caption on next page).



7.4 Quantitative Comparison

7

M
ul
ti
-P
at
ch

M
od

el
lin

g

235

Si
ng

le
pa
tc
h

𝑝 = 2, 𝑟 = 1 𝑝 = 3, 𝑟 = 1 𝑝 = 3, 𝑟 = 2 𝑝 = 4, 𝑟 = 2

𝛼=
10

0
𝛼=

10
1

𝛼=
10

2

𝜎𝑉𝑀 [MPa]
Figure 7.17: Von Mises membrane stress fields for the single patch, unstructured splines and penalty-coupled
multi-patch paraboloid from section 7.4.2 and figure 7.13 with 64×64 elements per patch. The results are provided
for different combinations of degree 𝑝 and regularity 𝑟 . The colour bar represents the stress and the contours
are plotted for stress levels 𝜎𝑉𝑀 ∈ {105, 106, 107} [MPa].
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equation (sections 7.4.1 and 7.4.2). However, the convergence behaviour of the D-
Patch method is suboptimal and affected by conditioning issues for large meshes.
Furthermore, the Approx. 𝐶1 and AS-𝐺1 methods give worse convergence com-
pared to other methods for the hyperbolic paraboloid shell but good convergence
rates for the elliptic paraboloid shell example.

• From a spectral analysis of the biharmonic equation section 7.4.3, it can be concluded
that there is no best unstructured spline construction. Depending on the degree
and regularity, small differences in the eigenvalue spectra are observed between
the methods. Comparing with Nitsche’s method, however, it is concluded that the
unstructured spline constructions considered in this chapter perform consistently
better. This is also confirmed by the applied modal analysis on the car geometry sec-
tion 7.4.4, where the penalty method fails to find accurate eigenfrequencies, possibly
because of an unsuitable penalty parameter.

• From the applied modal analysis on a complex geometry, it can also be concluded
that the Almost-𝐶1 and D-Patch constructions are more straight-forward to apply
to a complex geometry extracted from a mesh. This is due to the fact that the
Approx. 𝐶1 and AS-𝐺1 constructions require, respectively, a 𝐺2 geometry and an
analysis-suitable geometry, which are both not trivial to construct from an origi-
nally 𝐶0-continuous mesh. Instead, the D-Patch and Almost-𝐶1 constructions re-
quire a 𝐶1 geometry, which is easier to construct in general.

• From the stress fields presented in section 7.4.5 and the analysis in section 7.4.2, it
can be concluded that the AS-𝐺1 and Approx. 𝐶1 methods provide excellent stress
fields. The D-Patch also provides good stress fields, but inaccuracies are found
around the EVs, possibly because of the singularity close to the EV. The Almost-
𝐶1 method is considered inaccurate for stress analysis because of a lack of higher-
degree generalisations. Lastly, comparison with penalty methods shows that the un-
structured spline constructions generally provide a robust parameter-free approach
for coupling, whereas the penalty method requires careful selection of the penalty
parameter.

Overall, our findings suggest that the Almost-𝐶1 and D-Patch are generally easier to con-
struct, but for certain problems, they have limited accuracy. On the other hand, the AS-𝐺1
or Approx. 𝐶1 discretisations require more pre-processing efforts but provide optimal con-
vergence, hence accuracy. This, however, depends on the input geometry: generic quad-
meshes might require more pre-processing efforts than 𝐶1-matching parameterisations.
Lastly, the results provided in this section have shown that strong coupling methods have
certain advantages over weak methods and therefore provide an interesting alternative.

7.5 Conclusions and Future Work
This chapter provides a qualitative and quantitative comparison of unstructured spline
constructions for smooth multi-patches in isogeometric analysis. The general advantage
of unstructured spline constructions over trimming or variational couplingmethods is that
they are parameter-free, do not require specialised solvers, and are typically constructed
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once in a shape optimisation workflow. The goal of this chapter is to compare the analysis-
suitable 𝐺1 (AS-𝐺1), the approximate 𝐶1 (Approx. 𝐶1), the degenerate patches (D-Patch),
and the Almost-𝐶1 constructions with respect to qualitative aspects (i.e., constraints for
application) and quantitative aspects (i.e., numerical performance).

From the qualitative analysis, it followed that each method required a different set of
constraints to be satisfied before the constructions could be applied, see figure 7.7 and ta-
ble 7.1. Degree and regularity constraints can be satisfied by knot insertion routines or re-
fitting, which are relatively straight-forward. The constraint on analysis-suitability for the
AS-𝐺1 and the constraint on 𝐺2 continuity for the Approx. 𝐶1 method require dedicated
reparametrisation routines, such as the one presented by [304]. The fact that D-Patches
are restricted to geometries without boundary extraordinary vertices requires redefinition
of the quadrilateral mesh. Lastly, the fact that the Almost-𝐶1 method is only defined for
bi-quadratic bases (𝑝 = 2) restricts the inter-element continuity to𝐶1 through thewhole do-
main. Depending on the application and the availability of existing routines in software,
different unstructured spline constructions are favourable, depending on the geometric
flexibility or desired degree and regularity.

From the quantitative analysis, some conclusions can be drawn on the considered un-
structured spline constructions and between unstructured spline constructions compared
to variational methods such as Nitsche’s method or a penalty method. From the analy-
sis, it was in general observed that depending on the problem type, the different methods
have their advantages and disadvantages. Firstly, simple biharmonic equations (see sec-
tion 7.4.1) and linear shells (see section 7.4.2) provided good results for all methods. How-
ever, the AS-𝐺1 and Approx. 𝐶1 methods showed slow convergence for the double-curved
shell and the D-patch suffered from ill-conditioning for fine meshes. The Almost-𝐶1 pro-
vided good results in general, however it is only applicable on bi-quadratic splines. Sec-
ondly, all methods showed superiority over Nitsche’s method for the computation of an
eigenvalue spectrum for plate vibrations (see section 7.4.3) and no significant differences
between the unstructured spline constructions have been observed. Thirdly, the D-Patch
and Almost-𝐶1 showed straight-forward applicability on the problem of a complex geom-
etry (see section 7.4.4), whereas the analysis-suitability requirement of the AS-𝐺1 method
and the smoothness requirement of the Approx. 𝐶1 method are non-trivial to satisfy on
off-the-shelf industrial geometries.

For the penalty method, no suitable penalty parameter was found, and probably opti-
mal penalty parameters should be chosen per interface rather than globally. Lastly, the
AS-𝐺1 and Approx. 𝐶1 methods provided superior results for stress reconstruction, where
the D-Patch suffered around the EVs due to its singular parameterization and the Almost-
𝐶1 method provided bad results due to a lack of higher degrees.

In conclusion, both comparisons give an overview of the applicability of the methods
with respect to the requirements needed to construct them, on the notions of nestedness
and in general on the performance of the methods. Overall, it can be concluded from both
analyses that among the compared methods, there is no general best construction. More
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precisely, the quantitative analysis shows that different methods perform differently in
different applications, given that they can be constructed. Furthermore, with the back-
grounds and properties provided in the qualitative analysis section, we hope that the
present chapter provides valuable insights for application of the considered methods to
multi-patch problems.

In addition, the comparisons in the present chapter give directions for the improve-
ments of the considered methods. For the AS-𝐺1 and Approx. 𝐶1 methods, restrictions on
geometry and parameterization are a bottleneck in the industrial applications. Therefore,
it is recommended to expand the applicability of these methods by developing dedicated
geometric pre-processing routines. For the D-Patch construction, the limitation of the
construction of the basis near 𝜈 > 3 boundary EVs calls for the development of routines
to eliminate these EVs in quadrilateral multi-patches, as discussed in the qualitative com-
parison. Furthermore, the example of the bi-harmonic equation has shown that the D-
Patch can suffer from ill-conditioned system, hence development of pre-conditioners for
D-Patch constructions is advised. Lastly, although the Almost-𝐶1 resolves the downsides
of the D-Patch construction, its restriction on the degree of the spline-space is a major
disadvantage when plotting stress fields in shell analysis. Therefore, for the Almost-𝐶1
construction it is recommended to explore expansion to higher degrees.

7.A Result Reproduction
For the sake of reproducibility of the results in this chapter, this appendix provides brief
instructions on the use of the software developed along with this thesis. The full software
is available as part of the Geometry + Simulation Modules. For more detail on the contri-
butions to this software library, and its installation, the reader is referred to chapter 8.

Table 7.4 provides per figure in this chapter the name of the file to run along with the
arguments to be passed to obtain these figures.
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Table 7.4: File name and run arguments required for the reproducibility of the figures in this chapter. Argu-
ments with a single dash (-) require an argument while double-dashed arguments (--) are switches. See chap-
ter 8 for more detail about the software and installation instructions. All executables in this table are from the
gsUnstructuredSplines module, and the path to the XML files mentioned is gsUnstructuredSplines/filedata/.

Figure Run File
Arg. Description Values

Figure 7.9 biharmonic_planar_example
-m Method to use 1: D-Patch, 2: Approx. 𝐶1,

3: AS-𝐺1, 4: Almost-𝐶1,
5: Nitsche

-p Degree 2 or 3
-s Regularity 1 or 2
-r Number of uniform refinement loops 5
-B 𝛽 value for D-Patch 0.4 or 1.2
-y Nitsche parameter 1e2
-f Geometry file planar/6p_square_linear.xml

Figure 7.12 kirchhoff-Love_multipatch_example
Figure 7.13
Figure 7.17

-m Method to use 1: D-Patch, 2: Approx. 𝐶1,
3: AS-𝐺1, 4: Almost-𝐶1

-p Degree 2 or 3
-s Regularity 1 or 2
-r Number of uniform refinement loops 6
-G Geometry file surfaces/shell/...

6p_hyperboloid.xml
6p_paraboloid2.xml

-B Problem definition file pde/shell/...
6p_hyperboloid_bvp.xml
6p_paraboloid2_bvp.xml

--stress Plot stresses

kirchhoff-Love_weak_multipatch_example
-s,-r,
-G, -B

Same as above

-d Penalty parameter 1e0, 1e1, 1e2

Figure 7.14 biharmonic_planar_eigenvalue_example
-m Method to use 1: D-Patch, 2: Approx. 𝐶1,

3: AS-𝐺1, 4: Almost-𝐶1,
5: Nitsche

-p Degree 2 or 3
-s Regularity 1 or 2
-r Number of uniform refinements 3: 𝑝 = 3,𝑠 = 1

4: 𝑝 = 2,𝑠 = 1 and 𝑝 = 3,𝑠 = 2
-y Nitsche parameter 1e4, 1e5, 1e6
-f Geometry file planar/6p_square_linear.xml

Figure 7.16 kirchhoff-Love_multipatch_vibration_XML_example
Table 7.3 -G Geometry file

surfaces/neon/dpatch_p2_s1_r1_geom.xml
surfaces/neon/dpatch_p2_s1_r2_geom.xml ...
surfaces/neon/almostC1_p2_s1_r1_geom.xml
surfaces/neon/almostC1_p2_s1_r2_geom.xml ...

-b Basis file
surfaces/neon/dpatch_p2_s1_r1_basis.xml
surfaces/neon/dpatch_p2_s1_r2_basis.xml ...
surfaces/neon/almostC1_p2_s1_r1_basis.xml
surfaces/neon/almostC1_p2_s1_r2_basis.xml ...

-B Problem definition file pde/shell/car_bvp.xml
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8
Isogeometric Structural Analysis in

G+Smo
The last chapter of the core of this dissertation provides background on the implementation of
the methods developed in chapters 3 to 7, aiming for reproducibility of the results presented
in this dissertation as well as facilitating future developments on the topics presented herein.
The methods presented in this dissertation are all implemented in the open-source Geometry +
Simulation modules (G+Smo ), written in C++ with Python bindings. For detailed information
on classes and functions implemented in G+Smo , the reader is referred to the documentation.
Instead, this chapter provides a high-level overview of three new modules in G+Smo : a module
for Kirchhoff–Love shells, a module for structural analysis, and a module for unstructured
spline constructions. As motivated in this chapter, the modules are implemented with the
aim of being compatible with future developments. For example, by providing base imple-
mentations of material laws, by using black-box functions for the structural analysis module,
or by providing a standardised approach for the implementation of unstructured spline con-
structions, The high-level overview that is given for each module relates scientific literature
and mathematical formulations to the classes implemented in the novel modules, and it elabo-
rates on the reasoning behind the design of the modules. Through several examples with code
snippets, simple routines are highlighted to illustrate how one can interact with the off-the-
shelf routines provided within the modules. Overall, this chapter demonstrates that the new
modules contribute to a versatile ecosystem for the modelling of multi-patch shell problems
through fast off-the-shelf solvers with a simple interface, designed to be extended in future
research. If necessary, the reader is referred to sections 2.2 and 2.4 for background information
related to isogeometric analysis and numerical structural analysis.

This chapter will be extended with more content out of the scope of this dissertation before submission.
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8.1 Introduction
With the advent of Isogeometric Analysis [268], the fields of computer-aided design (CAD)
and computer-aided engineering (CAE) slowly unify. By sharing the same mathematical
foundation based on splines, highly smooth bases are introduced in classic Galerkin frame-
works in CAE, and concepts like analysis suitability, water tightness, and de-featuring be-
come important topics in the CAD community, supporting better analyses [36, 76, 77, 106].
Since its introduction, many developments have occurred within the isogeometric analy-
sis paradigm, providing a viable alternative to Finite Element Analysis (FEA) in the engi-
neering discipline. With the aim of unifying the CAD and CAE pipelines, IGA substan-
tially influences both communities. For example, new spline constructions with refine-
ment properties suitable for CAE have been developed [149, 158, 202, 203]. In addition,
mathematical analysis of the properties of various existing spline constructions and their
influence on CAE have been assessed [78]. On the other hand, the application of IGA
to computational mechanics has increased the interest in problems with high continuity
requirements, such as phase-field modelling [446, 447], as well as shape-optimisation prob-
lems benefiting from the smooth and local geometric parametrisation of spline geometries,
e.g., for patient-specific heart valve design [646].

With the increasing complexity of problems solved with isogeometric analysis, the
demand for versatile software libraries increases. Since these software libraries operate
in the CAD and CAE domains, advanced geometric and physical modelling capabilities
are essential in performing state-of-the-art simulations. Since the advent of IGA in 2005,
several software libraries have been developed, ranging from commercial closed-source
libraries and free open-source libraries to in-house codes. In the following, an exhaustive
yet incomplete overview of publicly available (closed-source and open-source) software
libraries with IGA features is presented. On the one hand, IGA software libraries are
based on existing FEA libraries that have been extended with IGA capabilities, such as
the commercial software LS-DYNA [227] with the ANSA pre-processor [336] or the open-
source libraries Kratos multi-physics [130, 187] (C++), PetIGA (built on Petc in C++) [131],
MFEM (C++)[9] and tIGAr (built on FEniCS) (Python) [296]. On the other hand, general-
purpose IGA libraries have been presented, such as the open-source Nutils (Python) [667],
GeoPDEs (MATLAB/Octave) [576], the Geometry + SimulationModules (G+Smo , C++with
Python bindings) [294, 376] and PSYDAC (Python) [216] for general problems, and Bembel
(C++) [159] for BEM-IGA, YETI (Python) [174] for structural optimisation and the closed-
source software developed by Coreform LLC. In general, the FEA-based libraries are exten-
sive libraries with large communities and heavily optimised routines (for FEA), whereas
the IGA libraries have a much lower technology readiness level and emerge mainly from
academic research projects.

The aim of this chapter is to provide an overview of implementation aspects and repro-
ducibility of previously published results [182, 584–589, 618, 619] through an open-source
code for multi-patch shell structural analysis using IGA. The software is provided as mod-
ules within the library of the Geometry + SimulationModules (G+Smo ), the latter providing
basic routines for geometric modelling and isogeometric system assembly. In particular,
this chapter describes amodule for Kirchhoff–Love shell analysis including hyperelasticity
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[587], a hyperelastic tension-field-based membrane model [585], as well as error estima-
tion and adaptivity [586]. This gsKLShell module can be used as an off-the-shelf solver
that does not require the user to implement PDEsmanually. For unstructured spline-based
multi-patch modelling, this chapter presents the gsUnstructuredSpline module, which
has recently been used to provide a thorough comparison of unstructured spline construc-
tions for isogeometric analysis [181, 182, 589, 618, 619]. Lastly, this chapter elaborates on
a module for structural analysis in G+Smo named gsStructuralAnalysis, which includes
the novel Adaptive Parallel Arc-Length Method, presented in [584]. Most of the features
presented in the present chapter are off-the-shelf high-fidelity routines, aiming to be used
in engineering applications. The goal of this chapter goal is to provide a versatile soft-
ware architecture for the IGA paradigm and demonstrate that demanding problems such
as shell analysis can be solved with higher-order IGA methods, both efficiently and with
superior quality in the numerical results.

In the remainder of this chapter, the design of the modules for shell and structural
analysis in G+Smo are discussed. In section 8.2, an overview of G+Smo is given to support
the novel modules presented in this chapter. Section 8.3 elaborates on the shell assembler
in particular, describing how the isogeometric Kirchhoff–Love shell formulation is imple-
mented into the module. Section 8.4 describes the mathematical details behind different
structural analysis routines and highlights the features of the implemented module. Sec-
tion 8.5 elaborates on different unstructured spline constructions for multi-patch analysis
in G+Smo . In section 8.6, results for different benchmark problems are provided. Some
of these results are adopted from previous publications, but in this chapter, the aim is to
elaborate on the model features behind them. Lastly, section 8.7 provides a concluding
summary.

8.2 The Geometry + Simulation Modules
Since this chapter presents three novel modules for the Geometry + Simulation Modules
library (G+Smo ), a brief overview of G+Smo is provided here. The reader is referred to sec-
tion 8.A for download and installation instructions. G+Smo is a header-only C++ library
dedicated to isogeometric analysis. Being a collection of different modules, G+Smo is a ver-
satile library for both geometric modelling and isogeometric analysis, based purely on the
mathematical foundations of splinemodelling. Leaving an extensive overview of G+Smo for
another publication, this chapter focusses on the relevant features of G+Smo for the multi-
patch shell analysis modules presented later (see sections 8.3 to 8.5).

8.2.1 Geometric Modelling
Geometric modelling in G+Smo can be performed on a wide range of spline bases and corre-
sponding geometries. This flexibility in spline modelling is due to the fact that any basis in
G+Smo inherits from gsBasis, for example tensor B-spline basis (gsTensorBSplineBasis),
their NURBS counterpart (gsTensorNurbsBasis), or (Truncated) Hierarchical B-splines, or
(T)HB splines [202, 203], (gsTHBSplineBasis and gsHBSplineBasis). These abstract basis
objects can be collected in a gsMultiBasis to perform analysis on complex topologies. Sim-
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ilarly, the gsGeometry is an abstract definition of the geometric counterparts of the imple-
mented bases in G+Smo , and the gsMultiPatch provides a container for them. The gsBasis
and gsGeometry, gsMultiBasis and gsMultiPatch are widely accepted classes throughout
G+Smo , meaning that multiple basis types can be used in all implemented solvers, e.g., for
solving PDEs.

Geometric modelling in G+Smo can be used for the pre-processing of geometries and
bases for structural analysis with shells. Within G+Smo , different spline geometry can be
constructed and pre-processed in several ways. Firstly, CAD geometries can be imported
through files, e.g., through the 3dm file format used in Rhinoceros, using the openNURBS
plugin, through the IGES format, or via the Parasolid x_t. Secondly, geometries can be
imported as a mesh, e.g., using the off format, which can be transformed to a bi-linear
gsMultiPatch; see example 8.2.1. Thirdly, geometries can be imported as point clouds and
converted to splines using (adaptive) fitting routines [66]. Lastly, boundary-represented
geometries can be meshed using Coon’s patches or using optimisation or PDE-based pa-
rameterisation techniques [245, 246, 284, 287].

Example 8.2.1 (Geometry import using a mesh). This example demonstrates the import of
a mesh into G+Smo , after which it is converted to bi-linear patches. Firstly, the gsFileData
class is used to read a gsSurfMesh from an off file; see figure 8.1a for the mesh:

1 gsFileData <> fd(”car.off”);
2 gsSurfMesh HEmesh;
3 fd.getFirst <gsSurfMesh >( HEmesh);

The gsSurfMesh uses the half-edge mesh structure. Using the algorithm presented in figure 7.4
(see section 7.3 of this dissertation) [589], the half-edge mesh is converted into a smaller num-
ber of patches; see figure 8.1b.

1 gsMultiPatch <> mp = HEmesh.linear_patches ();

(a) Mesh of the geometry stored in car.off. The mesh
consists of 31086 edges, 15895 vertices, and 62172 faces.

(b) Interfaces (green) and boundaries (red) of the bi-linear
patches obtained from the mesh in (a)

Figure 8.1: Mesh (a) and patch boundaries and interfaces (b) of the side of a car, read from the file car.off. The
plots are obtained via the Paraview [177] plotting functions in G+Smo .

8.2.2 Assembly and Linear Algebra
Besides the geometric modelling capabilities of G+Smo , it features routines for the assem-
bly and solving of linear systems for isogeometric analysis. Among the assembly rou-
tines available in G+Smo is the novel gsExprAssembler, used for assembly in the gsKLShell
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module from section 8.3. This assembler allows one to assemble linear systems based on
the expressions of a weak formulation. It is shared-memory parallelised using OpenMP
and supports exception handling. Furthermore, it uses abstract classes for mathematical
functions, geometries (i.e., gsGeometry), and bases (i.e., gsBasis), such that it can assem-
ble equations on different geometry definitions (e.g., a mathematical representation of
a sphere or a THB-spline) using any available basis representation (e.g., gsBSplineBasis,
gsTHBSplineBasis) and any implemented quadrature rule (e.g., the Gauß-Lobatto or Gauß-
Legendre rules, or patch-wise quadrature [289]).

For a given linear system, G+Smo primarily uses Eigen [217] for linear algebra. For
example, the gsVector, gsMatrix, and gsSparseMatrix provide interfaces to vectors and
dense and sparse matrices. Furthermore, gsSparseSolver provides an interface to lin-
ear solvers in Eigen and third-party solvers such as Pardiso [452]. Eigenvalue problems
can be solved using the eigenvalue solvers available in Eigen, but for sparse systems,
G+Smo provides an interface to Spectra [452].

8.3 Kirchhoff–Love Shell Module
One of the novel modules presented in this chapter deals with isogeometric Kirchhoff-
Love shells, as originally presented in [319]. The module is referred to as the gsKLShell
module and is featured in recent works of the authors for (i) modelling stretch-based hyper-
elastic materials in the isogeometric Kirchhoff-Love shell framework [587], (ii) modelling
wrinkling using isogeometric tension-field theory [585], (iii) the modelling of multi-patch
shell problems using several unstructured spline constructions [182, 589], and (iv) adap-
tive isogeometric Kirchhoff-Love shell analysis with THB splines [586]. As stated in the
introduction of this chapter (section 8.1), the gsKLShellmodule is developedwithin G+Smo ,
hence using the functionalities described in section 8.2.

In this section, a brief mathematical background of the isogeometric Kirchhoff-Love
shell model is provided; see section 8.3.1. This background is provided as a reference to
show which equations are assembled into systems of equations. Thereafter, section 8.3.2
elaborates on the design of the module. Table 8.4 in section 8.C provides a list of the main
classes in the gsKLShell module.

8.3.1 Mathematical Background
The isogeometric Kirchhoff-Love shell was first presented in [319]. More details on this
shell model were later provided in [316], and various extensions of the model have been
published by other authors, e.g. stretch-based hyperelasticity for Kirchhoff–Love shells
[587] (chapter 3), implicit wrinkling modelling of hyperelastic membranes using tension
field theory [585] (chapter 4) or goal-oriented error estimators used for mesh adaptivity
[586] (chapter 5). In this section, a brief derivation of the isogeometric Kirchoff-Love shell
formulation is provided for the sake of reference, and the reader is referred to section 2.3.2
in this dissertation for a complete overview.
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The variational formulation of the isogeometric Kirchhoff-Love shell model is given
by:

𝛿𝒖𝒲 ext(𝒖,𝒗)− 𝛿𝒖𝒲 int(𝒖,𝒗) = 0, (8.1)

where 𝛿𝒖𝒲 ext(𝒖,𝒗) and 𝛿𝒖𝒲 int(𝒖,𝒗) are the variations of the external and internal virtual
work, respectively, with respect to the displacement field 𝒖 and a variation 𝒗 , and are given
in [316, 319], among others. Using a discretization of 𝒖 using B-splines, the 𝑟 th component
of the residual vector 𝑹(𝒖) is given by:

𝑅𝑟 (𝒖) = ∫Ω
𝐍(𝒖) ∶ 𝜺,𝑟 (𝒖)+𝐌(𝒖) ∶ 𝜿,𝑟 (𝒖)dΩ−∫Ω

𝒇 ⋅𝒖,𝑟 dΩ−∫𝜕Ω
𝒈 ⋅ 𝒖,𝑟 dΓ , (8.2)

where the product ∶ denotes the inner-product for second-order tensors, 𝜺 and 𝜿 , 𝐍(𝒖)
and 𝐌(𝒖) are the membrane strain, bending strain, force and bending moment tensors,
respectively; see equations (2.22) and (2.35). Taking the second variation of equation (8.1)
with respect to the displacement, the Jacobian matrix 𝐾(𝒖) is found, of which the entry
with indices 𝑟 , 𝑠 is given by:

𝐾𝑟𝑠 = ∫Ω
𝐍,𝑠(𝒖) ∶ 𝜺,𝑟 (𝒖)+𝐍(𝒖) ∶ 𝜺,𝑟𝑠(𝒖)+𝐌,𝑠(𝒖) ∶ 𝜿,𝑟 (𝒖)+𝐌(𝒖) ∶ 𝜿,𝑟𝑠(𝒖)dΩ. (8.3)

Here, subscripts 𝑟 and 𝑠 denote first variations, and 𝑟𝑠 denotes second variations of the
aforementioned tensors; see equation (2.38). For linear structural analysis, the external
force vector 𝑃 is obtained by

𝑃𝑟 = −𝑅𝑟 (0) = ∫Ω
𝒇 ⋅𝒖,𝑟 dΩ+∫𝜕Ω

𝒈 ⋅ 𝒖,𝑟 dΓ , (8.4)

and the linear stiffness matrix 𝐾𝐿 is obtained by

𝐾𝐿𝑟𝑠 = 𝐾𝑟𝑠(0) = ∫Ω
𝐍,𝑠(0) ∶ 𝜺,𝑟 (0)+𝐌,𝑠(0) ∶ 𝜿,𝑟 (0)dΩ. (8.5)

For quasi-static and dynamic analyses, the external force vector and residual contain an
extra parameter. In particular, quasi-static analysis involves the analysis of the prob-
lem with respect to a load scaled with load magnification factor 𝜆, i.e., 𝒇 ≡ 𝜆𝒇 or 𝒈 ≡ 𝜆𝒈 ,
yielding 𝑹(𝒖,𝜆). For dynamic loading, the loads can be time-dependent, i.e., 𝒇 ≡ 𝒇 (𝑡) or
𝒈 ≡ 𝒈(𝑡), yielding 𝑹(𝒖, 𝑡). Furthermore, neglecting rotational inertia, the mass matrix 𝑀
for a Kirchhoff-Love shell with constant density 𝜌 and thickness 𝑡 is:

𝑀𝑟𝑠 = 𝜌𝑡 ∫Ω
𝑢,𝑟𝑢,𝑠 dΩ. (8.6)

8.3.2 Implementation
The implementation of the isogeometric Kirchhoff-Love shell model is done in the gsKLShell
module in G+Smo . The module consists of several classes, of which the most important
are highlighted in table 8.4; for a complete overview, the reader is referred to the docu-
mentation of G+Smo . In general, the module is designed so that it is fast, versatile, and
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forward-compatible.

Firstly, the gsThinShellAssembler is designed in such a way that the constitutive
law is decoupled from the gsThinShellAssembler. The constitutive law, provided by
the gsMaterialMatrixBase and its derived classes, operates as a black box within the
gsThinShellAssembler. As a consequence, constitutive models can be developed as a
family of models (i.e., like the gsBasis-family), providing forward compatibility with user-
defined or new developments in constitutive models.

Secondly, the gsThinShellAssembler uses the gsExprAssembler for matrix assembly,
providing flexibility with respect to the basis and geometry types, as well as the quadra-
ture rules. This provides versatility in the basis and geometry types that can be used to
assemble the KL shell (e.g., THB splines); it uses optimised parallel routines and patch
rules from the gsExprAssembler; and it provides forward compatibility with respect to
any future development that will be made to improve the gsExprAssembler. In addition,
since all operations in the gsThinShellAssembler rely on generic gsBasis and gsGeometry
classes, it is straightforward to apply the gsThinShellAssembler on geometries from other
file types such as IGES or 3dm.

Lastly, all functionality of the gsKLShell module is binded to Python, meaning that
the functionalities are not only available inside C++ but can also be called in Python. As it
concerns bindings, the performance of the routines called in Python is similar to the C++
performance.

Example 8.3.1 (Non-linear analysis using Kirchhoff-Love shells). To show the use of the
gsThinShellAssembler and the gsMaterialMatrix, an example code is provided. It is as-
sumed that the geometry (mp), the basis (basis), the boundary conditions (bcs), the body
force (force), the optional point loads (pointLoads), and the material parameters (E, nu, and
rho) are provided. Then, the gsThinShellAssembler and the gsMaterialMatrix are simply
constructed as:

1 // Provided mp , basis , bcs , force , pointLoads , E, nu , rho
2 gsMaterialMatrixLinear <3,real_t > materialMatrix(mp,thickness ,E,nu ,rho)
3 gsThinShellAssembler <3,real_t ,true > assembler(mp,basis ,bcs ,force ,materialMatrix);
4 assembler.addPointLoads(pointLoads);

Using the assembler, a linear system can be assembled using assemble(), and it can be
solved using sparse linear solvers to obtain the linear solution vector, solution. Then, the Ja-
cobian matrix and the residual vector are obtained by using assembleMatrix(solution) and
assembleVector(solution), respectively, which can be used in Newton-Raphson iterations
(see equation (8.7)) as shown below.

1 assembler.assemble (); // Assembles equation (8.5) and equation (8.4)
2
3 gsSparseSolver <real_t >::LU solver(assembler.matrix ());
4
5 // Solve the linear static problem (equation (8.7))
6 gsVector <real_t > solution = solver.solve(assembler.rhs());
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7 // Solve the non -linear static problem (equation (8.7))
8 for (index_t it = 0; it!=10; it++)
9 {

10 assembler.assembleMatrix(solution); // Assembles equation (8.3)
11 assembler.assembleVector(solution); // Assembles equation (8.2)
12 solver.compute(assembler.matrix ()); // Factorises the matrix
13 solution += solver.solve(assembler.rhs()); // Computes the update
14 }

Using solution, a gsMultiPatch of the deformed shell can be constructed for post-processing:

15 gsMultiPatch <> mp_def = assembler.constructSolution(solution);

8.4 Structural Analysis Module
The gsThinShellAssembler from the gsKLShell module, see section 8.3, can provide ma-
trices and vectors resolving Kirchhoff-Love shell mechanics in isogeometric analysis. For
different structural analysis applications, these matrices and vectors are used in a differ-
ent way, depending on the type of analysis that is solved. For example, the analysis of
eigenfrequencies of a structure requires modal analysis, and the analysis of structural sta-
bility requires linear buckling or quasi-static analysis. The gsStructuralAnalysismodule
implements routines for structural analysis in G+Smo . The main purpose of the module is
to provide a broad range of structural analysis routines that can be reused in several ap-
plications. Moreover, the module is also home to the novel Adaptive Paralllel Arc-Length
Method (APALM), as published in [584].

In this section, a brief mathematical background of different structural analysis rou-
tines is provided in section 8.4.1, for reference in later presented functions. Thereafter,
section 8.4.2 elaborates on the design of the gsStructuralAnalysis module in G+Smo . In
general, different structural analyses require different types of operators, for example,
the linear stiffness matrix 𝐾 or the force residual vector 𝑹(𝒖), depending on the discrete
displacements 𝒖. Table 8.1 lists the discrete operators relevant in the structural analysis
module, together with their type and a description. As will be explained in section 8.4.2,
the code is designed in such a way that the operators are independent of the assemblers or
discretisation method, such that the gsStructuralAnalysis module can be used with the
gsKLShell module for Kirchhoff-Love shells, but also with the gsElasticity module for
solids or with othermodules providing discrete operators. Table 8.5 in section 8.C provides
an overview of the most important classes in the gsStructuralAnalysis module.

8.4.1 Mathematical Background
A structural analysis problem typically involves a number of different operators providing
matrices or vectors to construct a system to solve. As shown in section 8.3.1, the residual
vector (equation (8.2)), the Jacobian (equation (8.3)), and the linearized Jacobian and force
vector (equation (8.5)) can, for example, be derived. More precisely, the different linear op-
erators that are required for performing the structural analyses described in the remainder
of this section are given in table 8.1. This section provides a concise overview of the math-
ematics behind the structural analysis solvers implemented in the gsStructuralAnalysis
module. For a complete overview, the reader is referred to section 2.4 of this dissertation,
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Table 8.1: Operators for structural analysis, with their corresponding types in G+Smo and a description linking
the operators to the mathematical theory for shells, see section 8.3.

Operator Type Description

𝑷 Force_t The vector of external forces, see equation (8.4).

𝑹(𝒖)
𝑹(𝒖,𝜆)

Residual_t
ALResidual_t

The vector of residual forces, depending on the discrete displacement vec-
tor 𝒖 and optionally depending on the load factor 𝜆, see equation (8.2).

𝐾𝐿 Matrix_t The linear stiffness matrix, see equation (8.5).

𝑀 Matrix_t The mass matrix, see equation (8.6).

𝐾(𝒖)
𝐾(𝒖,Δ𝒖)

Jacobian_t
dJacobian_t

The Jacobian matrix, depending on the discrete displacement vector 𝒖,
see equation (8.3), and optionally on the displacement vector increment
Δ𝒖 for the Mixed Integration Point (MIP) method [341].

more precisely to section 2.4.1 for static analysis, to section 2.4.2 for modal analysis, to
section 2.4.3 for buckling analysis and to to section 2.4.4 for post-buckling analysis.

Static Analysis
For (non-linear) static analysis, a time-independent boundary value problemwith constant
load magnitudes is solved. The most common approach is to solve the residual equation,
i.e., the variational formulation from equation (8.1), using the Newton-Raphson method.
This requires the discrete residual and the Jacobian of the system, such that the displace-
ments 𝒖 are found incrementally by:

𝐾(𝒖𝑖)Δ𝒖 = −𝑹(𝒖𝑖), 𝒖𝑖+1 = 𝒖𝑖 +Δ𝒖, 𝑖 = 0,1, ... (8.7)

Here, 𝒖𝑖 is the solution in iteration 𝑖, and Δ𝒖 is the solution increment. The initial solution
𝒖0 can be initialised by solving linear static analysis:

𝐾𝐿𝒖 = 𝑷, (8.8)

where 𝐾𝐿 = 𝐾(0) and 𝑷 is the external load vector. The Newton-Raphson method is a
well-known procedure to solve non-linear systems of equations. Although it requires the
assembly of the Jacobianmatrix and solving a linear system of equations in every iteration,
it converges quadratically.

Alternative to the Newton-Raphson method, the Dynamic Relaxation method [419–
421] provides an explicit method for the computation of static problems with slow conver-
gence but low costs per iteration. It solves the structural dynamics equation by expanding
the accelerations using finite differences and mass-proportional damping:

̇𝒖𝑡+Δ𝑡/2 =
(2− 𝑐Δ𝑡)
(2+ 𝑐Δ𝑡) ̇𝒖𝑡−Δ𝑡/2 +

2Δ𝑡
(2+ 𝑐Δ𝑡)𝑀

−1𝑹(𝒖𝑡 ). (8.9)

Where 𝑀 is the mass matrix and 𝑐 is the scaling coefficient of the proportional damping.
Initialising the initial velocity with the zero-vector 𝒖0 = 0 and using central differences on
the velocity gives the update of the displacement:

𝒖𝑡+Δ𝑡 = 𝒖𝑡 +Δ𝑡 ̇𝒖𝑡+Δ𝑡/2. (8.10)
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The mass and damping matrices are defined artificially, for example, using a scaled
lumped mass matrix and a mass-proportional damping [32, 33, 566], introducing two pa-
rameters to the solver. Alternatively, the damping matrix can be omitted, and kinetic
damping can be used [32, 33, 128, 508]. In this case, the kinetic energy is computed in
each iteration, and when a peak occurs, the velocities are set to zero, and the iterations
are restarted using the displacement vector 𝒖𝑡+Δ𝑡 and the velocity vector ̇𝒖𝑡+Δ𝑡/2. After
the peak, the displacements at the peak 𝒖𝑡⋆ can be computed, along with the updated
displacements and velocities after the peak [32]:

𝒖𝑡⋆ = 𝒖𝑡+Δ𝑡 −
3
2 ̇𝒖𝑡+Δ𝑡/2 +

Δ𝑡
2 𝑀−1𝑹(𝒖𝑡 ), ̇𝒖𝒖𝑡⋆+Δ𝑡/2 =

Δ𝑡
2 𝑀−1𝑹(𝒖𝑡⋆ .) (8.11)

Modal Analysis
Modal analysis provides the eigenfrequencies and eigenmodes of a structure in free vibra-
tion. Starting from the structural dynamics equation, assuming no damping and a har-
monic solution 𝒖(𝑡) = 𝒖𝐴𝑒𝑖𝜔𝑡 , the structural dynamics equations simplify to a generalised
eigenvalue problem:

𝜔2𝑀𝝓 = 𝐾𝝓 (8.12)

With 𝜔 and 𝝓 the eigenfrequency and modeshape, respectively. Given 𝑀 and 𝐾𝐿 as dis-
crete linear operators with 𝑁 degrees of freedom, the solution to equation (8.12) consists
of 𝑁 eigenpairs (𝜔𝑘 ,𝝓𝑘). For large 𝑁 , 𝐾𝐿 and 𝑀 are sparse systems, and methods like
the Shifted Block Lanczos Algorithm [212] can be used to find eigenpairs from a sparse
general eigenvalue problem within a range.

Linear Buckling Analysis
Linear buckling analysis aims to find the critical load in a certain load configuration. Math-
ematically, this means that one needs to find the point where the stability of the structure
changes, coinciding with the solution 𝒖 for which det (𝐾(𝒖)) = 0. In brief, linear buckling
analysis requires a linear static solution 𝒖𝐿 of the problem 𝐾𝐿𝒖𝐿 = 𝑷 in order to solve the
following eigenvalue problem:

𝐾𝐿𝝓𝑘 = 𝜆𝑘(𝐾(𝒖𝐿) −𝐾𝐿)𝝓𝑘 . (8.13)

Here, the sub-script ⋅𝐿 is used to emphasise the linear stiffness matrix𝐾𝐿, and the eigenpair
(𝜆𝑘 ,𝝓𝑘) consists of the load magnification factor 𝜆𝑘 and the corresponding mode shape
𝝓𝑘 for the 𝑘th buckling mode, 𝑘 = 1,…,𝑁 for a system with 𝑁 degrees of freedom. For
more information regarding buckling analysis, the reader is referred to [70] among other
references.

Post-Buckling Analysis
Post-buckling analysis involves the quasi-static analysis of a problemwith time-independent
but varying loads. The goal of quasi-static analysis is to solve 𝑹(𝒖,𝜆) = 0, forming a so-
called equilibrium path in the𝒘 = (𝜆,𝒖)-space. Instead of varying 𝜆 (load-control) or parts
of 𝒖 (displacement-control), arc-length methods find the solution to 𝑹(𝒖,𝜆) = 0 by varying
𝒖 and 𝜆 simultaneously, providing a method that allows to find paths with snap-through
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behaviour. Given 𝑁 degrees of freedom, arc-length methods solve a system of 𝑁 +1 equa-
tions iteratively by adding the constraint equation 𝑓 (Δ𝒖,Δ𝜆) = 0 to the incremental so-
lution Δ𝒘 = (Δ𝒖,Δ𝜆). For example, the constraint equation corresponding to Crisfield’s
[124] method is:

𝑓 (Δ𝒖,Δ𝜆) = Δ𝒖⊤Δ𝒖+Δ𝜆2𝑷⊤𝑷 −Δℓ2 = 0 (8.14)

Crisfield’s method requires solving a quadratic equation, and therefore two solutions are
typically found. In [588], a brief summary of techniques for robust arc-length analysis
using Crisfield’s method is provided, e.g., the handling of complex roots.
In case a singular point is detected, e.g., by monitoring the sign of the determinant of
the Jacobian at every solution point, the singular point can be computed by solving the
following system of equations [633]:

[
𝑹(𝒖,𝜆)
𝐾(𝒖)𝝓
𝑙(𝝓)

] = 0. (8.15)

Here, the first equation consists of the discrete residual of the system (see equation (8.2)),
and the second equation implies finding the singular point by using the equivalence det𝐾(𝒖) =
0 ⟺ 𝐾(𝒖)𝝓 = 0 for eigenvector 𝝓, normalised using the condition 𝑙(𝝓) = ‖𝝓‖ − 1 = 0.
Since the solution at the singular point is the buckling mode shape, this so-called extended
arc-length method can be used to compute post-buckling simulations without a priori per-
turbation of the solution to switch branches described in [588].

8.4.2 Implementation
As mentioned in the beginning of this section 8.4, the gsStructuralAnalysis module is
implemented in a way such that it is independent of the discretisation method. In other
words, the gsStructuralAnalysis module requires the user to provide small interfaces to
their discretisation methods, which will be used inside the module for the required com-
putations. These discrete operators, summarised in table 8.1, can be used in the solvers
provided in the gsStructuralAnalysismodule, as listed in table 8.5. Furthermore, all rou-
tines in the module support exception handling, such that assembly errors or other errors
can be passed robustly.

The operators listed in table 8.1, e.g., ALResidual_t, are used in different solvers through-
out the gsStructuralAnalysis module and have different corresponding C++ types. The
types Force_t and Matrix_t are straightforward, since they correspond to gsVector<T>
and gsMatrix<T>. However, the other types require function arguments, e.g., the displace-
ment vector 𝒖 or the load magnification factor 𝜆, and are therefore passed using functions.
For example, the arc-length residual 𝑹(𝒖,𝜆) or the Jacobian 𝐾(𝒖) have the following types
(defined in gsStructuralAnalysisOps.h):

1 typedef std:: function < bool ( gsVector <T> const &, T, gsVector <T> & ) > ALResidual_t;
2 typedef std:: function < bool ( gsVector <T> const &, gsSparseMatrix <T> & ) > Jacobian_t;
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These definitions show that ALResidual_t is a function that returns a boolean (true if
the assembly is successful, bool) and takes the vector of displacments (𝒖, gsVector<T>
const &), a real number for the load magnification factor (𝜆, T), and in-place the resid-
ual vector (𝑹(𝒖,𝜆), gsVector<T> &) as input arguments. Similarly, the type Jacobian_t
is a function returning a boolean for successful assembly that takes the vector of dis-
placements (𝒖, gsVector<T> const &) and returns the Jacobian matrix in-place (𝐾(𝒖),
gsSparseMatrix<T> &). For the other operators with function arguments in table 8.1, the
definitions work in a similar way. Eventually, the definition of an operator depends on
the interface with the discretisation method. In example 8.4.1, an example is provided for
the operator definitions using the gsThinShellAssembler to initialise the gsStaticNewton
solver.

Example 8.4.1 (Linear operators for a non-linear static analysis using Kirchhoff-Love
shells). When using the gsThinShellAssembler from the gsKLShellmodule, see section 8.3,
the linear stiffness matrix 𝐾 and the external force vector 𝑷 are simply assembled by call-
ing assemble() and obtained by calling matrix() and rhs(), respectively. As shown in
example 8.3.1, the Jacobian and residual are assembled using assembleMatrix(solution)
and assembleVector(solution), respectively. Using this syntax, the function ALResidual
of type ALResidual_t can be defined as follows:

1 gsStructuralAnalysisOps <T>:: ALResidual_t ALResidual;
2 ALResidual = [&assembler ,&Force](gsVector <T> const &u, T lam , gsVector <T> & result)
3 {
4 // Assemble eq. 8.2
5 ThinShellAssemblerStatus status = assembler ->assembleVector(u);
6 result = Force - lam * Force - assembler ->rhs();
7 return status == ThinShellAssemblerStatus :: Success;
8 };

Here, it can be seen that the ThinShellAssemblerStatus returned by the assembly in the
gsThinShellAssembler is used to verify whether the assembly is successful. Furthermore,
an external force vector Force is used together with the residual 𝑹(𝒖) = 𝑭int − 𝑭ext to define
𝑹(𝒖,𝜆) = 𝑹(𝒖)+𝑭ext −𝜆𝑭ext. Similarly, the Jacobian operator can be defined as:

9 gsStructuralAnalysisOps <real_t >:: Jacobian_t Jacobian;
10 Jacobian = [& assembler ](gsVector <real_t > const &u, gsSparseMatrix <real_t > & m)
11 {
12 // Assemble eq. 8.3
13 ThinShellAssemblerStatus status = assembler ->assembleMatrix(u);
14 m = assembler ->matrix ();
15 return status == ThinShellAssemblerStatus :: Success;
16 };

The gsThinShellAssembler also provides an implementation of theMixed IntegrationMethod
(MIP) [341], which is a method to accelerate Newton iterations by decoupling the stress update
from the displacements. In this case, the Jacobian matrix is given by 𝐾(𝒖,Δ𝒖) and defined
as follows:
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17 gsStructuralAnalysisOps <real_t >:: dJacobian_t dJacobian;
18 dJacobian = [& assembler ](gsVector <real_t > const &u,
19 gsVector <real_t > const &Du,
20 gsSparseMatrix <real_t > & m)
21 {
22 ThinShellAssemblerStatus status = assembler ->assembleMatrix(u,Du);
23 m = assembler ->matrix ();
24 return status == ThinShellAssemblerStatus :: Success;
25 };

The gsStaticNewton and gsALMCrisfield solvers of the gsStructuralAnalysismodule are
compatible with the MIP method. Using the external load factor, the arc-length residual and
Jacobian operators, 𝑷 , 𝑹(𝒖,𝜆), and 𝐾(𝒖), respectively, an arc-length method can be setup. For
example, a Crisfield arc-length solver is defined as follows:

26 // Provided Force , ALResidual , Jacobian , options , dL
27 // Define a Crisfield method , with eq. 8.14
28 gsALMCrisfield <T> arcLength(Force ,ALResidual ,Jacobian);
29 // Set the length
30 arcLength.setReal(”Length”,dL);

8.5 Unstructured Splines Module
Although the Kirchhoff-Love shell implementation in the gsThinShellAssembler from
gsKLShell, see section 8.3 contains an implementation of the penalty method [238], 𝐶1
patch coupling using unstructured splines provides another possibility to model complex
geometries. In this section, the gsUnstructuredSplines module is introduced. This mod-
ule provides ready-to-use implementations to generate unstructured spline constructions
on multi-patches. Section 8.5.1 provides a brief mathematical background to explain the
idea behind the implementation presented in section 8.5.2. Table 8.6 in section 8.C gives
an overview of the most important classes of the gsUnstructuredSplines module.

The unstructured splines module is intensively used in the previous work [589], where
qualitative and quantitative comparisons are given of multiple unstructured spline rou-
tines. Furthermore, the work [378] develops a 𝐺1 construction constructed in third-party
software but imported into G+Smo as a combination of a sparse matrix and a local basis
to perform different kinds of analyses. To the best of the author’s knowledge, G+Smo has
a unique position in unstructured splines modelling, being the only open-source code
for isogeometric analysis and providing an interface for the development of unstructured
splines together with advanced implementations of existing schemes.

8.5.1 Mathematical Background
Themathematical background behind the unstructured spline module is based on the con-
cept of mapping splines defined on local patches into a global smooth space. In other
words, a globally smooth basis function 𝜑𝑘 ∈ 𝕊global can be represented by a weighted sum
of locally defined basis functions 𝜓𝑙 ∈ 𝕊local through the coefficients 𝐴𝑘𝑙 . Therefore, pro-
vided a vector of evaluations 𝜓𝑙 on a point 𝜉 located in the parametric domain of one of
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the patches, 𝝍(𝜉 ), the globally smooth basis at point 𝜉 is:

𝝋(𝜉 ) = 𝐴𝝍(𝜉 ). (8.16)

For example, for a simple one-dimensional domain with two bases separated by a 𝐶0 dis-
continuity, a 𝐶1-smooth basis over the 𝐶0 interface is constructed as shown in figure 2.8.
In higher dimensions, interface smoothing, as illustrated in figure 2.8, can be performed
to construct interface basis functions, but the construction of 𝐶1 functions over vertices
can be challenging. Examples of such constructions include the D-Patch [464, 569], the
Almost-𝐶1 construction [534], the Approximate 𝐶1 basis [618, 619], the Analysis-Suitable
𝐺1 construction [109, 181, 182], Polar spline constructions [568] and constructions based
on subdivision surfaces [30, 378].

8.5.2 Implementation
In G+Smo , unstructured splines can bemodelled using the gsMappedBasis and gsMappedSpline
classes, both providing functions to evaluate a basis or a geometry that is mapped as
a linear combination of underlying bases; see equation (8.16). The gsMappedBasis and
gsMappedSpline classes are part of G+Smo ’s core and are respectively both derived from
gsFunctionSet. This implies that both classes can be used as a basis or geometry, respec-
tively, in assembly routines, for example.

The gsUnstructuredSplines provide the implementation of the D-Patch [464, 569],
the Almost-𝐶1 construction [534], the Approximate 𝐶1 basis [618, 619], and the Analysis-
Suitable 𝐺1 construction [109, 181, 182] constructions as ready-to-use classes; see table 8.6
for an overview. In other words, provided a multi-patch geometry, these classes provide
a local basis as a gsMultiBasis and a mapping matrix gsSparseMatrix, or they directly
construct a gsMappedBasis or gsMappedSpline. Example 8.5.1 provides an example of the
construction of the Almost-𝐶1 basis and geometry.

Example 8.5.1 (Unstructured spline construction). Given the bi-linear multi-patch object
mp from example 8.2.1, knot refinement and degree elevation steps can be performed to make
the geometry suitable for the Almost-𝐶1 construction, after which this construction can be
computed:

1 mp.degreeIncrease (); // Increases the degree by 1 (default)
2 mp.uniformRefine (); // Refines the mesh by inserting 1 knot in each interval (default)
3
4 gsAlmostC1 <2,real_t > almostC1(mp);
5 almostC1.options ().setSwitch(”SharpCorners”,true); // Maintain C0 corners
6 almostC1.compute ();
7 almostC1.matrix_into(global2local);
8
9 gsMappedBasis <2,real_t > mbasis;

10 gsMappedSpline <2,real_t > mspline;
11 almostC1.globalBasis_into(mbasis);
12 almostC1.globalGeometry_into(mspline);

The resulting geometry, using the mesh from figure 8.1a in example 8.2.1, is given in fig-
ure 8.2a, with the contours of one Almost-𝐶1 basis around a valence 𝜈 = 5 extraordinary
vertex highlighted in figure 8.2b.
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(a) Geometry of the side of the car.
(b) Contour lines of an Almost-𝐶1 vertex function
around an extraordinary vertex (bottom-left of a).

Figure 8.2: The multi-patch geometry constructed using the Almost-𝐶1 method [534] (a) with a basis function
highlighted using contour lines (a). The patches are coloured randomly for the sake of referencing.

8.6 Usage Examples
To demonstrate the capabilities of the software presented in this chapter, this section
presents a number of usage examples. Most of the use cases are based on previous works,
and for physical or mathematical interpretation, the reader is referred to these works.
Instead, the usage examples are presented here with the aim of providing implementa-
tion background. Firstly, section 8.6.1 demonstrates different ways of defining materi-
als in G+Smo , and is based on [587]. Secondly, section 8.6.2 provides examples of multi-
patch shell analysis using the penalty method [238] or unstructured splines [589]. Thirdly,
section 8.6.3 demonstrates the use of arc-length methods and the Adaptive Parallel Arc-
Length Method (APALM) [584] for quasi-static analysis. Fourth, section 8.6.4 demon-
strates adaptive meshing using goal-oriented error estimators. Lastly, section 8.6.5 pro-
vides an example of the Python bindings of the gsKLShell module, applied to a shape
optimisation problem.

Throughout the usage examples, code snippets are provided to illustrate the use of
the feature presented in the example. For the sake of brevity, the following variables are
defined here and not repeated in the examples below:

• mp, mp_def: a (deformed) multi-patch geometry, using gsMultiPatch

• basis: a basis corresponding to a multi-patch, using gsMultiBasis

• bcs: a set of boundary conditions, using gsBoundaryConditions

• rho, t: the density 𝜌 and thickness 𝑡 of the shell, using gsFunctionSet

• materialMatrix: a constitutive model, using the classes in table 8.4

8.6.1 Material Modelling
One of the features of the gsKLShell module is its versatility with respect to constitutive
modelling. By decoupling the constitutive models gsMaterialMatrixBase from the kine-
matics and assembly gsThinShellAssembler, see table 8.4, different material models can
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be used with the generic shell assembler with a minimal interface. In this section, an ex-
ample of material selection is provided, after which the novel hyperelastic tension field
theory-based material model is demonstrated.

Material Specification
Consider the uniaxial tension case depicted in figure 3.1 for a membrane with geometric di-
mensions 𝐿×𝑊 ×𝑡 = 1×1×0.001[m3] andmaterial parameters defined via Lamé parameter
𝜇 = 𝐸/(2(1+𝜈)) = 1.5 ⋅ 106 [N/m2] using a Poisson’s ratio 𝜈 = 0.45 [−] such that the Young’s
modulus 𝐸 can be inferred. For a Mooney-Rivlin material, 𝜇 = 𝜇1 + 𝜇2, with 𝜇1/𝜇2 = 7. To
investigate the uniaxial tension behaviour of a material using different material laws, ma-
terial model specification of different models is necessary. In the following, a demonstra-
tion of defining different material models in different ways using the gsKLShell module
is given. The uniaxial tension example is adopted from [587], and the model parameters
are given in figure 3.1. Here, the example material definitions are given for compressible
Neo-Hookean and Mooney-Rivlin material models.

To model the material laws for the uniaxial tension case, the material classes from ta-
ble 8.4 need to be defined. As can be seen in example 8.3.1, a pointer to a material matrix,
deriving from gsMaterialMatrixBase, needs to be passed to the gsThinShellAssembler.
This can be done by explicitly constructing a material matrix and passing it into the assem-
bler, as done in example 8.3.1. Alternatively, one can use the getMaterialMatrix helper
function, for example:

1 // Provided mp , t, rho , ratio
2 // Define a MR material model with analytically implemented S and C tensors.
3 gsOptionList options;
4 options.addInt(”Material”,”3 = Mooney -Rivlin” ,3);
5 options.addInt(”Implementation”,”1 = Analytical” ,1);
6 gsConstantFunction <real_t > E(1.5e6 *2*(1+0.45) ,3); // Young ’s modulus: E=mu *2*(1+ nu)
7 gsConstantFunction <real_t > nu(0.45 ,3); // Poisson ’s ratio
8 gsConstantFunction <real_t > Ratio (7.0 ,3); // The material lives in the 3D domain
9 std::vector <gsFunctionSet <real_t > *> parameters {&E,&nu ,&Ratio};

10 gsMaterialMatrixBase <real_t > * materialMatrix =
getMaterialMatrix(mp,t,parameters ,rho ,options);

Here, the parameters object contains a list of functions defining the material properties.
These functions, aswell as the thickness t and the density rho, are passed as gsFunctionSet
pointers, meaning that they can be defined using any type of function definition in G+Smo .
This allows us to define material properties as splines, allowing optimisation of material
properties in an isogeometric setting. In the example above, the material parameters are
simply passed as gsConstantFunction objects, with the function value as the first argu-
ment and the geometric domain dimension as the second argument.

Alternative to the getMaterialMatrix routine, one can define a material matrix us-
ing G+Smo ’s XML format, providing an XML item, for example, for a compressible Neo-
Hookean material:

1 <MaterialMatrix type=”IncompressibleNH3” id=”0” TFT=”false”>
2 <Thickness >
3 <Function type=”FunctionExpr” dim=”3” index=”0”>0.0001 </Function >
4 </Thickness >
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5 <Density >
6 <Function type=”FunctionExpr” dim=”3” index=”0”>0</Function >
7 </Density >
8 <Parameters >
9 <!-- Youngs Modulus -->

10 <Function type=”FunctionExpr” dim=”3” index=”0”>1.5e6 *2*(1+0.45) </Function >
11 <-- Poisson Ratio -->
12 <Function type=”FunctionExpr” dim=”3” index=”1”>0.45</Function >
13 </Parameters >
14 </MaterialMatrix >

Using the material matrices defined above, either defined using getMaterialMatrix, con-
structed directly, or read via XML, the gsThinShellAssembler can be constructed as in
example 8.3.1, and the Residual_t and Jacobian_t operators can be defined to perform
non-linear arc-length analysis with an increasing load. The reader is referred to exam-
ple 8.4.1 for the definition of the required solver. Finally, the results presented in figure 3.2
are obtained by using the material specifications from above.

Tension Field Theory
Consider the cylinder depicted in figure 4.7, with a radius of 𝑅 = 250 [mm], length 𝐻 =
1.0 [mm], thickness 𝑡 = 0.05 [mm] and material parameters 𝐸 = 1.0 [GPa] and 𝜈 = 0.5 [−]
subject to a boundary rotation 𝜃 = 𝜋/2 [rad] and translation 𝑢𝑥 = 𝐻 . When modelling this
examplewith a shell model, the deformation pattern is composed of diagonal wrinkles over
the length of the cylinder; see figure 4.8. Since modelling the membrane wrinkles could
require a large number of elements, an alternative way of modelling this benchmark is
to model only the mid-plane of the wrinkled geometry using a modified membrane wrin-
kling model. Here, the use of the novel hyperelastic tension field theory-based model for
general hyperelastic material models [585] is demonstrated, within the gsKLShellmodule.

Tension field theory-basedmembranemodels are enabled by the gsMaterialMatrixTFT
class. This class uses tension field – fields based on principal strains and stresses – to mod-
ify the stress and material tensors 𝐒 and 𝓒 according to the modification scheme from
[401, 402] for linear elastic materials and from [585] for hyperelastic materials. For each
quadrature point, the stress and material tensors are determined by the tension field: they
are set to zero (or a small number) in the slack state, they are modified according to the
schemes in [401, 402, 585] in the wrinkled state, and they are unmodified in the taut state.

Since the gsMaterialMatrixTFT class inherits from gsMaterialMatrixBase, it can be
used in the gsThinShellAssembler like any other material model in gsKLShell. The class
gsMaterialMatrixTFT can be initialised by setting the TFT flag in the XML specification to
true, or by constructing the object as:

15 // Provided materialMatrix <d,real_t >
16 gsMaterialMatrixTFT <d,real_t ,true > materialMatrixTFT (& materialMatrix);
17 materialMatrixTFT.options ().setInt ();

Here, the template parameter d specifies the geometric dimension, either 2 or 3, and the
last template parameter specifies whether a linear modification (true) [401, 402] or a non-
linear modification (false) [585] should be used. The results in figure 4.8 are obtained by
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a two-stage static solver composed of a dynamic relaxation method followed by a Newton-
Raphson method, defined as follows:

18 // Provided F, M, K, Residual , Jacobian , alpha
19 gsStaticDR <real_t > DR(M,F,Residual);
20 DR.options ().setReal(”alpha”,alpha);
21 DR.options ().setReal(”tol” ,1e-2);
22 DR.initialize ();
23 gsStaticNewton <real_t > NR(K,F,Jacobian ,Residual);
24 NR.options ().setReal(”tol” ,1e-6);
25 NR.initialize ();
26 gsStaticComposite <real_t > solver ({&DR ,&NR});
27 solver.solve();

Here, the parameter alpha is the tuning parameter for the dynamic relaxation method.
Furthermore, the tolerances specified are the relative residual tolerances.

8.6.2 Multi-Patch Analysis
In order to model Kirchhoff-Love shell problems on complex multi-patch geometries, 𝐶1
continuity of the basis needs to be ensured on patch interfaces. To meet this continuity re-
quirement, various techniques can be used, as reviewed in [589]. Among these techniques
are the penalty coupling method for shells [238] and unstructured spline constructions. In
this section, two examples for multi-patch shell analysis are given: using penalty coupling
(section 8.6.2) and using unstructured spline constructions (section 8.6.2).

Weak Coupling
Consider the T-beam depicted in figure 8.3 fixed at its side, Γ. The beam has length
𝐿 = 10.0[m], flange width 𝑤 = 2.0[m], height ℎ = 2.0[m] and thickness 𝑡 = 0.1 [m] and is ex-
posed to a point load 𝐹 = 10.0 [N] and has material properties 𝐸 = 10.0 ⋅ 107 [Pa], 𝜈 = 0.0 [−],
modelled through a linear Saint-Venant Kirchhoff material model. The beam can be mod-
elled using a multi-patch geometry with three patches: one for the web and two for the
flange, as shown in the work by [238]. On the interface of these patches, penalty coupling
for the isogeometric Kirchhoff-Love shell can be applied to find the response of the beam.
Contrary to unstructured splines, the penalty method provides versatility in interface cou-
pling, for instance,pling patches with non-matching interfaces or patches that are joined
with 𝐶0 continuity. However, the penalty method requires a penalty coefficient, which
needs to be selected a priori.

Penalty coupling is established by adding extra energy contributions to the weak for-
mulation of the isogeometric Kirchhoff-Love shell (see [238]). The penalty method is im-
plemented using a single parameter for both rotations and displacements, according to the
work by [238]. To activate penalty coupling on selected interfaces, stored in interfaces, of
amulti-patch geometry, only the following options need to be set to the gsThinShellAssembler:

28 // Provided mp , assembler
29 std::vector <boundaryInterface > interfaces = mp.interfaces ();
30 assembler.addWeakC0(interfaces);
31 assembler.addWeakC1(interfaces);
32 assembler.initInterfaces ();
33 assembler.options ().setReal(”PenaltyIfc” ,1e3);
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Figure 8.3: Problem setup for the T-beam example,
inspired by [238].
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Figure 8.4: The rotation of the end-point of the
beam with respect to the penalty parameter 𝛼 .

Here, interfaces is a vector for storing all interfaces of the multi-patch geometry. This
vector can be modified to apply penalty coupling to a selection of the patch interfaces. Fur-
thermore, weak boundary conditions have also been implemented in the gsThinShellAssembler,
as also proposed by [238]. Finally, using the lines provided, the response of the beam can
be computed for different penalty parameters, as shown in figure 8.4.

Strong Coupling
Provided the geometry of the car from examples 8.2.1 and 8.5.1, withmatching patches. On
this geometry, an unstructured spline basis can be constructed such that 𝐶1 isogeometric
analysis can be performed. In particular, a modal analysis of this geometry is performed
to infer the eigenfrequencies of the car part. Thematerial used in this example is steel with
material parameters 𝐸 = 210 ⋅103 [MPa], 𝜈 = 0.3 [−], 𝜌 = 7850[tonnes/mm3] and a thickness
of 𝑡 = 10 [mm]. This example is inspired by [589], to which the reader is referred for a
comparison of multiple methods with respect to a commercial finite element code.

Strong coupling of multi-patches is enabled by using unstructured spline construc-
tions, enabled through the gsUnstructuredSplines module (see section 8.5). To perform
shell analysis on gsMappedBasis and gsMappedSpline, the gsThinShellAssembler is gener-
alised towork on geometries defined by arbitrary functions (i.e., inherited from gsFunctionSet),
which in turn support computation of first and second derivatives, normals, and other geo-
metric data. Moreover, the gsThinShellAssembler allows to store a gsMappedBasis object
with an underlying local basis provided as a gsMultiBasis used for quadrature definitions.
Using the mbasis and mspline defined in example 8.5.1, the gsThinShellAssembler can be
configured to use unstructured splines as follows:
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34 // Provided bases , mbasis , mspline , and assembler
35 assembler.setSpaceBasis(bases);
36 assembler.setSmoothBasis(mbasis);
37 assembler.setGeometry(mspline);

Where the objects bases, mbasis and mspline follow, for example, from the Almost-𝐶1
method [534], as demonstrated in example 8.5.1. For themodal analysis, the gsModalSolver
solver is used, compiled with Spectra. Using the shell assembler, this solver is simply set
up as:

38 // Provided assembler
39 gsSparseMatrix <real_t > K, M;
40 assembler.assemble (); // Asseble eqs. 8.5 and 8.4
41 K = assembler.matrix (); // Collect eq. 8.5
42 assembler.assembleMass (); // Assemble eq. 8.6
43 M = assembler.matrix (); // Collect eq. 8.6
44 gsModalSolver <> solver(K,M); // Define the solver
45 solver.compute (); // Compute eq. 8.12

Using this solver with the almost-𝐶1 basis, the vibration modes of the car geometry are
obtained, as presented in figure 7.16 and table 7.3. For more details, the reader is referred
to section 7.4.4.

8.6.3 Structural Stability Analysis
In order to demonstrate the gsALMBase and gsAPALM solvers from the gsStructuralAnalysis
class, two examples regarding the analysis of structural instabilities are presented. Firstly,
the set-up of an arc-length simulation with singular point computation for solving a bi-
furcation problem without imposing initial perturbations is presented. This method relies
on solving the system in equation (8.15). Thereafter, the use of the Adaptive Parallel Arc-
Length Method from [584] is presented.

Bifurcation Instabilities
Provided a rectangular membrane with length 𝐿 = 280 [mm], width 𝑊 = 140 [mm] and
thickness 𝑡 = 0.14 [mm], with material parameters 𝜇 = 𝜇1 +𝜇2 = 12.43 ⋅ 104 +31.62 ⋅ 104 [Pa]
for an incompressible Mooney-Rivlin material model (𝜈 = 0.5[−]), which is fixed on the left
end and clamped but pulled on the right end, as depicted in figure 3.11. When the load 𝑃
is increased, tension is applied, and longitudinal wrinkles will appear and disappear as the
strain 𝜀 increases. This benchmark example is based on the work of [427] and replicated
from [587]. This benchmark example can be modelled using arc-length methods with the
extended arc-length method to compute the bifurcation point; see section 8.4.1, which will
be demonstrated in the following.

Provided a gsThinShellAssembler and a gsALMCrisfield arc-length method (see ex-
ample 8.4.1), an arc-length simulation including bifurcation point detection, computation,
and branch switching is performed by:
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46 // Provided arcLength , Nsteps
47 index_t k=0;
48 while (k<Nsteps)
49 {
50 gsStatus status = arcLength.step();
51 if (status == gsStatus :: NotConverged || status == gsStatus :: AssemblyError)
52 {
53 arcLength.reduceLength (0.5); // Multiplies the current length by 0.5
54 continue;
55 }
56 arcLength.computeStability ();
57 if (arcLength.stabilityChange ()) // if true , a limit point or bifurcation point
58 { // is found
59 arcLength.computeSingularPoint (); // Compute eq. 8.15
60 arcLength.switchBranch ();
61 }
62 arcLength.resetLength ();
63 k++;
64 }

As can be seen in the code snippet above, the arc length is reduced when the step is un-
successful. Furthermore, the singular point computation is activated if the stability of
the structure changes, which is checked through internal stability computations based on
what is described in section 8.4.1. In figure 3.12a, the resulting solution of the wrinkling
benchmark is provided as the uniform meshing results. For more details, the reader is
referred to section 3.5.4 or section 5.6.6.

Limit-Point Instabilities
Provided the geometry of a snapping meta-material inspired by [455], see figure 6.12. To
model the response of this metamaterial, different strategies can be used. One can employ
displacement-controlled simulation by incrementally fixing the displacement on the top
boundary and computing the corresponding deformations in the domain. Alternatively,
one can use arc-length methods to find the snapping behaviour of the metamaterial. In
the latter case, the Adaptive Parallel Arc-Length Method can be used to speed up compu-
tations, as demonstrated in [584]. In the following, the setup of a displacement-controlled
simulation is demonstrated, followed by the setup of an arc-length method, both using the
gsStructuralAnalysis module.

Firstly, a displacement-controlled simulation can be done by incrementally increasing
the Dirichlet boundary condition on Γ2 and performing a static solve in each load step.
This routine is simplified by the gsControlDisplacement class, taking a static solver as an
input:

1 // Provided K, F, Jacobian , ALResidual , assembler , topBdr , b, W, H,
2 // probePatch , probePoint , Emax
3 gsStaticNewton <real_t > staticNR(K,F,Jacobian ,ALResidual);
4 gsControlDisplacement <real_t > control (& staticNR);
5 real_t sigma , eps;
6 gsMultiPatch <real_t > deformed , displacement;
7 while (eps <=Emax)
8 {
9 // Perform a step

10 control.step(dy);
11 // Construct the deformed geometry
12 assembler.constructSolution(U,deformed);
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13 // Compute the equivalent stress on the top boundary
14 sigma = assembler.boundaryForce(deformed ,topBdr)[1] / (b*W);
15 // Construct the displacement field
16 assembler.constructDisplacement(solVector ,displacement);
17 // Compute epsilon based on the displacement at probePatch and probePoint;
18 eps = displacement.patch(probePatch).eval(probePoint) / H;
19 }

Here, the probePoint defined on a probePatch is used to evaluate the displacement of the
top boundary for the computation of the total strain 𝜀 of the metamaterial.

Secondly, the recently developed Adaptive Parallel Arc-LengthMethod (APALM) [584]
allows to run quasi-static simulations in parallel and is implemented in gsAPALM. Since the
APALM can be implemented in a non-intrusive way and therefore can be simply wrapped
around a gsALMBase class. To keep track of the solutions, the gsAPALMData accompanies
the gsAPALM class. In G+Smo , the APALM is used as follows:

20 // Provided arcLength
21 gsAPALMData <real_t ,solution_t > apalmData;
22 const gsMpi & MPI = gsMpi::init(argc , argv);
23 gsMpiComm MPI_COMM = MPI.worldComm ();
24 gsAPALM <real_t > apalm(arcLength ,apalmData ,MPI_COMM);

Here, the second template argument of the class gsAPALMData is the way solutions are pro-
vided. Here, solution_t is std::pair<gsVector<real_t>,real_t>, where the first vector
is the discrete vector of solutions and the second is a scalar representing the load. Further-
more, it can be seen that the APALM algorithms are decoupled from the APALMdata struc-
ture. The reason for this is that the data structure in gsAPALMData could be used for other
applications beyond arc-length methods. The maximum refinement level of the APALM
routine and the tolerance are specified in the options of the data structure gsAPALMData,
since the data structure decides whether an interval should be refined or not. The num-
ber of sub-intervals per refinement is specified in the gsAPALM class, since this is the class
submitting solutions into the data structure. When the APALM is defined, the function
solve(N) can be called to perform fully parallel load-stepping using the APALM using N
steps, or the functions serialSolve(N) and parallelSolve(N) can be called to perform
serial initialisation and parallel correction, respectively, in a segregated way (see [584]).
The gsAPALM class is compatible with singular point detection and approach, as described
above.

The equilibrium paths following from the APALM and the displacement-controlled
simulation are provided in figure 6.13. For a discussion of the results, the reader is referred
to section 6.5.4.

8.6.4 Error Analysis and Adaptivity
Provided the wrinkling problem from sections 5.6.6 and 8.6.3, an adaptive meshing proce-
dure can be set up. Here, the setup of the dual-weighted residual (DWR) error estimator
for Kirchhoff-Love shells is presented, which allows for goal-oriented error estimation,
hence goal-adaptive meshing. For more details, the reader is referred to the paper [586].
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TheDWRmethod provided in the gsKLShellmodule provides error estimates in terms
of goal functionals such that adaptive meshing can be used. The use of the error estimation
routines is implemented in a straight-forward way. The DWR method requires a primal
and dual problem to be solved, defined on the basis used for analysis, 𝕊𝑝ℎ, and an enriched
basis, �̃�𝑝ℎ. Since the error estimator is defined on two spaces, the gsThinShellAssemblerDWR
class is called the regular gsThinShellAssemblerDWR, but with two bases instead of one.
The configuration of the gsThinShellAssemblerDWR works exactly the same as the config-
uration of a gsThinShellAssembler, but it adds the configuration of a goal functional via
the setGoal:

1 // Provided mp , basisL , basisH , bcs , force , materialMatrix
2 gsThinShellAssemblerDWR <d,T,bool > DWRassembler(mp,basisL ,basisH ,bcs ,force ,materialMatrix);
3 DWRassembler.setGoal(GoalFunction :: MembraneStress)

Here, the basisL and basisH are the bases 𝕊𝑝ℎ and �̃�𝑝ℎ, respectively, and the other variables
are as in example 8.3.1. In order to estimate the error using the DWR, the (non-linear)
primal problem has to be solved on 𝕊𝑝ℎ, and two linear dual problems have to be solved
on 𝕊𝑝ℎ and �̃�𝑝ℎ, respectively. The matrices and vectors for the dual problems are assembled
for the provided goal functional using assembler.assembleDualL() and can be accessed
by assembler.matrixL() and assembler.dualL() for the matrix and vector, respectively.
Since this routine is the same for all problems involving DWR error estimation, the error
estimation part has been integrated in the gsDWRHelper. Mesh adaptivity can be performed
using the gsAdaptiveMeshing class, for which the reader is referred to the documentation.
Given an arc-length method (see example 8.4.1), a gsDWRHelper, and an adaptive meshing
class, the following loop can be used to adaptively refine a snapping example:

1 // Provided DWRassembler , arcLength , mp
2 gsAdaptiveMeshing <real_t > mesher(mp);
3 gsThinShellDWRHelper <real_t > DWRhelper(DWRassembler);
4 std::vector <real_t > elErrors; // element -wise errors
5 gsVector <real_t > solutionVector;
6 gsHBoxContainer <2,real_t > markRef , markCrs; // Containers for marked elements
7 for (index_t k=0; k!= Nsteps; k++)
8 {
9 arcLength.step(); // Perform an arc -length step

10 solutionVector = arcLength.solutionU (); // Obtain the solution vector
11 DWRhelper.computeError(solutionVector); // Compute the errors (element -wise)
12 elErrors = DWRhelper.sqErrors(true); // Obtain squared errors , normalised
13 // w.r.t. the global squared error:
14 mesher.markRef_into(elErrors ,markRef); // Mark elements for refinement
15 mesher.markCrs_into(elErrors ,markRef ,markCrs); // Mark elements for coarsening ,
16 // provided markRef
17 mesher.refine(markRef); // Refine the geometry
18 mesher.unrefine(markCrs); // Unrefine the geometry
19 }

This code, which is a simplified version of the actual code used for the wrinkling exam-
ple (see benchmark_Wrinkling_DWR.cpp), can be used for any goal functional chosen in
gsThinShellAssemblerDWR and for refinement using hierarchical and truncated hierarchi-
cal B-splines, which are refined using the suitable grading algorithms from [67] by default
within the gsAdaptiveMeshing and gsHBoxContainer classes. For more information, the
reader is referred to the documentation of these classes and the corresponding examples.
In figures 5.22 and 5.23, the results of the goal-adaptive meshing simulation of the tension
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wrinkling benchmark problem are provided. For more details, the reader is referred to
section 5.6.6.

8.6.5 Python Interface
One feature of G+Smo is the fact that the classes and their functions are callable inside
Python, powered by Pybind11 [276]. This means that G+Smo routines can be used to con-
ceptualise ideas inside Python, with the speed of C++. As the classes in the gsKLShell
module provide off-the-shelf assembly of the isogeometric Kirchhoff-Love shell equations,
the Python bindings of these classes allow users to assemble shell models inside Python.
In this section, a brief example in the Python language is given to illustrate the use of
G+Smo in Python through the pygismo module. In particular, this example demonstrates
the use of the gsKLShell through pygismo to perform shape optimisation on the geometry
defined in figure 8.5a through the following optimisation problem:

⎧
⎨
⎩

min𝐵 maxΩ |𝑢𝑧 |

s.t.∫Ω
|𝑔𝛼𝛽 |dΩ = constant

(8.17)

Here, 𝐵 is the matrix of control points of the geometry and Ω is the domain. Hence, the
objective function aims to find the control points 𝐵 such that the maximum abosolute
displacement in the domain is minimised. The nonlinear constraint keeps the surface area
of Ω constant.

Firstly, a gsThinShellAssembler and a gsMaterialMatrix can be created inside Python
as follows, similar to example 8.3.1:

20 import pygismo as gs
21
22 # Define mp , basis , t, bcs , f, E, nu , pload
23 mm = gs.klshell.gsMaterialMatrixLinear3(mp,t)
24 mm.setYoungsModulus(E)
25 mm.setPoissonsRatio(nu)
26
27 assembler = gs.klshell.gsThinShellAssembler3(mp ,basis ,bcs ,f,mm)
28 assembler.setPointLoads(pload)

Given a makeGeometry function in Python, which creates a gsMultiPatch from the
design variables, an objective for computing the minimum deformation by sampling 100×
100 points in the domain is defined as follows:

29 # Computes the optimisation objective
30 def computeObjective(design):
31 mp_tmp = makeGeometry(design)
32
33 assembler.setGeometry(mp_tmp)
34 assembler.assemble ()
35 matrix = assembler.matrix ()
36 vector = assembler.rhs()
37 solution = scipy.linalg.spsolve(matrix ,vector [: ,0])
38
39 sol = assembler.constructDisplacement(solution)
40
41 nx = ny = 100
42 x = np.linspace(0, 1, nx)
43 y = np.linspace(0, 1, ny)
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44 xv, yv = np.meshgrid(x,y,indexing=’xy’)
45 pts = np.stack((xv.flatten (),yv.flatten ()))
46
47 deformation = sol.patch (0).eval(pts)
48 return np.max(np.abs(deformation [2,:]))

Furthermore, the non-linear constraint equation to keep the area of the geometry con-
stant is simply defined using the getArea() function of the gsThinShellAssembler:

49 # Computes the area constraint
50 def computeConstraint(design):
51 mp_tmp = makeGeometry(design)
52 return assembler.getArea(mp_tmp) - assembler.getArea(mp)

Finally, the computeObjective and computeConstraint can be passed to minimisation
algorithms from SciPy to solve the optimisation problem from equation (8.17). The full
file is given by example_shell3D_opt.py, and the result is provided in figure 8.5b.

𝑥
𝑦

𝑧𝑊

𝐿

𝒖 = 0

𝒖 = 0

𝒖 = 0

𝒖 = 0

𝑃

𝑃
𝑃

𝑃

(a) Problem setup for the optimised square plate.The ver-
tical loads have magnitude 𝑃 and the corners of the plate
have restrained displacements 𝒖 = 0. The geometry has
9×9 control points, of which the grey ones are degrees of
freedom for the shape optimisation and the black ones are
fixed.

(b) Optimised shape of the square plate. The geometry
is coloured by its 𝑧-coordinate and the control net is de-
picted by black lines.

Figure 8.5: Shape optimisation of a square plate with restrained corners and subject to out-of-plane point loads.

8.7 Summary
This chapter introduces open-source software for structural stability analysis using iso-
geometric membranes and Kirchhoff–Love shell elements. The software is developed as
modules within the Geometry + Simulationmodules library (G+Smo ); this C++ library with
a Python interface contains various routines for geometric processing and the analysis of
systems of equations using isogeometric analysis. The novel modules in this chapter con-
tain newmethods from recent publications of the authors, including hyperelastic material
models for shells and membranes [585, 587], goal-oriented error estimators for Kirchhoff–
Love shells [586], an adaptive parallel arc-length method [584] and various unstructured
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spline constructions for isogeometric analysis [589]. The modules provide off-the-shelf
solvers for isogeometric analysis, aimed at future extension with novel material models,
fast solvers for structural analysis, and new unstructured spline constructions. Through
brief code snippets, examples, and brief class details, this chapter aims to inspire the reader
for the design of similar software packages and to stimulate the reader to use the presented
modules for verification purposes or to use them in new developments. Overall, the exper-
iments presented in this chapter demonstrate that isogeometic analysis is able to provide
efficient modelling tools and robust solutions to shell problems and beyond.

8.A Installation Instructions
The software in this chapter is part of the Geometry + Simulation Modules (G+Smo ). There-
fore, the installation instructions for the software presented in this chapter are derived
from G+Smo . The following instructions are for MacOS and Linux systems. For Windows,
the reader is referred to the G+Smo documentation.

8.A.1 Downloading G+Smo
The examples provided in this chapter and in other chapters of the dissertation are repro-
duced using the versions as listed in table 8.2. To obtain the repository at this state, one
can either clone the repository from GitHub, or download a permanently stored image
from the Software Heritage.

Table 8.2: Versions for G+Smo and the submodules gsKLShell, gsStructuralAnalysis, gsUnstructuredSplines
used in this dissertation.

Module Version GitHub Repository
(preceded by https://github.com/gismo/)

gismo v23.12.0 gismo/releases/tag/v23.12.0
gsKLShell v23.12 gsKLShell/releases/tag/v23.12
gsStructuralAnalysis v23.12 gsStructuralAnalysis/releases/tag/v23.12
gsUnstructuredSplines v23.12 gsUnstructuredSplines/releases/tag/v23.12

Downloading G+Smo from GitHub
To obtain the G+Smo repository from GitHub, one can use the following command

1 git clone --branch v23 .12.0 https :// github.com/gismo/gismo

Within version v23.12.0 of G+Smo , the submodules gsKLShell, gsStructuralAnalysis
and gsUnstructuredSplines are automatically checkout in the versions listed in table 8.2.
If this is not the case, they can be manually downloaded into the optional/ directory of
G+Smo :

https://github.com/gismo/
https://github.com/gismo/gismo/releases/tag/v23.12.0
https://github.com/gismo/gsKLShell/releases/tag/v23.12
https://github.com/gismo/gsStructuralAnalysis/releases/tag/v23.12
https://github.com/gismo/gsUnstructuredSplines/releases/tag/v23.12
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1 # Navigate to the optional/ folder in gismo/
2 cd optional
3
4 # Clone the gsKLShell , gsStructuralAnalysis and gsUnstructuredSplines modules
5 git clone --branch v23.12 https :// github.com/gismo/gsKLShell
6 git clone --branch v23.12 https :// github.com/gismo/gsStructuralAnalysis
7 git clone --branch v23.12 https :// github.com/gismo/gsUnstructuredSplines

Downloading G+Smo from Software Heritage
A static copy of the software from this thesis is stored in the Software Heritage¹ repository.
This copy is not linked to the G+Smo GitHub repositories, hence one cannot access newer
versions from this copy. To obtain G+Smo and the relevant submodules from the Software
Heritage, one can use the following identifier:

1 swh :1: dir:dc870b8f2f07833a664c01cc87996e8cbbfb51a7;
2 origin=https :// github.com/hverhelst /2023-12- gismo_PhD_thesis_HMVerhelst;
3 visit=swh :1:snp:7 ca6040eb2bfa24f5bc9c240f0a419109fb6a301;
4 anchor=swh:1:rev:3 ad3bdf9c15d791ed590bfc66cd16a6d3cf299e5

This identifier points to the GitHub repository 2023-12-gismo_PhD_thesis_HMVerhelst,
storing the full code belonging to this dissertation.

8.A.2 Installing G+Smo
Installation of G+Smo is done through the following commands²:

1 # Navigate to the directory of gismo
2 cd <path/to/gismo >
3
4 # Make a build folder and go inside
5 mkdir build
6 cd build
7
8 # Initialize the build with the correct CMake flags
9 cmake . -DGISMO_WITH_OPENMP=ON

10 -DGISMO_WITH_MPI=ON
11 -DGISMO_SUBMODULES=”gsSpectra;gsKLShell;gsStructuralAnalysis;gsUnstructuredSplines”
12
13 # Build gismo
14 make gsKLShell -examples gsStructuralAnalysis -all gsUnstructuredSplines -examples

Optionally, the Python bindings can be built from source using Pybind11.
1 # Set the path to the Pybind11 directory
2 cmake .
3 -DGISMO_WITH_PYBIND11=ON # requires pybind11 installed.
4
5 # Build pygismo
6 make pygismo

The pygismo package installed from source are loaded into a Python script by using

¹The Software Heritage is a project designed and built to preserve software. It can be accessed via www.
softwareheritage.org
²The procedure is tested on a notebook with Ubuntu 22.04 LTS, an Intel i7 13-700H CPU and 32GB RAM. For
other installation instructions, the reader is referred to the README.md file in the G+Smo repository.

www.softwareheritage.org
www.softwareheritage.org
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1 # Add the path to gismo/build/lib
2 import sys
3 gismo_path=”<path/to/gismo >/ build/lib”
4 sys.path.append(gismo_path)
5
6 # Import pygismo
7 import pygismo

8.A.3 Verifying the Installation
The installation of G+Smo can be verified using the unit-tests provided within the library.
The unit-tests in G+Smo can be compiled using the following commands:

1 # Set the path to the Pybind11 directory
2 cmake . -DGISMO_BUILD_UNITTESTS=ON
3
4 # Build pygismo
5 make unittests

Consequently, the unit-tests related to the modules presented in this chapter can be run
as follows:

1 # From the build folder
2 ./bin/unittests gsThinShellAssembler_test gsMaterialMatrix_test

8.B Result Reproduction
Most of the examples provided in this chapter are based on results from earlier chapters.
For the reproducibility of the examples corresponding to earlier chapters the reader is
therefore directed to the respective chapter for reproduction instructions. For the newly
provided examples in this chapter, table 8.3 provides reproduction instructions.

Table 8.3: File name and run arguments required for the reproducibility of the figures in this chapter. Arguments
with a single dash (-) require an argument.

Figure Run File
Arg. Description Values

Figure 8.4 static_shell_XML
-i Input file gsStructuralAnalysis/filedata/pde/beam.xml
-e Number of degree elevation steps 1: 𝑝 = 2
-r Number of uniform refinement

steps
2: 4×4 elements per patch

Figure 8.5 gsKLShell/python_examples/example_shell3D_opt.py
Run this file with Python 3.X
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8.C Class overview per module

Table 8.4: Overview of the main classes in the gsKLShellmodule. The template argument d denotes the paramet-
ric dimension, and the argument T denotes the type for real numbers, e.g., double or long double. The symbol¬ denotes inheritance.

Class Description

gsMaterialMatrixBase Base class providing the constitutive implementation for the
gsThinShellAssembler.¬

gsMaterialMatrixBaseDim Dimension-dependent base class inheriting from
gsMaterialMatrixBase and providing all necessary basis
computations for the constitutive relations.¬

gsMaterialMatrixLinear Implementation of the Saint-Venant Kirchoff constitutive re-
lation.¬

gsMaterialMatrixComposite Uses the Saint-Venant Kirchoff constitutive relation for lami-
nates with different orientations, described in [238]¬

gsMaterialMatrixNonlinear Implementation of the Neo-Hookean, Mooney-Rivlin, and Og-
den material models, following the works of [320] and [587].
The class is templated over the material model mat and over
the implementation: (i) 𝐒 and 𝓒 are given analytically; (ii) Ψ
and its derivatives to 𝐂 are given analytically; or (iii) Ψ and its
derivatives to 𝜆 are given analytically.¬

gsMaterialMatrixTFT A tension field theory-based material matrix for wrinkling
modelling. This material matrix uses another material matrix
as an input and applies the modification scheme from [401]
for linear elastic materials or the scheme from [585] for hy-
perelastic materials to implicitly model wrinkling.

gsThinShellAssembler The actual assembler for the Kirchhoff–Love shell model.
The assembler takes a geometry (gsFunctionSet), a basis
(gsMultiBasis or gsMappedBasis), a set of boundary condi-
tions (gsBoundaryConditions), a body force (gsFunctionSet),
and a material matrix (gsMaterialMatrixBase) as input. Op-
tionally, point loads, follower pressures, or an elastic founda-
tion can be provided. The class provides the linear stiffness
matrix 𝐾 , the external force vector 𝑷 , the residual vector 𝑹(𝒖),
the Jacobian 𝐾(𝒖), and the mass matrix 𝑀 .

gsThinShellAssemblerDWR The same as gsThinShellAssembler, but takes a primal and
a dual space (both gsMultiBasis) and a goal functional.
The class outputs operators for the Dual-Weighted Residual
(DWR) method.
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Table 8.5: Most important solvers in the gsStructuralAnalysis module. The symbol ¬ denotes inheritance.

Class Description

gsStaticBase Provides a base class for static analysis. The class provides common func-
tions for the derived classes, such as functions accessing solutions or sta-
bility computations.¬

gsStaticDR Class that implements the Dynamic Relaxation (DR) method. The class
takes the residual vector 𝑹(𝒖) and the (lumped) mass matrix 𝑀 .¬

gsStaticNewton Class that implements Newton-Raphson (NR) iterations for solving non-
linear static problems. The class takes the force vector 𝑷 , the residual
vector 𝑹(𝒖), the stiffness matrix 𝐾 , and the Jacobian operator 𝐾(𝒖) or
the MIP Jacobian 𝐾(𝒖,Δ𝒖).¬

gsStaticComposite Class that implements a sequential static solver. Multiple static solvers
with different tolerances are provided, and this class sequentially calls the
static solvers and provides the updates.

gsEigenProblemBase Base class for eigenvalue problems for structural analysis. The class pro-
vides the solution routines, whereas the derived classes provide the set-
up of the eigenvalue problem. The eigenproblems are solved using the
generalised eigensolver of Eigen [217] or using Spectra [452] for large
problems, optionally with shifts.¬

gsModalSolver A solver that performs modal analysis, i.e., that solves the eigenvalue
problem equation (8.12), hence requires the mass and linear stiffness ma-
trices 𝑀 and 𝐾 , respectively.¬

gsBucklingSolver A solver that performs linear buckling analysis, i.e., that solves the eigen-
value problem equation (8.13). The solver can be enabled by providing
the matrices 𝐾 and 𝐾(𝒖0) or by providing the matrix 𝐾 , the load vector
𝑷 , and the operator for the Jacobian 𝐾(𝒖).

gsALMBase Base class for Arc-Length Methods (ALMs). This class also includes the
extended ALM [633], used for computing singular points. All solvers
require the external load vector 𝑷 , the arc-length residual 𝑹(𝒖,𝜆), and
the Jacobian matrix 𝐾(𝒖).¬

gsALMLoadControl A class performing load-controlled simulations.¬
gsALMRiks An implementation of Riks’ arc-length method, see [470].¬
gsALMCrisfield A class using Crisfield’s method, see [124] and equation (8.14).
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Table 8.6: Most important classes in the gsUnstructuredSplines module. The symbol ¬ denotes inheritance.

Class Description

gsDPatchBase The base class for smoothing methods that rely on local refinements. The
class contains basic routines for interface and vertex smoothing and re-
quires specifications to handle extraordinary vertices for derived classes.¬

gsSmoothInterfaces The most basic class for smoothing interfaces. It provides 𝐶1 smoothing
on interfaces and ordinary vertices but does not enforce exact or almost
𝐶1 smoothing at extraordinary vertices. The class can be initialised for
tensor B-spline bases and geometries or THB-spline geometries with de-
gree 𝑝 ≥ 2 and regularity 0 < 𝑟 ≤ 𝑝 −1¬

gsDPatch Class implementing the degenerate patch (D-Patch) approach from [569].
It relies on local THB refinement around the extraordinary vertices, build-
ing a space with reduced local regularity and refinement. The class can
be initialised for tensor B-spline bases and geometries with degree 𝑝 ≥ 2
and regularity 0 < 𝑟 ≤ 𝑝 −1¬

gsAlmostC1 Class implementing the almost-𝐶1 method from [534]. As the D-Patch, it
relies on local THB refinement. The class can be initialised for tensor B-
spline bases and geometries or THB-spline geometries with degree 𝑝 = 2
and regularity 𝑟 = 1

gsC1SurfSpline Class implementing the analysis-suitable 𝐺1 (AS-𝐺1) spline construction
from [181, 182]. This class relies on different local bases for the vertex, in-
terface, and interior spaces and requires a degree of 𝑝 ≥ 3 and a regularity
of 𝑟 ≤ 𝑝 −2

gsApproxC1Spline Class implementing the approximate 𝐶1 spline construction from [618,
619]. Its implementation is similar to the AS-𝐺1 construction, but it can
be constructed for large regularity, namely, it requires a degree of 𝑝 ≥ 3
and a regularity of 𝑟 ≤ 𝑝 −1

gsMPBESSpline Class implementing themulti-patch B-splineswith enhanced smoothness
(MPBES) construction from [74]. The construction requires 𝑝 ≥ 2 and
𝑟 ≤ 𝑝 −1. Note that this construction is 𝐶𝑝−1 everywhere, but only 𝐶0 in
the vicinity of the EV.
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9
Conclusions

This dissertation provides a broad range of mathematical techniques for the numerical
modelling of structural instabilities in thin shells or membranes, with a special focus on
membrane wrinkling. The primary goal of this dissertation, see section 1.1, is restated
here for convenience:

Develop robust and efficient models for structural stability analysis using
isogeometric analysis, with a focus on wrinkling.

As stated in the introduction of this dissertation (see chapter 1), different aspects of numer-
ical instability analysis are covered, related to the sub-goals mentioned in the introduction.
Before concluding on the main goal, conclusions are drawn on the sub-goals:

(i) Extend the isogeometric Kirchhoff-Love shell formulation with constitutive models re-
quired for implicit and explicit wrinkling analysis.
Motivated by wrinkling of membranes under large strains, e.g., the tension wrin-
kling case investigated by Cerda et al. [92] (see figure 1.1a), chapters 3 and 4 present
novel techniques for embedding hyperelastic material models into the isogeometric
analysis framework. On the one hand, an extension of the hyperelastic material for-
mulations for isogeometric Kirchhoff-Love shells from Kiendl et al. [320] to material
formulations defined in terms of principal stretches instead of invariants is given in
chapter 3. Among the results in this chapter, a new investigation of the snapping
behaviour of a truncated cone inspired by Başar & Itskov [23] is given, and first
results for isogeometric modelling of the tension wrinkling case inspired by Cerda
et al. [92] are given.
Contrary to the modelling of membrane wrinkling with isogeometric shell elements,
membrane elements cannot provide accurate wrinkling patterns due to the lack of
bending stiffness (see section 2.5). However, using a modification scheme using ten-
sion field theory, chapter 4 provides an implicit wrinkling model for isogeometric
membrane elements. That is, wrinkling patterns are modelled implicitly, such that
the mid-surface of a wrinkled membrane can be modelled accurately without the
need for fine mesh sizes to capture fine wrinkles. This model is an extension of the
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models from Nakashino & Natori, Nakashino et al. [401, 402] and Liu et al. [356] to
hyperelastic materials.

(ii) Develop methods for adaptive meshing and adaptive load stepping tailored to stability
analysis.
Several techniques can be employed to improve the efficiency of isogeometric meth-
ods for solving PDEs. In chapters 5 and 6, two concepts of adaptivity are provided,
respectively mesh adaptivity and adaptive load-stepping. Chapter 5 regards adap-
tive meshing, using a novel error estimator based on the Dual-Weighted Residual
method to steer adaptivemeshingwith suitably graded THB splines. Since the DWR
can be used with intuitive goal functions, mesh adaptivity based on engineering in-
dicators (e.g., the critical buckling load or the principal stress at a point) can be
realised. In this way, mesh degrees of freedom can be reduced based on a goal func-
tion of interest from an application perspective.
Besides spatial adaptivity, chapter 6 provides a novel idea for a parallel and adaptive
arc-length method, the APALM. ALMs are commonly used methods for the compu-
tation of snapping or bifurcation instabilities in structural analysis. These methods
are inherently serial, potentially creating a bottleneck for large computing systems.
By starting with a coarse estimate of the equilibrium path, the APALM adaptively
refines in parallel, improving speed and accuracy for structural stability problems,
as demonstrated in chapter 6.

(iii) Provide a qualitative and quantitative comparison of unstructured spline constructions
for IGA.
Besides the continuity requirements of the isogeometric Kirchhoff-Love shells, buck-
ling problems benefit from high continuity in terms of accuracy [414]. However, to
model complex geometries, either trimming approaches, variational coupling strate-
gies, or unstructured spline constructions can be used to provide continuous spline
constructions over multi-patches. Chapter 7 provides a qualitative and quantitative
comparison of unstructured spline constructions for smooth multi-patch analysis.
This comparison shows the benefits of using variational coupling methods, e.g., in
terms of stress reconstruction or spectral problems, and it shows the benefits of
different unstructured spline constructions under different conditions.

(iv) Develop an efficient, robust and future proof open-source computational tool for isoge-
ometric wrinkling analysis.
Aiming for continuity and applicability of the methods developed in this disserta-
tion, the last chapter of the core of this dissertation (chapter 8) provides an overview
of the software developed along with this dissertation. The open-source software is
part of the Geometry + Simulation modules [294], hence forward-compatible with
new developments in assembly routines and linear algebra, geometric utilities, and
interfaces to other software packages. The novel modules developed in this disserta-
tion provide compatibility with future developments, as follows: First, the Kirchhoff-
Love shell assembler is decoupled from the constitutive relations, enhancing the
future development of new constitutive models. Secondly, the structural analysis
module utilises black-box implementations of the Jacobian matrix and residual vec-
tor, such that they can be used with other elements and libraries. Thirdly, the un-
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structured spline module builds on a generic framework for mapped bases and ge-
ometries, allowing user-defined unstructured spline constructions.

Based on the sub-goals mentioned above, the following conclusions about the main
goal of this dissertation can be drawn: Based on the results from goal (i), isogeometric
structural analysis is enabled explicitly and implicitly using shell and membrane elements,
applicable to membrane wrinkling and other snapping problems. Efficient modelling is
obtained by employing adaptive methods in space and load stepping (see goal (ii)), using
the DWR method as an error estimator. An effort for robust methods is made through the
use of unstructured splines for complex geometries (see goal (iii)), which do not require
tuning parameters or specialised quadrature rules or solvers. Furthermore, by providing
an open-source implementation based on an established software library, robustness is
enhanced, and forward compatibility is provided by design.
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10
Outlook

In the following, a number of concepts and ideas for future research directions are pro-
vided. The concepts are inspired by the methods developed in this dissertation, and using
chapter 8 the software provided along with this dissertation can used as a starting point.

10.1 Goal-Oriented r-Adaptivity
Instead of adaptivity based on refinement of the underlying spaces, as is done in chap-
ter 5, adaptive simulations can be performed using r-adaptivity on spline parametrisa-
tions [285, 286, 645] or the equivalent method of moving meshes within the FEA-context.
Here, the mesh parametrisation is adjusted so that degrees of freedom are not added, but
moved to regions of the domain where the error contributions are high. As a result, the
underlying spline spaces are based on tensor product-definitions, hence benefiting from
fast formation techniques, e.g., weighted quadrature [83, 489] or sum factorisation [12].
Since 𝑟-adaptivity does not increase the approximation space, the technique is limited in
the reduction of the errors, due to the fact that no degrees of freedom are added and mesh
bijectivity needs to be maintained. Therefore, goal-oriented r-adaptivity should be seen
as a parametrisation-correction method for shell simulations, rather than a method to cap-
ture multi-scale effects. Depending on the underlying spaces, goal-oriented r-adaptivity
can also be investigated for unstructured spline constructions, based on chapter 7 of this
dissertation.

10.2 A Spatially Adaptive Parallel Arc-Length Method
The adaptive meshing framework presented in chapter 5 is applied on wrinkling and snap-
ping problems. In these examples, however, serial arc-length methods have been used for
continuation. Using the methods developed in chapters 5 and 6 fully adaptive methods for
post-buckling analysis, hence including mesh adaptivity and adaptive arc-length method,
can be developed. Figure 10.1 provides two ideas to do so: via an adaptive meshing scheme
within the APALM where arc lengths are not refined but corrected with adaptive meshes;
or, by adaptive meshing and arc length refinement simultaneously. In both cases, the arc
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(a) An APALM segment subject to iterative mesh refine-
ment. The segment is first started from mesh a, result-
ing in step I. Using an adaptive meshing algorithm, a new
mesh can be constructed (b) and the computation can be
restarted from the initial start point with a modified mesh
a (red lines), resulting in interval II. On the end-point of
interval II, the mesh can be modified again, resulting in
mesh c, and the procedure can be restarted until a toler-
ance is reached.

𝜆

‖𝒖
(𝜆)

‖

II
II

I

a b

c d

(b) An APALM segment subject to arc-length and mesh
adaptivity. Segment I is computed first, starting from
mesh a and resulting in mesh b after refinement. In a next
APALM iteration, the arc length is refined and two new
intervals are created, with solutions on meshes c and d.
The distance between the solution on mesh d and b can be
computed using a continuous distance function.

Figure 10.1: Two proposals for an extension of the APALM with mesh adaptivity.

length distance needs to be computed as a continuous inner product, instead of a discrete
one, such that the distance between solutions on different meshes can be computed.

10.3 Variationally Consistent Tension Fields
As concluded in chapter 4, the modification method for hyperelastic membranes using the
tension field theory provide good convergence behaviour within Newton-Raphson itera-
tions for a fixed tension field within the iterations. However, when the tension field is
subject to significant changes, the Newton-Raphson convergence of the method is neg-
atively affected. To resolve this issue, it is proposes to consider the tension field as an
unknown variable of the method, and to solve it using a level-set method or similar. It
should be noted that the tension field consists of three categories ({Taut, Slack, Wrinkled}),
which need to be captured by the level-set function or similar, for which inspiration can be
found in multi-material topology optimisation, mixing problems or multi-phase problems.

10.4 Stiffened Membranes
Inspired by the work of de Bode [51] and Lavaerts [331] and the application of offshore
solar panels, the methods provided in this dissertation can be employed to study the be-
haviour of membranes with embedded solar panels. As shown in theworks of de Bode [51]
and Lavaerts [331], the orientation of stiff zones and the application of holes in membranes
can greatly influence the wrinkling behaviour of offshore solar platforms. By using un-
structured spline constructions (chapter 7) in combination with tension field theory-based
membranemodels (chapter 4), a robust approach can be developed for design, analysis and
optimisation of membranes with embedded solar panels. For example, the membrane in
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figure 10.2 represents an auxetic lay-up, inspired by the work of Bonfanti & Bhaskar [56].

For the development of membranes with embedded cables, for example used for off-
shore solar platforms, smart wearables or sails, the methods provided in this disserta-
tion can be extended using embedding methods. By embedding cable or beam elements
[35, 248, 602, 612], into the Kirchhoff-Love shell or the isogeometric membrane element
provided in this dissertation, a novel isogeometric approach for reinforcedmembranes can
be developed, for example benefiting from intuitive and efficient parametrisation of the
embedded curves for shape optimisation.

(a) A rectangular sheet with an auxetic lay-up of solar panels (blue squares)
compared to a Cartesian lay-up (outlined squares).

(b) A detail of a multi-patch segmenta-
tion of a 2 × 2 auxetic membrane ele-
ment.

Figure 10.2: A sketch of an auxetic membrane structure (a) with a detailed element (b).
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