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1 Abstract

In this research a new method for pricing continuous Arithmetic averaged Asian options is proposed.
The computation is based on Fourier-cosine expansion, namely the COS method. Therefore, we
derive the characteristic function of Integrated Geometric Brownian Motion based on Bougerol’s
identity.

Extensive numerical error analysis on the CDF recovery of IGBM and the option prices is
performed. Via numerical tests, the convergence of errors using our new method has been proved.
We are able to price continuous Arithmetic averaged Asian options with a minimal error of order
10−2, and a maximum precision of order 10−5 within seconds.
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2 Introduction

Asian options, first introduced in 1987 by Banker’s Trust Tokyo, are path dependent options,
depending on the averaged value of the underlying over time. The average can either be Geometric
or Arithmetic, yielding a different payoff function. The average can be calculated on a finite
number of dates, leading to discrete Asian options, otherwise the option is continuous. Hence,
these properties yield 4 types of Asian options. In this research, a fixed strike price K is used, and
the options are European style.

We suppose that the stochastic process of the underlying follows a Geometric Brownian motion.
For Geometric averaged Asian options, analytic solutions are available [11], for both discrete and
continuously monitored times. In this research, we are interested with the Arithmetic averaged
Asian options, which have fixed strike prices and are of European type. In particular, we focus on
continuous Arithmetic averaged Asian options, whereby the stochastic process of the underlying is
assumed to be a Geometric Brownian Motion. Under this assumption, for continuous Arithmetic
options the underlying follows Integrated Geometric Brownian motion.

For Arithmetic averaged Asian options, no analytic solution is available. Thus, the option
price has to be determined numerically. Different computational methods have been developed
in literature. Monte Carlo simulation is used for the computation of these option prices [20]. In
other numerical methods, a time discretization is needed, where after extrapolation techniques are
used to convert a discrete Asian option price to the continuous time. Hsu [10], employs a Binomial
Tree method is used for the computation and in [1]PDE methods are presented for computing the
option price.

There are also methods based on Integrated Geometric Brownian Motion directly, without a
time discretization. Donati-Martin [4] has found an expression for the Laplace transform of the
option for a fixed strike price K. Furthermore, a triple integral expression and another Laplace
transform were derived by Schröder [14]. In this research, we develop a new computational method
for pricing continuous Arithmetic averaged Asian options, which is based directly on Integrated
Geometric Brownian Motion as well.

The idea is to first derive and compute the characteristic function of the time-integral of Geo-
metric Brownian Motion, and then apply the well-known COS method. The COS method is based
on Fourier-Cosine expansion for recovering the characteristic function of the underlying, first intro-
duced in [6]. In [19], the COS method is used for pricing discrete Arithmetic Asian options. The
COS method gives exponential error convergence of the computation in the option price, which we
will verify via error analysis.

As we stated above, we base our computation on Integrated Geometric Brownian Motion
(IGBM). In [18], Yor has found the distribution of IGBM. Other expressions for the distribu-
tions of IGBM can be found in [5]. However, the characteristic function of IGBM has not been
presented in this literature, which is what we need for our new pricing method.

To derive the characteristic function of IGBM, we use the famous identity introduced by
Bougerol. Bougerol’s identity shows a relation between two independent Brownian motions, in
which a specific form of IGBM is used [17], based on Yor [18]. This identity has been extended by
Alili and Gruet [17]. After some derivation, we are able to compute the characteristic function of
IGBM, and apply this to the valuation of continuous Arithmetic averaged Asian options via the
COS method. The derivation of the characteristic function of IGBM is the first contribution to
the existing literature.

The setup in this research is as follows. In Section 3, we start with a general overview about
IGBM and an introduction to the complete derivation of Bougerol’s identity. In Section 4, we
elaborate on the COS method in general, and then compute the characteristic function for IGBM,
with a drift term equal to zero based on Bougerol’s identity. The performance of the method be
checked via error analysis on the recovered CDF. In Section 5, the characteristic function of IGBM
is carefully derived, based on the extension of Bougerol’s identity and an error analysis is conducted
based on the CDF. In Section 6, we explain Asian option pricing in detail. Afterwards, the use
of the COS method is presented for option pricing in general. As the second contribution to the
literature, we insert the characteristic function of IGBM to the COS method to price continuous
Arithmetic Asian options. The results are compared to reference prices.
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3 Literature Summary

As stated in the introduction, the aim of our research is to price continuous Arithmetic averaged
Asian options for Geometric Brownian motion using cosine series expansion, which is called the
COS method, developed by Fang and Oosterlee [7]. In section 4.1 we will elaborate on the COS
method in general. Using this method, we need to determine the characteristic function of our
variable of interest.

In [19], the valuation of pricing Asian options has been done for discrete time intervals using
the COS method. In this research we look for the pricing method of continuous Asian options.
Asian options are path dependent options, depending on the evolution of the stochastic process of
the underlying stock St. The option price depends on the average stock value of the underlying
from t = t0 until maturity time t = T , which for continuous time is given by

1

T − t0

∫ T

t0

Sudu, (3.1)

and this is our variable of interest. In this research we set t0 = 0. We assume that the underlying
stock St is distributed as Geometric Brownian motion, hence the dynamics of St are given by

dSt = µSt + σStdBt, (3.2)

where µ > 0, which is denoted as the drift and σ > 0 is the volatility of the underlying stock.
Furthermore Bt follows a standard Brownian motion. The value of the underlying St (with t0 = 0)
at maturity time T is given by

ST = S0e
(µ− 1

2σ
2)T+σBT . (3.3)

We will elaborate more on Asian options in general and Geometric Brownian motion in Section 6.
In this section, we focus on a specific type of (3.1), where σ = 2, denoted by

Aν
t =

∫ t

0

e2(νs+Bs)ds. (3.4)

Once we have obtained the knowledge about the distribution of Aν
t , we can extend it to derive to

the distribution of (3.1).
First we show the relationship of Aν

t with Bessel processes due to Lamperti’s relation. Then
we show how we can scale the distribution of Aν

t to obtain the distribution for other parameter
values than σ = 2 and different t and ν. Afterwards we introduce Bougerol’s identity, which
establishes the relation between two different distributions, where the term Aν

t in appears. After
some relatively simple computations, we can then derive the characteristic function of the log of
(Aν

t ), and using the scaling property of Brownian motion, we can then define the characteristic
function of the log of our variable of interest (3.1).
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3.1 Integrated Geometric Brownian Motion
Expressions (3.1) and (3.5) are called integrated Geometric Brownian motion. This expression is
used very often in mathematical finance. Marc Yor [18] has derived the distribution of IGBM as
stated in (3.4), i.e.

Aν
t =

∫ t

0

e2(νs+Bs)ds. (3.5)

We start by summarizing the important steps in his derivation based on notes from Dufresne
[5]. The key starting point is in the connection between Squared Bessel processes and integrated
Geometric Brownian motion.

3.1.1 Squared Bessel Process

The Squared Bessel process can be seen as the squared Euclidean distance of multiple independent
Brownian motions. Below is a more precise definition of this process.

Definition 3.1. Let x, δ ≥ 0. A squared Bessel process is the unique strong solution to the stochastic
differential equation

Zt = x+ 2

∫ t

0

√
ZsdBs + δt, (3.6)

where Bt denotes standard Brownian motion and x is the starting point of the process. The
dimension of the process is given by δ. We denote this process by Zt ∼ BESQδ(x).

Note that (3.6) can also be given as:

dZt = 2
√
ZtdBt + δdt. (3.7)

Now let Yt =
√
Zt. We apply Ito’s formula for g(t, Zt) =

√
Zt to compute the dynamics of Yt:

dYt =
∂g

∂t
dt+

∂g

∂Zt
dZt +

1

2

∂2g

∂Z2
t

(dZt)
2

= 0 +
1

2
√
Zt

dZt +
1

2
· 1
2
· −1

2
(Zt)

− 3
2 (dZt)

2

=
1

2Yt
(2YtdBt + δdt)− 1

8
Y −3
t (4Y 2

t dt)

= dBt +
(δ − 1)

2

1

Yt
dt,

(3.8)

where we use that dtdBt = 0. Based on the behaviour of BESQδ(x), we must have that δ ≥ 2
and, otherwise the point Zt = 0 is reached and Ito’s formula does not hold.

Definition 3.2. The strong solution to (3.8) is called a Bessel process starting at x ≥ 0 with
dimension δ ≥ 2, denoted by Yt ∼ BESδ(x).

Note that we can write (3.8) also as

Yt = x+Bt +
(δ − 1)

2

∫ t

0

ds

Ys
. (3.9)

Now we use this result in Lamperti’s proposition to clarify why Yor sets σ = 2, and thus the defi-
nition of Aν

t . Lamperti has found the relationship between Aν
t and Bessel processes. Here we state

and prove Lamperti’s proposition more precisely than in [5] to find out why At is defined as in (3.4).

Proposition 3.1. Let Bt be a standard Brownian motion and ν = δ
2 − 1 ≥ 0. There exists a

ρ ∼ BESδ(1) such that
eνt+Bt = ρAν

t
, (3.10)

with

Aν
t =

∫ t

0

e2(νs+Bs)ds. (3.11)
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Proof. For w > t we have Aν
w =

∫ w

0
e2(νs+Bs)ds =

∫ t

0
e2(νs+Bs)ds +

∫ w

t
e2(νs+Bs) > Aν

t , hence Aν
t

is strictly increasing in t and Aν
0 = 0. From [5] we conclude that Aν

t is continuous. Since ν ≥ 0,
we have that limt→∞Aν

t = ∞. Hence we can define for any u ≥ 0 the variable Tu such that

Aν
Tu

= u. (3.12)

Now let Ft = eνt+Bt . Applying Ito’s formula to Ft = g(t, Bt), we find that the dynamics of Ft are
given by

dFt =
∂g

∂t
dt+

∂g

∂Bt
(dBt) +

1

2

∂2g

∂B2
t

(dBt)
2

= νeνt+Btdt+ eνt+BtdBt +
1

2
eνt+Bt(dBt)

2

= νeνt+Btdt+ eνt+BtdBt +
1

2
eνt+Btdt

= (ν +
1

2
)eνt+Btdt+ eνt+BtdBt.

(3.13)

Integration of (3.13) on both sides yields to

eνt+Bt = 1 + (ν +
1

2
)

∫ t

0

eνs+Bsds+Mt, Mt =

∫ t

0

eνs+BsdBs. (3.14)

Lemma 3.1. The quadratic variation of M is given by ⟨M,M⟩t, furthermore ⟨M,M⟩t = Aν
t ,

⟨M,M⟩∞ = ∞ and M0 = 0.

Proof. Clearly M0 = 0. We use the result from page (3) in [5] regarding quadratic variation. Since
dMt = eνt+BtdBt, we obtain that for Mt

⟨M,M⟩t =
∫ t

0

(eνs+Bs)(eνs+Bs)ds =

∫ t

0

e2(νs+Bs)ds = Aν
t , (3.15)

⟨M,M⟩∞ = lim
t→∞

⟨M,M⟩t = lim
t→∞

Aν
t = ∞. (3.16)

Lemma 3.2. M is a continuous local Martingale.

Proof. 1. Mt is clearly Ft-measurable, and therefore Mt is adapted to the filtration {Ft}.

2. From (3.14) we see that

Mt = eνt+Bt − 1− (ν +
1

2
)

∫ t

0

eνs+Bsds. (3.17)

By the scaling property, which we show later in (3.32), we have that∫ t

0

eνs+Bsds = 4A
(2ν)
1
4 t

, (3.18)

which is continuous. Mt is thus a sum of continuous functions, and is therefore continuous.
Proposition 4.3(i) in [16] states that when an adapted processMt is continuous and andM0 = 0,

Mt is a local Martingale.

Based on the two lemmas above, we use the result of Dambis, Dubins and Schwarz [13].
They state that when these two lemmas hold, Mt is a time-transformed Brownian motion and
Mt = β⟨M,M⟩t = βAν

t
. Where βt is a Brownian motion independent of Bt.

Equation (3.14) can now be written as

eνt+Bt = 1 + (ν +
1

2
)

∫ t

0

eνs+Bsds+ βAν
t
. (3.19)
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Replacing t by Tu we find that

eνTu+BTu = 1 + (ν +
1

2
)

∫ Tu

0

eνs+Bsds+ βAν
Tu

= 1 + (ν +
1

2
)

∫ Tu

0

eνs+Bsds+ βu.

(3.20)

Now we need the following computations. Differentiating both sides of (3.12) with respect to u
results in:

dAν
Tu

du
=
dAν

Tu

dTu

dTu
du

= 1 → (3.21)

e2(νs+Bs)|s=Tu

dTu
du

= 1 → (3.22)

e2(νTu+BTu ) dTu
du

= 1 ↔ (3.23)

e2(νTu+BTu )dTu = du↔ (3.24)

eνTu+BTudTu =
du

eνTu+BTu
. (3.25)

As the next step, let y = Aν
s . Then by definition s = Ty and

eνs+Bsds = eνTy+BTy dTy. (3.26)

Therefore, we obtain by (3.25) and (3.26):∫ Tu

0

eνs+Bsds =

∫ Aν
Tu

0

eνTy+BTy dTy =

∫ u

0

eνTy+BTy dTy =

∫ u

0

dy

eνTy+BTy
. (3.27)

Finally we define ρu = ρAν
Tu

= eνTu+BTu , and then we thus find by substituting (3.27) in (3.20):

ρ = 1 + (ν +
1

2
)

∫ u

0

dy

ρy
+ βu

= 1 +
(δ − 1)

2

∫ u

0

dy

ρy
+ βu.

(3.28)

Hence, ρu = BES(δ)(1) and the proposition has been proved.

Remark 3.1. In the derivation by Lamperti, we must have that ν ≥ 0. Other proofs for the
distribution of Aν

Sλ
, however, have actually shown that it holds for have ν ∈ R.

In equation (3.25) it becomes clear why Yor sets σ = 2. One factor in the Taylor expansion of
eνt+Bt can be replaced by

∫ u

0
dy

e
νTy+BTy

based on the derivative dTu

du , resulting in a Bessel process.
In the next steps towards the derivation of the density function of Aν

t , the author starts by
finding the joint law of (eBSλ , ASλ

), where Sλ is an exponential distribution. In one of the key
steps involved, they use the fact that ρx = eBT x ∼ BES(2)(1) due to the result of Lamperti, for
which the conditional expectation is known, i.e.

E
[
e
−v2

∫ t
0

ds
ρ2s |ρt = r

]
=
I|v|(

rt
x )

I0(
rt
x )

. (3.29)

And afterwards eBSλ is integrated out. For further reading we refer to Dufresne [5].
Now that we know why Aν

t is defined this way, we show how we can determine the distribution
for any (µ, σ, T ) based on Aν

t by the scaling property of Brownian motion.
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3.1.2 Scaling Property of IGBM

We present how we can determine the distribution of Integrated Geometric Brownian motion for
each value of (µ, σ, T ).

Let Bt = B(t) be a standard Brownian motion. Recall that Aν
t is defined as

Aν
t =

∫ t

0

e2(νs+Bs)ds. (3.30)

Let u = 4
σ2 s, then ds = σ2

4 du. Furthermore, B(s) = B(σ
2

4 u)
law
=
√

σ2

4 B(u) = σ
2B(u). It then

follows that ∫ t

0

e2(νs+Bs)ds
law
=

∫ 4t
σ2

0

e2(ν·
σ2

4 u+σ
2 Bu) · σ

2

4
du (3.31)

Now set t = σ2T
4 and ν = 2µ

σ2 . Then

Aν
t =

∫ t

0

e2(νs+Bs)ds =

∫ 4t
σ2

0

e2(ν·
σ2

4 u+σ
2 Bu) · σ

2

4
du =

σ2

4

∫ T

0

eµu+σBudu. (3.32)

Looking at equation (3.1) and (3.3) and using (3.32), we can state that the following are the same
in distribution:

1

T

∫ T

0

S0e
(µ− 1

2σ
2)u+σBudu

law
=

4S0

σ2T
Aν

t , (3.33)

with

t =
σ2T

4
, ν =

2(µ− 1
2σ

2)

σ2
=

2µ

σ2
− 1. (3.34)

We can thus use any drift term µ, volatility σ and maturity time T using this scaling property and
still use the useful results of the distribution of Aν

t as defined in (3.5) by Marc Yor.
In the following subsection, we show how we can use Bougerol’s identity to derive the distribu-

tion of Aν
t .

3.2 Distribution of Aν
t

In [18] and [5], several expressions for the distribution of Aν
t are presented. All of the expressions

are given by integrals or given by infinite series. For our research, we wish to recover the density
of Aν

t via cosine series expansion. Therefore, we need to derive the characteristic function of Aν
t .

To this end, we use Bougerol’s identity, which appears a lot in different literature, mostly because
of its simplicity.

3.2.1 Bougerol’s Identity

Bougerol’s identity establishes a relationship between two independent Brownian motions. In one
of these, the term t is replaced by Aν

t , of which we will make use to derive the characteristic
function of Aν

t . To be more specific, we will use this identity to derive the characteristic function
of the log of Aν

t .
Bougerol’s identity holds for ν = 0. Alili and Gruet [17] generalized Bougerol’s identity for

the case where ν ̸= 0, based on hyperbolic Brownian motion. A very short proof, only containing
some key steps, for Bougerol’s generalized identity can be found in [17], which also contains the
following proposition.
Proposition 3.2. Let Rt be a 2-dimensional Bessel process with R0 = 0. Let Ξ be an arcsine
random variable and let Bν

t = νt + Bt. Further, we assume that Bν
t , Rt and Ξ are independent.

Then for a fixed t we have

βAν
t

law
= (2Ξ− 1)ϕ

(
Bν

t ,
√
R2

t +Bν
t
2

)
, (3.35)

where ϕ(a, b) is given by

ϕ(a, b) =
√

2ea cosh(b)− e2a − 1, b ≥ |a|. (3.36)
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For ν = 0 we recover Bougerol’s identity:

βAt

law
= sinh(Bt). (3.37)

Since the proof one can find in [17] is rather brief, below we provide a detailed proof.

Proof. Let βt and Bt be independent Brownian motions and let Wt be another Brownian motion
independent of Bt. Note that βAt

=
∫ t

0
eBsdWs based on the result of Dambis, Dubins and

Schwartz, but in this case we have ν = 0. The time reversal of Brownian motion states that
{Bt −Bt−s, 0 ≤ s ≤ t} law

= {Bs, 0 ≤ s ≤ t}. We obtain the following for a fixed t ≥ 0:

βAt
=

∫ t

0

eBsdWs
law
=

∫ t

0

eBt−Bt−sdWs (3.38)

= eBt

∫ t

0

e−Bt−sdWs
law
= eBt

∫ t

0

e−BsdWs, (3.39)

where in (3.39) we used that the paths of Bt−s and Bs are the same for 0 ≤ s ≤ t, only with
opposite starting point and end point. Now define

Xt = eBt

∫ t

0

e−BsdWs. (3.40)

Applying Ito’s lemma to Xt = f(x, y) = exy = eBt
∫ t

0
e−BsdWs results in the following dynamics

for Xt:

dXt = df(x, y) =
df

dx
(dx) +

1

2

d2f

dx2
(dx)2 +

df

dy
(dy) +

1

2

d2f

dy2
(dy) +

d2f

dxdx
(dx)(dy)

= eBt

∫ t

0

e−BsdWs(dBt) +
1

2
eBt

∫ t

0

e−BsdWs(dBt)
2

+ eBtd

(∫ t

0

e−BsdWs

)
+ 0 + eBt(dBt)

(
d

∫ t

0

e−BsdWs

)
= XtdBt +

1

2
Xtdt+ eBt(e−BtdWt) + 0 + eBt(dBt)(e

−BtdWt)

= XtdBt +
1

2
Xtdt+ dWt

=
1

2
Xtdt+

√
1 +X2

t

(
Xt√
1 +X2

t

dBt +
1√

1 +X2
t

dWt

)

=
1

2
Xtdt+

√
1 +X2

t dZt,

(3.41)

where by independence of Wt and Bt we have dWtdBt = 0. We use the result of Dambis, Dubins
and Schwarz again [5]. Let

dZt =
Xt√
1 +X2

t

dBt +
1√

1 +X2
t

dWt, (3.42)

then

Zt =

∫ t

0

Xs√
1 +X2

s

dBs +

∫ t

0

1√
1 +X2

s

dWs. (3.43)

Clearly Z0 = 0. In [9], Hariya and Matsumura state that Zt is continuous. Note that Xt is an
adapted process to the filtration {Ft}. Therefore Zt, is also adapted to the filtration {Ft t ≥ 0.
When an adapted stochastic process Zt is continuous and Z0 = 0, it is a local Martingale. The
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quadratic variation of Zt is given by

⟨Z,Z⟩t =

〈∫ t

0

Xs√
1 +X2

s

dBs,

∫ t

0

Xs√
1 +X2

s

dBs

〉

+

〈∫ t

0

1√
1 +X2

s

dWs,

∫ t

0

1√
1 +X2

s

dWs

〉

+ 2

〈∫ t

0

Xs√
1 +X2

s

dBs,

∫ t

0

1√
1 +X2

s

dWs

〉

=

∫ t

0

X2
s

1 +X2
s

ds+

∫ t

0

1

X2
s + 1

ds

=

∫ t

0

1ds

= t,

(3.44)

and
⟨Z,Z⟩∞ = lim

t→∞
⟨Z,Z⟩t = lim

t→∞
t = ∞. (3.45)

We can conclude that Zt is a Brownian motion, and Zt = γ⟨Z,Z⟩t = γt, where γt is a Brownian
motion dependent on Wt and Bt. Hence, we can write (3.41) as

dXt =
1

2
Xtdt+

√
1 +X2

t dγt. (3.46)

On the other hand, we define another process Qt = sinh(Bt), where Bt is the same Brownian
motion as in (3.38). Applying Ito’s lemma to g(t, Bt) = Qt, we find that the dynamics of Qt are
given by

dQt =
∂g

∂t
dt+

∂g

∂Bt
(dBt) +

1

2

∂2g

∂B2
t

(dBt)
2

= cosh(Bt)dBt +
1

2
sinh(Bt)(dBt)

2

=

√
1 + sinh2(Bt)dBt +

1

2
sinh(Bt)dt

=
√

1 +Q2
tdBt +

1

2
Qtdt.

(3.47)

When we compare the stochastic differential equation (3.46) for Xt and (3.47) for Qt, we see that
they have the same coefficients. Now we use the fact that when two stochastic processes have the
same Lipschitz coefficients, then they are the same in same law. Thus what is left to prove is that
f(x) = 1

2x and g(x) =
√
1 + x2 are indeed Lipschitz coefficients.

We use the fact that when the first derivative of f and g are bounded, we have that f(x) and
g(x) are Lipschitz coefficients. This follows directly from the mean value theorem, i.e. ∃c ∈ [a, b]
such that

f(b)− f(a)

b− a
= f ′(c). (3.48)

This implies with |f ′(c)| ≤M that

|f(b)− f(a)| = |f ′(c)(b− a)| ≤ |f ′(c)||b− a| ≤M |b− a|. (3.49)

These first derivatives are given by:

0 < f ′(x) =
1

2
< 1, (3.50)

−1 < g′(x) =
x√

1 + x2
< 1. (3.51)

11



We conclude that Xt and Qt are the same in law, and therefore

βAt
=

∫ t

0

eBsdWs
law
= Xt

law
= Qt = sinh(Bt). (3.52)

In the following sections it will be shown how Bougerol’s (extended) identity can be used to
recover the characteristic function of ln(Aν

t ), which is the first contribution of this research to
existing literature.

In the next section we focus on the distribution of Aν
t , with ν = 0. For simplicity, we drop ν in

the notation for ν = 0. We then demonstrate how we can recover the density and CDF of ln(At)
by the COS method.
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4 Bougerol’s Identity Without Drift

In this section we aim to recover the density function and the CDF of ln(At)
ν via the COS method

with ν = 0, which is the case when σ =
√
2µ based on the scaling property (3.32). Therefore, we

need to recover the characteristic function of ln(At), the only input needed by the COS method.
In the section 3.2 Bougerol’s identity without drift has been stated and proven, i.e.

βAt

law
= sinh(Bt), (4.1)

which is the key result we will use in our derivation. Recall that βt and Bt are two independent
Brownian motions and At is given by

At =

∫ t

0

e2Bsds. (4.2)

In this section we will compute the characteristic function of ln(At) based on this identity. We
use the log of At because then we can split Bougerol’s identity into a sum of independent random
variables, which we will show in section 4.2.

First, we explain how to recover the density and the CDF based on Fourier Cosine Expansion
and the characteristic function. After we have computed the characteristic function, we conduct a
proper error analysis in the CDF and the PDF of ln(At) for various values of t and with respect to
the number of quadrature points J for numerical integration, the number of cosine expansion terms
N and the truncation range of the marginal distributions to verify the exponential convergence in
the errors compared to Monte Carlo simulation.
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4.1 Density Recovery via Fourier-Cosine Expansion
In this Section we show how to recover the density function of ln(At) by the COS method, following
the derivation in [7]. Let fX(x) be the density function of ln(At). Its Fourier cosine expansion on
an interval [a, b] is given by:

fX(x) =

∞∑
k=0

′Fk cos

(
kπ
x− a

b− a

)
=

1

2
F0 +

∞∑
k=1

Fk cos

(
kπ
x− a

b− a

)
, (4.3)

where

Fk =
2

b− a

∫ b

a

f(x) cos

(
kπ
x− a

b− a

)
, (4.4)

and the ′ means that the first term is multiplied by 1
2 . To approximate Fk we have

Fk =
2

b− a

∫ b

a

f(x) cos

(
kπ
x− a

b− a

)
dx

≈ 2

b− a
Re

[∫ ∞

−∞
f(x) exp

(
−i kπa
b− a

)
exp

(
i
kπx

b− a

)
dx

]
=

2

b− a
Re

[
exp

(
−i kπa
b− a

)∫ ∞

−∞
f(x) exp

(
i
kπx

b− a

)
dx

]
=

2

b− a
Re

[
exp

(
−i kπa
b− a

)
E[ei

kπx
b−a ]

]
=

2

b− a
Re

[
exp

(
−i kπa
b− a

)
ΦX

(
kπ

b− a

)]
.

(4.5)

For the CDF, we simply insert the Fourier cosine expansion in the definition to yield:

FX(x) =

∫ x

−∞
fX(x)dx

≈
∫ x

b

fX(x)dx

=

∫ x

b

∞∑
k=0

Fk cos

(
kπ
x− a

b− a

)
dx

≈
N=1∑
k=0

Fk

∫ x

b

cos

(
kπ
x− a

b− a

)
dx

=

N−1∑
k=0

Fk

∫ x

b

cos

(
kπ
x− a

b− a

)
dx.

(4.6)

And note that∫ d

c

cos

(
kπ
y − a

b− a

)
dy =

{
b−a
kπ

[
sin
(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

)]
, k ̸= 0

d− c, k = 0.
(4.7)

Hence, once the characteristic function is known, we can recover the density function and the CDF.
In the next section we compute the characteristic function of ln(At).
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4.2 Characterisic Function
In this Section we present how we can compute the characteristic function of ln(Aν

t ). We start
with some relatively simple computations, based on Bougerol’s identity. This is done as follows:

βAt

law
= sinh(Bt) ↔ (4.8)√

At · Z
law
= sinh(Bt) ↔ (4.9)

At · Z2 law
= sinh2(Bt) ↔ (4.10)

ln(At) + ln(Z2)
law
= ln(sinh2(Bt)), (4.11)

where Z ∼ N(0, 1) and Bt ∼ N(0, t) is a Brownian motion, which is independent of the Brownian
motion βt. If two distributions are the same in law, then their characteristic functions are the
same. Computing the characteristic function of both sides of (4.11), we obtain:

Φ(ω) = E[exp(iω(ln(At) + ln(Z2))

= E exp(iω ln(At))] · E[exp(iω ln(Z2)]

= Φln(At)(ω) · Φln(Z2)(ω)

= Φln(sinh2(Bt))(ω).

(4.12)

It then follows that

Φln(At)(ω) =
Φln(sinh2(Bt))(ω)

Φln(Z2)(ω)
. (4.13)

From equation (4.3) in Section 4.1, we see that we can recover the density of X = ln(At) via

fX(x) ≈ 1

2
F0 +

N−1∑
k=1

2

b− a
Re

[
exp

(
−i kπa
b− a

)
Φln(sinh2(Bt))(

kπ
b−a )

Φln(Z2)( kπ
b−a )

]
cos

(
kπ
x− a

b− a

)

=
1

2
F0 +

N−1∑
k=1

2

b− a
Re

[
exp

(
−i kπa
b− a

)
h(ω)

g(ω)

]
cos

(
kπ
x− a

b− a

)
,

(4.14)

with

h(ω) = Φln(sinh2(Bt))(ω), (4.15)

g(ω) = Φln(Z2)(ω). (4.16)

The computation of the density function of ln(Aν
t ) comes down to computing two characteristic

functions, g(ω) and h(ω). We will analyse these two characteristic functions separately. We start
with g(ω) in the next subsection.

4.2.1 Characteristic Function of X = ln(Z2)

We can compute g(ω) in two ways, analytically and numerically. We start with the first.

4.2.1.1 Method 1

We compute g(ω) directly, using the closed form formula of g(ω) which involves a special function.
Let Z ∼ N(0, 1), then

g(ω) = Φln(Z2)(ω) = E[exp(iω ln(Z2))] =
1√
2π

∫ ∞

−∞
eiω ln(x2)e−

1
2x

2

dx

=
2√
2π

∫ ∞

0

eiω ln(x2)e−
1
2x

2

dx.

(4.17)

Applying the change of variable by y = 1
2x

2, we yield

dy

dx
= x→ dx =

dy

x
= (2y)−

1
2 dy.
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If x = 0 → y = 0 if x→ ∞, y → ∞. It holds that

Φ(ω) =
2√
2π

∫ ∞

0

eiω ln(x2)e−
1
2x

2

dx

=
2√
2π

∫ ∞

0

eiω ln(2y)e−y(2y)−
1
2 dy

=
2√
2π

∫ ∞

0

(2y)iω− 1
2 e−ydy

=
2√
2π

2iω− 1
2

∫ ∞

0

yiω− 1
2 e−ydy

=
1√
π
2iωΓ(iω +

1

2
),

(4.18)

where Γ(·) denotes the Gamma function, i.e

Γ(z) =

∫ ∞

0

tz−1e−tdz, Re(z) > 0. (4.19)

We can use the readily available Gamma function, such as scipy.gamma in Python to compute
g(ω). In the second method, we make use of numerical integration.

4.2.1.2 Method 2

To solve the integration defined in (4.17), we propose to use a numerical integration technique as
second method. Before applying any numerical integration rule, we seek a sufficient integration
range such that

∫ b

a
f(x)dx ≥ 1−TOL, where TOL is a tolerance level one can choose upfront. We

can derive boundaries based on the given TOL as follows.
First we compute the density function of X = ln(Z2). Note that if Y = Z2 ∼ χ2

1, the PDF of
Y is then given by

fY (y) =
1√
2π
y−

1
2 e−

1
2y, y ∈ [0,∞). (4.20)

Since g(y) = ln(y) is strictly increasing for y ∈ (0,∞) and P (Y = 0), it follows that the PDF of
X = g(Y ) = ln(Y ) is given by

fX(x) = fY (g
−1(x))

dg−1(x)

dx

=
1√
2π
e−

1
2 e

x

e−
1
2xex

=
1√
2π
e−

1
2 (e

x−x), x ∈ (−∞,∞).

(4.21)

For the lower bound we seek an a ∈ R such that∫ a

−∞
f(x)dx ≤ 1

2
TOL. (4.22)

Let y = ex. Then dx = 1
ydy, and it follows that∫ a

−∞
f(x)dx =

∫ a

−∞

1√
2π
e−

1
2 e

x

e
1
2xdx

=

∫ ea

0

1√
2π
e−

1
2y
√
y
1

y
dy

=

∫ ea

0

1√
2π
e−

1
2yy−

1
2 dy

=

∫ 1
2 e

a

0

1√
π
e−zz−

1
2 dz,

(4.23)
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where in the last step the substitution z = 1
2y was used. Now let u =

√
z, then 1√

z
dz = 2du. We

continue our computation as follows:∫ a

−∞
f(x)dx =

∫ 1
2 e

a

0

1√
π
e−zz−

1
2 dz

=

∫ √
1
2 e

a

0

2√
π
e−u2

du

=
2√
π

√
2π

[
Φ

(√
1

2
ea

)
− Φ(0)

]

= 2
√
2Φ

(√
1

2
ea

)
−

√
2 ≤ 1

2
TOL↔

Φ

(√
1

2
ea

)
≤ 1√

32
TOL+

1

2
↔

a ≤ ln

[
2

(
Φ−1

(
1√
32
TOL+

1

2

))2
]
,

(4.24)

where Φ(·) denotes the CDF of the standard normal distribution. For the upper bound we do the
same integration steps, only the boundaries change as follows:∫ ∞

b

f(x)dx
y=ex

=

∫ ∞

eb
g(y)dy

z= 1
2y=

∫ ∞

1
2 e

b

h(z)dz
u=

√
z

=

∫ ∞

√
1
2 e

b

k(u)du =
2√
π

∫ ∞

√
1
2 e

b

e−u2

du. (4.25)

Thus, for the upper bound we find that

lim
u→∞

2√
π

√
2π

[
Φ(u)− Φ

(√
1

2
eb

)]
= 2

√
2

[
1− Φ

(√
1

2
eb

)]
≤ 1

2
TOL↔ (4.26)

b ≥ ln

[
2

(
Φ−1

(
1− 1√

32
TOL

))2
]
. (4.27)

Hence, we have

Φ(ω) =

∫ b

a

eiωx 1√
2π
e−

1
2 e

x

e
1
2xdx ≥ 1− TOL, (4.28)

where [a, b] is given by

[a, b] =

[
ln

[
2

(
Φ−1

(
1√
32
TOL+

1

2

))2
]
, ln

[
2

(
Φ−1

(
1− 1√

32
TOL

))2
]]

. (4.29)

Now that we have defined our truncation range for numerical integration, we choose Clenshaw-
Curtis quadrature as integration technique. In the next subsection, we give a comparison between
the two methods.

4.2.2 Comparison of the two Methods

We compare the approximation of g(ω) via the two methods above. Later we will evaluate them
both more precisely in the total error of the CDF of ln(At), but it is good to already know in which
cases differences occur. In the first method we use scipy.gamma in Python to compute g(ω). In the
second, Clenshaw-Curtis quadrature is used to compute the characteristic function for ω = Nπ

b−a ,
where [a, b] is given in (4.29). Note that the computational complexity of the use of the Gamma
function is less than Clenshaw-Curtis quadrature.

For Clenshaw-Curtis quadrature, we make use a DCT-1 type to compute the weights, which
takes O(Jg log Jg) operations. Afterwards, a vector-vector multiplication is performed, hence the
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operational complexity is O(Jg log(Jg)+Jg). We plot the magnitude of the approximation of g(ω),
with Jg = 500 quadrature points.

Figure 1: Absolute value of the characteristic function of ln(Z2) using Jg = 500 quadrature points
and the Gamma function.

The Gamma function decreases whereas the approximation using Clenshaw-Curtis quadrature
increases in absolute value. We wish to seek the point where the difference occurs. In Figure 2
below, the absolute value of g(ω) plotted using both methods, again with J = 500, and using
TOL = 10−14 for numerical integration. Note that on the x-axis we use ω instead of N .

Figure 2: Absolute value of g(ω) using Clenshaw-Curtis quadrature and the Gamma function.

Based on Figure 2, we will compare 19 ≤ ω ≤ 21 in section 4.4.1. Note that ω = Nπ
b−a , hence the

truncation range [a, b] determines the value of the number of cosine expansion terms N for each ω.
In section 4.3, we will show that the truncation range is based on the parameter t. More details
will be elaborated on the use of the Gamma function regarding N in that Section.

Lastly we will show the density function of X = ln(Z2) in three different figures. We use the
exact PDF found in (4.21), the COS method combined with the Gamma function and the COS
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method combined with Clenshaw-Curtis quadrature using N = 512 quadrature points. For this
plot, we set [at, bt] as in (4.62) with t = 0.01. For each other value of t, which will be noted below,
the density recovery is still perfectly fine. It is important to state that we use the truncation range
as in (4.62).

(a) Exact solution (b) COS Method + Gamma (c) COS Method + CC

Figure 3: PDF of X = ln(Z2).

Note that using both methods, we obtain a good recovery of the density function. In the next
subsection, we will compute the characteristic function h(ω).

4.2.3 Characteristic Function of Y = ln(sinh2(Bt))

We have determined the computation method of g(ω) in two ways. Next we compute h(ω).
Let Bt denote a standard Brownian motion. We have to solve

h(ω) = Φ(ω) = E
[
exp(iω ln[sinh2(x)])

]
=

1√
2πt

∫ ∞

−∞
eiω ln[(sinh2(x)]e−

1
2tx

2

dx.
(4.30)

Just as in Method 2 in Section 4.2.1 we compute the density of Y = ln(sinh2(Bt)). We have that
Bt ∼ N(0, t). Let X ∼ N(0, t). Let y = ln[sinh2(x)], then

ey = sinh2(x) ↔ (4.31)

±
√
ey = sinh(x) ↔ (4.32)

x1 = sinh−1(
√
ey) = ln

(√
ey +

√
ey + 1

)
, x1 > 0, (4.33)

x2 = sinh−1(−
√
ey) = ln(

√
ey + 1−

√
ey), x2 < 0, (4.34)∣∣∣∣dxdy

∣∣∣∣ = 1

2

√
ey

ey + 1
, x ∈ {x1, x2}. (4.35)

Note that f(x) = ln[sinh2(x)] is strictly monotone and differentiable for x ∈ (−∞, 0) and x ∈
(0,∞), and P (X = 0) = 0. Therefore, we can state that for Y = g(X) = ln(sinh2(X)) the PDF is
given by

fy(y) = fx(x1(y))

∣∣∣∣dx1(y)dy

∣∣∣∣+ fx(x2(y))

∣∣∣∣dx2(y)dy

∣∣∣∣
=

1

2
√
2πt

√
ey

ey + 1

[
e−

1
2t [ln(

√
ey+

√
ey+1)]

2

+ e−
1
2t [ln(

√
ey+1−

√
ey)]

2]
.

(4.36)

Therefore

h(ω) =
1

2
√
2πt

∫ ∞

−∞
eiuy

[
e−

1
2t [ln(

√
ey+

√
ey+1)]

2

+ e−
1
2t [ln(

√
ey+1−

√
ey)]

2]√ ey

ey + 1
dy. (4.37)

This is quite a large expression and numerical integration would require a lot of computation.
Analytic derivations for an upper bound such that

∫∞
b
fy(y) ≤ 1

2TOL did not yield to a closed
form solution. Therefore, we wish to use another expression for the characteristic function of Y .
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When we look at (4.30), we can also state that since

l(x) = ln[(sinh2(x)]e−
1
2x

2

= l(−x), x ∈ R, (4.38)

it then follows that

h(ω) = E
[
exp(iω ln[sinh2(x)])

]
=

1√
2πt

∫ ∞

−∞
eiω ln[(sinh2(x)]e−

1
2tx

2

dx

=
2√
2πt

∫ ∞

0

eiω ln[(sinh2(x)]e−
1
2tx

2

dx.

(4.39)

Then for x > 0, x = sinh−1(
√
ey) = ln

(√
ey +

√
ey + 1

)
and y = ln[sinh2(x)] ∈ (−∞,∞), we

compute the characteristic function as follows:

h(ω) = E
[
exp(iω ln[sinh2(x)])

]
=

2√
2πt

∫ ∞

0

eiω ln[(sinh2(x)]e−
1
2tx

2

dx

=
1√
2πt

∫ ∞

−∞
eiωy exp

[
− 1

2t

[
ln
(√

ey +
√
ey + 1

)]2]√ ey

ey + 1
dy.

(4.40)

We will solve expression (4.40) instead of (4.37) using numerical integration.
We seek a sufficient truncation range such that h(ω) ≥ 1 − TOL. Note that for large positive

y:

0 < eiωy exp

[
− 1

2t

[
ln
(√

ey +
√
ey + 1

)]2]√ ey

ey + 1
(4.41)

<

∣∣∣∣∣eiωy exp

[
− 1

2t

[
ln
(√

ey +
√
ey + 1

)]2]√ ey

ey + 1

∣∣∣∣∣ (4.42)

≤ exp

[
− 1

2t

[
ln
(√

ey +
√
ey + 1

)]2]√ ey

ey + 1
(4.43)

< exp
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− 1

2t

[
ln
(√

ey +
√
ey + 1

)]2]
(4.44)

< exp

[
− 1

2t

[
ln
(
2
√
ey
)]2]

. (4.45)

Now we have for d > 0 that∫ ∞

d

exp

[
− 1

2t

[
ln
(
2
√
ey
)]2]

dy =

∫ ∞

d

exp

[
− 1

2t

(
1

2
y + ln(2)

)2
]
dy

=

∫ ∞

d

exp
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−1
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(
y + 2 ln(2)

2
√
t

)2
]
dy

= 2
√
2πt

[
1− Φ

(
d+ 2 ln(2)

2
√
t

)]
.

(4.46)

Regarding the upper bound d, for the integration we obtain using (4.40):

1√
2πt

· 2
√
2πt

[
1− Φ

(
d+ 2 ln(2)

2
√
t

)]
≤ 1

2
TOL↔ (4.47)

Φ

(
b+ 2 ln(2)

2
√
t

)
≥ 1− 1

4
TOL↔ (4.48)

d+ 2 ln(2)

2
√
t

≥ Φ−1

(
1− 1

4
TOL

)
↔ (4.49)

d ≥ 2
√
tΦ−1

(
1− 1

4
TOL

)
− 2 ln(2). (4.50)
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Next we compute a lower bound c. Note that for large negative y the following holds:

0 < exp

[
− 1

2t

[
ln
(√

ey +
√
ey + 1

)]2]√ ey

ey + 1
<

√
ey

ey + 1
. (4.51)

Then we have the following for the lower bound c < 0:∫ c

−∞

√
ey

ey + 1
dy = 2 ln

(√
ey +

√
ey + 1

)
|c−∞

= 2 ln
(√

ec +
√
ec + 1

)
= 2 sinh−1(

√
ec) ≤ 1

2
TOL.

(4.52)

Therefore, for the lower bound c we find that

2√
2πt

sinh−1(
√
ec) ≤ 1

2
TOL↔ (4.53)

sinh−1(
√
ec) ≤ 1

4

√
2πtTOL↔ (4.54)

ec ≤ sinh2
(
1

4

√
2πtTOL

)
↔ (4.55)

c ≤ ln

[
sinh2

(
1

4

√
2πtTOL

)]
. (4.56)

Thus we choose

[ct, dt] =

[
ln

[
sinh2

(
1

4

√
2πtTOL

)]
, 2
√
tΦ−1

(
1− 1

4
TOL

)
− 2 ln(2)

]
(4.57)

as the interval for the numerical integration. Note that this range depends on t, and both ct and
dt are increasing in t.

Just as for the numerical integration of g(ω), we will compute h(ω) using Clenshaw-Curtis
quadrature. The computational complexity is O(Jh log(Jh) + Jh), for Jh quadrature points. We
show the density of Y , using the exact PDF found in (4.36), and Clenshaw-Curtis quadrature
using N = 512 cosine expansion terms with Jh = 500 quadrature points. Just as for g(ω), the
used truncation range for the COS method, as well as interval for the plots, are defined by the
truncation range as in (4.62).

(a) COS Method + CC (b) Exact PDF

Figure 4: PDF of Y = ln(sinh2(Bt)).

We have presented the computational methods for g(ω) and h(ω), which are the two elements
to compute the characteristic function. In the next subsection we specify details of the numerical
implementation.
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4.3 Numerical Implementation
In Section 4.4 we conduct an error analysis of our method, where the computation of the CDF is
used. First, we need a numerical implementation, which consists of three parts.

In our computation of the characteristic function of ln(At), the only parameter is t. We need
to choose which values we will evaluate for the error analysis in Section 4.4.

The computation of the CDF and PDF of ln(At) is based on the characteristic function, for
which we need the computation of g(ω), h(ω) and a truncation range. The truncation range will
also be determined in this section.

Lastly, we need to define a benchmark for our computation. We will discuss all three compo-
nents.

4.3.0.1 Choice of t

The final goal of this research is to efficiently price Asian options. We will look at a large variety
of maturity times, also to get a good comparison for the numerical integration. By the scaling
property of Brownian Motion described in Section 3.1.2, we have that t = σ2

4 T . Since σ ∈ (0, 1],
we will look at the values for t ∈ [0.01, 0.1, 1, 10].

The last ingredient for the use of the COS method is the truncation range, which establish in
the next subsection.

4.3.0.2 Choice of Truncation Range

The choice of integration range used for the density approximation for ln(At) is important for the
efficiency of the method. An integration range too wide would require a lot of cosine expansion
terms N . Making it too narrow, the error in the truncation range will dominate. Note that the
density function of ln(At) is dependent on t, and we want to have a general integration range based
on t. Since we cannot derive an analytic solution such that

∫ bt
at
fln(At)(x)dx ≥ 1− TOL, we define

a rule of thumb below. The truncation ranges determined by∫ b

a

fln(Z2)(x)dx ≥ 1− TOL, (4.58)

h(ω) ≥ 1− TOL, (4.59)

are equal to

[a, b] =

[
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2

(
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(
1√
32
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1

2

))2
]
, ln
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2

(
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32
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))2
]]

, (4.60)

[ct, dt] =

[
ln

[
sinh2

(
1

4

√
2πtTOL

)]
, 2
√
tΦ−1

(
1− 1

4
TOL

)
− 2 ln(2)

]
. (4.61)

Based on (4.60) and (4.61), we set the overall truncation range as

[at, bt] = [min(a, ct);max(b, dt)]. (4.62)

For different values of t, the integration range is given below, with TOL = 10−7. Note that this
is a very wide truncation range. We come back to this in Section 5.2. In Table 1, the truncation
ranges are shown for the different values of the parameter t.

h(ω) ∈ [ct, dt] [at, bt]
t = 0.01 [−37.77;−0.30] [−37.77; 4.11]
t = 0.1 [−35.47; 2.06] [−35.47; 4.11
t = 1 [−33.17; 9.52] [−33.17; 9.52]
t = 10 [−30.87; 33.09] [−30.87; 33.09]

Table 1: Integration range [at, bt] based on TOL = 10−7.
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In Section 4.2.1 we concluded that differences in computing g(ω) = ln(Z2) occur around 19 ≤
ω ≤ 21, which is dependent on the truncation range. Using the truncation ranges in Table 1, we
denote Nt(ω) as

Nt(ω) =
ω(bt − at)

π
, (4.63)

rounded to the lowest integer. This parameter Nt(ω) will also be used in the error analysis in
Section 4.4.

In the next subsection we develop the benchmark method, which will be used to check the
accuracy of our computation of the CDF of ln(At).

4.3.1 Benchmark: Monte Carlo Simulation

We have defined all the parameters for the COS method to compute the CDF of ln(At). We need
a benchmark to check the accuracy of our method.

For the error analysis in the CDF and PDF of ln(At), we simulate ln(At) by Monte Carlo
simulation. The Monte Carlo scheme for At is given by:

At =

∫ t

0

e2Bsds

=

n∑
i=0

e2B(ti+1)(ti+i − ti)

=
t

n

n∑
i=0

e2B(ti+1)

=
t

n

n∑
i=0

e2
∑i

j=0 B(tj+1)−B(j)

=
t

n

n∑
i=0

e2
∑i

j=0

√
t
nZj ,

(4.64)

where Zj ∼ N(0, 1), j ∈ {0, . . . , n}. We set n = 100 time steps and simulate m = 106 Monte Carlo
paths. Note that for each sample, we take the log-value. In Table 2 the integration ranges based
on Monte Carlo simulation are given. Note that the density of ln(At) simulated by Monte Carlo
simulation lies between the truncation ranges we chose for fX(x) and fY (y).

Monte Carlo [at, bt]
t = 0.01 x ∈ [−5.18;−3.97] [−37.77; 4.11]
t = 0.1 x ∈ [−3.78;−0.22] [−35.47; 4.11]
t = 1 x ∈ [−3.24; 7.46] [−33.17, 9.52]
t = 10 x ∈ [−3.71; 31.34] [−30.87; 33.09]

Table 2: Interval of ln(At) based on Monte Carlo simulation compared with the defined truncation
range in (4.62).

To obtain the density function of ln(At) for ouur benchmark, we use a Kernel Density Esti-
mation based on the m Monte Carlo simulations. To find a curve for the CDF of ln(At), we use
numpy.sort and numpy.arrange in Python.

When we compare these intervals to the chosen integration ranges above, we see that we have
a very wide integration range, especially for x < 0. We will elaborate more in detail in section 4.5.
In the next section, our computation of the CDF will be compared to the Monte Carlo simulation.

4.4 CDF Error Analysis
In 4.6, we have shown how to recover the CDF via the COS method. We check our computation
of the characteristic function of ln(At) via an error analysis in the CDF.
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In Section 6.4 we will give a complete overview of all the errors involved in our method. In this
section we conduct a numerical error analysis. Since we can easily extract data points from the
CDF simulated by Monte Carlo, we will analyze the errors the CDF of ln(At). Later, we combine
these results to see how the PDF errors converge using these values suggested by the CDF error
analysis.

First we explore the difference in the use of the Gamma function and Clenshaw-Curtis quadra-
ture for the computation of g(ω). Then we study the error convergence of the computation of h(ω)
in both the COS expansion and the numerical integration: first we test the convergence in the
COS method varying the number of cosine expansion terms, and setting very many quadrature
points for h(ω); then, we check the error convergence by changing the number of quadrature points
used for h(ω). Finally, we see how the level of tolerance TOLh, which is used for the numerical
integration of h, affects the results.

Using the Monte Carlo scheme above as benchmark, we compute the errors as follows. We
compute F (x) via the COS method and let H(x) be our CDF obtained via Monte Carlo simulation.
We compute ej = |F (xj)−H(xj)|, 1 ≤ j ≤ k as error using the COS method, and the total error
in the || · ||1-norm and || · ||2-norm respectively are given by

ϵ1 = max{e1, ..ek}, (4.65)

ϵ2 =
√
e21 + ...+ e2k. (4.66)

We checked 10 testing points i.e. k = 10 for each value of t. We only use values that lie within the
peak of the density function. In the next subsection, we analyse the computation of g(ω).

4.4.1 Convergence of g(ω)

We start with the convergence analysis due the computation of g(ω). We look at the errors for
various number of cosine terms N using the different methods described in Section 4.2.1. We let
the integration range [at, bt] for the COS method still be based on TOL = 10−7, since we have
seen that this is indeed wide enough based on Monte Carlo simulation. To minimize errors, we
integrate g(ω) and h(ω) over an interval where TOL = 10−14 is used.

Setting the number of quadrature points very large, i.e. Jh = 1500, the overall error must
be dominated by the number of cosine expansion terms. Note that such a number of quadrature
points take a lot of computational time. For h(ω), we use Clenshaw-Curtis quadrature.

We compare the use of the Gamma function and Clenshaw-Curtis quadrature for g(ω). Setting
also Jg = 1500, the results are presented in Table 3, whereby the errors are given in the || · ||2-norm.
We simulated m = 105 Monte Carlo paths using n = 100 time steps. This may not be a sufficient
number of simulations for ln(At). But for the purpose of this error analysis, it is sufficient enough
to see convergence in N , and for the analysis in the number of quadrature points. When we price
options for ν = 0, we will use 4 · 106 simulations with a reducing variance method. We come back
to this in Section 6.

Fourier Cosine Expansion + Gamma vs Clenshaw-Curtis (g(ω))
t = 0.01, ϵ2 t = 0.1, ϵ2 t = 1, ϵ2 t = 10, ϵ2

N Γ CC Γ CC Γ CC Γ CC
8 1.04 1.04 0.75 075 030 0.30 0.80 0.80
16 0.91 0.91 0.47 0.47 0.072 0.072 0.019 0.019
32 0.71 0.71 0.17 0.17 0.0063 0.0063 0.0046 0.0046
64 0.37 0.37 0.020 0.020 0.0038 0.0038 0.0046 0.0046
128 0.11 0.11 0.0036 0.0036 0.0038 0.0038 0.0046 0.0046
256 0.0080 0.0080 0.0049 0.0049 0.0037 0.0037 0.0046 0.0046
512 5.32 · 109 0.13 1.48 · 1011 0.19 4.17 · 1011 6.09 349.76 1.74

Table 3: Errors in the || · ||2-norm of the CDF for various number of cosine terms N using different
computation methods for g(ω).
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First we notice that we have convergence up to N = 128 for all t. Also note that the errors are
the same for N ≤ 256 for both methods. When N = 256, convergence does not hold for t = 0.1
compared to the Monte Carlo simulation, note that this may not very precise.

For N = 512, the Gamma function gives very large errors, due to the fast decay of the Gamma
function in Python. The value becomes very low, and since it is in the denominator of our char-
acteristic function, the value of the error becomes very large. For N = 512, also the error with
Clenshaw-Curtis does not decrease. By the magnitude of this error, we can conlude that this is
due to the error in the numerical integration in either g(ω) or h(ω).

To get a good understanding, we wish to look for the difference in the errors using Γ and CC
for 19 ≤ ω ≤ 21. For these values, the values of the absolute value diverged in Figure 1.For each
t, we look at the errors using this value. Where Nt(ω) is given by

Nt(ω) =
ω(bt − at)

π
. (4.67)

The results are shown in the small tables below. We include N = 128 and N = 256 for reference.

t = 0.01 N = 128 ω = 19, (N = 254) N = 256 ω = 20, (N = 266) ω = 21, (N = 279)
Γ 0.11 0.0080 0.0080 0.0068 0.019

CC 0.11 0.0081 0.0080 0.0067 0.012

t = 0.1 N = 128 ω = 19, (N = 239) ω = 20, (N = 251) N = 256 ω = 21, (N = 264)
Γ 0.0036 0.0035 0.0044 0.0049 0.0073

CC 0.0036 0.0035 0.0044 0.0049 0.0067

t = 1 N = 128 N = 256 ω = 19, (N = 258) ω = 20, (N = 271) ω = 21, (N = 285)
Γ 0.0038 0.0037 0.0036 0.0028 0.0051

CC 0.0038 0.0037 0.0036 0.0028 0.0061

t = 10 N = 128 N = 256 ω = 19, (N = 381) ω = 20, (N = 407) ω = 21, (N = 427)
Γ 0.0046 0.0046 0.0045 0.0056 0.0046

CC 0.0046 0.0046 0.0045 0.0056 0.0046

We can draw a good conclusion from these tables. We observe the following. Note that for
ω ≥ 21, for each value of t the error increases for both methods.

For t = 0.1 and t = 10, the error for ω = 20 is higher than for ω = 19.
Up until ω = 19, we see convergence in the errors for both methods, and the value is of the

error is the same except for t = 0.01, the error using Γ is 0.0001 smaller. Hence for the maximum
value of N for which we obtain convergence based on the 105 Monte Carlo simulations, we can
conclude that use of the Gamma function is justified for this further error analysis. This decreases
the computational complexity.

We plot the PDF of ln(At) using the Gamma function and TOL = 10−14, with Jh = 1500. For
t = 0.01 and t = 10, using the value of N for which ω = 20, gave actually more oscillation than for
ω = 19. Hence we use the values of N for which ω = 19. We set Nmax(t) ∈ {256, 239, 258, 381}.
We obtain the following graphs if we recover the density via the COS method.
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(a) t = 0.01 (b) t = 0.1 (c) t = 1 (d) t = 10

Figure 5: Density of ln(At) for various t via cosine series expansion.

Oscillation occurs in each density function, which means that errors occur in the computation
of h(ω) or g(ω). When we plot the density function for Nt ∈ {256, 128, 128, 128}, we obtain less
oscillation in the density function for t > 0.01, which will be shown in section 4.5 in Figure 9.
Therefore, we will continue our error analysis therefore based on Nt ∈ {256, 128, 128, 128}.

In the following subsection, we aim to look at the convergence of errors based on the number
of quadrature points used for h(ω).

4.4.2 Quadrature Points

In this subsection, we choose the Gamma function for the computation of g(ω). For h(ω), recall that
we use Clenshaw-Curtis quadrature. To analyse the errors using a different number of quadrature
points Jh for h(ω), we use the values for which convergence occurred in the previous analysis.
Also setting TOL = 10−14 for the computation of h(ω) to minimize the errors coming from the
numerical integration.

We set Jh ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. The || · ||2-norm is used to analyse
error convergence. The benchmark method is the same Monte Carlo simulation as before.

We make use of 4 plots to verify the error convergence due to the quadrature points. On the
y-axis, a log scale is used. The results are shown in Figure 6.
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(a) N = 256 (b) N = 128

(c) N = 128 (d) N = 128

Figure 6: CDF errors for a different number of quadrature points Jh for Clenshaw-Curtis quadra-
ture for h(ω).

For t = 0.01, 800 quadrature points are needed for the errors to stop converging. Based on
Figure 6, we set Jh = 800 for each value of t. Lastly we look at the error convergence using different
values for our tolerance level TOLh for the numerical integration. Note that for the truncation
range [at, bt] as in (4.62), we keep TOL = 10−7.

4.4.3 Errors Analysis in the Tolerance Level

The third dimension for the error analysis is the tolerance level chosen for the numerical integration
of h, which we will analyze in this Subsection.

We have a sufficient number of quadrature points for the Clenshaw-Curtis quadrature for h(ω)
and have found Nmax(t) such that the CDF errors converge compared to Monte Carlo simulation.

At last, we look at the error in the truncation range for computing h(ω). Note that the overall
truncation range for the COS method does not change. Until now we have set TOLh = 10−14 for
h(ω). Choosing the values based on the analysis above, we vary the tolerance level. Setting Jh =
800 , Nt ∈ {256, 128, 128, 128} and varying TOLh ∈ {10−8, 10−11, 10−14}.

Clenshaw-Curtis + Gamma and Fourier Cosine Expansion
t = 0.01 t = 0.1 t = 1 t = 10

ϵ1 ϵ2 ϵ1 ϵ2 ϵ1 ϵ2 ϵ1 ϵ2

TOLh = 10−8 1.65 3.22 0.0018 0.0037 0.0033 0.0038 0.0044 0.0046
TOLh = 10−11 0.0053 0.0068 0.0018 0.0035 0.0033 0.0038 0.0044 0.0046
TOLh = 10−14 0.0056 0.0080 0.0018 0.0035 0.0033 0.0038 0.0044 0.0046

Table 4: Errors in the CDF using different levels of tolerance.

We compare the results with Table 3. For t ∈ {0.1, 1, 10}, we see the same results when
TOLh ≥ 10−11. For t = 0.01, the error using TOLh = 10−11 is smaller than for TOLh = 10−14.
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We come back to this in Section 5.2. Lastly, we show the exponential convergence using the values
above in Figure 7 for a different number of cosine expansion terms N .

(a) Nmax = 256 (b) Nmax = 128

(c) Nmax = 128 (d) Nmax = 128

Figure 7: Exponential convergence shown in both norms for the CDF of ln(At).

Finally we combine these values and look at the the PDF of ln(At) in the next Subsection.

4.5 PDF Error Analysis
The error analysis for the CDF was performed with Monte Carlo simulation as benchmark, since
we could easily contract data points from the Monte Carlo simulation. For the Probability Density
Function we used Kernel Density Estimation, which makes this not possible.

We have concluded that the Gamma function works sufficiently well for the computation of g(ω)
until the point that we observed convergence for both methods, and for h(ω) we use Clenshaw-
Curtis quadrature. First, we show the PDF recovery using the COS method, afterwards we show
convergence in N again and make a note on the truncation range.

4.5.0.1 PDF Recovery

We will use the obtained values from the previous sections and plot the PDF of ln(At) for each
value of t, setting Jh = 800, Nt ∈ {256, 128, 128, 128} and TOLh = 10−11.

The results are shown in Figure 8. Note that we truncate the integration range showed in the
plot, but in fact the integration range [at, bt] = [min(a, ct),max(b, dt)] as in (4.62) is still used.
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(a) fln(At)(x) for t = 0.01 (b) fln(At)(x) for t = 0.1

(c) fln(At)(x) for t = 1 (d) fln(At)(x) for t = 10

Figure 8: Density recovery by the COS method for different t for multiple cosine expansion terms
N .

Here we set m = 100 steps in the density function. Note that for t ∈ {0.1, 1, 10} we obtain no
oscillation in the density function, opposed to t = 0.01. The peak in the density is too narrow to
to get a smooth result using the COS method combined with the proposed numerical integration.

In Section 4.2.1 and 4.2.3, we recovered the density functions of X = ln(Z), Z ∼ N(0, 1)
and Y = ln(sinh2(Bt)), where Bt is a standard Brownian motion, for N = 512 with the the
truncation range used for ln(At) as in (4.62). It is important to note that these recoveries were
good compared to the exact solution of the PDF. Meanwhile in Table 3, we saw that takingN = 512
cosine expansion terms led to large errors in the CDF. It is important tot note that for the density
recovery of ln(At), which uses both characteristic functions, we have less accuracy than for the
marginal distributions. We come back to this in section 5.2. Lastly, we show the convergence of
errors in N of the PDF.

4.5.0.2 Convergence in N

To finalize the error analysis for the approximation of the distribution of ln(At), we show conver-
gence in N in the two norms based for the PDF. The results are shown in Table 5. For t = 0.01,
Nmax = 256. For t ∈ {0.1, 1, 10}, Nmax = 128.
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Clenshaw Curtis + Gamma and Fourier Cosine Expansion
t = 0.01 t = 0.1 t = 1 t = 10

N ϵ1 ϵ2 ϵ1 ϵ2 ϵ1 ϵ2 ϵ1 ϵ2

40 2.42 3.45 0.25 0.43 0.0026 0.0049 0.0016 0.0022
60 2.01 3.01 0.084 0.17 0.00016 0.00027 0.0016 0.00024
80 1.62 2.56 0.022 0.040 2.31 · 10−5 3.65 · 10−5 6.13 · 10−3 7.16 · 10−5

100 1.26 2.07 0.0045 0.0098 1.43 · 10−6 1.98 · 10−6 1.59 · 10−5 1.98 · 10−5

120 0.95 1.59 0.00055 0.00012 2.77 · 10−7 4.49 · 10−7 1.60 · 10−6 2.33 · 10−6

160 0.49 0.87 - - - - - -
200 0.22 0.41 - - - - - -

Table 5: Convergence of errors based on |N −Nmax(t)| for the PDF of ln(At).

For t = 0.01, the errors are quite large compared to Nmax, which is due to the large truncation
range. In the next subsection, we comment on this truncation range. For t > 0.01, the difference
in errors gets extremely small.

4.5.0.3 Truncation range

We plot the density functions for each t. The results are shown in Figure 9.

(a) fln(At)(x) for t = 0.01 (b) t = 0.1

(c) fln(At)(x) for t = 0.01 (d) fln(At)(x) for t = 10

Figure 9: PDF of ln(At) compared to Monte Carlo Simulation.

In Figure 7(a) we see that a lot of oscillation occurs for t = 0.01 around x = −15. This makes
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sense if we look at how we recover the density function using the COS method:

fX(x) =

∞∑
k=0

′Fk cos

(
kπ
x− a

b− a

)
=

1

2
F0 +

∞∑
k=1

Fk cos

(
kπ
x− a

b− a

)
. (4.68)

The errors in the computation of Fk, i.e. in the computation of the characteristic function, are
multiplied by cos(kπ x−a

b−a ). When x−a
b−a ≈ 1

2 , Fk cos(kπ
x−a
b−a ) ≈ Fk. A large computational error thus

leads to a large error in the density function in that region. Note that

x− a

b− a
≈ 1

2
→ x ≈ 1

2
(b+ a), (4.69)

which coincides with Figure 9a. Setting a lower truncation range, for t = 0.01, this oscillation
would actually not vanish. We will encounter the same for ν = 0. One could try to use extremely
many cosine expansion terms.

In Figure 5a, using TOLh = 10−14 showed a better recovery of the density function for t = 0.01.
This difference in tolerance level already makes a large impact on the total computation of the
characteristic function of Φln(At)(ω). We come back to this in Section 5.2.

The CDF and PDF recovery of ln(At) has been checked due to error convergence in three
dimensions. We draw a conclusion from the results in this section.

4.6 Conclusion
In this section we have derived the characteristic function of ln(At) based on Bougerol’s identity.
The CF was separable as a ratio of two characteristic functions which have been analysed separately.
For g(ω) two computational methods were compared.

After truncating both functions correctly, via the COS method the density and CDF of ln(At)
were recovered. As a rule of thumb for the truncation range, we used the minimum and maximum
of the two truncation ranges for the lower bound and upper bound respectively of the marginal
distributions. We obtained correct density recovery for the marginal distributions using this trun-
cation range. It is very important to state that when we divide the two characteristic functions
to obtain the CF of ln(At), computational errors do occur for small t. We come back to this in
section 5.2.

First we showed that the use of the Gamma function gave the same errors with respect to
Clenshaw-Curtis quadrature for the N for which convergence occurred, therefore we could continue
the error analysis using the Gamma function for the computation of g(ω).

Based on Monte Carlo simulation, we performed an error analysis on the CDF based on number
of quadrature points Jh, number of cosine expansion terms N and tolerance level TOLh for x values
that lie within the peak of the density.

Using optimal parameters based on this analysis, exponential convergence has been observed
for each value of t for the CDF as well as the PDF. The obtained results are sufficient, but only for
t = 0.01 we could not get rid of oscillation in the density function. Hence for t = 0.01, numerical
errors occur in the computation of the characteristic function.

In the next section, we use the extension of Bougerol’s identity with drift term ν ̸= 0 to compute
the characteristic function of ln(Aν

t ).
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5 Bougerol’s Identity With Drift

Just as in the previous section, we aim to recover the density of ln(Aν
t ), now with ν ̸= 0, using cosine

series expansion. We use the extended identity of Bougerol, developed by Alili and Gruet [17].
Recall that they state that the following identity holds:

βAν
t

law
= (2Ξ− 1)ϕ

(
Bν

t ,
√
R2

t + (Bν
t )

2

)
, (5.1)

where

• βt follows a Brownian motion.

• Ξ ∼ Arcsine(0, 1).

• Rt is a squared Bessel process starting at zero, which means that Rt =
√
W1(t)2 +W2(t)2,

where W1(t) and W2(t) are independent Brownian motions starting at zero. Then

R2
t =W1(t)

2 +W2(t)
2 law
= (

√
tZ1)

2 + (
√
tZ2)

2 = t · (Z2
1 + Z2

2 ) ∼ t · χ2, (5.2)

which is the constant t times a Chi-squared distribution with two degrees of freedom. Fur-
thermore Z1, Z2 ∼ N(0, 1) and Z1 ⊥ Z2.

• Bν
t = νt+Bt, where Bt is a Brownian motion. Hence Bν

t ∼ N(νt, t) and ν ∈ R.

• ϕ(a, b) =
√
2ea cosh(b)− e2a − 1, for b ≥ |a|.

• Ξ, Rt and Bν
t are all independent random variables.

We start by deriving the characteristic function of ln(Aν
t ). Afterwards we compute the CDF and

PDF using cosine series expansion and perform convergence analysis on the CDF and PDF of
ln(Aν

t ) compared with Monte Carlo simulation for different values of (ν, T ). A parameter study
will also be conducted.
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5.1 Characteristic Function
Just as in Section 4.3, we compute the characteristic function of ln(Aν

t ), now based on Bougerol’s
extended identity. The computation of the characteristic function of ln(Aν

t ), with ν ̸= 0, is done
as follows. By independence of Ξ, Rt and Bν

t we have that

βAν
t

law
= (2Ξ− 1)ϕ

(
Bν

t ,
√
R2

t + (Bν
t )

2

)
↔ (5.3)

√
Aν

t · Z law
= (2Ξ− 1)ϕ

(
Bν

t ,
√
R2

t + (Bν
t )

2

)
↔ (5.4)

Aν
t · Z2 law

= (2Ξ− 1)2ϕ2
(
Bν

t ,
√
R2

t + (Bν
t )

2

)
↔ (5.5)

ln(Aν
t ) + ln(Z2)

law
= ln((2Ξ− 1)2) + ln

(
ϕ2
(
Bν

t ,
√
R2

t + (Bν
t )

2

))
, (5.6)

where Z ∼ N(0, 1). If two random variables are the same in law, then their characteristic function
is the same. On the left side of (5.6) we have by independence of random variables:

Φ(ω) = E
[
exp

(
iω
(
ln(Aν

t ) + ln(Z2)
))]

= E
[
exp(iω ln(Aν

t )) · exp(iω ln(Z2))
]

= E [exp(iω ln(Aν
t ))] · E

[
exp(iω ln(Z2))

]
= Φln(Aν

t )
(ω) · Φln(Z2)(ω).

(5.7)

And on the right side of (5.6) we find:

Φ(ω) = E
[
exp

(
iω

(
ln((2Ξ− 1)2) + ln

(
ϕ2
(
Bν

t ,
√
R2

t + (Bν
t )

2

))))]
= E

[
exp(iω ln((2Ξ− 1)2))

]
· E
[
exp(iω ln

[
ϕ2
(
Bν

t ,
√
R2

t + (Bν
t )

2

)]]
= Φln((2Ξ−1)2)(ω) · Φln(ϕ2)(ω).

(5.8)

Hence for the characteristic function of ln(Aν
t ) we obtain the following formula:

Φln(Aν
t )
(ω) =

Φln((2Ξ−1)2)(ω) · Φln(ϕ2)(ω)

Φln(Z2)(ω)
=
k(ω)l(ω)

g(ω)
. (5.9)

Opposed to Section 4.3, the characteristic function of ln(Aν
t ) is now a combination of three charac-

teristic functions. Each characteristic function will be evaluated separately again. The denominator
in equation (5.9) has already been discussed in the previous chapter. The characteristic function
g(ω) was computed by the Gamma function and by Clenshaw-Curtis quadrature.

For the computation of k(ω) two different quadrature rules will be compared, i.e. Clenshaw-
Curtis quadrature and Chebyshev-Gauss quadrature. The first one is known to be more stable
for oscillating functions, whereas Chebyshev-Gauss quadrature has a lower operational complexity.
Lastly, the characteristic function l(ω) will be computed using Clenshaw-Curtis quadrature.

We start with the computation of k(ω) in the next subsection.

5.1.1 Arcsine Distribution

We start with the distribution of Ξ ∼ Arcsine(0, 1). We will use two different methods to compute
the characteristic function of k(ω) = Φln(2Ξ−1)2(ω), each with a different numerical integration
method.

5.1.1.1 Method 1

Let Ξ ∼ Arcsine(0, 1), then 2Ξ − 1 ∼ Arcsine(−1, 1) and (2Ξ − 1)2 ∼ Arcsine(0, 1)
law
= Ξ. First

we compute the PDF of Z = ln(Ξ) based on the PDF of Ξ, which is given by

fΞ(ξ) =
1

π
√
ξ(1− ξ)

, ξ ∈ [0, 1]. (5.10)
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Let Z = g(Ξ) = ln(Ξ). Then Z ∈ (−∞, 0) and since g(ξ) = ln(ξ) is strictly increasing for ξ ∈ (0, 1]
and P (Ξ = 0) = 0, the PDF of Z is given by

fZ(z) = fΞ(g
−1(z))

dg−1(z)

dz

=
1

π
√
ez(1− ez)

· de
z

dz

=
ez

π
√
ez(1− ez)

, z ∈ (−∞, 0].

(5.11)

The characteristic function k(ω) is thus given by

k(ω) =

∫ 0

−∞
eiuz

ez

π
√
ez(1− ez)

dz (5.12)

We seek for a truncation range [a, 0] such that
∫ 0

a
f(z) ≥ 1− TOLk. Note that for negative a:

0 <

∫ a

−∞

ez

π
√
ez(1− ez)

=
2

π
arcsin(

√
ez)|a−∞ =

2

π
arcsin(

√
ea). (5.13)

In order to obtain that ∫ a

−∞

ez

π
√
ez(1− ez)

<
1

2
TOLk, (5.14)

we must have for the lower bound a that∫ a

−∞

ez

π
√
ez(1− ez)

≤ 1

2
TOLk ↔ (5.15)

2

π
arcsin(

√
ea) ≤ 1

2
TOLk ↔ (5.16)

√
ea ≤ sin

(
1

4
πTOLk

)
↔ (5.17)

a ≤ ln

(
sin2

(
1

4
πTOLk

))
. (5.18)

We also determine an upper bound which we have to use for numerical integration later to avoid
numerical issues. For b < 0 we compute:

0 <

∫ 0

b

ez

π
√
ez(1− ez)

=
2

π
arcsin(

√
ez)|0b =

2

π

(π
2
− arcsin(

√
eb)
)
≤ 1

2
TOLk. (5.19)

Solving this equation for b gives us

1− 2

π
arcsin(

√
eb)) ≤ 1

2
TOLk ↔ (5.20)

arcsin(
√
eb) ≥ π

2
− π

4
TOLk ↔ (5.21)

√
eb ≥ sin(

π

2
− π

4
TOLk) ↔ (5.22)

b ≥ ln
(
sin2

(π
2
− π

4
TOLk

))
. (5.23)

Hence we use

[a, b] =

[
ln

(
sin2

(
1

4
πTOLk

))
, ln

(
sin2

(
1

2
π − 1

4
πTOLk

))]
(5.24)

as truncation range to compute k(ω) with Clenshaw-Curtis quadrature. The operational complex-
ity of Clenshaw-Curtis quadrature is O(J log(J)) for J quadrature points.
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Note that we have z < 0 and as z ↑ 0, fZ(z) → ∞. This will lead to numerical errors in the
computation of the characteristic function, which will be magnified by multiplying and dividing
by l(ω) and g(ω). We will come back to this in Section 5.2.

To handle this issue, we need to perform a change of variable. Note that the two boundaries
a and b are both smaller than zero. We wish to scale z to the log domain, but we need first we
mirror the density of Z in y = 0. Then the following holds for Z = ln(U):∫ b

a

fZ(z)dz =

∫ −a

−b

fZ(−z)dz =
∫ ln(−a)

ln(−b)

fZ(−eu)eudu ≥ 1− TOLk. (5.25)

The new boundaries for the numerical integration of k(ω) are thus given by:

[a1, b1] =

[
ln

[
− ln

(
sin2

(
1

4
πTOLk

))]
, ln

[
− ln

(
sin2

(
1

2
π − 1

4
πTOLk

))]]
. (5.26)

The density functions of Z and U are shown in Figure 10 using [a, b] and [a1, b1] with TOL = 10−7,
which is the minimal level of tolerance for which the computation of the boundaries is possible.
For the density of Z = ln(Ξ), we use a log-scale on the y-axis.

(a) f(z) = ez

π
√

ez(1−ez)
(b) f(u) = exp(−eu)eu

π
√

exp(−eu)(1−exp(−eu))

Figure 10: Exact PDF

The characteristic function we compute using Clenshaw-Curtis quadrature is thus given by

k(ω) =

∫ b1

a1

e−iωeuf(u)du, (5.27)

with f(u) given as in Figure 10b and [a1, b1] as in (5.26). In the second method, we will use a
different quadrature rule, for which no boundaries have to be computed.

5.1.1.2 Method 2

In this method, we make use of Chebyshev-Gauss quadrature. For the computation of k(ω) using
this numerical integration method, we use a different variation of the Arcsine distribution. As
we already stated, if Ξ ∼ Arcsine(0, 1), then 2Ξ − 1 ∼ Arcsine(−1, 1). Instead of using the
distribution of the log of Ξ, we can also use the distribution of Z = (2Ξ − 1) ∼ Arcsine(−1, 1).
The PDF of Z is given by:

f(z) =
1

π
√
(z + 1)(1− z)

, z ∈ [−1, 1]. (5.28)
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Then we compute the characteristic function directly:

k(ω) = E[exp(iω ln(z2)]

=

∫ 1

−1

eiω ln(z2) 1

π
√

(z + 1)(1− z)
dz

=

∫ 1

−1

eiω ln(z2) 1

π
√
1− z2

dz.

(5.29)

This is exactly the type of integral computed with Chebyshev-Gauss quadrature, which evaluates
integrals of the form ∫ 1

−1

f(x)√
1− x2

dx. (5.30)

Therefore the characteristic function can also be computed as

Φln(2Ξ−1)2(ω) =

∫ 1

−1

eiω ln(z2) 1

π
√
1− z2

=
f(z)√
1− z2

=

n∑
j=1

wjf(zj)

(5.31)

where

wj =
π

n
, (5.32)

zj = cos

(
2j − 1

2n
π

)
, (5.33)

f(zj) = eiω ln(z2
j ). (5.34)

Using a vector-vector multiplication for the computation of k(ω), the operational complexity using
Chebyshev-Gauss quadrature is O(n), which is less than using Clenshaw-Curtis quadrature.

Note that we do not need to perform a change of variable using Chebyshev-Gauss quadrature.
Even though 1√

1−z2
→ ∞ as |z| → 1, this expression is not used in the calculation of k(ω).

We show the CDF recovery using cosine series expansion using both integration methods, and
compare it with the exact CDF. Note that the CDF of Z is given by

F (z) =

∫ z

−∞
fZ(u)du =

∫ z

−∞

eu

π
√
eu(1− eu)

du =
2

π
arcsin(

√
eu)|z−∞ =

2

π
arcsin(

√
ez). (5.35)

For Clenshaw-Curtis quadrature, no change of variable is performed here, which is important to
note as we come back to this in section 5.2. We set Jk = 1500 quadrature points and m = 100
different points on the z-axis. We use the truncation range [a, b] = [−33, 0], with N = 128 cosine
expansion terms. The results are shown in Figure 11.

(a) F (z) using Chebyshev-Gauss (b) F (z) using Clenshaw-Curtis (c) F (z) exact

Figure 11: CDF recovery of Z = ln(Ξ), Ξ ∼ Arcsine(0, 1), using N = 128 cosine terms.
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We will analyse the difference between the two numerical integration methods for the CDF
recovery of ln(Aν

t ) is section 5.5 via an error analysis.
Two of the three characteristic functions for the computation of Φln(Aν

t )
(ω) have been discussed.

Lastly, we need to determine the characteristic function l(ω) as in (5.9).

5.1.2 Distribution of W = ln(ϕ2(X,Y ))

In this section we compute the third characteristic function. Recall that the characteristic function
of ln(Aν

t ) is given by

Φln(Aν
t )
(ω) =

Φln((2Ξ−1)2)(ω) · Φln(ϕ2)(ω)

Φln(Z2)(ω)
=
k(ω)l(ω)

g(ω)
. (5.36)

What is left is to determine the characteristic function l(ω) of W = g(X,Y ) = ln(ϕ2(X,Y )), with

ϕ(a, b) =
√

2ea cosh(b)− e2a − 1, b ≥ |a|. (5.37)

Note that

• X = Bν
t ∼ N(νt, t), which PDF is given by f(x) = 1√

2πt
e
− 1

2

(
x−νt√

t

)2

, x ∈ (−∞,∞).

• Y = R2
t ∼ t · χ2

2, which PDF is given by f(y) = 1
2te

− y
2t , y ∈ [0,∞).

For the characteristic function l(ω) of W we find that

ΦW (ω) = E
[
exp(iω ln

[
ϕ2
(
Bν

t ,
√
R2

t + (Bν
t )

2

)]]
= E

[
exp(iω ln

[
ϕ2
(
x,
√
y + x2

)]]
= E

[
exp(iω ln

(
2ex cosh(

√
y + x2)− e2x − 1

)]
=

∫ ∞

−∞

∫ ∞

0

exp
[
iω ln

[
2ex cosh

(√
y + x2

)
− e2x − 1

]]
· 1

2t
e−

y
2t · 1√

2πt
e
− 1

2

(
x−νt√

t

)2

dydx.

(5.38)

We need to truncate both integrals properly for the numerical computation. Note that by inde-
pendence of X and Y , we have that for

0 <
1

2t
e−

y
2t · 1√

2πt
e
− 1

2

(
x−νt√

t

)2

, (5.39)

∫ ∫
1

2t
e−

y
2t · 1√

2πt
e
− 1

2

(
x−νt√

t

)2

dydx =

∫
1√
2πt

e
− 1

2

(
x−νt√

t

)2

dx ·
∫

1

2t
e−

y
2t dy. (5.40)

For Y ∼ t · χ2, we seek boundaries such that
∫ b

a
f(y) ≥ 1− TOLy. For the upper bound we have

that: ∫ ∞

b

1

2t
e−

y
2t dy = −e−

y
2t |∞b = e−

b
2t ≤ 1

2
TOLy ↔ (5.41)

− b

2t
< ln(

1

2
TOLy) ↔ (5.42)

b ≥ −2t ln(
1

2
TOLy). (5.43)

Since numerical integration at y = 0 can give rise to problems, we also seek for a proper lower
bound: ∫ a

0

1

2t
e−

y
2t dy = −e−

y
2t |a0 = 1− e−

1a
2t ≤ 1

2
TOLy ↔ (5.44)
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− a

2t
≥ ln(1− 1

2
TOLy) ↔ (5.45)

a ≤ −2t ln(1− 1

2
TOLy). (5.46)

Hence, we choose the following truncation range for y:

[ymin(t), ymax(t)] =

[
−2t ln

(
1− 1

2
TOLy

)
,−2t ln

(
1

2
TOLy

)]
. (5.47)

Lastly we need a truncation range for X. The Brownian motion with drift Bν
t is normally dis-

tributed with mean νt and variance t. Hence we seek for the correct truncation range for the lower
bound the following: ∫ a

−∞

1√
2πt

e
− 1

2

(
x−νt√

t

)2

dx ≤ 1

2
TOLx ↔ (5.48)

Φ

(
a− νt√

t

)
≤ 1

2
TOLx ↔ (5.49)

a ≤ νt+
√
tΦ−1

(
1

2
TOLx

)
. (5.50)

And for the upper bound we have:∫ ∞

b

1√
2πt

e
− 1

2

(
x−νt√

t

)2

dx ≤ 1

2
TOLx ↔ (5.51)

1− Φ

(
b− νt√

t

)
≤ 1

2
TOLx ↔ (5.52)

Φ

(
b− νt√

t

)
> 1− 1

2
TOLx ↔ (5.53)

b ≥ νt+
√
tΦ−1

(
1− 1

2
TOLx

)
, (5.54)

which gives us the following truncation range for X:

[xmin(t), xmax(t)] =

[
νt+

√
tΦ−1

(
1

2
TOLx

)
, νt+

√
tΦ−1

(
1− 1

2
TOLx

)]
. (5.55)

We use 2-dimensional Clenshaw-Curtis quadrature to compute l(ω) = ΦW (ω), which takes
O(J log(J)) operations for each variable. The total operational complexity is thereforeO(2J log(J)).

In Figure 12, the CDF recovery via cosine series expansion is shown. We set T = 1, use
Jl = 500 quadrature points and use N = 512 cosine expansion terms. We set µ = 0.05 and vary
σ ∈ {0.2, 0.8}, which results in ν ∈ {1.5,−0.84}. We set the truncation as [−33, 6] and compare
the CDF recovery with Monte Carlo simulation.

(a) F (w) for T = 1, ν > 0. (b) F (w) for T = 1, ν < 0.

Figure 12: CDF recovery of W = ln(ϕ2(X,Y )) compared with Monte Carlo simulation.
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We observe that we can recovery the CDF properly using the proposed numerical integration
method However, as for the Arcsine distribution, we encountered numerical issues using this pro-
posed integration method for the CDF and PDF recovery of ln(Aν

t ), which will be shown in Section
5.2.

The problem can be observed if we focus on Y : when we take T = 1 (often seen for Asian
option pricing) and σ ∈ [0.05, 1], the value of t becomes very small, since t = σ2

4 T by the scaling
property in (3.32). Looking at the density function of Y , one can immediately see that the value
of fY (y) = e−

y
2t gets very close to zero very fast. To encounter this issue, we perform a change

of variable again to increase in the width of the density of Y by setting z = ln(y), and the
characteristic function of W is then given by

ΦW (ω) =

∫ ∞

−∞

∫ ∞

−∞
exp

[
iω ln

[
2ex cosh

(√
ez + x2

)
− e2x − 1

]] 1

2t
e−

1
2t e

z

ezfX(x)dzdx. (5.56)

The only thing left is to change the boundaries for the numerical integration. We seek [z1, z2] such
that

∫ z2
z1

1
2te

− 1
2 e

z

ezdz ≥ 1 − TOLy. To solve this equation, we can use the boundaries computed
in equation (5.47), by deriving for ymin(t), ymax(t) > 0:∫ ymax(t)

ymin(t)

fY (y)dy =

∫ ln(ymax(t))

ln(ymin(t))

fY (e
z)ezdz =

∫ z2(t)

z1(t)

fln(Y )(z)dz ≥ 1− TOLy. (5.57)

Hence, the boundaries for the numerical integration after a change of variable for the computation
of Y are given by

[z1(t), z2(t)] =

[
ln

(
−2t ln

(
1− 1

2
TOLy

))
, ln

(
−2t ln

(
1

2
TOLy

))]
. (5.58)

In Figure 13 the density function of Y are shown, with and without change of variable for (σ, T ) =
(0.2, 1), with TOLy = 10−12, which is the minimal level of tolerance possible to avoid a computation
of ln(0) in Python, where the functions are plotted on their truncation ranges as in (5.47) and
(5.58). In Figure 13a it is shown a log-scale to show the rapid decay, which of course results in a
straight line.

(a) f(y) = 1
2t
e−

1
2t

y (b) f(z) = 1
2t
e−

1
2t

ezez

Figure 13: Exact PDF

Remark 5.1. In earlier experiments, to decrease the rapid decay of Y , we inserted the variable t
within the exponent, leading to

ΦW (ω) =

∫ ∞

−∞

∫ ∞

0

exp
[
iω ln

[
2ex cosh

(√
ty + x2

)
− e2x − 1

]] 1
2
e−

1
2yfX(x)dydx, (5.59)

which was already a good adjustment. But taking the change of variable y = ln(z), we get better
results.
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Remark 5.2. The distribution of X = Bν
t has a variance

√
t. Hence, the peak of the density around

x = νt is very narrow. We performed a change of variable withX = N(νt, t)
law
= 1

a

√
tN(aν

√
(t), a2)

to increase the variance (with a ∈ N), leading to

ΦW (ω) =

∫ ∞

−∞

∫ ∞

0

exp
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iω ln

[
2e

√
tx cosh

(√
ty +

t
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− e2
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]]
1

2
e−

1
2y

1√
2π
e
− 1

2 (
x−ν

√
t√

a
)2
dydx,

(5.60)
which led to better results for the recovery of the density function. But after the change of variable
for Y and the Arcsine distribution to the log domain, this did not lead to better results either.
Also changing X to the log domain did not lead to better results. We will see that for certain
small values of σ2T = 4t, the oscillation in the density function does not vanish, just as for ν = 0.

In the next subsection, we show the importance of these changes of variables.

5.2 Numerical Integration Errors
We have determined how we compute each characteristic function. We then only need to establish
the truncation range for the COS method, which will be done in Section 5.4.2 to compute the
characteristic function of ln(Aν

t ).
Before we continue our computation, we first elaborate on the importance of the numerical

integration and the behaviour of our computation based on certain parameter settings. Since we
compute the characteristic function of ln(Aν

t ) via computation via multiple different characteristic
functions, the computation is very sensitive to errors in each characteristic function.

5.2.1 Change of Variables

In Figure 3c we recovered the PDF of ln(Z2) properly using cosine series expansion. In Figure 11c
we have shown the CDF recovery of the Arcsine distribution, and in Figure 12 the CDF recovery of
W was shown, using no change of variable. We conclude from this that each characteristic function
is computed properly in the sense for its own CDF of PDF recovery. We did not show this, but
also for each CF, |Φ(·)| ≤ 1 was satisfied. The errors in the coefficients seem to be small enough
using the numerical integration we proposed.

But combining all three characteristic function for the characteristic function of ln(Aν
t ) leads to

large numerical errors. Note that for the computation of Φln(Aν
t )
(ω), the characteristic function of

X = ln(Z2), Z ∼ N(0, 1) is in the denominator, of which the absolute value becomes very small.
This means that the errors in the nominator are being magnified, which has a large effect on the
overall error of the computation of the characteristic function of ln(Aν

t ).
For example, when we look at ν = 0, we observed in section 4.3, due to the decay of the Gamma

function, errors would become extremely large in the computation for Φln(At)(ω). We used a wide
truncation range, therefore the numerical errors would appear after larger values of N using Γ. In
the next section we will use a different truncation, which is a new defined truncation range based
on [6] and [7] (5.71), which also works for ν = 0 for option pricing. But using the Gamma function
becomes inefficient for large values of N , as we have seen that Gamma becomes very small after
N = 19(b−a)

ω . We will verify this in section 5.5.4.
Now we go back to ν ̸= 0, to show the importance of the change of variables made. This is

especially important for small values of t (due to the χ2
2 distribution), which are used in Asian

option pricing. We plot the CDF of ln(Aν
t ) for T = 1 using the integration methods with and

without change of variable to the log domain. We use Clenshaw-Curtis quadrature with J = 1000
for each distribution. We set (µ, σ, T ) = (0.05, 0.4, 1) and use N = 128 cosine expansion terms.
The truncation range is set as in (5.71).

40



(a) CDF without log domain (b) CDF with log domain

Figure 14: Difference in CDF recovery due to change of variables

It is observed that making no use of change of variable, the values of F (x) get extremely large
and small.

It can actually be shown that the change of variable for Y is the most important, but also
applying a change of variable to the Arcsine distribution led to better results option pricing.

In the next subsection, we also make a note on the sensitivity of parameters, due to the fact
that we use multiple separate characteristic functions in our computation.

5.2.2 Sensitivity to Parameters

We focus now on ν = 0. Our computation is very sensitive to the parameters due to our division
of two characteristic functions, which we will show by counterexamples. We show here by example
the sensitivity of the level of tolerance used and number of quadrature points. Intuition would be
that an increase in TOL for numerical integration should lead to an increase in the errors and an
increase in quadrature points should lead to a decrease in errors. We show by counterexample that
this does not hold. We use as benchmark that

|Φln(Aν
t )
(ω)| =

∣∣∣∣h(ω)g(ω)

∣∣∣∣ ≤ 1. (5.61)

We use the numerical integration technique proposed as in Section 4.3 for t = 0.01. In Figure
15a the parameters are set as (Jh, Jg, TOLh, TOLg) = (1000, 1000, 15, 15). Then we reduce the
number of quadrature points for g(ω) using Clenshaw-Curtis quadrature. We see an increase of
accuracy around ω = 20 and a decrease of accuracy around ω = 70. In Figure 15c, the tolerance
level of h is increased from 10−15 tot 10−9. As h(ω) is in the nominator, this should lead to a large
increase in errors in the characteristic function, but the values have actually improved. This can
be concluded since the absolute value of the characteristic function does not get greater than 1 for
a larger number of ω.

(a) (1000, 1000, 15, 15) (b) (1000, 500, 15, 15) (c) (1000, 500, 9, 15)

Figure 15: |Φ(·)| due to tolerance levels and quadrature points.
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That is why for the computation of the characteristic function of ln(Aν
t ) using our method based

on Bougerol’s identity, every parameter regarding the numerical integration should be evaluated.
For ν = 0 we have done this in the previous section for h(ω). For ν ̸= 0 we will do this via error
analysis again. The tolerance levels for the separate characteristic functions will be analyzed in
Section 6, when we price Asian options.

In Section 5.3 we first elaborate more on the different parameters appearing in Aν
t .

5.3 Parameter Evaluation
In order to have a good analysis of the density function and CDF of ln(Aν

t ) we need to comprehend
the behaviour depending on different parameter values. Recall that T is the maturity time, µ is
the risk-free rate and σ is the volatility. By the scaling property, which is shown in Section 3.1.2,
ν and t are given by

ν = ν(µ, σ) =
2µ

σ2
− 1 (5.62)

t = t(σ, T ) =
σ2

4
T. (5.63)

Recall that our variable of interest Aν
t is given by

Aν
t =

∫ t

0

e2νs+Bsds =

∫ t

0

f(s)ds. (5.64)

Since Brownian motion is continuous, we have that f(s) = e2(νs+Bs) is continuous, therefore we
can state the following:

d

dt
Aν

t =
d

dt

∫ t

0

e2(νs+Bs)ds = e2(νt+Bt). (5.65)

The change in distribution of Aν
t and therefore ln(Aν

t ) regarding t is very large. Also regarding the
change of time, the parameter ν is of great importance. Especially when ν > 0, from (5.64) and
(5.65) we can immediately see that the values of Aν

t become very large as t increases.
To really appreciate every parameter in ln(Aν

t ), we state the following. Since x → ln(x) is
strictly increasing for x > 0:

• ln(Aν
t ) is strictly increasing in t, and therefore in T . Note that for Asian option pricing, T is

given in years.

• ln(Aν
t ) is strictly increasing in ν, and therefore in µ. Note that µ only determines the mean

of the normal distribution X in W = ln(ϕ2(X,Y )).

• The difficulty lies in the volatility σ. Clearly ν is decreasing in σ, whereas t is increasing
in σ. We make three plots of the value of ln(Aν

t ). We set µ = 0.05 and simulate the value
of ln(Aν

t ) using Monte Carlo simulation for different maturity times, T ∈ {1, 10, 100}. We
compute the value of ln(Aν

t ) for 30 values of the volatility between [0.1, . . . , 1]. If σ > 0.32,
then ν < 0. The results are shown in the Figure 16.

(a) T = 1 (b) T = 10 (c) T = 100

Figure 16: Increase and decrease of ln(At) with respect to σ for various T .
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Note that ν is decreasing in each subplot of Figure 16, but in Figure 16a and 16b the value of
ln(Aν

t ) is still increasing due to the increase of t. On the other hand, in Figure 16c we see that for
T = 100, when σ gets larger and ν becomes negative, the value of ln(At) decreases, even though t
increases.

We examine the three components of which the distribution of ln(Aν
t ) consists based on

Bougerol’s extended identity. Note that Z = ln(Ξ),Ξ ∼ Arcsine(0, 1) and X = ln(Z2), with
Z ∼ N(0, 1), both do not rely on µ, σ or T . Therefore, we analyze the distribution of W =
ln(ϕ2(X,Y )) as in section 5.1, still with T ∈ {1, 10, 100}. Since ln(Aν

t ) is strictly increasing in µ,
we set µ = 0.05 as in Figure 16, and will only observe the changes in σ (therefore ν) and T .

We recover the density of W = ln(ϕ2(X,Y )) via the COS method, applying no change of
variable is performed. We use a 2-dimensional Clenshaw-Curtis quadrature, with N = 512 cosine
expansion terms and JW = 500 quadrature points, and set a wide truncation range. In Figure 17
the PDF of W for σ ∈ {0.2, 0.4, 0.6, 0.8} and T ∈ {1, 10, 100} are shown.

(a) σ = 0.2 (b) σ = 0.4 (c) σ = 0.6 (d) σ = 0.8

Figure 17: Density of W for various volatility values for multiple maturity times T via cosine series
expansion.

We observe indeed the same behaviour as in Figure 16. For T ∈ {1, 10}, a decrease in ν leads
to a wider peak in the density due to the change in time obtained by the change in σ, whereas for
T = 100, the peak gets narrower as σ increases.

In the following subsection, we specify deatils regarding the numerical implementation.

5.4 Numerical Implementation
In this Section we choose which parameter values we wish to evaluate in the error analysis. Also,
a new sufficient truncation range for the COS method will be determined. We start with the
parameters based on the parameter study we have given.

5.4.1 Parameter Choice

We have a wide set of parameters we can choose from to perform an error analysis. Above we
see that the relationship between σ and T defines the distribution of ln(Aν

t ). In [8], it is stated
that the most important parameter for the pricing of continuous Asian options is σ2T = 4t. As
σ2T → 0, Laplace transforms and other numerical methods do not converge. We obtain the same
problems as σ2T decreases using cosine series expansion. Therefore, we base our error analysis on
this parameter.

We evaluate σ2T ∈ {0.05, 0.1, 0.5}, as large values lead to less computational complications
and the interest lies for smaller values of σ2T . In the next Section, when we price Asian options,
we will evaluate more values of σ2T . We set µ = 0.01, which coincides with an average of the
currently used yearly risk free rates by different banks. We also fix T = 1, opposed to the previous
section, where different values of the parameter T (actually t, but there is a linear relationship
due to the scaling property) were evaluated. The values of σ then become σ ≈ (0.21, 0.32, 0.70),
which are reasonable values to evaluate. In [3], σ ∈ {0.8, 0.9, 1} are even used, but these are not
very commonly observed in the market. We will however use them as reference prices for the
variable σ2T in the next section. Note that setting T this small, the sign of ν is no longer of great
importance. Since we choose the risk free rate to be of current annual value, the sign of ν will
always be negative in our error analysis in Section 5.5. But as we said earlier, this defines the
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mean of the normal distribution in W , which is yet multiplied by t. Since our aim is Asian option
pricing, this is a good choice as the parameter setting for the error analysis.

For our derivation of the CDF and PDF of the distribution of ln(Aν
t ) based on cosine series

expansion, the two elements are the numerical integration technique and the truncation range.
The numerical integration has been discussed and improved by a change of variable, now we need
to set a proper truncation range for the COS method.

5.4.2 Truncation Range

In section 4.3, we proposed a truncation range based on the minima and maxima of the separate
distributions. We chose a very wide truncation range in that section and could therefore make use
of the Γ function for Nt ∈ {256, 128, 128, 128}.

For ν ̸= 0 we use a different truncation range, which is based on [6] and [7]. A proper truncation
range for the COS method is given by:

[a, b] =

[
c1 − L

√
c2 +

√
c4 +

√
c6, c1 + L

√
c2 +

√
c4 +

√
c6

]
, (5.66)

where ci, i ≤ 1 ≤ 6 are the cumulants of the underlying distribution, and L ∈ [6, 12] (L ∈ N). It is
also used with c6 = 0, or c4 = c6 = 0. The use of these cumulants is determined by how fat the
tails of the underlying distribution are. We stated already that we cannot determine the moments
of ln(At), but we can use the moments of Aν

t .
If h(x) is the density function of Aν

t , then a proper truncation range for ln(Aν
t ) based on the

moments of Aν
t can be computed by:∫ b

a

h(x)dx =

∫ ln(b)

ln(a)

h(eu)eudu =

∫ ln(b)

ln(a)

hln(Aν
t )
(u)dx ≥ 1− TOLAν

t
(5.67)

We can compute [a, b] for Aν
t , and scale back to [ln(a), ln(b)]. The cumulants of Aν

t are determined
by the moments, which are given by [18]

E[(Aν
t )

n] = 2−2nn!

n∑
j=0

c
(ν)
j,n exp((2j2 + 2jν)t), (5.68)

where c(ν)j,n is given by

c
(ν)
j,n =

 n∏
k=0,k ̸=j

(ν2 + j)2

2
−

(ν2 + k)2

2

−1

. (5.69)

Since Aν
t > 0, no problems occur for computing the upper bound ln(b). But even setting c4 = c6 =

0, computations of a for σ ≥ 0.2 lead to a < 0 (of course also depending on T ). We need a rule of
thumb for the lower bound. First we estimate the expectation of ln(Aν

t ) by

E[ln(Aν
t )] ≈ ln (E[Aν

t ]) . (5.70)

Note that the left side is always smaller by Jensen’s inequality. Even though the right tale is fatter
than the left tail, the distribution of ln(Aν

t ) is close to symmetric, especially for small values of
σ2T . Therefore we set as new rule of thumb for the truncation range [A,B] for the COS method:

[A,B] = [ln(E[(Aν
t )])− | ln(E[Aν

t ])− ln(b)|, ln(b)] , (5.71)

with b as in (5.66). We have done numerical testing on the option pricing using various values of
L, and the use of c4 and c6. Note that taking c6 (and c4) into account would require more cosine
terms N . The use of c6 is mostly preferable for fat-tailed distributions. It appeared that overall a
good choice for the truncation range is set with L = 8, c6 = 0, which is what we will use for our
error analysis. We will come back to the truncation range in Section 6.

In the next Subsection we establish the benchmark for the error analysis, which is conducted
in Section 5.5.
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5.4.3 Benchmark: Monte Carlo Simulation

Just as in the previous chapter, the benchmark we use for the computation of the CDF and PDF
of ln(Aν

t ) is Monte Carlo simulation. The Monte Carlo scheme for Aν
t with drift term is given by

the following:

Aν
t =

∫ t

0

e2(νs+Bs)ds

=

n∑
i=0

e2(νti+1+B(ti+1)(ti+i − ti))

=
t

n

n∑
i=0

e2(νti+1+B(ti+1))

=
t

n

n∑
i=0

e2(ν
t
n (i+1)+

∑i
j=0 B(tj+1)−B(j))

=
t

n

n∑
i=0

e2(ν
t
n (i+1)+

∑i
j=0

√
t
nZj),

(5.72)

where Zj ∼ N(0, 1), j ∈ {0, . . . , n}. Again, we take the log of our Monte Carlo simulation. For
the error analysis in the following sections, we use m = 106 Monte Carlo simulations.

5.5 Error Analysis
In Section 6.4 we give a full overview of all the error sources and their contribution of the total
error in our method. In this section we perform a numerical error analysis for our computation of
the characteristic function of ln(Aν

t ) for σ2T ∈ {0.05, 0.1, 0.5}. Recall that we have

Φln(Aν
t )
(ω) =

Φln((2Ξ−1)2)(ω) · Φϕ2(ω)

Φln(Z2)(ω)
=
k(ω)l(ω)

g(ω)
. (5.73)

Each characteristic function is computed numerically.
For the computation of g(ω) we saw that for ν = 0, we obtained no difference in errors in the

CDF of ln(At) for

Nt ≤
ωmax(bt − at)

π
=

19(bt − at)

π
, (5.74)

using the Gamma function and Clenshaw-Curtis quadrature. Note that the truncation range is
now very small, since we are examining the error behaviour for difficult cases, i.e. with very small
values of t. The use of the Gamma function will therefore lose its purpose, which we will confirm by
numerical experiments. Furthermore, k(ω) will be computed with two different quadrature rules,
i.e. Clenshaw-Curtis quadrature and Chebyshev-Gauss quadrature. For the computation of l(ω),
Clenshaw-Curtis quadrature will be used.

For various cosine expansion terms N , we measure the error convergence using the || · ||2-norm.
For option pricing in Section 6, we aim to have the computational time as low as possible. Therefore,
we need to minimize each number of quadrature point J ∈ {Jg, Jk, Jl}. Therefore, convergence
tests due to the number of quadrature points for the computation of each characteristic function
will be done. Furthermore, the computational complexity of Chebyshev-Gauss quadrature is lower
than for Clenshaw-Curtis, hence we make a good comparison between these as well.

Note that we have 4 different levels of tolerance: TOLg, TOLk (with Clenshaw-Curtis quadra-
ture), TOLx and TOLy for W = ln(ϕ(X,Y ). Numerical experiments have shown that the following
values lead to good results, hence we start with the following: TOLg = 10−9, TOLk = 10−7 (which
is the minimal value for which the computation is possible), TOLx = 10−15, TOLy = 10−12. But
as we stated in Section 5.2, this needs to be evaluated properly. We will analyse the different values
of TOL in Section 6 with reference prices.

In this error analysis, we will thus look at the following for three different values of σ2T :
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• For the computation of g(ω) we use Clenshaw-Curtis quadrature and seek for the the minimal
number of quadrature points, and compare its performance with the use of the Gamma
function.

• For the computation of k(ω) we compare Chebyshev-Gauss quadrature and Clenshaw-Curtis
quadrature, varying the number of quadrature points for each integration technique.

• For the computation of l(ω), we use Clenshaw-Curtis quadrature and vary the number of
quadrature points.

We start by using many quadrature points to supress the error coming from the numerical inte-
gration technique, and test the error convergence regarding the number of cosine expansion terms
N . We will then continue with a fixed N for after which no convergence is observed (within
N = 2d, d ∈ N), and analyse the error convergence using different number of quadrature points for
each method. We will mostly use plots on a log scale for the error convergence to ensure a clear
observation of the behaviour of the error.

5.5.1 CDF Error Analysis

In Section 4.4, we based our error analysis on the CDF compared with Monte Carlo simulation.
For ν ̸= 0, we do the same. We use points xj , 0 ≤ j ≤ 10, to evaluate the errors in F (xj). Note
that we only use x-values which lie within the range of the peak of the density and use || · ||2-norm
for measurement of the errors. For the Monte Carlo simulation, 106 paths are used. We start with
the characteristic function of k(ω).

5.5.2 Analysis of k(ω)

5.5.2.1 Convergence in N

First we look the values of the errors using both methods for k(ω). Setting J = 1000 for each
integration method, we vary the number of cosine expansion terms N and look at the error con-
vergence regarding N . The errors are computed in the || · ||2-norm. The levels of tolerance are set
as we stated earlier. The results are shown in Table 6.

Fourier Cosine Expansion + CC (2x) + Chebyshev-Gauss vs CC
σ2T = 0.05, ϵ2 σ2T = 0.1, ϵ2 σ2T = 0.5, ϵ2

N Cheb−Gauss CC Cheb−Gauss CC Cheb−Gauss CC
4 1.127 · 10−1 1.121 · 10−1 9.697 · 10−2 9.510 · 10−2 6.470 · 10−2 6.341 · 10−2

8 1.266 · 10−1 9.274 · 10−3 9.778 · 10−3 8.638 · 10−3 6.502 · 10−3 5.703 · 10−3

16 8.631 · 10−3 8.472 · 10−3 4.630 · 10−3 4.627 · 10−3 5.626 · 10−3 3.989 · 10−3

32 7.905 · 10−3 8.464 · 10−3 6.752 · 10−3 4.627 · 10−3 5.626 · 10−3 3.989 · 10−3

64 7.896 · 10−3 8.464 · 10−3 6.752 · 10−3 4.627 · 10−3 5.626 · 10−3 3.989 · 10−3

128 7.896 · 10−3 8.464 · 10−3 6.752 · 10−3 4.627 · 10−3 5.626 · 10−3 3.989 · 10−3

256 7.896 · 10−3 8.464 · 10−3 6.752 · 10−3 4.627 · 10−3 5.626 · 10−3 3.989 · 10−3

Table 6: || · ||2 errors for the CDF of ln(Aν
t ) based on two integration methods for k(ω).

As expected, we have very fast error convergence regarding the number of cosine expansion
terms N . Important to note is that this is due to the number of Monte Carlo paths simulated.
The precision for 106 simulated paths might not be precise enough. In the PDF error analysis,
further in this section, this is confirmed. For option pricing in Section 6, therefore we will make use
of an Antithetic Variate method, and perform 106 simulations to reach a better level of accuracy.
However, the magnitude of the error is very low.

Also is observed that as σ2T increases, the error increases as well. Hence, we confirm that using
our method, the computation of Φln(Aν

t )
(ω) is less accurate as σ2T decreases.

Only for σ2T = 0.05, using Chebyshev-Gauss quadrature leads to a lower error in the CDF
approximation. The maximum difference in error between the two methods however is 2.125 ·10−3.
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5.5.2.2 Convergence in Jk

Now we look at the error convergence in Jk, to minimize the number of quadrature points for option
pricing in Section 6. We do this via two figures, each with three subfigures for different values of
σ2T . Still setting NJ = Nl = 1000, we vary the number of quadrature points Jk ∈ [100, ..., 1000].
We use N = 64 cosine expansion terms. The results are shown via log scale on the y-axis in Figures
18 and 19.

(a) σ2T = 0.05 (b) σ2T = 0.1 (c) σ2T = 0.5

Figure 18: CDF error convergence due to Jk using Chebyshev-Gauss quadrature.

(a) σ2T = 0.05 (b) σ2T = 0.1 (c) σ2T = 0.5

Figure 19: CDF error convergence due to Jk using Clenshaw-Curtis quadrature.

First we look at Figure 18. Chebyshev-Gauss quadrature does not have a good convergence
of errors for different values of quadrature points. Jk = 1000 returns the lowest error in the first
two cases, but convergence might not have even stopped there. It is not a very stable method
for computing k(ω). In Section 6 we will see how the errors will behave with respect to the
computational time as well. But looking at Clenshaw-Curtis quadrature, we can conclude we only
need Jk = max{500, 400, 400} = 500. In combination with the fact that in two of the three values
for σ2T the errors were lower using Clenshaw-Curtis quadrature, it seems like a more preferable
method for the computation of k(ω). We continue our error analysis based on Clenshaw-Curtis
quadrature for k(ω).

5.5.3 Quadrature Points for l(ω)

In this subsection, we analyze the error convergence due to the computation of g(ω) and l(ω).
We start with the characteristic function of W . We use the results from the last Subsection and

continue with Clenshaw-Curtis quadrature for each distribution. We look for the minimal number
of quadrature points Jl first, based on a log-scaled plot as well. Setting N = 64, Jk = 500 and
Jg = 1000, we assess the convergence using J∈[100, ..., 1000] with step sizes of 100. The results are
presented in Figure 20.
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(a) σ2T = 0.05 (b) σ2T = 0.1 (c) σ2T = 0.5

Figure 20: CDF error convergence due to Jl using Clenshaw-Curtis quadrature.

We see quick and decreasing error convergence just as in Figure 19. For σ2T = 0.05, we need
600 quadrature points to reach the same level of accuracy. For larger values only Jl = 400 is
necessary. We will thus set Jl = 600 from now on. At last, we analyze the convergence of errors
regarding the computation of g(ω).

5.5.4 Computation of g(ω)

We observe the convergence of errors due to the computation of g(ω) in this subsection, using two
computational methods.

The characteristic function of X = ln(Z2) is computed in two ways, which is the denominator
in our computation of Φln(Aν

t )
(ω). We perform 106 Monte Carlo simulations for each value of σ2T

to generate a reference value, and we compare Clenshaw-Curtis quadrature and Γ(iω + 1
2 ) for the

computation of g(ω).
First we use Cleshaw-Curtis quadrature and check the error convergence for N = 64 by varying

the number of quadrature points. We set Jl = 600, Jk = 500. The tolerance levels are still as we
set above. The results are shown in Figure 21.

(a) σ2T = 0.05 (b) σ2T = 0.1 (c) σ2T = 0.5

Figure 21: CDF error convergence due to Jg using Clenshaw-Curtis quadrature.

We see that convergence in the error stops after Jg = 500 for each value of σ2T . We have now
reduced every number of quadrature points for all numerical integration methods.

Lastly, we need to verify whether the Gamma function is beneficial or not. We have shrunken
the truncation range now drastically and have a different calculation of Φln(Aν

t )
(ω) than in Section

4.3, based on Bougerol’s extended identity. Hence, we need to verify the use of Γ again. We will
use σ2T = 0.1 for this experiment. We set (Jl, Jk, Jg) = (600, 500, 500). The results are shown in
Table 7.
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N CC Γ

8 8.555 · 10−3 8.554 · 10−3

16 3.558 · 10−3 5.830 · 10−2

32 3.558 · 10−3 2.461 · 1014
64 3.558 · 10−3 1.018 · 1045

Table 7: CDF errors due to two methods for g(ω).

Due to the rapid decay of the Gamma function in Python, the errors get extremely large, as
expected. It is confirmed that the use of the Gamma function for the computation of g(ω) is not
suitable due for the computation of g(ω) with the new defined truncation range. This means we
continue with Clenshaw-Curtis quadrature for g(ω) as well.

We combine the results we have obtained in the CDF error analysis, to look at the error
convergence of the PDF of ln(Aν

t ).

5.5.5 PDF Error Convergence

To finalize the error analysis, we use the PDF recovery via the COS method in this section. We
look at the convergence regarding the number of cosine expansion terms N .

First we plot the PDF using N = 256 and (Jl, Jk, Jg) = (600, 500, 500) using Clenshaw-Curtis
quadrature for each method. We set µ = 0.01 and T = 1. The truncation range is as in (5.71)
with c6 = 0, L = 8. The results are shown in Figure 22.

(a) σ2T = 0.05 (b) σ2T = 0.1 (c) σ2T = 0.5

Figure 22: PDF recovery for various values of σ2T .

The truncation range is well defined on the left side tail. For σ2T > 0.5 we might need to
increase the parameter L. Note that oscillation occurs for σ2T = 0.05, even using N = 256 cosine
expansion terms.

Lastly we show the convergence of errors of the PDF for multiple cosine expansion terms N
compared with N = 256. We use the log10 of the || · ||2-norm error to make the distinction
clearer for very small errors. For the computation of k(ω), both Clenshaw-Curtis quadrature and
Chebyshev-Gauss quadrature are used. The results are shown in Table 8.
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Fourier Cosine Expansion + CC (2x) + Chebyshev-Gauss vs CC
σ2T = 0.05, ϵ2 σ2T = 0.1, ϵ2 σ2T = 0.5, ϵ2

N Cheb−Gauss CC Cheb−Gauss CC Cheb−Gauss CC
4 0.247 0.429 0.239 0.242 0.125 0.121
8 -0.292 -0.314 -0.508 -0.502 -0.596 -0.609
16 -7.130 -6.940 -7.127 -6.696 -6.740 -6.708
32 -11.084 -10.594 -11.911 -11.441 -11.688 -11.459
64 -11.122 -10.589 -12.004 -11.460 -11.842 -11.519
128 -11.141 -10.597 -12.004 -11.575 -12.074 -11.544

Table 8: log10 of || · ||2 errors for the PDF of ln(Aν
t ) compared with N = 256.

For each parameter value of σ2T , there is still a decrease in error for up to N = 128, with a
clear exponential convergence. But it is also verified, that after N = 32, the differences in error are
very small. Which confirms that for the CDF analysis, the convergence did not stop, but converged
up to the point of the accuracy of Monte Carlo simulation for N > 16. We can already see that
the option pricing will not need a lot of computational time to reach a good level of accuracy.

Chebyshev-Gauss quadrature shows slightly faster error convergence speed for N ≥ 16. But for
both integration methods for k(ω), it seems that N = 16 cosine expansion terms already leads to
incredibly small errors compared to N = 256. We will further analyse this by pricing the options.
We finalize this section with a conclusion, including all the information we have developed this
section.

5.6 Conclusion
In this section we have explained in detail how to compute the characteristic function of ln(Aν

t )
with drift term ν ̸= 0, based on the extension of Bougerol’s identity. The computation is a product
and division of three independent characteristic functions.

We computed each characteristic function separately via numerical integration. For the Arcsine
distribution, two numerical methods were proposed. We checked the numerical results via either
CDF or PDF recovery, compared with the exact formula for the Arcsine distribution, and with
Monte Carlo simulation forW = ln(ϕ(X,Y )). The results showed a good recovery for each distribu-
tion. However, combining the characteristic functions led to numerical issues. For Clenshaw-Curtis
quadrature of Y ∼ χ2

2 and Z = ln(Ξ), Ξ ∼ Arcsine(0, 1), a change of variable had to be made to
the log domain. Afterwards, the CF of ln(Aν

t ) can be computed properly.
We gave an overview of how the distribution relies on (µ, σ, T ) and how the computation of

Φln(Aν
t )
(ω) is very sensitive to the level of tolerance used, as well as the number of quadrature

points used for numerical integration. These can be counter intuitive.
Extensive error analysis with Monte Carlo simulation as benchmark has been done based on

the number of quadrature points in the numerical integration, after we defined a new truncation
range for the COS method.

Numerical tests evidenced a good convergence of errors. Already after N = 32 cosine expansion
terms, the same level of accuracy as the MC benchmark is achieved. However, in the PDF analysis
it was confirmed that convergence did not actually stop, and the exponential convergence was
showed. By comparing two numerical integration methods for k(ω), We concluded that Clenshaw-
Curtis quadrature leads to smaller errors in the CDF recovery except for σ2T = 0.05.

In the next section we will price Asian options using our method of cosine series expansion via
Bougerol’s identity based on the derived characteristic function in this section.
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6 Pricing Continuous Asian Options

In Sections 4 and 5, the characteristic function of ln(Aν
t ) based on Bougerol’s identity for ν = 0

and ν ̸= 0 has been computed. Afterwards we have derived the PDF and CDF of ln(Aν
t ) and

studied the behaviour of the distribution of ln(Aν
t ) with respect to different parameter values. In

this section we aim to price Asian options using the derived densities in Sections 4 and 5.
We start with some financial background on options and Asian options in general. Then we lie

the focus on continuous Asian options. First we discuss the Geometric averaged option based on
Geometric Brownian motion, for which we can derive an analytic solution.

Then, we show how we can price options using the COS method and apply this the option
pricing for Arithmetic averaged Asian options.

Afterwards, we will give an overview of the errors occurring in our method, and their contribu-
tion to our method regarding option pricing. The computational complexity of our new developed
method will also be explained.

At the end of this section, we perform multiple convergence experiments for the option prices
both in the number of quadrature points for different methods J , as for the number of cosine
expansion terms N . As benchmark for the option pricing, several prices from the literature will be
used. The computational time will also be computed, which we aim to have as low as possible.

In Section 6.1, the financial background on Asian options will be given.

51



6.1 Financial Background
In this section we explain more on Asian option pricing in general. Throughout this research, we
have used Geometric Brownian motion as stochastic process of the underling. We will elaborate
on this as well.

6.1.1 Asian Options

An option is a contract which gives the buyer of the contract the right to buy or sell the underlying
asset for a strike price K at some points t = T . The strike price can be a floating strike price
depending on the underlying. In this research we focus on a fixed strike price. T is known as the
maturity time, or expiration time of the option. In our case the underlying is a stock which follows
a Geometric Brownian motion. There are two types of options. Call options give the right to buy
the asset. Put options give the right to sell the underlying asset.

As stated earlier, in this research we look at Asian options. Asian options are Exotic options
which are path dependent options, meaning they rely on the behaviour of the underlying St for
0 ≤ t ≤ T instead of only the value of the underlying at time T . Asian options are determined by
the averaged price of the underlying until maturity time T . They were fist introduced in 1987 by
Banker’s Trust Tokyo used for crude oil contracts, which is where the name comes from.

There are 4 types of Asian options, which can be divided into two categories: continuous
Asian options and discrete Asian options, which on their turn can be divided into two categories:
Geometric averaged or Arithmetic averaged.

As the name suggests, discrete Asian options are based on fixed time points of the value of the
underlying 0 = t0 < t1 < ... < tn−1 < tn = T (t0 does not necessarily needs to be zero, but for
simplicity we set t0 = 0). For the pricing of Geometric discrete Asian options, analytic solutions are
available when the underlying follows a Geometric Brownian motion as is shown in [20]. In [19], the
COS method is used to compute discrete Arithmetic averaged Asian options. The characteristic
function is there by recursion computed for each point in time. For a continuous time average, we
have derived the characteristic function based on Bougerol’s identity.

We focus on continuous Asian options. The payoff functions for a call option for continuous
Geometric averaged - and Arithmetic averaged Asian options respectively are given by

HG(T, S) =
[
e

1
T

∫ T
0

log(Su)du −K
]+

, (6.1)

HA(T, S) =

[
1

T

∫ T

0

Sudu−K

]+
, (6.2)

where [x]+ = max{0, x}. Note that for discrete Asian options, the difference is a replacement in
the payoff function:

1

T

∫ T

0

Sudu→ 1

N + 1

N∑
i=0

Si. (6.3)

For the Geometric average, analytic solutions can be found when the underlying follows a Geometric
Brownian motion, which is shown in Section 6.2. For continuous Arithmetic Asian options, no
analytic solution has been found, which makes this topic challenging.

First we explain the meaning of Geometric Brownian motion in more detail.

6.1.2 Black-Scholes

As stated in the Introduction and Section 3, we will compute the price of Asian options where the
underlying follows a Geometric Brownian motion. This is used in the Black-Scholes framework.

Let Wt be a standard Brownian motion. For a risk-free asset and a risky asset, the dynamics
are respectively given by

dMt = rMtdt, (6.4)

dSt = µStdt+ σStdW
P
t , (6.5)
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where, r is the risk-free rate and µ and σ are deterministic values denoted by the drift and volatility.
Mt can be seen as a bank account. P denotes the real-world measure and Mt and St are the prices
of the risk-free and risky assets respectively. Equation (6.5) is called geometric Brownian motion.
It then follows that under a different measure, the risk-neutral measure Q, the dynamics for St are
given by

dSt = (r − 1

2
σ2)Stdt+ σStdW

Q
t . (6.6)

We have notated µ = r in the previous Sections. The solution of (6.6) at time t = T is given by

ST = S0e
(µ− 1

2σ
2)T+σWT , (6.7)

as we already stated in Section 3.
In the next Subsection, we focus on the Geometric averaged Asian option, for which we can

derive an analytic solution.

6.2 Continuous Geometric Averaged Asian Options
In this section we show how we can derive an analytic solution for Geometric averaged options
where the underlying follows a Geometric Brownian motion. We focus on a call option here. For
a put option, the computation is similar.

Recall that the payoff function for the Geometric average is given by

HG(T, S) =
[
e

1
T

∫ T
0

log(Su)du −K
]+

. (6.8)

By the Feynman-Kac theorem [12], the value of the option at time t = t0 is denoted by

V (t0, S) = EQ[H(T, S)|Ft0 ]

= EQ
[(
e

1
T

∫ T
0

log(Su)du −K
)+

|Ft0

]
= EQ[(ey −K)+|Ft0 ],

(6.9)

with

y =
1

T

∫ T

0

log(Su)du. (6.10)

We set t0 = 0 and make the following computation. Let Wt follow a standard Brownian motion.
Using (6.7), computation of y yields to:

y =
1

T

∫ T

0

log(Su)du

=
1

T

∫ T

0

[
log(S0) + (µ− 1

2
σ2)u+ σWu

]
du

= log(S0) +
1

2
(µ− 1

2
σ2)T +

1

T

∫ T

0

σWudu

= log(S0) +
1

2
(µ− 1

2
σ2)T +

σ

T

∫ T

0

Wudu.

(6.11)

By Ito’s formula for g(u,Wu) = uWu, we obtain that

d(uWu) =Wudu+ udWu ↔ (6.12)∫ T

0

d(uWu) =

∫ T

0

Wudu+

∫ T

0

udWu ↔ (6.13)

TWT =

∫ T

0

Wudu+

∫ T

0

udWu. (6.14)
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Therefore, we can write ∫ T

0

Wudu = TWT −
∫ T

0

udWu

= T

∫ T

0

dWu −
∫ T

0

udWu

=

∫ T

0

(T − u)dWu,

(6.15)

which is a Gaussian random variable. Since f(u) = T − u is deterministic and
∫ T

0
(f(u))2du <∞,

the expectation and variance of (6.15) are given by

E

[∫ T

0

(T − u)dWu

]
= 0, (6.16)

V ar

[∫ T

0

(T − u)dWu

]
= E

(∫ T

0

(T − u)dWu

)2
 =

∫ T

0

(T − u)2du =
1

3
T 3. (6.17)

Hence, ∫ T

0

Wudu ∼ N(0,
1

3
T 3). (6.18)

We can conclude that ey is lognormally distributed, where y is distributed as

y ∼ N

(
log(S0) +

1

2
(µ− 1

2
σ2)T,

σ2

3
T

)
. (6.19)

Since e
1
T

∫ T
0

log(su)du is lognormally distributed, we can compute an analytic solution for the option
price at time t0 = 0 as follows. Let Z ∼ N(0, 1). The price at t0 = 0 is then

V (t0, S) = EQ[(ey −K)+|F0]

= e−rTE
[
S0e

√
1
3σ

2Tz+ 1
2 (r−

1
2σ

2)T −K
]+

.
(6.20)

Solving
S0e

√
1
3σ

2Tz+ 1
2 (r+

1
2σ

2)T −K ≥ 0 (6.21)

leads to

z ≥ −
log(S0

K ) + 1
2 (r −

1
2σ

2)T√
1
3σ

2T
= −d2. (6.22)

Now we set

d1 = d2 +

√
1

3
σ2T

=
log(K

S0
)− 1

2 (r −
1
2σ

2)T + 1
3σ

2T√
1
3σ

2T
,

(6.23)

the value of the option in (6.20) then becomes

V (t0, S) = e−rTE
[
S0e

√
1
3σ

2Tz+ 1
2 (r−

1
2σ

2)T −K
]+

= e−rT

∫ ∞

−d2

1√
2π

(
S0e

√
1
3σ

2Tz+ 1
2 (r−

1
2σ

2)T −K
)
e−

1
2 z

2

dz

= e−rT

∫ d2

−∞

1√
2π

(
S0e

−
√

1
3σ

2Tz+ 1
2 (r−

1
2σ

2)T −K
)
e−

1
2 z

2

dz

= −Ke−rTΦ(d2) + e−rT e
1
2 (r−

1
2σ

2)TS0

∫ d2

−∞

1√
2π
e−

√
1
3σ

2Tze−
1
2 z

2

dz.

(6.24)
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Setting y = z +
√

1
3σ

2T , we obtain

∫ d2

−∞

1√
2π
e−

√
1
3σ

2Tze−
1
2 z

2

dz =

∫ d1

−∞

1√
2π
e−

√
1
3σ

2T (y−
√

1
3σ

2T )e−
1
2 (y−

√
1
3σ

2T )2dz

=

∫ d1

−∞

1√
2π
e−

1
2y

2

e
1
6σ

2T dy = e
1
6σ

2TΦ(d1).

(6.25)

Thus the option price at t0 = 0 is given by

V (t0, S) = e−rT e
1
2 (r−

1
2σ

2)T e
1
6σ

2TS0Φ(d1)−Ke−rTΦ(d2). (6.26)

As we stated earlier, the challenge lies indeed in pricing Asian options with Arithmetic mean.
We show how we can price these options using the COS method in the next subsection based on
Bougerol’s extended identity and the distribution of Aν

t .

6.3 Continuous Arithmetic Averaged Asian Options
Now we continue with the Arithmetic average, for which we need our derivations based on Bougerol’s
(extended) identity. For this type of option, there are no analytic solutions available. Different
computational methods have been developed to price this type of option [3]:

1. Monte Carlo simulation

2. Binomial Tree method

3. Convolution method

4. PDE methods

5. Direct integration

The accuracy of these numerical methods, compared to each other, is of order 10−4. The Binomial
Tree method is known to be sufficient for large volatility values. We use therefore the Binomial
Tree method from Hsu [10] as benchmark for high volatilities.

In our research, the option pricing is based on the distribution of Aν
t . Several expressions for

the Arithmetic Averaged Asian option price were given used based on Aν
t . Donati-Martin [4] found

an expression for the Laplace transform of the option price for a fixed strike price K:∫ ∞

0

e−λtE[Aν
t −K]+dt =

(2K)1−βΓ(α+ 1)

2λ(β − 1)Γ(α+ β + 1)
F1(β − 1, α+ β + 1,− 1

2K
), (6.27)

with
γ =

√
2λ+ ν2, α =

γ + ν

2
, β =

γ − ν

2
. (6.28)

where F1 denotes the hypergeometric function. Schröder [14] has found another expression for the
Laplace transform, and also an explicit triple integral expression.

In this research, we use the COS method in combination with the distribution of Aν
t , which is

a new approach to the pricing of Arithmetic Averaged Asian options. In the next subsection we
first explain how to compute the option using the distribution of Aν

t via the COS method based
on the derivations in [6].

6.3.1 Option Pricing using Cosine Series Expansion

In this subsection we show how to compute the option values for Arithmetic averaged options using
the COS method, following [7]. Here is where we need the derived densities in sections 4 and 5.
At the end, we also make an adjustment on the truncation range, which is shifted compared to the
truncation range for the density function of ln(Aν

t ). We start with some computation, based on
the Feynman-Kac theorem [12].
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Recall that the payoff functions of an Asian option with Arithmetic mean for a call and put
option respectively are given by

Hcall(T, y) =

[
1

T

∫ T

0

Sudu−K

]+
= [XT −K]+, (6.29)

Hput(T, y) =

[
K − 1

T

∫ T

0

Sudu

]+
= [K −XT ]

+. (6.30)

where St follows a Geometric Brownian motion and K is the fixed strike price. We denoted our
variable of interest as

Xt =
1

t

∫ t

0

Sudu, (6.31)

with x = X0 = 0 and y = XT . Therefore the price for a call option based on (6.7) and (6.9) is
given by

V (t0, x) = e−rTEQ[H(T, y)|Ft0 ] = e−rT

∫
R
V (T, y)fX(y)dy. (6.32)

Now we use the cosine series expansion for the density of Xt as in (4.3). After some computation,
and interchanging integral and summation, we can conclude that the option price is given by

V (t0, x) = e−r(T−t0)
N−1∑
k=0

′ 2

b− a
Re

[
ϕX

(
kπ

b− a

)
exp

(
−ikπ a

b− a

)]
·Hk, (6.33)

where

Hk =

∫ b

a

V (T, y) cos

(
kπ
y − a

b− a

)
dy, (6.34)

which is shown in [7]. We apply a change of variable and set Yt = ln(Xt

K ). The payoff function for
(6.29) for a call option can than be written as

H(T, y) =

[
1

T

∫ T

0

Sudu−K

]+
= [XT −K]+

=

[
K

(
XT

K
− 1

)]+
= [K(ey − 1)]

+
.

(6.35)

Lastly, the coefficients Hk in (6.34) can be computed analytically as in [7], which are given by

χk(c, d) =

∫ d

c

ey cos

(
kπ
y − a

b− a

)
dy

=
1

1 +
(

kπ
b−a

)2 [cos(kπd− a

b− a

)
ed − cos

(
kπ
c− a

b− a

)
ec,

+
kπ

b− a
sin

(
kπ
d− a

b− a

)
ed − kπ

b− a
sin

(
kπ
c− a

b− a

)
ec

ψk(c, d) =

∫ d

c

cos

(
kπ
y − a

b− a

)
dy

=

{
b−a
kπ

[
sin
(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

)]
, k ̸= 0

d− c, k = 0.

(6.36)
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What we need to price the option is thus the characteristic function of YT = ln(XT

K ). Note that St

follows a Geometric Brownian motion, therefore using (6.7) we find that

Xt =
1

t

∫ t

0

Sudu =
S0

t

∫ t

0

e(µ−
1
2σ

2)s+σBsds (6.37)

and

YT = ln

[
S0

KT

∫ T

0

e(µ−
1
2σ

2)s+σBsds

]
. (6.38)

Now we use the scaling property of IGBM shown in equation (3.32) in section 3.1.2. The following
are the same in law:

YT
law
= ln

(
4S0

σ2KT
Aν

t

)
= ln

(
S0

Kt
Aν

t

)
, (6.39)

with

t =
σ2T

4
, ν =

2µ

σ2
− 1. (6.40)

Then the characteristic function of YT can be computed as:

E
[
eiωYT

]
= E

[
eiω ln( S0

KtA
ν
t )
]
=

(
S0

Kt

)iω

· Φln(Aν
t )
(ω). (6.41)

The characteristic function of Yt is a multiplication of the constant
(
S0

Kt

)iω
with the characteristic

function of ln(Aν
t ) which we have computed in Sections 4 and 5. We can substitute (6.41) in

equation (6.32) to compute the price of Asian options at time t = t0.
All that is left to do is define a new truncation range for the COS method based on the variable

Yt =
Xt

K .

6.3.1.1 Truncation Range

In section 5.4.2 we determined the truncation range for the COS method for the density recovery
of ln(Aν

t ) via the COS method, which was given by

[A,B] = [ln(E[(Aν
t )])− | ln(E[Aν

t ])− ln(b)|, ln(b)] , (6.42)

with b given in (5.66), based on the cumulants of Aν
t . For the option pricing, we use the CF and

density function of

YT
law
= ln

(
S0

Kt
Aν

t

)
= ln

(
S0

Kt

)
+ ln(Aν

t ), (6.43)

which means the truncation range for the option pricing for the COS method is shifted regarding
the truncation range for ln(Aν

t ). The truncation range for the option pricing will therefore be

[A,B]opt =

[
ln(E[(Aν

t )])− | ln(E[Aν
t ])− ln(b)|+ ln

(
S0

Kt

)
, ln(b) + ln

(
S0

Kt

)]
. (6.44)

For now we set L = 8 and c6 = 0.
We have defined our new variable of interest Yt, and updated the truncation range for the COS

method. Hence we have all the tools to price the options.
In Section 6.4, we first give an overview of all the errors in our computation of the options and

compute the magnitude of the operational complexity.

6.4 Errors and Computational Complexity
In this section we give an overview of the errors which influence the computation of Asian options
with Arithmetic mean using the COS method, based on Bougerol’s identity. We also give the
operational complexity using our method.
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6.4.1 Errors

The errors in the computation follow from the performed numerical integration, the truncated
integrals to compute the separate characteristic functions (tolerance levels) and the use of the
COS method. They are listed below.

1. Error in the computation of g(ω). We use a level of tolerance used for the numerical in-
tegration of g(ω), hence we will create an error of TOLg when we g(ω) is computed with
Clenshaw-Curtis quadrature. We will also encounter a numerical error using the integration
ϵ1.
Using the Gamma function, this level of tolerance is not needed, but we still encounter an error
using the Gamma function in Python. We call ϵ2 the error for the numerical computation of
g(ω). Hence the error in computing g(ω) is ϵg ∈ {TOLg + ϵ1, ϵ2}

2. Error in the computation of h(ω). When we price options with zero drift, we use a tolerance
level for the computation of h(ω), hence we have an error TOLh, and we create an error due
to numerical integration using Clenshaw-Curtis quadrature ϵ3. The error for the computation
of h(ω) is ϵh = TOLh + ϵ3

3. Error in the computation of k(ω). We use either Clenshaw-Curtis quadrature with a tolerance
level TOLk and numerical integration error ϵk1 , or Chebyshev-Gauss quadrature, resulting
in an error of ϵk2 . The error occurring for the computation of k(ω) is ϵk ∈ {TOLk+ ϵk1 , ϵk2}.

4. Error in computing l(ω). Here we use 2-dimensional numerical integration, which result
in ϵl1 + ϵl2 , both with tolerance level TOLl. The error computing l(ω) is therefore ϵl =
2TOLl + ϵl1 + ϵl2 .

5. Error by using cosine series expansion. The error for the COS method consists of three parts.
Let fX(x) be the density function of ln(Aν

t ).

• In (4.3) we have a truncation of the cosine series, i.e. we create a series truncation error
c1, which is given by

c1 =

∞∑
k=N

Fk cos

(
kπ

x− at
bt − at

)
. (6.45)

• Approximating Fk as in (4.5), which creates an error c2 by truncation of the character-
istic function:

c2 =

∫
R\[at,bt]

exp

(
ikπ

x− at
bt − at

)
fX(x)dx. (6.46)

• We truncate the integration range for the option price in (6.32) resulting in an error c3:

c3 =

∫
R\[aT ,bT ]

V (T, y)fX(y)dy. (6.47)

We focus on option pricing with drift. Let G,K and L denote the exact value of h(ω), k(ω)and
l(ω), the error in the approximation of the characteristic function of ln(Aν

t ) is then

ϵcf =
LK

G
− (L− ϵl)(K − ϵk)

(G− ϵg)
=
LK

G
− (L− 2TOLl + ϵl1 + ϵl2)(K −max{TOLk + ϵk1

, ϵk2
})

(G− ϵ1 − TOLg)
.

(6.48)
The local error in our computation of the option price is therefore a combination of c1, c2, c3, and
ϵcf . We will not analyse the error convergence due to different tolerance levels. We use a least
squared method to determine which tolerance levels result in the lowest error based on 8 reference
prices in Section 6.5. We will analyze the following.

• Setting the truncation range large enough with a sufficient amount of quadrature points
based on the CDF error analysis in Section 5.5 for each numerical integration technique, the
error will be dominated by c1 and exponential convergence should occur.

• Setting the truncation range large enough and using a sufficient number of cosine expansion
terms, the error is dominated by ϵcf . After an experiment on different tolerance levels, the
error should come from the numerical integration, i.e. the number of quadrature points.
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6.4.2 Computational Complexity

We define the computational complexity for pricing options using our method, again for ν ̸= 0.
For each k ≤ N , we use 4 numerical integration techniques (2 for l(ω)). Note that for g(ω) and
l(ω) we use Clenshaw-Curtis quadrature, which takes (J log(J) + J) operations. For k(ω) we use
both Clenshaw-Curtis quadrature and Chebyshev-Gauss quadrature, and the latter takes O(J)
operations. The computational complexity using cosine series expansion for our method based on
Bougerol’s extended identity is then

OC ∈ {O(N((2Jl log(Jl) + Jl) + (Jk log(Jk) + Jk) + (Jg log(Jg) + Jg))),

O(N((2Jl log(Jl) + Jl) + Jk + (Jg log(Jg) + Jg)))}.
(6.49)

We have defined the numerical methods, the truncation range and gave an overview of the
errors. In Section 6.5, we price the options based on all the results obtained in this research so
far.

6.5 Option Pricing Results
In this section we will use the results form Sections 4 and 5 to price the options.

We will use Monte Carlo simulation and reference prices from literature as benchmark for our
computations. Monte Carlo simulation will be used for ν = 0. We make use the Antithetic Variates
method as in [15] to reduce the variance of our simulation for a better accuracy, and we simulate
4 · 10−6 Monte Carlo paths.

First we analyze ν = 0 with two experiments. Afterwards, we price the options for ν ̸= 0.
We start with an important remark on reference prices.

Remark 6.1. There is no exact solution available for Asian options with Arithmetic mean. In
most of the literature, prices are presented using different computational methods. The prices
in these papers vary as well. We will therefore make use of prices where in the reference, most
digits behind the comma are the same, which is a maximum of 3 mostly, sometimes 4. If we have
convergence with an error of 10−4, that does not necssarily that mean we have a less accurate
pricing method than the reference. Furthermore, we round up the errors to a significant number.
When convergence stops in our Tables, this means convergence occurs for decimals we do not
display. We will use a lot of significant numbers if necessary of course, to show convergence.

Setting the truncation range large enough with a decent amount of cosine expansion terms,
the errors come from numerical integration in our computation of ln(Aν

t ). Therefore, we can draw
good conclusion about the quadrature rules and the parameter σ2T , when errors are larger than
10−4.

6.5.1 Option Pricing with Zero Drift

We begin with pricing the options where ν = 0. Note that by the scaling property, we then
have µ = 1

2σ
2. No literature has been found as benchmark, hence we will use Monte Carlo

simulation. As stated earlier, we will use the Antithetic Variate method to reduce the variance of
our simulation [15].

The characteristic function of interest was given by

Φln(At)(ω) =
h(ω)

g(ω)
, (6.50)

In section 4.3 we have done the error analysis with a very wide truncation range. Now we will
use the truncation range proposed as in 5.4.2. Note that the use of Γ will not be suitable to use
anymore if we want to see the error convergence due to cosine expansion terms N due to the fast
decay of the Gamma function. We have shown that the computation of g(ω) using Clenshaw-Curtis
quadrature also works well, which was confirmed by the error analysis for ν ̸= 0.

We have also confirmed that the errors come due to the computation of h(ω). We have tried
multiple ways to compute h(ω) using Clenshaw-Curtis quadrature (all with other boundaries,
computed based on TOLh).
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1. In section 4.3 we computed h(ω) as

h(ω) =
1√
2πt

∫ ∞

−∞
eiωy exp

[
− 1

2t

[
ln
(√

ey +
√
ey + 1

)]2]√ ey

ey + 1
dy. (6.51)

2. We have tried
h(ω) =

1

2πt

∫ ∞

−∞
eln[sinh

2(x)]e−
1
2t

x2

dx (6.52)

This integration led to very large errors.

3. We took out t, as the normal distribution has a variance of
√
t, creating a very narrow peak

in the denisty function:

h(ω) =
1

2π

∫ ∞

−∞
eiω[ln(sinh2(

√
tx))]2e−

1
2x

2

dx (6.53)

4. We applied a change of variable to the log domain:

h(ω) =
1

2π

∫ ∞

0

eiω[ln(sinh2(
√
tex))]2e−

1
2 e

2x

exdx (6.54)

It appeared that no improvements were made using another method than method 1.
We will perform two experiments. In the first, we set a very wide truncation range and look at

the error convergence in N for different strike prices. We compare a call option and a put option.
In the second experiment, we look at the increase or decrease of the errors for different maturity

times T for a call option.
In Section 4.3 we concluded that Jh = 800 quadrature points would be sufficient for the com-

putation of h(ω), this is what we will use.
In Section 5.5, there was confirmed that the computation of g(ω) did not lead to a decrease in

errors using Jg = 500. We use therefore Jg = 500.
We have done testing on the tolerance level for both distributions, the maximum level of toler-

ance seemed to be most efficient, i.e. TOlg = TOLh = 10−15 for the values for which convergence
occurs with respect to Monte Carlo simulation.

A complete error analysis for multiple tolerance and quadrature points will be done for ν ̸= 0,
we leave that for now. We are interested interested in the importance of the parameter t.

We show the convergence of the error in the option price compared with Monte Carlo simulation.
We use 4 ·106 Monte Carlo paths. We may assume this gives the correct amount of precision, using
a variance reduction technique as well.

For the truncation range we use L = 12, hence the error should come from the cosine series
expansion and numerical integration. We perform two experiments.

6.5.1.1 Experiment: Call and Put option

We compute a call option and a put option using the COS method for ν = 0. We set T = 1, and
vary σ in both experiments. We should observe convergence in N , using a wide truncation range.
We set S0 = 100 ad σ = 0.2, resulting in t = 0.01. The results are shown in Table 9.

N K = 70 K = 80

8 0.413 0.670
16 0.293 0.185
32 0.295 1.41
64 2.12 1.32
128 2.05 1.31
256 2.04 1.30
512 2.04 1.30
1024 2.03 1.30

Table 9: Errors in Asian call option with S0 = 100, σ = 0.2.
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We observe convergence in N for N ≤ 64 for both K = 70 and for K = 80 up to N = 32. The
errors are quite large, which we expected for t = 0.01. The truncation is set too wide. We can
decrease the errors by reducing the truncation range. We set L = 9 and c6 = 0. The results are
shown in Table 10.

N K = 70 K = 80

8 0.126 0.305
16 0.125 0.304
32 0.118 0.246
64 0.073 0.105
128 0.045 0.064
256 0.072 0.079
512 0.045 0.054
1024 0.035 0.037

Table 10: Errors in Asian call option with S0 = 100, K = 70 and σ = 0.2.

We see that the error has been reduced with an order of 10−2 compared to Table 9. In the
next experiment, we compute two put option prices via the COS method using our method. We
increase σ, to observe already a difference due to the parameter t. We set σ = 0.4, resulting in
t = 0.04. The results are presented in Table 11. Here is used L = 12, c6 = 0.

N K = 55 K = 65

8 2.921 1.018
16 2.796 · 10−1 1.382 · 10−1

32 2.057 ·10−2 1.277 ·10−2

64 2.285 ·10−2 5.382 ·10−3

128 2.284 ·10−2 5.390 ·10−3

256 1.811 ·10−2 1.385 · 10−3

512 2.331 ·10−2 1.629 ·10−3

Table 11: Errors in Asian put option with S0 = 50, σ = 0.4.

The errors are reduced compared to the call option price. As expected, as t increases, the error
decreases. We see a clear convergence up to N = 256. The Out-Of-The-Money option shows a
more accurate result compared to Monte Carlo simulation, with a precision of 10−3, which is an
accurate result. Next, we look at the error due the magnitude of t.

6.5.1.2 Experiment 2

In this experiment, we study the increase or decrease in the errors of the option price regarding the
parameter t. We set = 0.2, and vary T ∈ {2, 4, 6, 8, 10}, resulting in t ∈ {0.03, 0.04, 0.06, 0.08, 0.1}.
Still using a wide truncation range with L = 12 and c6, we set the number of cosine expansion
terms at N = 512. We focus here on a Call option, with K = 40, S0 = 50 and simulate 4 · 106
Monte Carlo paths. The results are shown in Figure 23.
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Figure 23: Errors due to an increase in t for an Asian call option with S0 = 50, K = 40.

The results are as expected. As t increases, our computation of the characteristic function leads
to an overall decrease in error. Only for t = 0.06, there is a slight increase. We compare Figure 23
with a new plot. Here, we set L = 8 and c6 = 0. The results are shown in Figure

Figure 24: Errors due to an increase in t for an Asian call option with S0 = 50, K = 40.

We see that we have massively increased the accuracy for small t. We confirm that the truncation
range was set too wide in experiment 1. We could actually reach an accuracy of 10−3 for t = 0.02.

On the other hand, as t increases, the error in the truncation range dominates.
Therefore we conclude the following. When using a larger truncation range in the COS method,

one would need more cosine terms N to reach the same level of accuracy. The peak in our density
for such values of t is very narrow. In our computations, even with N = 1024 accuracy is not
reached. Therefore, the truncation range should not be set this wide.

From these experiments, we conclude that option pricing for ν = 0 should be handled with
some care. For put options, we have very accurate results. We also observe that for call options,
the errors do decrease overall as t increases. For high volatilities and large maturity times, the
COS method based on Bougerol’s identity is a valid way to price options when ν = 0. For small t,
the truncation range should be defined properly to reach a better level of accuracy.

We continue with ν ̸= 0, which is often observed in the market.

6.5.2 Option Pricing with Drift

We focus on the option pricing for ν ̸= 0. We will mostly make use of the paper by Chen [3].
This is because a very wide range of volatilities is used, comparing six numerical option pricing
methods with a precision of 10−7. Hence this is a good reference for our research. For the annual
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risk free rate, mostly µ = 0.09 is chosen, this is not accurate for this time anymore. But as we
have mentioned before, the parameter µ has very little influence on the distribution of ln(Aν

t ) for
small values of t.

The computational time will also be included in several experiments. The computations in this
research are performed on a standard laptop, 2.2GHz and 8GB memory.

In the error analysis we have used L = 8 and c6 = 0 for the truncation range, which seemed
suitable for small values of σ2T . We will verify which truncation range actually works best using
our method.

We also need to verify which tolerance levels to use. We do this regarding the prices given
in [3], and perform a least squared method. Then all the parameters are set correctly for the COS
method.

In the following subsections, we focus on three components. We will perform several experi-
ments, based on the convergence in N . Afterwards, the convergence of errors in Jk will be examined
using two numerical integration methods for the computation of k(ω). At the end of this section,
we examine the parameter σ2T more closely.

To start the numerical tests, we check the error convergence due to the number cosine terms
N , setting a wide truncation range and using the number of quadrature points we concluded from
section 5.5 for both quadrature rules for k(ω).

Then the convergence of errors is examined due to the number of quadrature points J . We will
do this for the distribution of k(ω), in combination with computational time.

To conclude, we look at the parameter σ2T and will verify if we can price the options for
extremely small values of this parameter. Throughout our experiments, a wide range of parameters
is used, from which we can draw good conclusions at the end.

We first perform one experiment, which uses the risk free rate which is compatible with the
current risk free rates.

6.5.2.1 Low return rates

We start with an experiment. We look at the error convergence of the option prices regard-
ing multiple cosine expansion terms N . In this experiment, we use three times Clenshaw-Curtis
quadrature. The parameters are set as (Jl, Jk, Jg) = (700, 600, 600). The tolerance levels are set
as TOlg = 10−9, TOLk = 10−7, TOLx = 10−15, TOLy = 10−12 and L = 8, c6 = 0. The reference
prices in this experiment uses values of the risk free rate µ which coincide with the current rates [8].
The results are shown in Table 12.

µ σ T Ref. value N Value CPU (sec)
16 0.218 1.67

0.18 0.3 1 0.219 32 0.218 1.76
64 0.218 3.42
128 0.218 6.77
16 0.0659 1.61

0.02 0.1 1 0.0624 32 0.0659 1.63
64 0.0659 3.30
128 0.0659 6.10
16 0.172 1.61

0.0125 0.25 2 0.172 32 0.172 1.67
64 0.172 3.28
128 0.172 6.64

Table 12: At-The-Money Asian Call Option for K = 2 and S0 = 2.

An error occurs for µ = 0.18 and µ = 0.02 both of order 10−3. Using 3 digits behind the
comma as the reference price, we also see no error convergence in using N ≥ 16. Hence, the errors
are either dominated by the numerical integration and the truncation range, or convergence still
occurs but for more digits behind the comma. But we can already see that we developed an efficient
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way for pricing Asian options with Arithmetic mean. And no error occurred in this experiment,
for values which take less than two seconds to compute. Important to note is that the error for
σ2T = 0.01, is only 0.0035.

Now we seek the optimal levels of tolerance for the numerical integration of each characteristic
function for our computation of Φln(Aν

t )
(ω).

6.5.2.2 Test for tolerance level

We wish to have optimal results for our option pricing, and the convergence tests regarding N
and J . Therefore we optimize the tolerance levels for our 4 numerical integration methods. As we
observed in Section 5.2 for ν = 0, a higher tolerance level does not necessarily mean a decrease
in errors. Therefore we perform a least squared method to find the optimal levels of tolerance.
Varying σ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8} and T = 1, we use as reference Table 5 from [3] with
In-The-Money options, i.e. K = S0 = 100.

We use three times Clenshaw-Curtis quadrature, with (Jg, Jk, Jl) = (600, 500, 500) based on
the error analysis. We set L = 12 for the truncation range and use N = 128 cosine expansion terms
with c6 = 0. Starting each tolerance level with TOL = 10−15, the tolerance levels are then varied
for values which are possible for numerical integration with M ≥ 9. The order of the analysis is
TOLg, TOLk, TOLx, TOLy. We continue with each optimal value. The results are shown in Table
13.

M TOLg TOLk TOLx TOLy

5 - 0.73 - -
6 - 0.67 - -
7 - 0.56 - -
8 - - - -
9 1.04 - 0.569 1.69
10 0.74 - 0.565 1.15
11 0.56 - 0.562 0.58
12 0.94 - 0.565 0.56
13 1.34 - 0.564 -
14 1.31 - 0.584 -
15 1.32 - 0.562 -

Table 13: || · ||2-norm errors for various tolerance levels 10−M .

We conclude to further use in this section the following tolerance levels: (TOLg, TOLk, TOLx, TOLy) =
(10−11, 10−7, 10−11, 10−12). In the next subsection we seek for a truncation range we can use for a
wide variety of (µ, σ, T ).

6.5.2.3 Test for truncation range

We have already seen that our method has been proven to give very accurate results for ν ̸= 0.
The choice of truncation range plays a great part in this, especially for small values of σ2T , as we
have also seen for ν = 0. For further research, we need to define one truncation range for the COS
method, hence we do another error experiment. We choose c6 = 0 and vary L ∈ [6, 12].

Furthermore we use T = 1, and vary σ ∈ {0.1, 0.3, 0.5, 0.8}. We use the same reference prices
as in the last experiment, i.e. S0 = K = 100. The tolerance levels are as we concluded from the
previous experiment, and (Jg, Jk, Jl) = (600, 500, 500). Using N = 128 cosine expansion terms,
the results are shown in Table 14.
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L σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.8

6 0.15 7.5 · 10−3 4.1 · 10−4 6.7 · 10−3

7 0.28 5.2 · 10−3 8.3 · 10−5 2.8 · 10−3

8 0.38 3.3 · 10−3 1.3 · 10−4 1.3 · 10−3

9 0.51 6.9 · 10−3 6.6 · 10−5 6.9 · 10−4

10 0.64 3.6 · 10−3 5.3 · 10−5 3.2 · 10−3

11 1.57 4.6 · 10−3 7.3 · 10−5 2.2 · 10−4

12 0.021 2.2 · 10−3 1.5 · 10−4 9.8 · 10−5

Table 14: Errors due to different truncation ranges.

The errors for σ = 0.1 are quite high compared to the other values as expected. For σ = 0.1, 0.3
and σ = 0.8, L = 12 seems to be most sufficient. Overall we can conclude from Table 14 that
L = 12 defines a suitable truncation range for a wide variety of σ2T . Based on [6], this is already
a wide truncation range. However, it will be shown that this is also dependent on different strike
prices. But we will elaborate more on this later.

Now we perform multiple numerical test regarding the convergence in N and in J .

6.5.3 Convergence Experiments

We will analyze the convergence of the error in the option prices in the number of quadrature points
J , and the cosine expansion terms N . We use the tolerance levels we have determined above for
our numerical experiments. We start by analyzing convergence in N , setting a wide truncation
range.

6.5.3.1 Convergence in N

We perform two experiments. In the first experiment, we check the error convergence in N for
three different values of σ with T = 1. We look at the error convergence regarding N using three
times Clenshaw-Curtis quadrature.

In the second experiment, we analyze σ2T = 0.01, using two numerical integration methods for
k(ω).

6.5.3.2 Three values of σ

We look at the error convergence due to N for σ ∈ {0.2, 0.5, 0.8}, and T = 1. Using K = 95,
S0 = 100. Therefore, we set a wide truncation range, with L = 12, and c6 included. We use
three times Clenshaw-Curtis quadrature with (Jg, Jk, Jl) = (600, 500, 500). We use 4 significant
numbers. As reference, Table 5 is used in [3], with the values from the PDE method of Zhang [21]
for σ = 0.2, 0.5. As reference for σ = 0.8, the Binomial Tree method is used, developed by Hsu [10],
which is known to be accurate for high volatilities. The results are presented in Table 16.

N σ = 0.2 σ = 0.5 σ = 0.8

8 272.0 66.93 15.32
16 61.87 4.633 0.2543
32 9.19 2.180 · 10−2 4.199 · 10−4

64 1.097 1.340 · 10−3 2.144 · 10−4

128 1.097 1.340 · 10−3 2.144 · 10−4

256 1.097 1.340 · 10−3 2.144 · 10−4

512 1.097 1.340 · 10−3 2.144 · 10−4

1024 1.097 1.340 · 10−3 1.101 · 10−4

Table 15: Convergence in N for various values of σ.

65



A clear exponential convergence is observed for N ≤ 64. Afterwards, the errors converge only
with a precision outside our range of significance. For σ = 0.2, accuracy is not reached and we
need to reduce the truncation range. For σ = 0.8, the truncation range is actually well defined
and we get a very low error and convergence still occurs for N = 1024. Keeping in mind that the
reference values also vary of order 10−4, we can already conclude that for σ2T > 0.5 the method
we developed in this research is very accurate. For σ = 0.2, our computation is far from accurate.
Therefore, in the next experiment, we look at a small value of σ2T using two integration methods
for k(ω).

6.5.3.3 Small σ

In this next experiment, we look at σ2T = 0.01. Two numerical integration methods for k(ω), the
Arcsine distribution in the nominator of the characteristic function, are compared, still observing
the error convergence regarding N . By using both numerical methods of k(ω), we can draw a
conclusion for small values of σ2T . In Section 5.5, the errors using Chebyshev-Gauss quadrature
were lower for σ2T = 0.05.

When σ = 0.05 and T = 1, it turns out there is a numerical error for computing the charac-
teristic function of Y ∼ χ2

2. We need to lower the tolerance level to avoid computation of ln(0) in
the integrand. We leave this for now and come back to this later. Therefore, we use σ = 0.1. As
reference, the PDE method by Zhang [21] is used.

In Section 5.5, we concluded for σ2T , we needed 500 quadrature points for Clenshaw-Curtis
quadrature for k(ω), and Jk = 1000 for Chebyshev-Gauss quadrature. Therefore, we set Jk = 1000
for both methods in this experiment. By doing so, we can also confirm whether Chebyshev-Gauss
is indeed a faster numerical integration method than Clenshaw-Curtis quadrature.

The truncation range is still set with L = 12 and c6. The error of the cosine series truncation
and numerical integration must dominate. The computational time is included for each method.
We use K = 105, S0 = 100, µ = 0.09 We use 6 significant digits to present the convergence up to
N = 1024.

Cheb-Gauss Clenshaw-Curtis
N abs. error CPU (sec) abs.error CPU (sec)
8 616.342 0.81 612.606 0.92
16 159.676 0.84 158.851 1.09
32 37.1607 1.64 35.0001 1.92
64 7.80040 3.57 5.40060 3.67
128 0.159823 6.23 1.84695 6.78
256 0.159823 12.46 1.84695 13.68
512 0.159817 24.68 1.84695 26.73
1024 0.159816 50.42 1.84695 55.54

Table 16: Asian call option errors regarding N for σ2T = 0.01 using two quadrature rules for k(ω)
with Jk = 1000.

First we observe that Chebyshev-Gauss quadrature is indeed a faster computational method,
when the same number of quadrature points is used. For σ2T = 0.01, it is also the more accurate
integration method for k(ω), looking at the error in the option price for N ≥ 128. For small values
of σ2T , this looks to be the better fit for the computation of the characteristic function of ln(Aν

t ).
Furthermore, exponential convergence is observed for N ≤ 128, and we have an error in the

options price smaller than 0.16, within 6.23 seconds.
Important to note is that in Table 14, we used L = 12, c6 = 0 and for σ = 0.1, we had an error

of 0.059 using Clenshaw-Curtis quadrature. The truncation range is thus chosen such wide, that
the N = 1024 cosine terms does not reach this level of accuracy for another strike price K. We
need a smaller truncation range for this parameter setting.

In this experiment we have shown that with the truncation range wide, comparing both methods
of k(ω), Chebyshev-Gauss is a more accurate pricing method for σ2T = 0.01.
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Based on the two experiments, We can confirm that for a wide range of volatilities, exponential
convergence occurs in N . We can also already conclude that For σ2T = 0.01, Chebyshev-Gauss
quadrature seems to be more accurate then Clenshaw-Curits quadrature.

In the following experiment, we explore the error convergence due to J , especially for k(ω),
since we then can compare two different methods as well.

6.5.3.4 Convergence in Jk

We perform an experiment due to the error convergence in J . We set the truncation range as
found by Table 14, and compare the two integration methods of k(ω) for two values of σ, to get
good comparison between the methods for σ2T . We can also verify whether the defined truncation
range leads indeed to low errors for two values different values of σ.

6.5.3.5 Experiment: CC vs Cheb-Gauss

From the error analysis is Section 5.5, we could conclude that we need Jk ≥ 1000 for Chebyshev-
Gauss quadrature, and Jk = 500 for Clenshaw-Curtis quadrature for the computation of k(ω) (this
was actually tested for σ > 0.21).

So far we have had already a very low error for N = 128 in each experiment, and the errors
did not decrease much after that. Looking at Table 3, the difference in computational time for
N ≤ 128 is not that large, and we set Jk = 1000. For smaller values of Jk, this difference should
even be smaller.

Therefore, we need to verify the accuracy of both methods more precisely regarding σ2T . We
do not wish to compare the two for each value of σ2T, σ ∈ {0.1, ..0.8}.

Based on the previous experiment, for σ2T = 0.01, one should use Chebyshev-Gauss quadrature.
In Table 16, the results for σ = 0.2, T = 1, were very poor using Clenshaw-Curtis quadrature.
Recall that in both experiments, we had a wide truncation range. And for σ > 0.5, the results
with Clenshaw-Curtis quadrature were very accurate in Table 16.

In Section 5.5, the errors for Chebyshev-Gauss quadrature were only lower for σ ≈ 0.21. We
therefore compare σ = 0.3 and σ = 0.4 to observe the difference between the two methods.

We also use the truncation range we determined using our experiment, i.e. L = 12, c6 = 0,
to verify whether this was chosen sufficiently. We look at the convergence of error in Jk, also
measuring the computational time for σ = 0.3. Since we use the same amount of quadrature
points for σ = 0.4, it is not needed to measure again.

We set N = 128, Jl = 600, Jg = 500. For σ = 0.3, we set K = 90, S0 = 100 and r = 0.05, and
use again the reference from Zhang’s PDE method [21]. For σ = 0.4, we set K = 105, S0 = 100,
µ = 0.09, also the reference price is from the method from Zhang. The results are shown in Table

σ = 0.3 σ = 0.4
CG CC CG CC

Jk abs.err CPU abs.err CPU abs.err abs.err
100 2.81 9.88 3.06 11.23 0.627 3.757
200 4.16 11.92 0.24 10.88 0.973 0.141
300 0.173 11.79 0.0390 11.31 1.090 1.362 · 10−2

400 1.06 11.34 7.955 · 10−3 11.70 0.151 1.028 · 10−5

500 0.248 11.55 3.865 · 10−3 12.37 1.51 3.980 · 10−5

600 0.387 11.88 6.204 · 10−3 12.99 1.52 1.840 · 10−5

700 0.093 12.07 5.958 · 10−3 13.08 0.683 2.990 · 10−5

Table 17: Errors for σ ∈ {0.3, 0.4} using two quadrature rules for k(ω).

We observe that for both values of σ, Clenshaw-Curtis quadrature is favourable, getting an
error of order 10−3 for Jk = 400 quadrature points.

Based on the error analysis in Section 5.5 and the experiments performed in this Section, for
values of σ2T > 0.05, one should use Clenshaw-Curtis quadrature for the computation of k(ω).
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We also observe that for Jk = 500, the error is slightly lower for σ = 0.3 than Jk = 600, 700.
For σ = 0.4, our method works perfectly for Jk > 400, leading to an error of order 10−5.

Therefore, we also conclude that for σ2T ≥ 0.09, we have a developed a very accurate method
using Clenshaw-Curtis quadrature for each separate characteristic function, where the parameters
should be set as (Jk, Jl, Jg) = (500, 600, 500). Option pricing for σ2T > 0.09 leads so far to an
accuracy of order 10−3, for N = 128 which led to a computational time of 6.78 seconds in the
previous experiment. Note that we may reduce this by decreasing the truncation range properly.

In the following experiment, we focus on small values of σ2T , as we have shown our method is
efficient for σ2T ≥ 0.09.

6.5.3.6 Small values of σ2T

We have shown the exponential convergence of the option prices in N . In each experiment, conver-
gence stopped at N = 128, and the results for σ2T > 0.09 are very accurate. We have also shown
the convergence in Jk, based on two different integration methods methods for k(ω).

In this experiment we are looking at very small values of the parameter σ2T . As we have already
seen, using a very wide truncation range, we cannot reach the proper accuracy of the option pricing.
Chebyshev-Gauss seemed to be preferable for small values of σ2T , but the truncation range was
set very large.

In this experiment, we set c0 = 0, and we varied the parameter L between [6, 12], and L = 8
seemed to most accurate for small values of σ2T .

The option price for two values of σ2T < 10−3 are computed. As a good comparison, we also
include larger values of σ2T , to verify whether the chosen truncation range is still sufficient, or that
the error is dominated by the truncation range. We show two Tables, one with Chebyshev-Gauss
quadrature using Jk = 1000, the other with Clenshaw-Curtis quadrature with Jk = 500. We can
draw our final conclusions afterwards.

In these Tables, different strike prices, risk free rates, maturity times and volatilities are used.
Each value of σ2T has its own reference value. The last 4 columns are from [3], the first two
columns are from [2]. The results are shown in Table 18.

N σ2T = 10−6 σ2T = 2.5 · 10−5 σ2T = 2.5 · 10−3 σ2T = 0.09 σ2T = 0.25

4 1.334 · 10−2 2.173 · 10−2 7.51347 · 10−2 2.2029 4.6752
8 1.339 · 10−2 2.196 · 10−2 7.51370 · 10−2 0.3238 0.3581
16 1.324 · 10−2 2.194 · 10−2 7.51061 · 10−2 0.1942 0.2666
32 1.325 · 10−2 2.194 · 10−2 7.51770 · 10−2 0.1942 0.2660
64 1.324 · 10−2 2.194 · 10−2 7.51770 · 10−2 0.1942 0.2660

Table 18: Errors for various values of σ2T in N using L = 8. with Chebyshev-Gauss quadrature
for k(ω).

And using Clenshaw-Curtis quadrature, we have the following values.

N σ2T = 10−6 σ2T = 2.5 · 10−5 σ2T = 2.5 · 10−3 σ2T = 0.09 σ2T = 0.25

4 1.334 · 10−2 2.172 · 10−2 8.3572 · 10−2 2.2029 4.4174
8 1.299 · 10−2 2.180 · 10−2 8.3572 · 10−2 0.1426 0.8181
16 1.292 · 10−2 2.183 · 10−2 8.3678 · 10−2 2.101 · 10−2 1.544 · 10−2

32 1.293 · 10−2 2.185 · 10−2 8.3661 · 10−2 2.101 · 10−2 1.603 · 10−2

64 1.291 · 10−2 2.185 · 10−2 8.3661 · 10−2 2.101 · 10−2 1.603 · 10−2

Table 19: Errors for various values of σ2T in N using L = 8. with Clenshaw-Curtis quadrature for
k(ω).

We finalize this section by drawing the following conclusions from all the experiments, combined
with Table 18 and Table 19 for the pricing of Arithmetic averaged Asian options with ν ̸= 0.
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• Using a wide truncation range, convergence in N has been showed for multiple values of σ2T ,
for different strike prices, values of the underlying at t = 0, risk free rates and volatilities.

• We have showed convergence in the option prices in Jk. We have compared two numerical
methods for the computation of k(ω); Clenshaw-Curtis quadrature and Chebyshev-Gauss
quadrature. When the truncation range was wide, Chebyshev-Gauss seemed more accurate
for small values of σ2T , but after reducing the truncation range, this was not valid anymore.

For very small values of σ2T , one method is not more accurate than the other. For larger
values, i.e. σ2T ≥ 0.05, Clenshaw-Curtis quadrature leads to more accurate prices solutions
than Chebyshev-Gauss quadrature for the computation of the Arcine distribution in our
computation of the characteristic function of ln(Aν

t ).

• The truncation range is crucial for the option pricing, and varies for different parameters.
For small values of σ2T , the truncation range needs to be reduced. Setting a wide truncation
range, and compensating using many cosine expansion terms N , the same level of accuracy
may only be reached when one would use extremely many cosine expansion terms. The peak
in the density is too narrow.

• Option pricing can be done using our method for values of σ2T of order 10−6 with a precision
of order 10−2. This is not very accurate, but other numerical methods do not lead to a solution
at all.

• Our method has proven to be very accurate for σ2T ≥ 0.09, where a precision of 10−5 can
be reached, which is the same compared to literature values.

We have performed many experiments based on the convergence in N , convergence in Jk and we
have zoomed in on the parameter σ2T at the end. For σ2T ≥ 0.09, throughout earlier experiments,
we already obtained very accurate results regarding the error compared to reference prices from
the literature.

Lastly, we present one Table, including different strike prices, volatilities, risk-free rates and
maturity times. We set L = 10 and c6 = 0 and use N = 128 cosine expansion terms. The reference
prices are from [3].

K µ σ T ref.value abs.error
95 15.2137661 7.92 · 10−3

100 0.09 0.1 3 11.6376573 5.49 · 10−3

105 8.3911498 9.72 · 10−3

90 13.9538233 3.34 · 10−3

100 0.05 0.3 1 7.9456288 7.41 · 10−3

110 4.0717442 4.98 · 10−3

95 24.5718705 5.80 · 10−4

100 0.09 0.5 3 22.6307858 5.82 · 10−4

105 20.8431853 5.89 · 10−4

Table 20: Multiple Asian call options with S0 = 100.

From Table 20, in which the errors are of order 10−3, and we conclude to have developed a
very accurate pricing method. It is just very depending on the truncation range and parameters,
especially when the distribution of IGBM gets smaller.

6.6 Conclusion
In this section, we have been able to price continuous Arithmetic averaged Asian options using the
COS method, based on Bougerol’s extended identity.

We started with the financial background of Asian options. Then we showed that for the
Geometric averaged options, an analytical solution can be found.
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In the following section, the COS method was presented regarding option pricing in general,
and we applied this to our variable of interest. Based on Bougerol’s identity we could derive the
characteristic function of ln(Aν

t ) in Section 5, and by and the scaling property of IGBM, we could
compute the characteristic function of our variable of interest, and use this for the pricing of the
options.

We have observed that for ν = 0, a wide truncation range was not sufficient. After reducing the
truncation range, the accuracy of the option was of order 10−2 for a Call option. For Put options,
a larger value of t was used, and we had an error in the option price of order 10−3 based on Monte
Carlo simulation. The accuracy increases as t increases, as long as we increase the truncation range
with it.

In the final section, we used ν ̸= 0. We have seen that we have developed an efficient method
for σ2T > 0.09 with an error of 10−2 or smaller. However, σ2T is not the only parameter leading
to sufficient results, as we lost accuracy in Table 19.

We explored smaller values of σ2T afterwards. A reduction of truncation range was necessary
to reach a certain level of precision. However, the accuracy of the option price was of order 10−2

for extremely low values of σ2T .
We conclude that we have developed an accurate new method for the pricing of continuous

Arithmetic averaged Asian options. Using Clenshaw-Curtis quadrature for each method gives very
accurate prices of the option. The accuracy is however very dependent on the truncation range
which is used, and on certain parameters.

In all the experiments, a wide variety of parameters has been used, and comparisons between
numerical methods have been done to verify which is more suitable. For a wide variety of parame-
ters, our new proposed method is sufficient for pricing . However, when the distribution of IGBM
gets very small, the errors do increase, and a precision of 10−2 is reached.

70



7 Conclusion & Further Research

In this research we have developed a new method for pricing continuous Arithmetic averaged
Asian options, where the underlying is assumed to be Geometric Brownian motion. For this type
of option, the underlying follows Integrated Geometric Brownian Motion (IGBM). No analytical
solutions are available to price this type of option and as new numerical method we have proposed
the COS method.

In Section 3 we have given insight on the distribution of IGBM in general and we introduced
Bougerol’s identity, which is a particular relation between two independent Brownian motions.
Using this identity, we could derive the characteristic function of the log of IGBM, which was the
input needed for the COS method.

The derivation for the characteristic function for Bougerol’s identity with drift term ν = 0 has
been showed in Section 4, which is the ratio between two independent characteristic functions.
Two computational methods were compared for the computation of the denominator. Afterwards,
an error analysis on the CDF, recovered by the COS method, was conducted based on Monte Carlo
simulation.

In Section 5, the characteristic function for ν ̸= 0 was derived, which consists of three separate
characteristic functions. For both cases, ν = 0 and ν ̸= 0, we showed the importance of param-
eter settings regarding numerical integration, as the combination of using multiple characteristic
functions for the computation of the characteristic function of ln(Aν

t ) leads to numerical errors
quickly. A change of variable had to be made for two distributions. Furthermore, a parameter
study was performed on the influence of (µ, σ, T ) on the distribution of Aν

t and an error analysis
was conducted, comparing different numerical integration methods.

In Section 6, we presented the analytic solution for the pricing of continuous Geometric averaged
Asian option, afterwards the COS method was used to price the Arithmetic averaged.

The results were very sufficient, but were highly dependent on the parameters. As the distri-
bution of ln(Aν

t ) would decrease, so would the accuracy in our computation. We applied a proper
truncation range, but the diameter parameter L was of great influence for the results as well,
mostly for lower values of σ2T .

However, once this parameter L was properly adjusted, for small values of σ2T , i.e. t, we could
reach an accuracy of order 10−2. Overall, as σ2T increased, the accuracy of our method would
improve, and we have shown to be able to price the options with an error of order 10−5, which
coincides with the comparison between existing numerical methods. However, σ2T is not the only
parameter from which conclusions can be drawn, as the accuracy is not the same using different
strike prices, volatilities and risk-free rates. It remains very parameter dependent.

From these results, we conclude that we have found a new sufficient way to price continuous
Arithmetic Averaged Asian options. But improvements still have to be made.

As we stated above, the errors occur mostly when the distribution is small. For further research,
one could try to improve the numerical integration for each distribution, or make use of incredibly
many cosine expansion terms.

The dependency on the truncation range, which was not allowed to be wide for small values
of σ2T , is a flaw in our method as well. There is not found one definitive truncation range for a
wide range of parameters. One could investigate better on the influence of the parameters to the
truncation range, since this was already determined by the moments of Aν

t , and we have to deal
with very narrow density functions.

We have also established that the numerical integration is highly dependent on the tolerance
level used, as well as the number of quadrature points. This is due to the fact that we use multiple
separate characteristic functions, each computed numerically. The number of quadrature points
needs to be quite large as well.

For the purpose of using the COS method, one could also try to derive the characteristic
function of ln(Aν

t ) in a different way, which is not dependent on a ratio, which consists of three
separate distributions. The sensitivity to parameters was hereby very high, and the computation
of the characteristic function was therefore not very stable.
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