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Abstract. Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms,
DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications,
function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design
cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this
inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs,
able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE
algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the
aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

Keywords: CFD RANS , Navier-Stokes, GPU, Turbomachinery application, Aerodynamics optimization
PACS: 47.11.-j

INTRODUCTION

Differential evolution [1] is a robust heuristic optimization method of order zero, which means that no gradient
information is required. The method builds first a random initial set of designs and evaluates them. Then a ranking
drives the algorithm, based on a user-fixed fitness function, through the process of building the next generation. Cross-
over and mutation are the essential tools to conserve diversity and evolve the population while selection imposes
environmental pressure allowing only the fit designs to survive to the next generation. Unlike gradient based methods,
DE has built-in mechanisms allowing to avoid being trapped in local minima. Zero order methods have however a
major drawback: they require a high number of evaluations to converge. Besides the fact that an entire population has
to be evaluated at every generation, the improvement per generation can be very small, as a result of the essential
mechanism to keep healthy diversity avoiding premature convergence, leading to a high number of iteration to achieve
a certain improvement.

A key aspect of population based methods allows to alleviate this drawback: the designs inside one generation
are fully independent and thus can be evaluated in parallel. The target is then to accelerate every design evaluation
and run multiple evaluations simultaneously, which requires access to high performance computing (HPC) systems.
The typical choice is between a standard cluster of CPUs and shared memory architectures. Standard clusters offer
indeed a large number of processors, which potentially can lead to higher speedups, but the relation of speedup
to number of cores, called scalability, is not taken for granted. It requires an intensive work on interprocessor
communication and data partitioning among processors to reach an acceptable scalability. Shared Memory system,
on the other hand, do not have this drawback but the number of processors sharing a memory contingent is limited.
The Graphics Processing Unit (GPU), which can be considered as a shared-memory system, offers more cores than
classical CPU based shared-memory systems. Every GPU core is less powerful than a CPU core, but their very large
number allows a considerable performance increase in terms of computational time (speedup). These promising GPUs
can be programmed using an automated high-level porting tool or better a low-level programming language. While
automated high-level porting tools, such as openACC [2], accelerate CPU applications by just adding few directives to
the code, low-level programming languages, such as CUDA [3] and OpenCL, offer the full flexibility of code rewriting.
Moreover, they are reported in the literature[4] to be more efficient than high-level porting tools.

CUDA, a C-like programming language, is used to write applications that run on Nvida GPUs. Moreover,many
known libraries have a GPU enabled version (cuBLAS, cuRAND,cuSpare, PETSc ...). This facilitates the code writing
process. CUDA functions, which are called kernels, consist of a set of instructions intended to run on a high number
of CUDA cores. The more independent instructions an application has, the more it will profit from GPU architecture.
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FIGURE 1. The Solver computes firsts inviscid and viscous Residuals and source term. Seconds the time integration takes places
and finally boundaries and mesh interfaces are updated

Porting applications to GPU is, therefore, about the loosening of data dependencies. GPUs evolved, in facts, from
graphics pipeline responsible of updating very fast display content. As such, the more an application is similar to
image processing, which is about setting the value of a high number of pixels at the same time, the faster it will run on
the GPU.

Design optimization in general profited from GPU potential [5] used to accelerate, among others, the flow and the
structure evaluations. In the CFD area, particle-based solver (e.g. Lattice Boltzmann equations) are reported [6] to
profit the most from GPUs. These types of solvers provide a large number of independent simple arithmetic instructions
that are proportional to the number of particle used. Finite Volume (FV) solvers, on the other hand, compute fluxes
on cell faces involving a number of neighbors that increases with the order of the solver. Consequently, FV solvers
run more arithmetic operation and present more data dependency. In general, achieved speedups are less than with
particle based solvers. Nevertheless a good management of GPU cores and GPU features, like multi-stream, can lead
to speedups of 1 to 2 orders of magnitude.

In this work, a second order finite volume steady RANS CPU code has been rewritten using the CUDA language
in order to run on the high-performance Tesla K40 GPU [7]. The GPU RANS solver has been then integrated in
an in-house optimizer based on DE algorithm [8]. The GPU-enhanced optimizer has been finally used to optimize a
supersonic compressor cascade.

DESCRIPTION OF THE FLOW SOLVER: THEORY AND IMPLEMENTATION

The flow solver implements Reynolds-Averaged Navier Stokes (RANS) equations with the finite volume method
(see Figure 1). The numerical approximation of viscous fluxes employs a central scheme. The convective fluxes
are approximated using a Roe upwind scheme. Second order accuracy is achieved through the MUSCL (Monotone
Upstream-Centered Schemes for Conservation Law) approach[9] with limiter. To account for turbulence the solver
uses Spalart-Allmaras (SA) one-equation turbulence model. The time stepping is performed with the explicit second
order 4 stage Runge-Kutta method.

A CFD solver is based in general on functions that alter the content of a mesh cell by cell. The GPU programming
approach consists of replacing the serial CPU function with a GPU kernel that launches a large number of threads,
which are run by CUDA cores. Every thread can be responsible for the content of one mesh cell.

Basic GPU programming is able to accelerate applications to a certain extend, but special GPU features like
multi-streaming can boost the achieved acceleration furthermore. Multi-streaming, which consist of launching many
kernels simultaneously, provides CUDA cores with more independent mesh cells to update, which allows more CUDA
cores to be simultaneously active. The portion of simultaneous active cores is called the occupancy, which increases
dramatically through the multi-streaming, hence achieving additional speedup as later illustrated.

VALIDATION AND BENCHMARK

For viscous turbulent flows the nozzle guidance vane LS89 [10] has been used for validation. The inlet flow is subsonic
but experiences an acceleration on the suction side of the vane reaching supersonic conditions which leads to a normal
shock (Figure 2a). Figure 2b shows the isentropic Mach number profile of the turbine inlet guidance vane matching
experimental results. The shock occurring on X

X0
≈ 0.9 is well resolved and precisely predicted, which guarantees a

confident level of accuracy.
Once the accuracy of the solver proved, a performance benchmark has been performed. A supersonic compressor

cascade with a multi-block mesh has been chosen for performance comparison with a CPU serial code. Table 1 shows
the speedup of 1 GPU over 1 CPU for different mesh resolutions. A higher mesh resolution presents more cells in
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a) b)

FIGURE 2. a)Mach contours of the transonic LS89 [10] turbine guide vane test case , b) Computed and experimental distributions
of isentropic Mach number on LS89 inlet guidance vane surface (M2is = 1.02 P01 = 1.605bar)

TABLE 1. Speedup of Tesla K40 over Xeon(R) CPU E3-1240v3 for differ-
ent mesh resolution

Number
of Cells

Speedup
No Multi-stream

Speedup
multi-stream

speedup improvement
due to multi-stream

25k 8.17 12.74 55.5%
100k 17.22 21.37 24%
400k 26.9 28.05 4.1%

every mesh block and thus decreases the number of inactive threads advantaging the GPU over the CPU. The increase
of the resolution improves the speedup until a maximal speedup is asymptotically approached. The mesh has reached
a size, for which all threads are mapped to cells and the portion of inactive threads is reduced to a minimum. These
findings confirm the effect of multi-streaming (see section 2) on the speedup. For low resolution meshes (e.g 25K
cells) multi-streaming increased the occupancy and thus improved well the speedup (55%). For higher resolutions (e.g
400k) the occupancy approaches its limit which made the multi-streaming improvement minimal (4.1%).

APPLICATION ON OPTIMIZATION OF SUPERSONIC COMPRESSOR CASCADE

After validation the GPU-accelerated CFD solver has been integrated in an in-house optimizer called CADO [8]
using the differential evolution algorithm. This GPU enhanced algorithm is used to optimize a supersonic compressor
cascade designed initially for an inlet Mach number of 1.3 and a pressure ratio of 1.67. Total pressure and temperature
are imposed at the inlet in addition to the flow angle while static pressure is imposed at the outlet. The flow around
the pre-compression baseline design (Figure 3a) experiences a bow shock ahead of the profile leading edge, which
propagates toward the adjacent blade to form a passage shock. The passage shock interacts with the adjacent blade
boundary layer and induces a boundary layer separation. The achieved flow turning is 4 degrees and the static pressure
ratio is 1.67, which is mainly achieved through the normal passage shock.

The optimization objective is to minimize the losses in terms of mass averaged entropy generation (∆S = SOUT−SIN
SREF

)
at the outlet for the same flow conditions. The optimization problem has one constraint, which is to keep the flow
turning equal or greater than the baseline case. The blade geometry is defined by superimposing a parametric thickness
profile to a parametric camberline. The optimization variables are the y-coordinate of 5 control points of the blade angle
distribution B-spline. The thickness distribution remains on the other hand fixed during the optimization. A population
of 40 individuals have been evolved for 9 generations through the differential evolution method to reach at the end a
total improvement of 20% in terms of entropy generation.

A comparison of the flow around the baseline and around the optimized blade shows two main differences: the
normal shock turned into a partially oblique one and the passage shock moved downstream approaching the trailing
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edge. The change in the flow is due to a reduction in the incidence angle on the leading edge (LE) area which reduces
the losses by bringing the bow shock next to the LE and decreasing the expansion at the suction side responsible for
the flow acceleration before it reaches the passage chock. Starting from the stagnation point on the LE area the flow is
first accelerated on the original blade suction side due to an inappropriate incidence reaching a peak Mach number as
high as 1.7. Contrary, on the optimized blade the incidence has been adjusted to the flow direction reducing the peak
Mach number to 1.5 only. Further downstream both profiles decelerate the flow on the suction side through a curvature
opposed to classical subsonic profiles, achieving a pre-shock Mach number of 1.6 to 1.3 for the original and optimized
blade respectively by Prandl-Meyer compression waves (Figure 3).

While this optimization, which required a total of 360 flow evaluations, would run 32 days in a single CPU, it took
2 days on 2xK40 GPUs.

a) b)

FIGURE 3. Mach contours of the baseline (a) and optimized (b) design of the supersonic compressor cascade (P01 = 1bar
T01 = 300K and α1 =−64.5)
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