
Citation: Buwalda, F.J.L.; De Goede,

E.; Knepflé, M.; Vuik, C. Comparison

of an Explicit and Implicit Time

Integration Method on GPUs for

Shallow Water Flows on Structured

Grids. Water 2023, 15, 1165. https://

doi.org/10.3390/w15061165

Academic Editors: Chin H Wu

and Giuseppe Pezzinga

Received: 27 January 2023

Revised: 25 February 2023

Accepted: 13 March 2023

Published: 17 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Comparison of an Explicit and Implicit Time Integration
Method on GPUs for Shallow Water Flows on Structured Grids
Floris J. L. Buwalda 1, Erik De Goede 1, Maxim Knepflé 2 and Cornelis Vuik 3,*

1 Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands
2 Tygron BV, 2596 AL The Hague, The Netherlands
3 Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology,

2628 CD Delft, The Netherlands
* Correspondence: c.vuik@tudelft.nl; Tel.: +31-(0)-15-278-5530

Abstract: The accuracy, stability and computational efficiency of numerical methods on central
processing units (CPUs) for the depth-averaged shallow water equations were well covered in the
literature. A large number of these methods were already developed and compared. However, on
graphics processing units (GPUs), such comparisons are relatively scarce. In this paper, we present
the results of comparing two time-integration methods for the shallow water equations on structured
grids. An explicit and a semi-implicit time integration method were considered. For the semi-implicit
method, the performance of several iterative solvers was compared. The implementation of the
semi-implicit method on a GPU in this study was a novel approach for the shallow water equations.
This also holds for the repeated red black (RRB) solver that was found to be very efficient on a GPU.
Additionally, the results of both methods were compared with several CPU-based software systems
for the shallow water flows on structured grids. On a GPU, the simulations were 25 to 75 times faster
than on a CPU. Theory predicts an explicit method to be best suited for a GPU due to the higher
level of inherent parallelism. It was found that both the explicit and the semi-implicit methods ran
efficiently on a GPU. For very shallow applications, the explicit method was preferred because the
stability condition on the time step was not very restrictive. However, for deep water applications,
we expect the semi-implicit method to be preferred.

Keywords: GPU; shallow water equations; time integration; computational efficiency; preconditioning

1. Introduction

Graphics processing units (GPUs) have become an attractive alternative to CPUs in
many scientific applications due to their potential high performance. While GPUs were
originally used only for rendering graphics at the start of the 21st century, it was discovered
they could be used for general-purpose computing by reformulating problems in terms
of graphics primitives, and that for certain problems, they were faster than CPUs [1].
This was the start of the field of general-purpose GPU programming (GPGP). It was not
until the release of NVIDIA’s CUDA in 2007 that GPGP became more accessible and
mainstream, as it allowed programmers to ignore the underlying graphical concepts in
favor of more common high-performance computing concepts [2]. Since GPUs can provide
high computational throughput at a relatively low cost, GPGP has been an active field of
research and GPU adoption in the field of scientific computing is increasing steadily; this is
a trend that we expect to continue.

The major difference between CPUs and GPUs is their architectural design. Current
multi-core CPUs are designed for the simultaneous execution of multiple applications and
use complex logic and a high clock frequency to execute each application in the shortest
possible time. On the other hand, GPUs are designed for calculating a very large number
of simple, uniform operations in parallel. Due to its completely different architecture,
the optimal approach for numerical methods with respect to robustness, accuracy and

Water 2023, 15, 1165. https://doi.org/10.3390/w15061165 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15061165
https://doi.org/10.3390/w15061165
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-5988-9153
https://doi.org/10.3390/w15061165
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15061165?type=check_update&version=1

Water 2023, 15, 1165 2 of 22

computational efficiency can be different on CPU-based and GPU-based systems. For the
shallow water equations, implicit methods are preferred on CPU-based systems above
explicit time integration methods; see [3,4]. In particular, alternating direction implicit
(ADI) methods are computationally efficient and are very often applied [4]. In Table 1 of [3],
an overview is presented of structured grid coastal ocean modelling systems on CPUs,
consisting of ten software systems for shallow seas that are all based on implicit-type
methods. In particular, on high-resolution meshes, implicit methods are more efficient on
CPUs. Theoretically, we expect this conclusion not to hold for GPUs. Explicit methods map
well to the GPU architecture since the output elements can be computed independently of
each other, leading to a high degree of parallelism by making full use of the high computing
throughput of a GPU. For implicit methods, it is less trivial to efficiently utilize the potential
of GPUs.

A large number of studies appeared on shallow water modelling on GPUs in the last
decade. In most of these studies, an explicit time integration method was used; see for
example [5–14]. Very often, these GPU codes were developed for flood inundation. Such
simulations require a high degree of spatial detail, and thus, a large number of computation
cells. Inundations also involve very shallow areas, for which explicit time-integration
methods do not lead to a very restrictive time step limitation, making it an attractive choice.

In the literature, semi-implicit or implicit time integration methods for shallow water
modelling on GPUs are scarce. As far as we know, only alternating direction implicit (ADI)
methods were implemented on a GPU for the shallow water equations; see [15,16]. In these
studies, excellent speedups were reached on a GPU. However, this was not straightforward
because the solution of the tridiagonal system of equations for ADI contains a sequential
(i.e., non-parallel) part. Therefore, methods such as cyclic reduction and parallel cyclic
reduction were needed to enhance the parallelism; see [17]. For the semi-implicit time
integration method, we applied another approach of so-called operator splitting, which
requires the solution of a Poisson-type equation. A repeated red black (RRB) solver was
applied, which is very efficient on GPUs. This is explained in Section 4.6. This solver was
taken from [18] and is a novel approach for semi-implicit methods on GPUs for the shallow
water equations.

For the incompressible Navier–Stokes equations, however, semi-implicit methods on a
GPU can be found that are comparable with our method; see [19–21]. In these studies, the
pressure term was integrated implicitly in time, which requires the solution of a Poisson-
type equation. This is comparable to our semi-implicit method for the shallow water
equations. In [20], an ADI-type iterative solver was used to solve the Poisson equation.
This is very similar to the ADI time integration method in [15]. In [21], a multigrid solver
was applied in combination with the Bi-CGSTAB iterative solver. This is similar to our
RRB-solver.

In our study, however, we did not focus on inundation applications, but on the
modelling of rivers, estuaries and seas. In the latter, deep areas can occur, which will be
time-step-limiting for explicit methods to a degree, and thus, an explicit method may not
be the best choice. For this reason, the semi-implicit approach for the continuity equation
was used since it has no time step limitation for deep areas. A discussion on explicit versus
implicit methods for the shallow water equations can be found in [22]). They believe that
next-generation hydrodynamic models will predominantly use explicit methods with data
structures that minimize inter-processor communications. In general, very little research
was carried out on comparing explicit and (semi-)implicit time integration methods for the
shallow water equations on a GPU. The main research goal of this study was to perform
this comparison and to investigate how the theoretical advantages and disadvantages of
both methods hold up in practice.

Section 2 contains a conceptual description of the shallow water equations. In Section 3,
the pros and cons of explicit and implicit time integration methods are discussed for both
CPU- and GPU-based systems. Section 4 contains a description of two SWE methods that
we implemented for GPU computing, while in Section 5, iterative solvers for GPUs are

Water 2023, 15, 1165 3 of 22

discussed. In Section 6, the model results are presented, in which one of the test cases
was the Meuse river in the south of the Netherlands. By using this real-life Meuse river
model, we globally compared the GPU computation times with several CPU-based software
systems. Finally, Section 7 contains the conclusions.

2. Shallow Water Equations

Most large-scale flow processes in the coastal, estuarine and riverine systems can be
described adequately using the hydrostatic shallow water flow equations. Depending on
the relevance and interest in internal vertical processes, either three-dimensional baroclinic
or depth-integrated barotropic models are applied. The two-dimensional hydrostatic
shallow water equations, which for convenience of presentation are given in Cartesian
rectangular coordinates in the horizontal direction, consist of two momentum equations:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y
− f v + g

∂ζ

∂x
+ c f

u|u|
h

= 0 (1)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ f u + g
∂ζ

∂y
+ c f

v|v|
h

= 0 (2)

and the continuity equation

∂ζ

∂t
+

∂(hu)
∂x

+
∂(hv)

∂y
= hQ (3)

where ζ is the water elevation; h is the water depth; g is the gravitational acceleration;
cf is an empirical bottom friction coefficient; f is the Coriolis coefficient; and u and v are
the depth-averaged velocities in the x- and y-directions, respectively. In Equation (3), Q
represents the contributions per unit area due to the discharge or withdrawal of water,
precipitation and evaporation:

Q = h
∫ 0

−1
(qin − qout)dσ + SPrecip − SEvap (4)

where qin and qout are the local sources and sinks of water per unit of volume (1/s), respec-
tively; SPrecip represents the non-local source term of precipitation; and SEvap represents
the non-local sink term due to evaporation.

3. Implicit versus Explicit Time-Integration Methods for the Shallow Water Equations

Nowadays, there are many numerical methods for finding solutions to the shallow
water equations. The early days of numerical modelling of the shallow water equations
started with (semi-)explicit schemes; see e.g., [23–25]. However, explicit schemes have to
obey stability conditions, which may be very restrictive in practice. For example, the time
step condition based on the Courant–Friedrichs–Lewy (CFL) number for wave propagation
is limited to

CFLwave = ∆t
√

gH

√
1

∆x2 +
1

∆y2 < 1 (5)

where ∆t is the time step; g is the acceleration of gravity; H is the total water depth; and
∆x and ∆y are the grid spaces in the x- and y-directions, respectively. Implicit numerical
schemes can apply much larger time steps compared with explicit schemes, depending on
the Froude number. Often the time step of implicit methods can be in the order of 10 to
20 times larger compared with explicit methods. Large-scale applications often involve
deep water seas or deep channels in estuaries. For such applications, explicit methods are
not very efficient because of the small time step imposed by the CFL condition (5), and
thus, implicit methods are preferred. However, an implicit scheme can be uneconomical
regarding computer time and storage if a large system of linearized equations has to be

Water 2023, 15, 1165 4 of 22

solved. As an alternative, a semi-implicit method might be chosen. An efficient compromise
is the so-called “time splitting methods”, which are explained in the next section.

In the 1980s and 1990s, when only CPU-based systems were available, implicit time-
splitting methods became the most widely used finite-difference method for the shallow
water equations [3]. However, on GPUs, this might be different because of the huge
potential in computational speed on GPUs. The main goal of this study was to compare
the computational efficiency of explicit and implicit time integration methods for the
shallow water equations. This will be dependent on the type of application. For very
shallow applications, such as inundation studies, it is expected that explicit time-integration
methods are more efficient because the time step condition will not be very restrictive. For
deep water applications, this can be different.

4. Implementation of Numerical Methods for the Shallow Water Equations on GPUs

For the depth-averaged shallow water Equations (1)–(4), the time integration in vector
form can be written in the form

→
U

n+1
−
→
U

n

∆t
+ A

→
U
∗
=
→
0 (6)

with a time level (*) to be chosen for the second term in Equation (6), the unknowns
→
U = (u, v, ζ)T and matrix A of the form

A =

u ∂
∂x + v ∂

∂y + λ − f g ∂
∂x

f u ∂
∂x + v ∂

∂y + λ g ∂
∂y

H ∂
∂x H ∂

∂y 0

 (7)

with the quadratic bottom friction term λ equal to

λ = c f
|u|
h

(8)

For the time integration, many numerical schemes are given in the literature. In
Equation (6), ∗ = n corresponds to the explicit forward Euler method and ∗ = n + 1
corresponds to the implicit backward Euler method. Alternatively, if Equation (6) is
rewritten as

→
U

n+1
−
→
U

n

∆t
+ αA

→
U

n
+ (1− α)A

→
U

n+1
=
→
0 (9)

then α = 0.5 corresponds to the Crank–Nicholson method.

4.1. Time-Splitting Methods

As an alternative, time-splitting methods may be applied. If matrix A in Equation (6)
is written as A = B + C, then the numerical solution for one time step can be written as

→
U

n+1
= (I + ∆tB)−1 × (I − ∆tC)

→
U

n
(10)

in which the terms in matrices B and C are integrated implicitly and explicitly in
time, respectively.

We implemented two finite-difference methods. In the first method, which is of explicit
type, the unknowns u, v and ζ are computed in turn:

B =

 λ 0 0
f λ 0

H ∂
∂x H ∂

∂y 0

, C =

u ∂
∂x + v ∂

∂y − f g ∂
∂x

0 u ∂
∂x + v ∂

∂y g ∂
∂y

0 0 0

 (11)

Water 2023, 15, 1165 5 of 22

which is similar to the method of [25]. In other words, u is applied implicitly in the
computation of v, and u and v are both applied implicitly in the computation of ζ. For
method (11), all computations can be expressed explicitly, which means that no system
of equations has to be solved. From a formal point of view, this is also a semi-implicit
method. However, in order to properly distinguish both methods in this paper, we use
the terms “explicit” and “semi-implicit”, indicating that the latter requires the solution
of a system of equations, while the former only requires the equivalent of matrix-vector
multiplication operations.

Since method (11) is of an explicit type, it has a stability condition for the time step size:

∆t ≤ 1
|max(u, v)|

√
1

gH

√
1

∆x2 +
1

∆y2 (12)

On a GPU, block-level synchronization is required for each computation of the un-
knowns u, v and ζ. This was achieved by using a separate GPU kernel per variable
computation. This is relatively costly, as it involves data movement between global and
processor-local memory. Therefore, we also implemented an explicit method in which
this block-level synchronization is only needed twice, once after the velocities (u, v) and
once after the computation of the water elevation ζ. This approach is rather similar to the
method of [23], which is of the form

B =

 λ 0 0
0 λ 0

H ∂
∂x H ∂

∂y 0

, C =

u ∂
∂x + v ∂

∂y − f g ∂
∂x

f u ∂
∂x + v ∂

∂y g ∂
∂y

0 0 0

 (13)

The second method is a semi-implicit approach:

B =

 λ 0 g ∂
∂x

0 λ g ∂
∂y

H ∂
∂x H ∂

∂y 0

, C =

u ∂
∂x + v ∂

∂y − f 0
f u ∂

∂x + v ∂
∂y + λ 0

0 0 0

 (14)

In this semi-implicit time integration method, the pressure terms g ∂ζ
∂x and g ∂ζ

∂y in
the momentum equations are integrated implicitly in time, while in the explicit method,
these terms are integrated explicitly. For the semi-implicit time integration method, the
momentum equations for u and v are substituted into the continuity equation, which leads
to a pentadiagonal system matrix that has to be solved. In Section 4.6, the iterative solver,
including preconditioner, is discussed. For this method, only the explicit time integration
of the advective term yields a time step restriction:

u∆t
∆x
≤ 1 and

v∆t
∆y
≤ 1 (15)

which is less stringent compared with Equation (12) for the explicit Sielecki- and Hansen-
type methods in Equations (11) and (13).

Method (14) is based on a split into advection and bed friction on the one hand and the
water level gradient in the momentum equations and the continuity equation on the other
hand. In [26,27] the same operator-splitting approach was applied. However, in [26] the
advective terms were integrated explicitly in time, while in [27] a semi-implicit Eulerian–
Lagrangian method was applied that is explicit but did not have a time step limitation for
stability. Thus, the semi-implicit method (14) is rather similar to [26]. In [28,29], the same
splitting was applied, but the advection terms were integrated implicitly. For our method
(14), we chose an explicit approach towards the advection terms because this leads to a
high degree of parallelism, which is suited for GPUs.

Water 2023, 15, 1165 6 of 22

4.2. Discretization and Grid Staggering

The primitive variables water level ζ and velocity components u, v and w describe
the flow. To discretize the shallow water equations, we applied a staggered grid finite-
difference approach; see Figure 1. This particular arrangement of the variables is called the
Arakawa C-grid. The water level points were defined in the centre of a (continuity) cell.
The velocity components were perpendicular to the grid cell faces where they were situated.

Water 2023, 15, x FOR PEER REVIEW 6 of 23

Method (14) is based on a split into advection and bed friction on the one hand and
the water level gradient in the momentum equations and the continuity equation on the
other hand. In [26,27] the same operator-splitting approach was applied. However, in [26]
the advective terms were integrated explicitly in time, while in [27] a semi-implicit Eu-
lerian–Lagrangian method was applied that is explicit but did not have a time step limi-
tation for stability. Thus, the semi-implicit method (14) is rather similar to [26]. In [28,29],
the same splitting was applied, but the advection terms were integrated implicitly. For our
method (14), we chose an explicit approach towards the advection terms because this leads
to a high degree of parallelism, which is suited for GPUs.

4.2. Discretization and Grid Staggering
The primitive variables water level ζ and velocity components u, v and w describe the

flow. To discretize the shallow water equations, we applied a staggered grid finite-differ-
ence approach; see Figure 1. This particular arrangement of the variables is called the Ara-
kawa C-grid. The water level points were defined in the centre of a (continuity) cell. The
velocity components were perpendicular to the grid cell faces where they were situated.

Figure 1. Arakawa C−grid (left side view; right top view).

Staggered grids have several advantages. A smaller number of discrete state variables
is required in comparison with discretizations on non-staggered grids to obtain the same
accuracy. Boundary conditions can be implemented in a comparatively simple way. Stag-
gered grids for shallow water solvers also prevent spatial oscillations in the water levels
and improve robustness [30]. This Arakawa C-grid approach is very common and is used
in about 85% of the shallow water models on structured grids [31].

4.3. Discretization of the Advection Terms
The discretizations with i,j refer to the cell numbers in x- and y-directions, respec-

tively, along with their Ui,j and Vi,j velocities in both directions in the grid cell (i,j): 𝑢𝜕𝑢𝜕𝑥 = 𝑈 , 𝑈 , − 𝑈 ,2𝛥𝑥 (16) 𝑣𝜕𝑢𝜕𝑦 = 𝑉 , 3𝑈 , − 4𝑈 , + 𝑈 ,2𝛥𝑦 𝑓𝑜𝑟 𝑉 , > 0 𝑣𝜕𝑢𝜕𝑦 = 𝑉 , −3𝑈 , + 4𝑈 , − 𝑈 ,2𝛥𝑦 𝑓𝑜𝑟 𝑉 , < 0

(17)

The discretizations in Equations (16) and (17) are both second-order schemes, which
yield a third-order reduced phase error scheme for the whole time step [29]. In this way,
the numerical dissipation is small but still enough to damp unphysical oscillations that
occur from, for example, the open boundaries. This approach is also used in Delft3D-
FLOW [32].

Figure 1. Arakawa C−grid (left side view; right top view).

Staggered grids have several advantages. A smaller number of discrete state variables
is required in comparison with discretizations on non-staggered grids to obtain the same
accuracy. Boundary conditions can be implemented in a comparatively simple way. Stag-
gered grids for shallow water solvers also prevent spatial oscillations in the water levels
and improve robustness [30]. This Arakawa C-grid approach is very common and is used
in about 85% of the shallow water models on structured grids [31].

4.3. Discretization of the Advection Terms

The discretizations with i,j refer to the cell numbers in x- and y-directions, respectively,
along with their Ui,j and Vi,j velocities in both directions in the grid cell (i,j):[

u∂u
∂x

]
= Ui,j

Ui+1,j −Ui−1,j

2∆x
(16)

[
v∂u
∂y

]
= Vi,j

3Ui,j−4Ui−1,j+Ui−2,j

2∆y f or Vi,j > 0[
v∂u
∂y

]
= Vi,j

−3Ui,j+4Ui+1,j−Ui+2,j

2∆y f or Vi,j < 0
(17)

The discretizations in Equations (16) and (17) are both second-order schemes, which
yield a third-order reduced phase error scheme for the whole time step [29]. In this way, the
numerical dissipation is small but still enough to damp unphysical oscillations that occur
from, for example, the open boundaries. This approach is also used in Delft3D-FLOW [32].

4.4. Drying and Flooding

Wetting and drying are important features in shallow water modelling. The wa-
ter depth H at the u- or v-velocity points should always be positive to guarantee a re-
alistic discharge across a cell face. The same holds for the water depth at cell centres
at which the water elevation is computed. Therefore, for both the explicit methods in
Equations (11) and (13) and the semi-implicit method in Equation (14), a variable time step
approach was applied so that positive water depths are always computed. If the water
depth at either water level points or velocity points drops below a certain threshold value,
then these computational cells or cell faces are set to be temporarily dry.

Water 2023, 15, 1165 7 of 22

4.5. Non-Uniform Grids

The implementation of the numerical methods in Equations (11), (13) and (14) allowed
for the use of non-uniform grids. In numerous shallow water applications on a GPU,
rectilinear grids are applied. For many applications, for example, for high-resolution
inundation studies, this is most likely the best approach. However, in our test cases, we
wanted to make a comparison with existing real-life models as well, which were based on
curvilinear grids.

The introduction in the 1980s of orthogonal curvilinear and spherical grid transfor-
mations for finite difference grids made it possible to design finite difference grids in a
flexible way for the optimal representation of specific geometric features while keeping the
computational effort acceptable. In [33], it was shown that a unified approach for accurate
finite difference modelling exists that largely circumvents the problems that arise due to
staircase-type boundary representations while maintaining the computational efficiency
of spherical grids and curvilinear grids. A unified formulation for the three-dimensional
shallow water equations was developed that covers all orthogonal horizontal grid types
of practical interest, which involves orthogonal coordinates on a plane (rectilinear and
curvilinear) and orthogonal coordinates on the globe (spherical and spherical curvilinear).
Non-uniform grids can lead to much more efficient models compared with uniform rectilin-
ear grids [33]. This is valid for both CPU- and GPU-based systems because the introduction
of non-uniform grids hardly requires more computations compared with uniform grids. It
does however require more memory and memory bandwidth because extra arrays have to
be stored and loaded from memory.

4.6. Solving the Pentadiagonal System

For the semi-implicit time integration method in Equation (14), a pentadiagonal system
has to be solved. This system is symmetric and positive definite, which enables the use of
the conjugate gradient method. The CG method is the most prominent iterative method
for solving sparse systems of linear equations with symmetric positive definite (SPD)
coefficient matrices and this method is parallelizable.

The performance of an iterative method highly depends on the quality of the precondi-
tioner. This is also problem dependent, which makes preconditioning methods a promising
and active field of research. In [34], a lot of different preconditioning methods were tested
on a GPU. The repeated red black (RRB) method developed in [35] appeared to be the
most efficient. This repeated red black method is a multicolouring algorithm that identifies
groups of nodes that can be factorized in parallel. The main idea is that the Cholesky
factorization method used to construct the preconditioner only requires information from
neighbouring points. A 2-level colouring would then lead to a checkerboard pattern and
both sets of points can be factorized in parallel. The RRB proceeds to recursively apply
this principle until the number of nodes left is so small that parallel factorization no longer
provides a speedup. This is illustrated in Figure 2 for seven RRB renumbering levels on
an 8-by-8 grid. The RRB solver scales nearly as well as Multigrid and can be parallelized
very efficiently on GPUs. On a GPU with a peak bandwidth of 193 GB/s, the performance
of the separate routines of the CUDA RRB solver varied between 148 and 188 GB/s for a
2048-by-2048 domain.

In [18], it was demonstrated that the RRB solver allows for the efficient parallelization
of both the construction and the application of the preconditioner. Speedup factors of more
than 30 were achieved compared with a sequential implementation on the CPU. We used
the GPU implementation of the RRB solver in [18,35] as a starting point and optimized the
data transfer between the CPU and GPU kernel in order to successfully apply this method
for time-dependent simulations.

Water 2023, 15, 1165 8 of 22

Water 2023, 15, x FOR PEER REVIEW 8 of 23

of the separate routines of the CUDA RRB solver varied between 148 and 188 GB/s for a
2048-by-2048 domain.

Figure 2. Illustration of the seven RRB renumbering levels on an 8-by-8 grid. Reprinted with per-
mission from Ref. [34]. 2016, Delft Institute of Applied Mathematics.

In [18], it was demonstrated that the RRB solver allows for the efficient parallelization
of both the construction and the application of the preconditioner. Speedup factors of
more than 30 were achieved compared with a sequential implementation on the CPU. We
used the GPU implementation of the RRB solver in [18,35] as a starting point and opti-
mized the data transfer between the CPU and GPU kernel in order to successfully apply
this method for time-dependent simulations.

5. GPU Computing
5.1. GPU Architecture

A graphics processing unit, or a GPU, was primarily developed for efficiently gener-
ating computer graphics for display devices. It appeared that with the right programming,
they could also be used for numerical computations. Then, the field of general-purpose
GPU programming (GPGPU) was born. Modern GPUs can be extremely efficient for par-
allel computing and the use of GPU programming has vastly increased in recent years.

A central processing unit, or a CPU, often only has a limited number of arithmetic
units, or “cores”, available, and to ensure maximum efficiency, they use a lot of cache and
control circuitry to seamlessly switch between complex tasks. The idea of a GPU is that if
a workload is uniform, e.g., a lot of arithmetic units need to perform the same operation
just on different data, then the ratio of arithmetic logic units to the cache and control can
be vastly increased, see Figure 3.

Figure 2. Illustration of the seven RRB renumbering levels on an 8-by-8 grid. Reprinted with
permission from Ref. [34]. 2016, Delft Institute of Applied Mathematics.

5. GPU Computing
5.1. GPU Architecture

A graphics processing unit, or a GPU, was primarily developed for efficiently generat-
ing computer graphics for display devices. It appeared that with the right programming,
they could also be used for numerical computations. Then, the field of general-purpose
GPU programming (GPGPU) was born. Modern GPUs can be extremely efficient for
parallel computing and the use of GPU programming has vastly increased in recent years.

A central processing unit, or a CPU, often only has a limited number of arithmetic
units, or “cores”, available, and to ensure maximum efficiency, they use a lot of cache and
control circuitry to seamlessly switch between complex tasks. The idea of a GPU is that if a
workload is uniform, e.g., a lot of arithmetic units need to perform the same operation just
on different data, then the ratio of arithmetic logic units to the cache and control can be
vastly increased, see Figure 3.

In practice, the GPU has 32 cores for performing the same operation, which is also
called a “warp”. Computations sent to the GPU are divided into thread “blocks” that con-
tain an integer number of warps, see Figure 4. A common size is 32 × 32, or 1024 threads
per block. These blocks are then asynchronously executed by so-called streaming multipro-
cessors, each of which can execute a variable number of warps concurrently.

One of the challenges of GPU programming is that only threads within a block can
communicate between themselves. If values that reside in a different block are necessary, a
completely new workload must be initialized, which can be quite costly.

Water 2023, 15, 1165 9 of 22Water 2023, 15, x FOR PEER REVIEW 9 of 23

Figure 3. Illustration of the ratio of Control (yellow) and Cache (orange) to Arithmetic Logic Units
(green) for a GPU (left) and a CPU (right) system.

In practice, the GPU has 32 cores for performing the same operation, which is also
called a “warp”. Computations sent to the GPU are divided into thread “blocks” that con-
tain an integer number of warps, see Figure 4. A common size is 32 × 32, or 1024 threads
per block. These blocks are then asynchronously executed by so-called streaming multi-
processors, each of which can execute a variable number of warps concurrently.

Figure 4. Schematic overview of a GPU program.

One of the challenges of GPU programming is that only threads within a block can
communicate between themselves. If values that reside in a different block are necessary,
a completely new workload must be initialized, which can be quite costly.

Figure 3. Illustration of the ratio of Control (yellow) and Cache (orange) to Arithmetic Logic Units
(green) for a GPU (left) and a CPU (right) system.

Water 2023, 15, x FOR PEER REVIEW 9 of 23

Figure 3. Illustration of the ratio of Control (yellow) and Cache (orange) to Arithmetic Logic Units
(green) for a GPU (left) and a CPU (right) system.

In practice, the GPU has 32 cores for performing the same operation, which is also
called a “warp”. Computations sent to the GPU are divided into thread “blocks” that con-
tain an integer number of warps, see Figure 4. A common size is 32 × 32, or 1024 threads
per block. These blocks are then asynchronously executed by so-called streaming multi-
processors, each of which can execute a variable number of warps concurrently.

Figure 4. Schematic overview of a GPU program.

One of the challenges of GPU programming is that only threads within a block can
communicate between themselves. If values that reside in a different block are necessary,
a completely new workload must be initialized, which can be quite costly.

Figure 4. Schematic overview of a GPU program.

5.2. Code Implementation

For the efficient use of a GPU, it is necessary that all threads in a warp perform the
same operation. For this purpose, thread expression homogeneity was achieved in our
code by introducing so-called control Booleans, which were multiplied with parts of the
difference equation to dynamically modify it depending on whether the neighbouring
velocity points had defined values. This approach is similar to that used in Delft3D [36].
The control Boolean for the x-velocity was called KFU, which is an integer number, with
1 for wet velocity points and 0 for dry or temporarily dry velocity points, as explained in
Section 4.4 on drying and flooding. For example, if a computational cell is temporarily
dry because of a water depth that is smaller than the threshold depth for drying, then all

Water 2023, 15, 1165 10 of 22

four cell faces have a Boolean value of 0. The central difference equation for the velocity
advection then becomes[

u ∂u
∂x

]
= KFUi,j Ui,j

KFUi−1,j (Ui,j −Ui−1,j)+KFUi+1,j (Ui,j −Ui+1,j)
(1+KFUi−1,j ∗KFUi+1,j)∗∆x (18)

Similarly, for the cross-advection term we use for
{

Vi,j > 0
}

:[
v

∂u
∂y

]
= KFUi,j ∗ KFUi,j−1 ∗Vi,j

(1 + 2KFUi,j−2)Ui,j −(1 + 3KFUi,j−2)Ui,j−1 + KFUi,j−2 Ui,j−2

(1 + KFUi,j−2) ∗ ∆y
(19)

where Vi,j is the average of the four surrounding V-velocity points at a U-velocity point. In
the Appendix A, the CUDA code for the computation of the U-velocity is shown.

6. Model Results

Test cases with increasing complexity were investigated. The first two were schematic
test cases, while the third one was a real-life application for the Meuse river in the Nether-
lands. The simulations were carried out on a machine with both a CPU and a GPU. It
consisted of a 6-core CPU (12 threads Intel i7 8086k) together with an NVIDIA RTX 2080 Ti
for GPU computing. The Intel i7 8086k operated at 5 GHz with 32 GB of DDR4 DRAM
operating at 3200 MHz. The RTX 2080 Ti had 68 streaming multiprocessors, with a total
of 4235 CUDA cores operating at 2.16 GHz. It could handle up to 1024 threads per block,
with 1024 threads per streaming multiprocessor and 64 registers per thread. It had 11 GB of
DDR6 VRAM with a 352-bit memory bus with a maximum bandwidth of 616 GB/s. For
the Meuse river test case, the computation times were compared with those found using
Delft3D-FLOW, WAQUA and D-Flow Flexible Mesh. These simulations were carried out
on a multi-node CPU in which each node consisted of four Intel Xeon 3.60 GHz cores.

6.1. Test Case 1: Simulation of a Water Droplet

This first test case consisted of a square grid with closed boundaries and initially a
Gaussian perturbation of the water level of maximally 1 m to simulate a water droplet, see
Figure 5. This produced a ring-shaped outgoing wave that reflected off the boundaries. This
test case checked the symmetry of the numerical solution in both the x- and y-directions
and also the conservation of mass.

The mesh size was 1 m for all model dimensions, with N being the number of grid cells
in both the x- and y-directions. Thus, the larger the value of N, the larger the model domain.

In Table 1, the computation times (in seconds) are listed for both a GPU and a CPU.
“Expl-H” refers to the Hansen-type method in Equation (13), “Expl-S” to the Sielecki-type
method in Equation (11) and “Semi-impl” to the semi-implicit method in Equation (14). On
the CPU, only the “Expl-H” method was used, which was the fastest method on the GPU.
We remark that on a CPU, both “Expl-H” and “Expl-S” performed similarly. When doubling
the value of N, an increase in the computation time of a factor of four was expected because
the number of time steps was constant. For the larger values of N, this behaviour can be
seen. For N = 6148, with about 37 million grid cells, the two explicit methods were about
250 times faster on the GPU than a single thread CPU. On the CPU with 12 cores, compared
with the results on the GPU, the simulations were about 50 times faster for the fastest
explicit method. The semi-implicit method was about 14 times slower compared with
the two explicit methods on the GPU. The explicit Hansen scheme was about 20% faster
compared with the explicit Sielecki scheme because it required one fewer synchronization
on a GPU.

Water 2023, 15, 1165 11 of 22Water 2023, 15, x FOR PEER REVIEW 11 of 23

Figure 5. Contour plot of the water level at t = 33 s on a 196 m-by-196 m grid and an initial H of 1
m. Cell color is indicative of the total velocity in the cell, with dark blue being zero velocity and
yellow high velocity.

The mesh size was 1 m for all model dimensions, with N being the number of grid
cells in both the x- and y-directions. Thus, the larger the value of N, the larger the model
domain.

In Table 1, the computation times (in seconds) are listed for both a GPU and a CPU.
“Expl-H” refers to the Hansen-type method in Equation (13), “Expl-S” to the Sielecki-type
method in Equation (11) and “Semi-impl” to the semi-implicit method in Equation (14).
On the CPU, only the “Expl-H” method was used, which was the fastest method on the
GPU. We remark that on a CPU, both “Expl-H” and “Expl-S” performed similarly. When
doubling the value of N, an increase in the computation time of a factor of four was ex-
pected because the number of time steps was constant. For the larger values of N, this
behaviour can be seen. For N = 6148, with about 37 million grid cells, the two explicit
methods were about 250 times faster on the GPU than a single thread CPU. On the CPU
with 12 cores, compared with the results on the GPU, the simulations were about 50 times
faster for the fastest explicit method. The semi-implicit method was about 14 times slower
compared with the two explicit methods on the GPU. The explicit Hansen scheme was
about 20% faster compared with the explicit Sielecki scheme because it required one fewer
synchronization on a GPU.

Table 1. Table of computation time of 1000 time steps in seconds for different grid sizes. The CPU
rows are the computation times for the C++ CPU implementation for various cores.

 Computation Times
 GPU CPU for Expl-H

N Expl-H Expl-S Semi-Impl CPU1 CPU2 CPU6 CPU12
100 0.02 0.02 0.12 0.31 0.17 0.07 0.10
196 0.02 0.02 0.18 1.21 0.63 0.25 0.27
388 0.03 0.04 0.54 4.76 2.40 0.93 0.87
772 0.11 0.13 1.80 21.5 9.93 4.23 3.99
1540 0.38 0.47 6.96 76.53 39.39 19.99 17.12

Figure 5. Contour plot of the water level at t = 33 s on a 196 m-by-196 m grid and an initial H of 1 m.
Cell color is indicative of the total velocity in the cell, with dark blue being zero velocity and yellow
high velocity.

Table 1. Table of computation time of 1000 time steps in seconds for different grid sizes. The CPU
rows are the computation times for the C++ CPU implementation for various cores.

Computation Times

GPU CPU for Expl-H

N Expl-H Expl-S Semi-Impl CPU1 CPU2 CPU6 CPU12

100 0.02 0.02 0.12 0.31 0.17 0.07 0.10

196 0.02 0.02 0.18 1.21 0.63 0.25 0.27

388 0.03 0.04 0.54 4.76 2.40 0.93 0.87

772 0.11 0.13 1.80 21.5 9.93 4.23 3.99

1540 0.38 0.47 6.96 76.53 39.39 19.99 17.12

3076 1.45 1.81 27.96 308.64 161.26 76.07 68.13

6148 5.76 7.24 1222.50 630.70 291.55 264.36

12,292 24.6 30.54

6.2. Test Case 2: Schematized Salt Marsh

The second test case was taken from [37], which is about salt marsh modelling on a
GPU. This test case consisted of a square domain with a width and length of 600 m. The
bathymetry varied from 0 m at the left boundary and +4.5 m at the right boundary. At
250 m from the left open boundary, the bathymetry increased linearly from 0 to 4.5 m. A
tidal water level was imposed on the left boundary, which was modelled as a sinusoidal
function that varied between 1 and 5 m, with a period of 12 h and an initial water level
of 3 m. Figure 6 illustrates the water levels at the time for which a water level of 3 m was
prescribed at the open boundary. Then, the shallow area with a bathymetry of +4.5 m had
become completely dry. We slightly adapted this test case by adding two islands so that the
flow became two-dimensional. This is illustrated in Figure 7. The highest currents occurred
between these two islands.

Water 2023, 15, 1165 12 of 22

Water 2023, 15, x FOR PEER REVIEW 12 of 23

3076 1.45 1.81 27.96 308.64 161.26 76.07 68.13
6148 5.76 7.24 1222.50 630.70 291.55 264.36

12,292 24.6 30.54

6.2. Test Case 2: Schematized Salt Marsh
The second test case was taken from [37], which is about salt marsh modelling on a

GPU. This test case consisted of a square domain with a width and length of 600 m. The
bathymetry varied from 0 m at the left boundary and +4.5 m at the right boundary. At 250
m from the left open boundary, the bathymetry increased linearly from 0 to 4.5 m. A tidal
water level was imposed on the left boundary, which was modelled as a sinusoidal func-
tion that varied between 1 and 5 m, with a period of 12 h and an initial water level of 3 m.
Figure 6 illustrates the water levels at the time for which a water level of 3 m was pre-
scribed at the open boundary. Then, the shallow area with a bathymetry of +4.5 m had
become completely dry. We slightly adapted this test case by adding two islands so that
the flow became two-dimensional. This is illustrated in Figure 7. The highest currents oc-
curred between these two islands.

Figure 6. Illustration of the water levels (in green) and bathymetry (in purple). Figure 6. Illustration of the water levels (in green) and bathymetry (in purple).

In Table 2, the computation times and time step are shown for a simulation period
of one day. The average time step is listed because the implemented methods used a
dynamic time step, which depended on the currents and the water levels; see the time step
conditions in Equations (12) and (15). The number of grid points in the x- and y-directions
was equal to N. When doubling N, one expects an eight-fold increase in the computation
time because the time step is also halved; see Equation (12). In Table 2, when going from
N = 384 to N = 1056, one expects an increase in computation time of about twenty, which
was indeed the case. This means that for the larger models, the GPU could use its full
speed. This was also observed when compared with the Delft3D-FLOW computation time.
For the smaller model of about ten thousand grid cells, the GPU was ten times faster, while
for the largest model of about one million grid cells, this was a factor of 100. We remark
that the Delft3D-FLOW simulation was carried out on a single core. As expected, the two
Delft3D-FLOW simulations had a ratio in computation time of about 1000 because the
difference in grid cells was a factor of 10. This semi-implicit method was about twelve times
slower compared with the explicit Hansen method for N = 1056. Due to the shallowness
of this application, the time step for the semi-implicit method was only 50% larger than
for the explicit methods. For deeper applications, this ratio will be much larger, as shown
for the next test case. The semi-implicit method (on a GPU) was about ten times faster for
N = 1056 compared with Delft3D-FLOW (on a CPU). We remark that the GPU and CPU
(Delft3D) simulations were carried out on different hardware platforms. Therefore, the
ratios in computation time should be interpreted carefully.

Water 2023, 15, 1165 13 of 22Water 2023, 15, x FOR PEER REVIEW 13 of 23

Figure 7. Two-dimensional flow velocity vector plot of test case 2 after 100 s on a 50 × 50 grid.

In Table 2, the computation times and time step are shown for a simulation period of
one day. The average time step is listed because the implemented methods used a dy-
namic time step, which depended on the currents and the water levels; see the time step
conditions in Equations (12) and (15). The number of grid points in the x- and y-directions
was equal to N. When doubling N, one expects an eight-fold increase in the computation
time because the time step is also halved; see Equation (12). In Table 2, when going from
N = 384 to N = 1056, one expects an increase in computation time of about twenty, which
was indeed the case. This means that for the larger models, the GPU could use its full
speed. This was also observed when compared with the Delft3D-FLOW computation
time. For the smaller model of about ten thousand grid cells, the GPU was ten times faster,
while for the largest model of about one million grid cells, this was a factor of 100. We
remark that the Delft3D-FLOW simulation was carried out on a single core. As expected,
the two Delft3D-FLOW simulations had a ratio in computation time of about 1000 because
the difference in grid cells was a factor of 10. This semi-implicit method was about twelve
times slower compared with the explicit Hansen method for N = 1056. Due to the shallow-
ness of this application, the time step for the semi-implicit method was only 50% larger
than for the explicit methods. For deeper applications, this ratio will be much larger, as
shown for the next test case. The semi-implicit method (on a GPU) was about ten times
faster for N = 1056 compared with Delft3D-FLOW (on a CPU). We remark that the GPU
and CPU (Delft3D) simulations were carried out on different hardware platforms. There-
fore, the ratios in computation time should be interpreted carefully.

Figure 7. Two-dimensional flow velocity vector plot of test case 2 after 100 s on a 50 × 50 grid.

Table 2. Computation times (in seconds) and average time step (in seconds) for a simulation period
of one day.

GPU CPU

Expl-H Expl-S Semi-Impl Delft3D-FLOW

N Computation Time with Time Step (in Brackets), Both in Seconds

96 4.3 (0.36) 5.1 (0.36) 148.5 (0.5) 40 (30)

192 8.9 (0.18) 10.7 (0.18) 293.4 (0.26) -

384 30.2 (0.09) 36.7 (0.09) 734.2 (0.14) -

1056 503 (0.03) 659 (0.03) 6510.6 (0.05) 57,600 (3)

Water 2023, 15, 1165 14 of 22

6.3. Test Case 3: River Meuse
6.3.1. Model Description

This Meuse model is an operational model in the Netherlands developed by Rijk-
swaterstaat, which is responsible for the management of water, subsurface, environment
and infrastructure in the Netherlands. The Meuse river is the second-largest river in the
Netherlands, and the Meuse model is correspondingly an important model that is used for
operational water management. The Meuse model was chosen as a test case to show that
the newly developed GPU method is applicable to real operational models. The Meuse
model area starts upstream at Eijsden, which is close to the Dutch–Belgian border, and the
downstream boundary is near Keijzersveer; see Figure 8. The grid is based on a curvilinear
grid with about 500,000 grid cells and with mesh sizes varying from 20 to 40 m. The
model dimension was about 300-by-3000 grid cells, with about 50% active grid cells and 50%
inactive cells (i.e., land points). Note that this is a relatively small test case by GPU standards.

Water 2023, 15, x FOR PEER REVIEW 15 of 23

Figure 8. Overall grid for the river Meuse model (left panel) and zoomed in for the Grensmaas
(right panel).

We not only simulated this Meuse model with the GPU methods described in this
study but also with Delft3D-FLOW, WAQUA and D-Flow Flexible Mesh, which are Dutch
software systems for hydrodynamic modelling on CPU-based systems. The first two sys-
tems are based on structured grids and the latter is based on unstructured grids. Never-
theless, D-Flow Flexible Mesh is interesting for this comparison because its numerical ap-
proach is close to our semi-implicit method in Equation (14). For a detailed description of
the discretizations of Delft3D-FLOW, WAQUA and D-Flow Flexible Mesh, we refer to [28],
in which the main characteristics are described, or to the user manuals in [36], [38] and
[39], respectively.

6.3.2. Model Results
The model results of all codes were in good agreement with each other. In Figures 9

and 10, the currents are illustrated for one of the meandering bends of the Meuse river. It
can be seen that the highest currents occurred in the main channel, with much lower cur-
rents at the flood plains. In the right panel of Figure 9, it can be seen that part of the model
grid was still without any water. These areas, for example, represent cities or villages,
which are protected by so-called winter dykes so that these areas never become wet. We
remark that the numerical methods in Delft3D-FLOW, WAQUA, D-Flow Flexible Mesh
and the numerical methods presented in this paper do not use the same numerical
schemes and approaches. Since no analytical solution exists, the model results can only be
compared globally. A thorough mathematical analysis of the model results did not fit into
the scope of this study. Therefore, in Figures 9 and 10, differences can be observed, but we
deem the level of agreement in the model results satisfactory.

Figure 8. Overall grid for the river Meuse model (left panel) and zoomed in for the Grensmaas
(right panel).

The Meuse is a rain-fed river, which causes large and quick fluctuations in the river
discharge. We simulated a peak discharge with a return period of 1250 years, which is
the so-called T1250 scenario. This steady-state scenario involves a discharge inflow of
4000 m3/s at the southern inflow boundary and a water level of 3 m at the downstream
outflow boundary. At the upstream boundary, the water levels are around +50 m. Thus, the
Meuse is a relatively steep river. In combination with the large river inflow of 4000 m3/s,
currents up to about 5 m/s can occur. The drying flooding threshold was set to 5 cm.

The Rijkswaterstaat model was simplified. It contains advanced options for hydraulic
structures and vegetation, as well as for dykes and groynes; the latter empirical concepts are
applied at, for example, the Tabellenboek and Villemonte [38]. The GPU code developed
for this study does not contain these advanced options. Therefore, only the model grid and
the bathymetry of the Rijkswaterstaat model were used. The water levels in this part of the
river Meuse are steered by moveable flood barriers. In the subsection of the Meuse that
we simulated, seven barriers exist (Borgharen, Linne, Roermond, Belfeld, Sombeek, Grave
and Lith). However, in the case of high water, these barriers are fully open and have a very
limited impact on the water levels. Therefore, for the T1250 scenario, it was justified to
simplify the Meuse model by neglecting the hydraulic structures for the moveable barriers.

We not only simulated this Meuse model with the GPU methods described in this
study but also with Delft3D-FLOW, WAQUA and D-Flow Flexible Mesh, which are Dutch

Water 2023, 15, 1165 15 of 22

software systems for hydrodynamic modelling on CPU-based systems. The first two
systems are based on structured grids and the latter is based on unstructured grids. Nev-
ertheless, D-Flow Flexible Mesh is interesting for this comparison because its numerical
approach is close to our semi-implicit method in Equation (14). For a detailed description
of the discretizations of Delft3D-FLOW, WAQUA and D-Flow Flexible Mesh, we refer
to [28], in which the main characteristics are described, or to the user manuals in [36], [38]
and [39], respectively.

6.3.2. Model Results

The model results of all codes were in good agreement with each other. In Figures 9
and 10, the currents are illustrated for one of the meandering bends of the Meuse river.
It can be seen that the highest currents occurred in the main channel, with much lower
currents at the flood plains. In the right panel of Figure 9, it can be seen that part of the
model grid was still without any water. These areas, for example, represent cities or villages,
which are protected by so-called winter dykes so that these areas never become wet. We
remark that the numerical methods in Delft3D-FLOW, WAQUA, D-Flow Flexible Mesh and
the numerical methods presented in this paper do not use the same numerical schemes and
approaches. Since no analytical solution exists, the model results can only be compared
globally. A thorough mathematical analysis of the model results did not fit into the scope
of this study. Therefore, in Figures 9 and 10, differences can be observed, but we deem the
level of agreement in the model results satisfactory.

Water 2023, 15, x FOR PEER REVIEW 16 of 23

Figure 9. Illustration of water levels (right panel) and currents for the Grensmaas with currents in
Delft3D-FLOW in blue and currents for “Semi-impl” in red (left panel).

Figure 10. Illustration of currents for the “Semi-impl” method (left panel) and currents for WAQUA
(right panel).

In Table 3, the average time steps and the computation times are listed for several
software codes. WAQUA and Delft3D-FLOW used a fixed time step, for which the time
step was based on accuracy reasons. For the Meuse model, we applied a fixed time step
of 7.5 s. The other three methods applied a variable time step. For the GPU methods used
in this study, the stability criteria for the time step are in Equations (12) and (15). D-Flow
Flexible Mesh used an average time step of 2.3 s, which was more or less comparable to
“Semi-impl”, referring to the semi-implicit scheme in Equation (14), for which the average
time step was 1.9 s. The explicit methods “Expl-H” and “Expl-S”, referring to the Hansen-
type scheme in Equation (13) and the Sielecki-type scheme in Equation (11), respectively,
applied a much smaller average time step of 0.2 s because of the explicit time integration
method for advection in combination with the high currents of maximally approximately
5 m/s.

Figure 9. Illustration of water levels (right panel) and currents for the Grensmaas with currents in
Delft3D-FLOW in blue and currents for “Semi-impl” in red (left panel).

In Table 3, the average time steps and the computation times are listed for several
software codes. WAQUA and Delft3D-FLOW used a fixed time step, for which the time
step was based on accuracy reasons. For the Meuse model, we applied a fixed time step of
7.5 s. The other three methods applied a variable time step. For the GPU methods used
in this study, the stability criteria for the time step are in Equations (12) and (15). D-Flow
Flexible Mesh used an average time step of 2.3 s, which was more or less comparable to
“Semi-impl”, referring to the semi-implicit scheme in Equation (14), for which the average
time step was 1.9 s. The explicit methods “Expl-H” and “Expl-S”, referring to the Hansen-
type scheme in Equation (13) and the Sielecki-type scheme in Equation (11), respectively,
applied a much smaller average time step of 0.2 s because of the explicit time integration
method for advection in combination with the high currents of maximally approximately
5 m/s.

Water 2023, 15, 1165 16 of 22

Water 2023, 15, x FOR PEER REVIEW 16 of 23

Figure 9. Illustration of water levels (right panel) and currents for the Grensmaas with currents in
Delft3D-FLOW in blue and currents for “Semi-impl” in red (left panel).

Figure 10. Illustration of currents for the “Semi-impl” method (left panel) and currents for WAQUA
(right panel).

In Table 3, the average time steps and the computation times are listed for several
software codes. WAQUA and Delft3D-FLOW used a fixed time step, for which the time
step was based on accuracy reasons. For the Meuse model, we applied a fixed time step
of 7.5 s. The other three methods applied a variable time step. For the GPU methods used
in this study, the stability criteria for the time step are in Equations (12) and (15). D-Flow
Flexible Mesh used an average time step of 2.3 s, which was more or less comparable to
“Semi-impl”, referring to the semi-implicit scheme in Equation (14), for which the average
time step was 1.9 s. The explicit methods “Expl-H” and “Expl-S”, referring to the Hansen-
type scheme in Equation (13) and the Sielecki-type scheme in Equation (11), respectively,
applied a much smaller average time step of 0.2 s because of the explicit time integration
method for advection in combination with the high currents of maximally approximately
5 m/s.

Figure 10. Illustration of currents for the “Semi-impl” method (left panel) and currents for WAQUA
(right panel).

Table 3. Computation times (in seconds) and average time step (in seconds) for a simulation period
of one day with a 2D river Meuse model (n.a.—not available).

GPU CPU

Expl-H Expl-S Semi-Impl WAQUA Delft3D-FLOW D-Flow Flexible Mesh

Time Step (in Seconds)

0.20 0.20 1.9 7.5 7.5 2.3

Cores Computation Time (in Seconds)

1 132 164 332 3380 7860 10,525

4 (1 node) n.a. n.a. n.a. 1475 4758 4710

16 (4 nodes) n.a. n.a. n.a. 400 1045 1215

With respect to the computation times, the explicit methods “Expl-H” and “Expl-S”
were the fastest, with “Expl-H” being the most efficient one because it required one syn-
chronization, or kernel launch, less compared with “Expl-S”. For “Expl-S”, a global thread
synchronization was necessary for each quantity, which required three synchronizations per
time step, while “Expl-H” only required two. Two instead of three thread synchronizations
per time step reduced the computation time by about 15–20%. The two explicit methods on
the GPU were about 25 times faster than WAQUA, 50 times faster than Delft3D-FLOW and
75 times faster than D-Flow Flexible Mesh.

The “Semi-impl” method required about 330 s, which was about two times slower
than the “Expl-H” method and ten times faster than WAQUA, which was the fastest CPU
code. It is known that WAQUA is highly optimized for sequential and parallel simulations
for 2D modelling [28]. Therefore, it is plausible that Delft3D-FLOW was about two times
slower for this application. Due to the explicit time integration for advection, D-Flow
Flexible Mesh required a smaller time step compared with WAQUA and Delft3D-FLOW.
Consequently, the computation time was also somewhat larger.

In the variable time step approach, we applied a MAX-function in our code to deter-
mine the maximum value for 1/Dti, in which Dti was determined for each computation
cell i using stability condition (12) for the two explicit methods and using stability condition
(15) for the semi-explicit method. The computation of this MAX-function appeared to be
very costly because synchronization was required over all computation cells. As a test, we
applied a fixed time steps of 0.2 s for the two explicit methods. Then, the computation
times were respectively 69 s and 93 s instead of 132 s and 164 s, which is almost half the

Water 2023, 15, 1165 17 of 22

computation time in Table 3. This illustrates that the computation of the time step can be
further optimized.

We remark that in practice, simulations with WAQUA, Delft3D-FLOW and D-Flow
Flexible Mesh are often carried out in parallel mode via the distributed memory approach
by using MPI for data transfer between the notes. This significantly reduces computation
times, which is illustrated in Table 3 by using 4 or 16 cores. For the GPU-based method, we
have not developed a multi-node implementation yet, which is possibly one of the future
activities for further improvement.

In summary, the ratio in computation time between the GPU- and CPU-based methods
should be interpreted carefully. For example, the GPU code runs in single precision, while
the other three systems run in double precision. The hardware is also rather different.
Nevertheless, a computation time of about two minutes for the explicit method on an
“off-the-shelf” GPU system is impressive. With a multi-node CPU-based system, this will
probably never be reached. For a large number of cores, the overhead in communication
between the nodes will become larger than the reduction in time for the computations, thus
leading to larger computation times. Moreover, this Meuse test case only had about half a
million grid points, which is relatively small for a GPU application. For applications with
much more grid points, the GPU is expected to perform even better compared with a CPU.

7. Discussion on GPU versus CPU Computing

The performance results of Section 6 clearly show the huge potential of GPU comput-
ing for the shallow water equations. In this section, we compare these results with other
publications on GPU- versus CPU-based methods for the 2D depth-averaged SWEs on
structured grids.

7.1. Ratio of GPU versus CPU Timings for Other SWE Codes

In [9], a GPU implementation was developed for an explicit time integration method.
This so-called Iber+ system appeared to be 100 times faster on a GPU than on a CPU. In
that study, it was also concluded that “for an extreme flash flood that took place in the
Spanish Pyrenees in October 2012 the GPU-based system Iber+ was able to simulate 24 h of
physical time in less than 10 min using a numerical mesh of almost half a million elements.
The same case run with the standard version needs more than 15 h of CPU time. This is
more or less comparable to our river Meuse application of about half a million grid points
that requires a few minutes of computation time for a 1-day simulation.

In [39], the Sielecki-type scheme of Equation (11) was implemented on a GPU and
appeared to be a factor of 200 faster than the same method on a CPU. In [15], the MIKE21
method for 2D modelling was implemented on a GPU and appeared to be about 50 times
faster for double-precision and about 150 times faster for single-precision compared with
the CPU performance. According to [40], on a single processor, the GPU version of MIKE21
can be a factor of 100 or more faster compared with the CPU version. Switching from one
to four GPU cards yields another factor of up to three, leading to a total speedup in the
order of 300 for the GPU compared to the CPU.

In summary, in several studies on 2D modelling for the SWEs, it was demonstrated
that on a GPU, significantly lower computation times can be achieved in comparison to
CPU-based systems. Our study is another one that shows that GPU-based computing for
the SWEs can lead to computation times that are an order of magnitude smaller compared
with computation times on a CPU-based system. Next to the significant reduction in
computation time, it also opens the possibility to go to much higher resolution modelling,
with mesh sizes in the order of a few meters, while for CPU-based system operational
models, the mesh sizes in general remain in the order of tens of meters (10 to 25 m) for
large-scale applications.

Water 2023, 15, 1165 18 of 22

7.2. Advantages of GPU Computing over CPU Computing

GPU computing enables modelling on a higher resolution; for example with meshes in
the order of a few metres. This also offers advantages with respect to the modelling approach:

I. Fewer numerical approximations: For example, for groynes in Dutch river models,
a complex empirical approach is applied in current SWE models [38]. This yields
accurate water levels, but currents around groynes are inaccurate. It should be
noted that this empirical approach is not meant for simulating accurate currents.
With GPU computing, a grid resolution of a few metres becomes possible so that
groynes can now be schematized in the bathymetry. Then, this empirical approach
is no longer required. In this way, not only water levels but also currents can be
computed accurately. The latter is also relevant for morphodynamic scenarios, in
which the time evolution of the bathymetry is simulated.

II. Easier preprocessing of models: The set-up of operational SWE models in the Nether-
lands is being done automatically. The coarser the resolution, the more complex
the approach. For example:

i. Vegetation: For each computation cell, the bed roughness is generated. For
example, a grid cell might consist of 30% buildings, 20% hedges and 50%
grass, each of which has a different roughness. Via a complex algorithm, this
is converted into a roughness coefficient per grid cell. On a high-resolution
GPU model, each grid cell will have only one vegetation type.

ii. Height model: When using 25 m-resolution small levees, heightened roads
and traffic bumps may be removed from the height model due to averaging
the height values. To fix this, a user can sometimes increase the height
artificially, but this requires additional work and can result in mistakes.
A high-resolution GPU model does not have this problem because geo-
graphical objects, such as roads, speed bumps and levees, show up in the
high-resolution grid of approximately 1 m.

An illustration of high-resolution SWE modelling on a GPU can be found on the
Tygron Geodesign Platform [41]. This is based on an SWE model that is second-order
well-balanced positivity preserving and is based on the schema developed by Kurganov
and Petrova [42]. The model schema is explicit and was adapted to work in a multi-GPU
configuration on the latest 64-bit data centre GPU nodes. This scheme is further extended
with the shoreline reconstruction method by Bollerman [43] which ensures better numerical
stability at the wetting and drying fronts of a flood wave. To prevent negative water
levels in drying fronts, a draining time step is used. The SWE scheme is integrated into a
larger GPU model that also simulates hydraulic structures (weirs, culverts, inlets) and dam
breaches based on a 2D grid with conservation of momentum. The model is optimized
to run on multiple GPUs using the CUDA architecture but can also run in a CPU Java
environment for extensive testing and comparing of CPU and GPU results. This allows
the model to run up to 10 billion grid cells in a multi-GPU configuration connected via
NVLINK for an artificial flooding event in the Netherlands [44].

8. Conclusions

In this study, explicit and semi-implicit time integration methods were developed
for the depth-averaged (2D) shallow water equations on a structured grid for GPUs. The
methods are suitable for both rectangular, curvilinear and spherical grids. Both methods are
of the finite-difference type and allow for drying and flooding. For the discretization of the
advection terms, the combination of second-order central discretizations and second-order
upwind scheme leads to a fourth-order dissipation, which suppresses any unphysical
oscillations. The semi-implicit time integration method is based on an operator splitting
technique, which is a novel approach for the shallow water equations on GPUs. It requires
the solution of a Poisson-type equation, for which a repeated red black (RRB) solver is used.
This solver has a very good convergence behavior and can also be implemented efficiently

Water 2023, 15, 1165 19 of 22

on GPUs. The RRB solver scales nearly as well as Multigrid and the throughput number in
memory bandwidth in GB/s is about 75% of the peak performance on a modern GPU.

Two schematic test cases were examined with up to about 150 million grid points.
Furthermore, a real-life model application for the river Meuse in the Netherlands was
tested, which consisted of about half a million grid points. For these three test cases, the
explicit method was faster than the semi-implicit method on a GPU. This was mainly
due to the fact that these three test cases were relatively shallow, with depths of up to
approximately 20 m. For much deeper applications, such as the Dutch Continental Shelf
model with depths up to 5 km, the semi-implicit method will most likely be faster. We
conclude that both explicit and semi-implicit time integration methods can run efficiently
on a GPU, with realistic use cases for both methods.

For the river Meuse application, the model results and the computation time were
compared with the ones for existing hydrodynamic software systems in the Netherlands,
namely, Delft3D, Simona and Delft3D Flexible Mesh. A thorough mathematical analysis of
the model results did not fit into the scope of this study; however, the results of these four
software systems were in sufficient agreement with each other. The ratio in computation
time between the GPU and the CPU was in the order of 25 to 75. Our Meuse test case
with only about half a million grid points was rather small by GPU standards, and thus, as
expected, the speedup for the Meuse model was relatively small.

The findings in this study confirmed what was reported in other GPU papers for the
depth-averaged SWEs, namely, that computation on GPUs can be an order of magnitude
faster—roughly 50 to 100 times—compared with CPUs. This also allows for high-resolution
applications for the SWEs on GPUs. Currently, a resolution of about 25 m is used in
operational Dutch SWE models on CPUs. By using GPUs, high-resolution models (5-by-5 m
or even 1-by-1 m) can be simulated in a reasonable time, as is shown in a model of the
Netherlands including all major rivers.

An implicit time integration method for the advective terms could be a topic of future
research. The implicit time integration of advection in Delft3D-FLOW via a Jacobi-type
iterative solver might be a GPU-suitable candidate for this. If this is applied to the semi-
implicit method in Equation (14), then the time step limitation in Equation (15) disappears,
which allows the time step to be chosen based on accuracy requirements. A second topic of
future research is an extension to multi-GPUs, which is expected to further improve the
performance of large models.

Author Contributions: Conceptualization: F.J.L.B., E.D.G. and C.V.; methodology: F.J.L.B., E.D.G.
and C.V.; software: F.J.L.B.; validation: F.J.L.B., E.D.G., M.K. and C.V.; formal analysis: F.J.L.B.;
investigation: F.J.L.B.; resources: F.J.L.B., E.D.G. and M.K.; data curation: F.J.L.B.; writing—original
draft preparation: E.D.G. (major), F.J.L.B. (minor) and M.K. (minor); writing—review and editing:
E.D.G., F.J.L.B., M.K. and C.V.; project administration: C.V.; funding acquisition: E.D.G. and C.V. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding, except in-kind contributions from Deltares,
Delft University of Technology and Tygron.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to significant parts of the data consisting
of a proprietary model belonging to Deltares.

Acknowledgments: Most of the work of this study was carried out during the Master‘s thesis of
Buwalda [34] at the Delft University of Technology. The Maritime Research Institute Netherlands
(MARIN) is thanked for providing the GPU implementation of the RRB solver developed by De
Jong [18,35]. The anonymous reviewers are thanked for their valuable remarks and for informing us
about other GPU papers, as well as the incompressible Navier–Stokes equations.

Conflicts of Interest: The authors declare no conflict of interest.

Water 2023, 15, 1165 20 of 22

Appendix A

For illustration, in Figure A1 the CUDA code is shown for the computation of the
U-velocity at the new time level. Despite the fact that a complex numerical scheme is
applied, which is described in detail in Section 4, the CUDA code is considered to be
relatively easy and readable.

Water 2023, 15, x FOR PEER REVIEW 20 of 23

case with only about half a million grid points was rather small by GPU standards, and
thus, as expected, the speedup for the Meuse model was relatively small.

The findings in this study confirmed what was reported in other GPU papers for the
depth-averaged SWEs, namely, that computation on GPUs can be an order of magnitude
faster—roughly 50 to 100 times—compared with CPUs. This also allows for high-resolu-
tion applications for the SWEs on GPUs. Currently, a resolution of about 25 m is used in
operational Dutch SWE models on CPUs. By using GPUs, high-resolution models (5-by-5
m or even 1-by-1 m) can be simulated in a reasonable time, as is shown in a model of the
Netherlands including all major rivers.

An implicit time integration method for the advective terms could be a topic of future
research. The implicit time integration of advection in Delft3D-FLOW via a Jacobi-type
iterative solver might be a GPU-suitable candidate for this. If this is applied to the semi-
implicit method in Equation (14), then the time step limitation in Equation (15) disappears,
which allows the time step to be chosen based on accuracy requirements. A second topic
of future research is an extension to multi-GPUs, which is expected to further improve the
performance of large models.

Appendix A
For illustration, in Figure A1 the CUDA code is shown for the computation of the U-

velocity at the new time level. Despite the fact that a complex numerical scheme is applied,
which is described in detail in Section 4, the CUDA code is considered to be relatively easy
and readable.

Figure A1. Illustration of the CUDA code.

Next to the integer values for either a wet or dry status (see, for example, (𝑠_𝐾𝐹𝑈[𝑠𝑗 +2][𝑠𝑖])), the code also contained Booleans (see, for example, (𝑠_𝑉[𝑠𝑗][𝑠𝑖] > 0)) in order to
apply either upwinding or downwinding, which depends on the sign of the V-velocity. In
this way, IF statements were circumvented. For the explicit numerical schemes in Equa-
tions (11) and (13), the value of grid cell (i, j) at the next timestep can be computed inde-
pendently of all other grid cells. Such computations are perfectly suited for a GPU because
the GPU is a highly parallel processor.

Figure A1. Illustration of the CUDA code.

Next to the integer values for either a wet or dry status (see, for example,
(s_KFU[sj + 2][si])), the code also contained Booleans (see, for example, (s_V[sj][si] > 0))
in order to apply either upwinding or downwinding, which depends on the sign of the V-
velocity. In this way, IF statements were circumvented. For the explicit numerical schemes
in Equations (11) and (13), the value of grid cell (i,j) at the next timestep can be computed
independently of all other grid cells. Such computations are perfectly suited for a GPU
because the GPU is a highly parallel processor.

References
1. Krüger, J.; Westermann, R. Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans. Graph. 2003,

22, 908–916. [CrossRef]
2. Du, P.; Weber, R.; Luszczek, P.; Tomov, S.; Peterson, G.; Dongarra, J. From CUDA to OpenCL: Towards a performance-portable

solution for multi-platform GPU programming. Parallel Comput. 2012, 38, 391–407. [CrossRef]
3. Klingbeil, K.; Lemarié, F.; Debreu, L.; Burchard, H. The numerics of hydrostatic structured-grid coastal ocean models: State of the

art and future perspectives. Ocean. Model. 2018, 125, 80–105. [CrossRef]
4. Vreugdenhil, C.B. Numerical methods for shallow-water flow. In Water Science and Technology Library; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 1994; ISBN 0-7923-3164-8.
5. Aureli, F.; Prost, F.; Vacondio, R.; Dazzi, S.; Ferrari, A. A GPU-accelerated shallow-water scheme for surface runoff simulations.

Water 2020, 12, 637. [CrossRef]
6. Brodtkorb, A.; Hagen, T.R.; Roed, L.P. One-Layer Shallow Water Models on the GPU. Norwegian Meteorological Institute

Report No. 27/2013. 2013. Available online: https://www.met.no/publikasjoner/met-report/met-report-2013/_/attachment/
download/1c8711b6-b6c2-45f6-985d-c48f57b1d921:337ce17f6db07903d6f35919717c1d80c8756cc9/MET-report-27-2013.pdf (ac-
cessed on 14 March 2023).

7. Dazzi, S.; Vacondio, R.; Dal Palu, A.; Mignosa, P. A local time stepping algorithm for GPU-accelerated 2D shallow water models.
Adv. Water Resour. 2018, 111, 274–288. [CrossRef]

8. Fernández-Pato, J.; García-Navarro, P. An Efficient GPU Implementation of a Coupled Overland-Sewer Hydraulic Model with
Pollutant Transport. Hydrology 2021, 8, 146. [CrossRef]

http://doi.org/10.1145/882262.882363
http://doi.org/10.1016/j.parco.2011.10.002
http://doi.org/10.1016/j.ocemod.2018.01.007
http://doi.org/10.3390/w12030637
https://www.met.no/publikasjoner/met-report/met-report-2013/_/attachment/download/1c8711b6-b6c2-45f6-985d-c48f57b1d921:337ce17f6db07903d6f35919717c1d80c8756cc9/MET-report-27-2013.pdf
https://www.met.no/publikasjoner/met-report/met-report-2013/_/attachment/download/1c8711b6-b6c2-45f6-985d-c48f57b1d921:337ce17f6db07903d6f35919717c1d80c8756cc9/MET-report-27-2013.pdf
http://doi.org/10.1016/j.advwatres.2017.11.023
http://doi.org/10.3390/hydrology8040146

Water 2023, 15, 1165 21 of 22

9. García-Feal, O.; González-Cao, J.; Gómez-Gesteira, M.; Cea, L.; Domínguez, J.M.; Formella, A. An Accelerated Tool for Flood
Modelling Based on Iber. Water 2018, 10, 1459. [CrossRef]

10. Guerrero Fernandez, E.; Castro-Diaz, M.J.; Morales de Luna, T. A Second-Order Well-Balanced Finite Volume Scheme for the
Multilayer Shallow Water Model with Variable Density. Mathematics 2020, 8, 848. [CrossRef]

11. Parma, P.; Meyer, K.; Falconer, R. GPU driven finite difference WENO scheme for real time solution of the shallow water equations.
Comput. Fluids 2018, 161, 107–120. [CrossRef]

12. Smith, L.S.; Liang, Q. Towards a generalised GPU/CPU shallow-flow modelling tool. Comput. Fluids 2013, 88, 334–343. [CrossRef]
13. Xu, S.; Huang, S.; Oey, L.-Y.; Xu, F.; Fu, H.; Zhang, Y.; Yang, G. POM.gpu-v1.0: A GPU-based Princeton Ocean Model. Geosci.

Model Dev. 2015, 8, 2815–2827. [CrossRef]
14. Zhao, X.D.; Liang, S.-X.; Sun, Z.-C.; Liu, Z. A GPU accelerated finite volume coastal ocean model. Sci. Direct 2017, 29, 679–690.

[CrossRef]
15. Aackermann, P.E.; Dinesen Pedersen, P.J. Development of a GPU-Accelerated MIKE 21 Solver for the Water Wave Dynamics; Technical

University of Denmark: Lyngby, Denmark, 2012.
16. Zhang, Y.; Jia, Y. Parallelized CCHE2D flow model with CUDA Fortran on Graphics Processing Units. Comput. Fluids 2013, 84,

359–368. [CrossRef]
17. Esfahanian, V.; Baghapour, B.; Torabzadeh, M.; Chizari, H. An efficient GPU implementation of cyclic reduction solver for

high-order compressible viscous flow simulations. Comput. Fluids 2014, 92, 160–171. [CrossRef]
18. De Jong, M.; Van der Ploeg, A.; Ditzel, A.; Vuik, C. Fine-grain parallel rrb-solver for 5-/9-point stencil problems suitable for

GPU-type processors. Electron. Trans. Numer. Anal. 2017, 46, 375–393.
19. Aissa, M.; Verstraete, T.; Vuik, C. Toward a GPU-aware comparison of explicit and implicit CFD simulations on structured meshes.

Comput. Math. Appl. 2017, 74, 201–217. [CrossRef]
20. Ha, S.; Park, J.; You, D. A GPU-accelerated semi-implicit fractional-step method for numerical solutions of incompressible

Navier–Stokes equations. J. Comput. Phys. 2018, 352, 246–264. [CrossRef]
21. Zolfaghari, H.; Obrist, D. A high-throughput hybrid task and data parallel Poisson solver for large-scale simulations of incom-

pressible turbulent flows on distributed GPUs. J. Comput. Phys. 2021, 437, 110329. [CrossRef]
22. Morales-Hernandez, M.; Kao, S.-C.; Gangrade, S.; Madadi-Kandjani, E. High-performance computing in water resources

hydrodynamics. J. Hydroinf. 2020, 22, 1217–1235. [CrossRef]
23. Hansen, W. Theorie zur Errechnung des wasserstandes und der Strömingen in Randmeeeren nebst Anwendungen. Tellus 1956, 8,

289–300. [CrossRef]
24. Heaps, N.S. A two-dimensional numerical sea model. Phil. Trans. Roy. Soc. 1969, 265, 93–137.
25. Sielecki, A. Mathematical Weather Rev; U.S. Department of Agriculture: Washington, DC, USA, 1968; Volume 96, pp. 150–156.
26. Backhaus, J.O. A semi-implicit scheme for the shallow water equations for application to shelf sea modelling. Cont. Shelf Res.

1983, 2, 243–255. [CrossRef]
27. Casulli, V.; Cheng, R.T. Semi-implicit finite difference methods for three-dimensional shallow water flow. Int. J. Numer. Methods

Fluids 1992, 15, 629–648. [CrossRef]
28. De Goede, E.D. A time splitting method for the three-dimensional shallow water equations. Int. J. Numer. Meth. Fluids 1991, 13,

519–534. [CrossRef]
29. Wilders, P.; Van Stijn, T.L.; Stelling, G.S.; Fokkema, G.A. A fully implicit splitting method for accurate tidal computations. Int. J.

Num. Methods Eng. 1988, 26, 2707–2721. [CrossRef]
30. Stelling, G.S. On the Construction of Computational Methods for Shallow Water Problems. Ph.D. Thesis, Delft University of

Technology, Delft, The Netherlands, 1983.
31. Jones, J.E. Coastal and shelf-sea modelling in the European context. Oceanogr. Mar. Biol. Annu Rev. 2002, 40, 37–141.
32. Gerritsen, H.; De Goede, E.D.; Platzek, F.W.; Genseberger, M.; Van Kester, J.A.T.H.M.; Uittenbogaard, R.E. Validation Document

Delft3D-FLOW, WL|Delft Hydraulics Report X0356/M3470. 2008. Available online: https://www.researchgate.net/publication/
301363924_Validation_Document_Delft3D-FLOW_a_software_system_for_3D_flow_simulations (accessed on 12 March 2023).

33. Kernkamp, H.W.J.; Petit, H.A.H.; Gerritsen, H.; De Goede, E.D. A unified formulation for the three-dimensional shallow water
equations using orthogonal co-ordinates: Theory and application. Ocean. Dyn. 2005, 55, 351–369. [CrossRef]

34. Buwalda, F. Suitability of Shallow Water Solving Methods for GPU Acceleration. Master’s Thesis, Delft University of Technology,
Delft, The Netherlands, 2020. Available online: https://repository.tudelft.nl/islandora/search/author%3A%22Buwalda%2C%20
Floris%22 (accessed on 18 February 2020).

35. De Jong, M.; Vuik, C. GPU Implementation of the RRB-Solver, Reports of the Delft Institute of Applied Mathematics. 2016, Volume 16-06,
p. 53. Available online: https://repository.tudelft.nl/islandora/object/uuid%3A40f09247-c706-442e-94cf-a87eabfa59e9 (accessed
on 12 March 2023).

36. Deltares. Delft3D-FLOW Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments; Version
4.05 (15 March 2023); User Manual: Deltares, The Netherlands, 2023. Available online: https://content.oss.deltares.nl/delft3d4
/Delft3D-FLOW_User_Manual.pdf (accessed on 12 March 2023).

37. Peeters, L. Salt Marsh Modelling: Implemented on a GPU. Master’s Thesis, Delft University of Technology, Delft, The Nether-
lands, 2018. Available online: https://repository.tudelft.nl/islandora/object/uuid%3Aab1242b2-72e9-4052-a7e8-bbe77a7a4d5a
(accessed on 12 March 2023).

http://doi.org/10.3390/w10101459
http://doi.org/10.3390/math8050848
http://doi.org/10.1016/j.compfluid.2017.11.012
http://doi.org/10.1016/j.compfluid.2013.09.018
http://doi.org/10.5194/gmd-8-2815-2015
http://doi.org/10.1016/S1001-6058(16)60780-1
http://doi.org/10.1016/j.compfluid.2013.06.021
http://doi.org/10.1016/j.compfluid.2013.12.011
http://doi.org/10.1016/j.camwa.2017.03.003
http://doi.org/10.1016/j.jcp.2017.09.055
http://doi.org/10.1016/j.jcp.2021.110329
http://doi.org/10.2166/hydro.2020.163
http://doi.org/10.3402/tellusa.v8i3.9023
http://doi.org/10.1016/0278-4343(82)90020-6
http://doi.org/10.1002/fld.1650150602
http://doi.org/10.1002/fld.1650130409
http://doi.org/10.1002/nme.1620261209
https://www.researchgate.net/publication/301363924_Validation_Document_Delft3D-FLOW_a_software_system_for_3D_flow_simulations
https://www.researchgate.net/publication/301363924_Validation_Document_Delft3D-FLOW_a_software_system_for_3D_flow_simulations
http://doi.org/10.1007/s10236-005-0017-2
https://repository.tudelft.nl/islandora/search/author%3A%22Buwalda%2C%20Floris%22
https://repository.tudelft.nl/islandora/search/author%3A%22Buwalda%2C%20Floris%22
https://repository.tudelft.nl/islandora/object/uuid%3A40f09247-c706-442e-94cf-a87eabfa59e9
https://content.oss.deltares.nl/delft3d4/Delft3D-FLOW_User_Manual.pdf
https://content.oss.deltares.nl/delft3d4/Delft3D-FLOW_User_Manual.pdf
https://repository.tudelft.nl/islandora/object/uuid%3Aab1242b2-72e9-4052-a7e8-bbe77a7a4d5a

Water 2023, 15, 1165 22 of 22

38. Rijkswaterstaat. WAQUA/TRIWAQ-Two- and Three-Dimensional Shallow Water Flow Model, Technical Documentation;
SIMONA Report Number 99-01. Version 3.16. 2016. Available online: https://iplo.nl/thema/water/applicaties-modellen/
watermanagementmodellen/simona/ (accessed on 12 March 2023).

39. Deltares. D-Flow Flexible Mesh, Computational Cores and User Interface; Version: 2023 (22 February 2023); User Manual: Deltares,
The Netherlands, 2023. Available online: https://content.oss.deltares.nl/delft3d/D-Flow_FM_User_Manual.pdf (accessed on
12 March 2023).

40. DHI. 2022. Available online: https://www.mikepoweredbydhi.com/products/mike-21/mike-21-gpu (accessed on
12 March 2023).

41. Tygron. 2020. Available online: https://www.tygron.com/nl/2020/09/24/river-deltas-at-high-resolution/ (accessed on
12 March 2023).

42. Kurganov, A.; Petrova, G. A Second-Order Well-Balanced Positivity Preserving Central-Upwind Scheme for the Saint-Venant
System. 2007. Available online: https://www.math.tamu.edu/~gpetrova/KPSV.pdf (accessed on 12 March 2023).

43. Bollerman, A. A Well-Balanced Reconstruction of Wet/Dry Fronts for the Shallow Water Equations. 2013. Available online:
https://www.researchgate.net/publication/269417532_A_Well-balanced_Reconstruction_for_Wetting_Drying_Fronts (accessed
on 12 March 2023).

44. Tygron. 2021. Available online: https://www.tygron.com/en/2021/11/28/tygron-supercomputer-hits-new-record-10-000-0
00-000/ (accessed on 12 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://iplo.nl/thema/water/applicaties-modellen/watermanagementmodellen/simona/
https://iplo.nl/thema/water/applicaties-modellen/watermanagementmodellen/simona/
https://content.oss.deltares.nl/delft3d/D-Flow_FM_User_Manual.pdf
https://www.mikepoweredbydhi.com/products/mike-21/mike-21-gpu
https://www.tygron.com/nl/2020/09/24/river-deltas-at-high-resolution/
https://www.math.tamu.edu/~gpetrova/KPSV.pdf
https://www.researchgate.net/publication/269417532_A_Well-balanced_Reconstruction_for_Wetting_Drying_Fronts
https://www.tygron.com/en/2021/11/28/tygron-supercomputer-hits-new-record-10-000-000-000/
https://www.tygron.com/en/2021/11/28/tygron-supercomputer-hits-new-record-10-000-000-000/

	Introduction
	Shallow Water Equations
	Implicit versus Explicit Time-Integration Methods for the Shallow Water Equations
	Implementation of Numerical Methods for the Shallow Water Equations on GPUs
	Time-Splitting Methods
	Discretization and Grid Staggering
	Discretization of the Advection Terms
	Drying and Flooding
	Non-Uniform Grids
	Solving the Pentadiagonal System

	GPU Computing
	GPU Architecture
	Code Implementation

	Model Results
	Test Case 1: Simulation of a Water Droplet
	Test Case 2: Schematized Salt Marsh
	Test Case 3: River Meuse
	Model Description
	Model Results

	Discussion on GPU versus CPU Computing
	Ratio of GPU versus CPU Timings for Other SWE Codes
	Advantages of GPU Computing over CPU Computing

	Conclusions
	Appendix A
	References

