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Abstract
Although Anderson acceleration AA(m) has been widely used to speed up nonlinear
solvers, most authors are simply using and studying the stationary version of Anderson
acceleration. The behavior and full potential of the non-stationary version of Anderson
acceleration methods remain an open question. Motivated by the hybrid linear solver
GMRESR (GMRES Recursive), we recently proposed a set of non-stationary Ander-
son acceleration algorithms with dynamic window sizes AA(m,AA(n)) for solving
both linear and nonlinear problems. Significant gains are observed for our proposed
algorithms but these gains are not well understood. In the present work, we first
consider the case of using AA(m,AA(1)) for accelerating linear fixed-point iteration
and derive the polynomial residual update formulas for non-stationary AA(m,AA(1)).
Like stationary AA(m), we find that AA(m,AA(1)) with general initial guesses is also
a multi-Krylov method and possesses a memory effect. However, AA(m,AA(1)) has
higher order degree of polynomials and a strongermemory effect than that of AA(m) at
the k-th iteration, which might explain the better performance of AA(m,AA(1)) com-
pared to AA(m) as observed in our numerical experiments.Moreover, we further study
the influence of initial guess on the asymptotic convergence factor of AA(1, AA(1)).
We show a scaling invariance property of the initial guess x0 for the AA(1,AA(1))
method in the linear case. Then, we study the root-linear asymptotic convergence
factor under scaling of the initial guess and we explicitly indicate the dependence of
root-linear asymptotic convergence factors on the initial guess. Lastly, we numeri-
cally examine the influence of the initial guess on the asymptotic convergence factor
of AA(m) and AA(m,AA(n)) for both linear and nonlinear problems.
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1 Introduction

In this paper, we study convergence accelerationmethods for the following fixed-point
problem:

x = q(x), q : Rn → Rn,

which can also be employed to solve nonlinear equation systems f (x) = 0. The
associated basic fixed-point iteration is given in Algorithm 1.

Algorithm 1 Picard iteration.
Given: x0.
for k = 0, 1, 2, · · · do

Set xk+1 = q(xk ).
end for

The main concern in real applications is that Algorithm 1 may not converge or it
converges unacceptably slowly and may take a very long time to compute an accurate
result. Thus, many acceleration methods are proposed to solve this slow convergence
issue. In 1962, Anderson [1] proposed a technique for accelerating the convergence of
Picard iterations which is originally called the Extrapolation Algorithm. Since then,
this acceleration method has enjoyed remarkable success and wide usage in differ-
ent areas, especially in computational chemistry (where it is known as Pulay mixing)
and electronic structure computations (where it is known as Anderson mixing). The
technique is now called Anderson acceleration (AA) in the applied mathematics com-
munity. Different to the Picard iteration in Algorithm 1, which uses only one previous
iterate, the Anderson Acceleration method AA(m) proceeds by linearly recombining
a list of previousm iterates in a way such that approximately minimizes the linearized
fixed-point residual. We summarize the typical form of Anderson Acceleration with
damping in Algorithm 2. Here, fk is the residual for the kth iteration;m is the window
size which indicates howmany history residuals will be used in the algorithm. Inmany
papers, this is usually a fixed number during the procedure. Typically, the value of m
is not larger than 3 in the early days of applications and now this value could be as
large as up to 100. Anderson [2] We point out that γk ∈ (0, 1] is a damping factor (or
a relaxation parameter) at kth iteration, where

γk =

⎧
⎪⎨

⎪⎩

1, AA without damping,

γ, (a constant independent of k) AA with constant damping,

γk, (depending on k) AA with dynamic damping.
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Algorithm 2 Anderson acceleration: AA(m).

Given: x0 and m ≥ 1.
Set: x1 = q(x0).
for k = 0, 1, 2, · · · do

Set: mk = min{m, k}.
Set: Fk = ( fk−mk , · · · , fk ), where fi = q(xi ) − xi .

Determine: β(k) =
(
β

(k)
0 , · · · , β

(k)
mk

)T
that solves

min
β=(β0,··· ,βmk )T

‖Fkβ‖2 s. t .
mk∑

i=0

βi = 1.

Set: xk+1 = (1 − γk )

mk∑

i=0

β
(k)
i xk−mk+i + γk

mk∑

i=0

β
(k)
i q(xk−mk+i ).

end for

We can also formulate this constrained optimization problem as an equivalent uncon-
strained least-squares problem [31]:

min
(ω1,··· ,ωmk )T

∥
∥
∥
∥
∥
fk +

mk∑

i=1

ωi ( fk−i − fk)

∥
∥
∥
∥
∥
2

(1)

One can easily recover the original problem by setting ω0 = 1 − ∑mk
i=1 ωi .

Anderson acceleration methods in Algorithm 2 are considered “essentially equiv-
alent” to the direct inversion on the iterative subspace method (DIIS) [19, 27, 28] and
the nonlinear GMRESmethods. Carlson andMiller [6, 20, 21, 34, 36] They are also in
a broad category of methods based on quasi-Newton updating. Eirola and Nevanlinna
[12, 14–16, 37] For example, Walker and Ni [34] proved that AA without truncation
(m = ∞) is equivalent in a certain sense to theGMRESmethod on linear problems.On
nonlinear problems, Fang and Saad [15] had shown a remarkable relationship between
AA and quasi-Newton methods, which utilizes the previous iterates to approximate
the inverse Jacobian. However, one advantage of AA is that it does not require the
expensive computation or approximation of Jacobians or Jacobian-vector products,
especially for large-scale problems.

It is only recently that the theoretical results have been obtained on convergence
analysis. In 2015, Toth and Kelley [31] first proved the locally r-linearly convergent
result for the stationary Anderson acceleration without damping under the condition
that the fixed point map is a contraction and the coefficients in the linear combination
remain bounded. Later, Evans et al. [13] extended their result to AA with general
damping factors. In 2019, Pollock et al. [25] applied AA to the Picard iteration for
solving steady incompressible Navier–Stokes equations and proved that the accelera-
tion improves the convergence rate of the Picard iteration. More recently, De Sterck
et al. [11] extended the result to a more general fixed-point iteration x = q(x), given
knowledge of the spectrum of q ′(x) at fixed-point x∗ andWang et al. [35] extended the
result to study the asymptotic linear convergence speed of stationary AA applied to
Alternating Direction Method of Multipliers (ADMM) method. We note here that the
stationary AA in the papers of De Sterck et al. [11] and Wang et al. [35] is stationary
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in a different sense: in those papers, the βk
i of Algorithm 1 are fixed and do not depend

on the iteration, so the βi are stationary. A sharper local convergence estimation and
global convergence result of AA remain an active research area. For more related
results about Anderson acceleration and its applications, we refer the interested read-
ers to papers [3, 5, 10, 23, 29, 30, 38, 39] and references therein.

Although AA has been used for decades, most authors are simply using and ana-
lyzing the stationary version of Anderson acceleration with fixed window size and a
constant damping factor. The behavior and potential of the non-stationary versions of
the Anderson Acceleration method with dynamic window sizes have not been deeply
studied and few results have been reported. Generally, there are two main possible
directions for producing non-stationaryAA.One is choosing different damping factors
γk in each iteration, see our recent work on the non-stationary Anderson acceleration
algorithm with optimized damping (AAoptD). Chen and Vuik [8] The other way of
making AA to be a non-stationary algorithm is to alternate the window size during
iterations. Sincemost efficient linear solvers use composable algorithmic components,
[4, 17] similar ideas can be used for AA(m) and AA(n) to solve nonlinear systems.
Pollock and Rebholz [24] proposed a strategy to change window sizes based on the
residuals. The window size mk is kept at a small to moderate value (2 to 5) until
the residual drops below a given threshold, on the order of 10−2 or 10−3, then mk is
increased to a higher steady level, for instance, m = 10. This approach is appropriate
for problems where the initial residual is moderately scaled. More recently, motivated
by the hybrid linear solver GMRESR (GMRES Recursive), [32, 33], we propose a
systematic way to dynamically alternate the window size by the multiplicative com-
posite combination, which means we apply stationary AA(m) in the outer loop and
apply stationary AA(n) in the inner loop [7]. For these non-stationary AA methods,
significant gains are observed over stationary AA for solving the Bratu problem and
the convection-diffusion problem, where large windows m are needed. However, the
reason why those composite Anderson acceleration methods may work better than the
stationaryAAmethods is not well understood.Motivated byDe Sterck andHe’s recent
papers, [9, 10] to throw light on the behavior of non-stationary Anderson acceleration
methods, we conduct the asymptotic convergence analysis and study the influence of
initial guess on the composite Anderson acceleration methods in the present work.

The rest of the paper is organized as follows. Our motivation and the key procedure
of the algorithms are provided in Section2; In Section3, for linear problems, we
derive polynomial residual update formulas for AA(m, AA(1)) and show that it is
a multi-Krylov method; In Section4, we further study the influence of initial guess
on the asymptotic convergence factor of AA(1, AA(1)) and explicitly indicate the
dependence of root-linear asymptotic convergence factors on the initial condition;
Some numerical results and discussions are presented in Section7; conclusions follow
in Section8.

2 Composite Anderson acceleration

In this section, we briefly summarize the motivations and the procedure of the com-
posite Anderson acceleration method proposed in our recent paper [7].
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2.1 Motivation

As we know, many efficient linear solvers use composable algorithmic components.
Similar ideas can be used for Anderson acceleration method to accelerate nonlinear
systems. Van der Vorst and Vuik [32] developed a hybrid method GMRESR (GMRES
Recursive) which consists of an outer and inner loop. In the inner loop, one approxi-
mates the solution of a linear system by GMRES to find a good search direction. This
method was also further investigated by Vuik [33]. If GMRES(m) does not stagnate
in m iteration steps, it was proved that GMRES-Recursive(m) converges at least as
fast as GMRES(m). On the other hand, it was proved by Walker and Ni [34] that AA
without restarting (m = ∞) is equivalent in a certain sense to the GMRES method on
linear problems. Therefore, motivated by the GMRESR method, to solve nonlinear
problems, we propose a systematic way to dynamically alternate the window size in
AA by using the multiplicative composition, which means we apply stationary AA(m)
first in the outer loop and then apply stationary AA(n) in the inner loop. It is somewhat
like using AA(n) to precondition AA(m).

2.2 Multiplicative composition of different window sizes

In this part, we provide a systematicway to dynamically alternate thewindow sizem by
multiplicative composition.We start with composite stationary AA(m) with stationary
AA(0) (i.e., Picard iteration) in each iteration. This means that after applying one step
of AA(m) without damping, we get,

xk+1/2 =
mk∑

i=0

β
(k)
i q(xk−mk+i ).

Then, we take the result xk+1/2 as an input x̂0 = xk+1/2 and apply Picard iteration in
the inner loop:

x̂ j+1 = q(x̂ j ).

Putting these two steps together, we have the following non-stationary algorithm
AA(m, AA(0)) as in Algorithm 3. Suppose we just do a single inner loop iteration in

Algorithm 3 Anderson acceleration with dynamic window-sizes: AA(m,AA(0)).
Given: x0, i terM , i ter N and m ≥ 1.
Set: x1 = q(x0).
for k = 1, 2, · · · , i terM do

Set: xmk+1/2 ← apply one step of AA(m; {xk}) as given in Algorithm 2.

Set: x̂0 = xmk+1/2
for j = 0, 1, 2, · · · , i ter N do

Set: x̂j+1 ← apply one step of Picard iteration on x̂ j .
end for
Set: xk+1 = x̂i ter N

end for
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Algorithm 3, the total amount of work of AA(m, AA(0)) in each iteration is much less
than that of applying stationary AA(m) twice. Algorithm 3, also means that we may
“turn off” the acceleration for a while and then turn on the acceleration. However, the
performance can be better than stationary AA(m), see our numerical experiments in
Section7.

More generally, we apply stationary AA(m) in the outer loop and apply stationary
AA(n) in the inner loop. So, in each iteration, after applying AA(m), we get,

xk+1/2 =
mk∑

i=0

β
(k)
i q(xk−mk+i ).

Then, we apply AA(n) with the initial guess x0 = xk+1/2 for i ter N iterations:

xk+1 ← applying AA(n) with initial guess x0 = xk+1/2.

In other words, the multiplicative composition reads

xk+1 = AA(m, AA(n)).

We summarize this in the following algorithm in Algorithm 4.

Algorithm 4 Anderson acceleration with dynamic window-sizes: AA(m,AA(n)).

Given: x0, m, n, i terM and i ter N (with i ter N ≥ n).
Set: x1 = q(x0).
for k = 1, 2, · · · i terM do

Set: xk+1/2 ← apply one step of AA(m; {xk}) as given in Algorithm 2.
Set: x̂0 = xk+1/2
for j = 0, 1, 2, · · · i ter N do

Set: x̂j+1 ← apply one step of AA(n;{x̂j}) as given in Algorithm 2.
end for
Set: xk+1 = x̂i ter N

end for

Remark 2.1 There is a lot of variety here. Let m and n be the window size used in the
outer loop and inner loop, respectively. And i terM and i ter N be the total numbers
of iterations for the outer loop and inner loop, respectively. In the present work, we
report some results for the case where m > n and i terM 
 i ter N , which means
the window size used in the inner loop is smaller than that used in the outer loop
and the maximum number of iterations of the inner loop is much smaller than that
of the outer loop. For example, one can choose n = 1 and i ter N = 1. As we know,
AA(m, AA(n)) will do extra inner loop iterations, so it is not fair to compare the
residuals of AA(m, AA(n)) with AA(m) by iterations. Since for many applications,
the computation of function evaluation is the most expensive component, thus we
could compare the convergence results of AA(m, AA(1)) with AA(m) by calculating
the residual per function evaluation of q(x). See more discussions in Section7.
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Moreover, we summarize the memory requirements for the algorithms in Table 1.
For some problems, memory storage could be crucial. It was shown in our recent paper
[7] that the non-stationary AA methods with smaller window sizes usually perform
better than the stationary AA algorithm with very large window sizes, which means
our proposed non-stationaryAAmethodsmay significantly reduce the storage require-
ments. For more details on the development of these non-stationary AA methods and
their performances in solving the Bratu and convection-diffusion problems, we refer
the readers to our recent paper [7].

3 AA(m,AA(1)) as amulti-Krylov spacemethod for linear problems

Recall that the order-s Krylov subspace generated by a matrix T and a vector v is the
linear subspace spanned by the images of v under the first s power of T :

Ks(T , v) =
{
v, T v, · · · , T s−1v

}
. (2)

Then, the multi-Krylov space of order-s generated by a matrix T and m + 1 vectors
{r j }mj=0 is: [9] {

Ks(T , r j )
}m
j=0 .

In this section, we first establish links between AA(m, AA(1)) applied to linear prob-
lems and Krylov methods. Then, we compare the residual polynomials obtained by
AA(m, AA(1)) and AA(m). Let us focus on AA(m, AA(1)) applied to the linear case,
that is,

q(x) = Mx + b,

where the fixed point satisfies Ax∗ = b with A = I − M . We assume that A is
nonsingular and we exclude the trivial case that A = I and M = 0. For numerical
simulations, we also test the case when q(x) is a nonlinear operator.

3.1 Residual polynomials for AA(1,AA(1))

In this part,wederive the polynomial update formulas for the residual of AA(1, AA(1))
with inner loop iteration i ter N = 1. Clearly, AA(1) is a Krylov subspace method [9].
We now derive the residual rk generated by AA(1, AA(1)) iteration. Given x0, let
x1 = q(x0). For the out loop iteration, we have

r0 = x0 − q(x0) = x0 − (Mx0 + b) = (I − M)x0 − b = Ax0 − b.

Table 1 Memory requirements Methods Memory

AA(m) m + 1 vectors in memory

AA(m,AA(n)) m + n + 2 vectors in memory
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Since x1 = q(x0) = Mx0 + b, we obtain that

r1 = x1 − q(x1) = Ax1 − b

= A(Mx0 + b) − b

= M(Ax0 + Ab) − b

= M(Ax0) + Ab − b

= M(Ax0 − b + b) + Ab − b

= Mr0 + Mb + Ab − b

= Mr0.

(3)

We apply AA(1) to {x0, x1} to get

x1+1/2 = (
1 + βout

1

)
q(x1) − βout

1 q(x0).

For the inner loop, set

x̄10 = x1+1/2 = (
1 + βout

1

)
q(x1) − βout

1 q(x0),

then we have,

r̄10 = x̄10 − q(x̄10) = Ax̄10 − b

= Ax1+1/2 − b

= A
(
1 + βout

1

)
(Mx1 + b) − βout

1 A(Mx0 + b) − b

= (
1 + βout

1

)
(AMx1 + Ab) − βout

1 (MAx0 + Ab) − b

= (
1 + βout

1

)
M(Ax1 − b) − βout

1 M(Ax0 − b) + Mb + Ab − b

= (
1 + βout

1

)
Mr1 − βout

1 Mr0
(4)

Next, we calculate
x̄11 = q(x̄10)

and
r̄11 = x̄11 − q(x̄11) = Ax̄11 − b = A(Mx̄10 + b) − b = Mr̄10 .

Then, we apply AA(1) in the inner loop for {x̄10 , x̄11 } to calculate

x̄12 =
(
1 + β in

1

)
q(x̄11) − β in

1 q(x̄10) (5)
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and

r̄12 = x̄12 − q(x̄12) = Ax̄12 − b

=
(
1 + β in

1

)
Mr̄11 − β in

1 Mr̄10

=
(
1 + β in

1

)
M2r̄10 − β in

1 Mr̄10

=
[(

1 + β in
1

)
M2 − β in

1 M
]
r̄10

(6)

At the end of the inner loop, we set

x2 = x̄12 ,

therefore, we finally obtain

r2 = r̄12 =
[(

1 + β in
1

)
M2 − β in

1 M
]
r̄10

=
[(

1 + β in
1

)
M2 − β in

1 M
] [(

1 + βout
1

)
Mr1 − βout

1 Mr0
]
.

(7)

Then, we go back to the outer loop again, we apply AA(1) to {x1, x2} to get

x2+1/2 = (
1 + βout

2

)
q(x2) − βout

2 q(x1).

For the inner loop, we set

x̄20 = x2+1/2 = (
1 + βout

2

)
q(x2) − βout

2 q(x1),

then we have,

r̄20 = x̄20 − q(x̄20 ) = Ax̄20 − b

= Ax2+1/2 − b

= (
1 + βout

2

)
Mr2 − βout

2 Mr1

(8)

Similarly, we have
x̄21 = q(x̄20 )

and
r̄21 = x̄21 − q(x̄21 ) = Ax̄21 − b = A(Mx̄20 + b) − b = Mr̄20 .

Again, we apply AA(1) in the inner loop for {x̄20 , x̄21 } to calculate

x̄22 =
(
1 + β in

2

)
q(x̄21 ) − β in

2 q(x̄20 ) (9)

123



   94 Page 10 of 34 K. Chen and C. Vuik

and

r̄22 = x̄22 − q(x̄22 ) = Ax̄22 − b

=
(
1 + β in

2

)
Mr̄21 − β in

2 Mr̄20

=
[(

1 + β in
2

)
M2 − β in

2 M
]
r̄20 .

(10)

At the end of the inner loop, set
x3 = x̄22 ,

we obtain

r3 = r̄22 =
[(

1 + β in
2

)
M2 − β in

2 M
]
r̄20

=
[(

1 + β in
2

)
M2 − β in

2 M
] [(

1 + βout
2

)
Mr2 − βout

2 Mr1
]
.

(11)

Similarly, one can get, for any k > 3

rk =
[(

1 + β in
k−1

)
M2 − β in

k−1M
] [(

1 + βout
k−1

)
Mrk−1 − βout

k−1Mrk−2
]
. (12)

In summary, we have

r1 = Mr0, (M1)

p1(M) = M,

r2 =
[(

1 + βin
1

)
M2−βin

1 M
] [(

1+βout
1

)
Mr1 − βout

1 Mr0
]

=
[(

1 + βin
1

)
M2−βin

1 M
] [(

1+βout
1

)
Mp1(M) − βout

1 M
]
r0, (M4)

p2(M) =
[(

1 + βin
1

)
M2−βin

1 M
] [(

1+βout
1

)
Mp1(M) − βout

1 M
]

r3 =
[(

1 + βin
2

)
M2−βin

2 M
] [(

1+βout
2

)
Mr2 − βout

2 Mr1
]

=
[(

1 + βin
2

)
M2−βin

2 M
] [(

1+βout
2

)
M · p2(M) − βout

2 M · p1(M)
]
r0, (M7)

p3(M) =
[(

1 + βin
2

)
M2−βin

2 M
] [(

1+βout
2

)
M · p2(M) − βout

2 M · p1(M)
]
,

r4 =
[(

1 + βin
3

)
M2−βin

3 M
] [(

1+βout
3

)
Mr3 − βout

3 Mr2
]

=
[(

1 + βin
3

)
M2−βin

3 M
] [(

1+βout
3

)
M · p3(M) − βout

3 M · p2(M)
]
r0, (M10)

p4(M) =
[(

1 + βin
3

)
M2−βin

3 M
] [(

1+βout
3

)
M · p3(M) − βout

3 M · p2(M)
]
,

· · ·
rk =

[(
1 + βin

k−1

)
M2−βin

k−1M
] [(

1+βout
k−1

)
Mrk−1 − βout

k−1Mrk−2

]

=
[(

1 + βin
k−1

)
M2−βin

k−1M
] [(

1+βout
k−1

)
M · pk−1(M) − βout

k−1M · pk−2(M)
]
r0, (M3k−2),

pk (M) =
[(

1 + βin
k−1

)
M2−βin

k−1M
] [(

1+βout
k−1

)
M · pk−1(M) − βout

k−1M · pk−2(M)
]
,

· · ·
(13)
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We summarize these results in the following Proposition.

Proposition 1 AA(1,AA(1)) iteration with general initial guess x0 is a Krylov method.
The residual can be expressed as

rk+1 = pk+1(M)r0, (14)

where the residual polynomials satisfy the recurrence relation

pk+1(λ) = λ2
[(

1 + β in
k

)
λ − β in

k

] [(
1 + βout

k

) · pk − βout
k · pk−1

]
, k ≥ 1 (15)

with p0(λ) = 1, p1(λ) = λ. Moreover, pk(λ) is a polynomial with degree at most
3k − 2 and pk(1) = 1 and pk(0) = 0.

Compared with the results from De Sterck and He’s paper [9] for AA(1), we obtain
the highest possible degree of the residual polynomials for AA(m, AA(1))in Table 2.

3.2 Residual polynomials for AA(m,AA(1))

Given initial guesses {x0, x1, · · · , xm}, we have related residuals {r0, r1, · · · , rm}. For
iteration k = m, we apply AA(m) to {x0, x1, · · · , xm} to get

xm+1/2 =
(

1 +
m∑

i=1

βout
(i,m)

)

Mxm −
m∑

i=1

βout
(i,m)Mxm−i + b (16)

and

rm+1/2 =
(

1 +
m∑

i=1

βout
(i,m)

)

Mrm −
m∑

i=1

βout
(i,m)Mrm−i . (17)

Then, for the inner loop, we have

x̄m0 = xm+1/2

and

r̄m0 = rm+1/2 =
(

1 +
m∑

i=1

βout
(i,m)

)

Mrm −
m∑

i=1

βout
(i,m)Mrm−i . (18)

Next, we calculate
x̄m1 = q(x̄m0 )

Table 2 Highest order (at most)
term of residual polynomials at
3k-th function evaluations

Methods Highest order (at most) term
in residual polynomials

AA(1) M3k

AA(1,AA(1)) M3k−2
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and
r̄m1 = x̄m1 − q(x̄m1 ) = Ax̄m1 − b = A(Mx̄m0 + b) − b = Mr̄m0 .

Then, we apply AA(1) in the inner loop for {x̄m0 , x̄m1 } to calculate

x̄m2 =
(
1 + β in

(1,m)

)
q(x̄m1 ) − β in

(1,m)q(x̄m0 ) (19)

and

r̄m2 = x̄m2 − q(x̄m2 ) = Ax̄m2 − b

=
(
1 + β in

(1,m)

)
Mr̄m1 − β in

(1,m)Mr̄m0

=
(
1 + β in

(1,m)

)
M2r̄m0 − β in

(1,m)Mr̄m0

=
[(

1 + β in
(1,m)

)
M2 − β in

(1,m)M
]
r̄m0 .

(20)

At the end of the inner loop, we set

xm+1 = x̄m2 ,

therefore, we finally obtain

rm+1 = r̄m2 =
[(

1 + β in
(1,m)

)
M2 − β in

(1,m)M
]
r̄m0

=
[(

1 + β in
(1,m)

)
M2 − β in

(1,m)M
]

×
[(

1 +
m∑

i=1

βout
(i,m)

)

Mrm −
m∑

i=1

βout
(i,m)Mrm−i

]

.

(21)

Then, we go back to the outer loop again, for iteration k = m + 1, we apply AA(m)

to {x1, x2, · · · , xm, xm+1} to get

x(m+1)+1/2 =
(

1 +
m∑

i=1

βout
(i,m+1)

)

Mxm+1 −
m∑

i=1

βout
(1,m+1)Mxm+1−i + b (22)

and

r(m+1)+1/2 =
(

1 +
m∑

i=1

βout
(i,m+1)

)

Mrm+1 −
m∑

i=1

βout
(i,m+1)Mrm+1−i . (23)

Again, for the inner loop, we set

x̄m+1
0 = x(m+1)+1/2 (24)
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and thus

r̄m+1
0 = r(m+1)+1/2

=
(

1 +
m∑

i=1

βout
(i,m+1)

)

Mrm+1 −
m∑

i=1

βout
(i,m+1)Mrm+1−i .

(25)

Next, we calculate
x̄m+1
1 = q(x̄m+1

0 )

and
r̄m+1
1 = x̄m+1

1 − q(x̄m+1
1 ) = Ax̄m+1

1 − b = Mr̄m+1
0 .

Apply AA(1) to {x̄m+1
0 , x̄m+1

1 } to get

x̄m+1
2 =

(
1 + β in

(1,m+1)

)
q(x̄m+1

1 ) − β in
(1,m+1)q(x̄m+1

0 ) (26)

and

r̄m+1
2 = x̄m+1

2 − q(x̄m+1
2 ) = Ax̄m+1

2 − b

=
(
1 + β in

(1,m+1)

)
Mr̄m+1

1 − β in
(1,m+1)Mr̄m+1

0

=
(
1 + β in

(1,m+1)

)
M2r̄m+1

0 − β in
(1,m+1)Mr̄m+1

0

=
[(

1 + β in
(1,m+1)

)
M2 − β in

(1,m+1)M
]
r̄m+1
0

(27)

At the end of the inner loop, we set

xm+2 = x̄m+1
2 , (28)

therefore, we finally obtain

rm+2 =r̄m+1
2

=
[(

1 + β in
(1,m+1)

)
M2 − β in

(1,m+1)M
]
r̄m+1
0

=
[(

1 + β in
(1,m+1)

)
M2 − β in

(1,m+1)M
]

×
[(

1 +
m∑

i=1

βout
(i,m+1)

)

Mrm+1 −
m∑

i=1

βout
(i,m+1)Mrm+1−i

]

.

(29)
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Similarly, one can get, for t > 2,

rm+t

=
[(

1 + β in
(1,m+t−1)

)
M2 − β in

(1,m+t−1)M
]

×
[(

1 +
m∑

i=1

βout
(i,m+t−1)

)

Mrm+t−1 −
m∑

i=1

βout
(i,m+t−1)Mrm+t−1−i

]

.

(30)

With derivations, we have the following lemma.

Proposition 2 AA(m,AA(1)) iteration with initial guess {x0, x1, · · · , xm} is a multi-
Krylov method. The residual can be expressed as

rk+1 =
m∑

j=0

p(k−m+1, j)(M)r j , k ≥ m, (31)

where the p(k−m+1, j)(λ) are polynomials of degree at most 3(k−m+1)−2 satisfying
the following relations:

p(1, j)(λ) = −λ2
[(

1 + β in
(1,m)

)
λ − β in

(1,m)

]
βout

(m− j,m), j = 0, · · · ,m − 1; (32)

p(1,m)(λ) = λ2
[(

1 + β in
(1,m)

)
λ − β in

(1,m)

]
(

1 +
m∑

i=1

βout
(i,m)

)

, (33)

and for k − m + 1 > 1, j = 0, · · · ,m,

p(k−m+1, j)(λ) =λ2
[(

1 + β in
(1,k−m)

)
λ − β in

(1,k−m)

]

×
[(

1 +
m∑

i=1

βout
(i,k−m)

)

p(k−m, j) −
m∑

i=1

βout
(i,k−m) p(k−m−i, j)

]

,

(34)

where for i = 1, 2, · · · ,m and j = 0, 1, · · · ,m,

p(1−i, j)(λ) =
{
1 i f i = j + 1 − m,

0 otherwise.
(35)

Compared with the results fromDe Sterck and He’s work [9] for AA(m), we obtain
the highest possible degree of the residual polynomials for AA(m, AA(1)) in Table 3.

Moreover, using Proposition 2, we can easily show that there is a periodic pattern
in the AA(m, AA(1)) polynomials.
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Table 3 Highest order (at most)
term of residual polynomials at
3(k − m + 1)-th function
evalutations

Methods Highest order (at most) term
in residual polynomials

AA(m) M3(k−m+1)

AA(m,AA(1)) M3(k−m+1)−2

Proposition 3 The residuals generated by AA(m, AA(1)) iterationwith general initial
guess {x0, x1, · · · , xm} applied to fixed-point iteration can be also written as:

rs(m+1)+i = M2s
m∑

j=0

g(s(m+1)+i−m−s, j)(M)r j , s ≥ 1, j = 0, · · · ,m, (36)

where the g(s(m+1)+i−m−s, j)(λ) are polynomials of degree at most 3[s(m + 1) + i −
m − s] − 4 satisfying λ2sg(s(m+1)+i−m−s, j)(λ) = p(s(m+1)+i−m, j)(λ) from (31).

Here, Eq. (36) indicates that the power of M in the right hand side increases by 2
for every m + 1 outer loop iterations. We refer to this property as the AA(m, AA(1))
iterations possessing a periodic memory effect. However, for AA(m), the power of M
in the right hand side increases by 1 for every m + 1 iterations [9].

4 Influence of initial guess on convergence speed of AA(1,AA(1))

In this section, we study the influence of initial guesses on the r-linear convergence
factor of error for AA(1, AA(1)). We first investigate a scaling invariance property
of the initial guess x0 for the AA(1, AA(1)) method with x1 = q(x0) in the linear
case. Then, we study the root-linear asymptotic convergence factor under scaling of
the initial condition. Since solving Ax = b is equivalent to solving the homogeneous
system Ay = 0 with y = x− A−1b, thus we consider solving Ax = 0 in the following
discussion.

Proposition 4 Consider solving homogeneous system Ax = 0. For any nonzero initial
guess x0, let x1 = q(x0). Then, the AA(1, AA(1)) polynomials in (15) have the
following scaling invariance properties: for any nonzero scalar α,

βout
k (x0) = βout

k (αx0), β in
k (x0) = β in

k (αx0) (37)

and
pk(λ, x0) = pk(λ, αx0). (38)

Proof We prove this proposition by induction. To begin with, we have

r0 = Ax0, r1 = Mr0 = MAx0 (39)
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and

βout
1 (x0) = −rT1 (r1 − r0)

(r1 − r0)T (r1 − r0)
= −(MAx0)T (MA − A)x0

((MA − A)x0)T (MA − A)x0

= −xT0 (MA)T (MA − A)x0
xT0 (MA − A)T (MA − A)x0

.

(40)

Therefore, for k = 1 and any nonzero scalar α,

βout
1 (αx0) = −αT xT0 (MA)T (MA − A)αx0

αT xT0 (MA − A)T (MA − A)αx0

= −xT0 (MA)T (MA − A)x0
xT0 (MA − A)T (MA − A)x0

· α2

α2

= −xT0 (MA)T (MA − A)x0
xT0 (MA − A)T (MA − A)x0

= βout
1 (x0). (41)

To show β in
1 (αx0) = β in

1 (x0), note the fact that

β in
1 (x0) = −(r̄11 )

T (r̄11 − r̄10 )

(r̄11 − r̄10 )
T (r̄11 − r̄10 )

= −(Mr̄10 )
T (Mr̄10 − r̄10 )

(Mr̄10 − r̄10 )
T (Mr̄10 − r̄10 )

= −(r̄10 )
T MT (M − I )r̄10

(r̄10 )
T (M − I )T (M − I )r̄10

.

(42)

From (4), we have

r̄10 = (
1 + βout

1

)
Mr1 − βout

1 Mr0 = (
1 + βout

1

)
M2r0 − βout

1 Mr0

=
[(
1 + βout

1

)
M2 − βout

1 M
]
r0

=
[(
1 + βout

1

)
M2 − βout

1 M
]
Ax0.

(43)

Use (42) and (43), we have

β in
1 (x0) = −(r̄10 )

T MT (M − I )r̄10
(r̄10 )

T (M − I )T (M − I )r̄10
. (44)

Therefore, using the fact that βout
1 (αx0) = βout

1 (x0), a direct calculation gives

β in
1 (αx0) = β in

1 (x0). (45)
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So, we have βout
1 (αx0) = βout

1 (x0) and β in
1 (αx0) = β in

1 (x0). Since p1(λ) = λ, it is
obvious that p1(λ, αx0) = p1(λ, x0).

Next, assume that for k ≤ n, pk(λ, αx0) = pk(λ, x0). Note that for k ≤ n, from
(14),

βout
k (αx0) = −rTk (rk − rk−1)

(rk − rk−1)
T (rk − rk−1)

= βout
k (x0).

(46)

Similarly, one can also derive that

β in
k (αx0) = β in

k (x0). (47)

For k = n + 1, using (15), (46) and (47) and the induction assumption, we then have

pn+1(λ, αx0)

=λ2
[(

1 + β in
k (αx0)

)
λ − β in

k (αx0)
]

× [(
1 + βout

k (αx0)
) · pk(λ, αx0) − βout

k (αx0) · pk−1(λ, αx0)
]

=λ2
[(

1 + β in
k (x0)

)
λ − β in

k (x0)
]

× [(
1 + βout

k (x0)
) · pk(λ, x0) − βout

k (x0) · pk−1(λ, x0)
]

=pn+1(λ, x0),

(48)

which completes the proof. �

Next, we give a result of the root-linear asymptotic convergence factor under the
scaling of the initial guesses.

Proposition 5 Consider solving a homogeneous system Ax = 0. For any nonzero
guess x0, let x1 = q(x0). Then, the AA(1, AA(1)) residuals in (14) have the following
property: for any nonzero scalar α,

lim
k→∞ ‖rk(αx0)‖ 1

k = lim
k→∞ ‖rk(x0)‖ 1

k , (49)

where we explicitly indicate the dependence of rk on the initial guess.

Proof For initial guess αx0, we have

r0(αx0) = Aαx0 = αAx0 = αr0(x0). (50)
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From Proposition 4, we have pk(λ, αx0) = pk(λ, x0). Therefore, we have

lim
k→∞ ‖rk(αx0)‖ 1

k = lim
k→∞ ‖pk(M, αx0)r0(αx0)‖ 1

k

= lim
k→∞ ‖pk(M, x0)αr0(x0)‖ 1

k

= lim
k→∞(α)

1
k ‖pk(M, x0)r0(x0)‖ 1

k

= lim
k→∞ ‖pk(M, x0)r0(x0)‖ 1

k

= lim
k→∞ ‖rk(x0)‖ 1

k .

(51)

�
To verify this result, in next section, we also numerically examine the influence of the
initial guess on the asymptotic convergence factor of AA(m) and AA(m,AA(1)) for
both linear and nonlinear problems, see more discussions in Section7.

5 Local convergence results for linear problems

Let M be a linear operator with ‖M‖ = c < 1, we consider the following fixed point
problem

x = q(x) = Mx + b.

The residual in this case is

f (x) = q(x) − x = b − (I − M)x . (52)

Theorem 5.1 Let mk = min(m, k) and assume that ‖M‖ = c < 1 and m > n, then
the composite Anderson iteration of AA(m, AA(n)) as in Algorithm 4

xk+1/2 =
mk∑

j=0

βk
j q(xk−mk+ j ) (outer loop), (53)

xk+1 =
n∑

i=0

β
k+1/2
i q(xk+1/2−n+ j ) (inner loop) (54)

converges to x∗ = (I − M)−1b and the residuals converge q-linearly to zero.

Proof Using the fact that
∑mk

j=0 βk
j = 1 and

∑n
i=0 β

k+1/2
i = 1 and the fact that

if {βk
j }mk

j=0 and {βk+1/2
i }ni=0 are the solutions of the least-squares problem at outer

iteration k and inner iteration k + 1/2, respectively, then by definiton, we have

∥
∥
∥
∥
∥
∥

mk∑

j=0

βk
j f (xk−mk+ j )

∥
∥
∥
∥
∥
∥

≤ ‖ f (xk)‖ (55)
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and ∥
∥
∥
∥
∥

n∑

i=0

β
k+1/2
i f (xk+1/2−n+i )

∥
∥
∥
∥
∥

≤ ‖ f (xk+1/2)‖. (56)

Therefore, the new residual is

‖ f (xk+1)‖ = ‖b − (I − M)xk+1‖

=
∥
∥
∥
∥
∥

n∑

i=0

β
k+1/2
i [b − (I − M)(b + Mxk+1/2−n+i )]

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

n∑

i=0

β
k+1/2
i M[b − (I − M)xk+1/2−n+i ]

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
M

n∑

i=0

β
k+1/2
i f (xk+1/2−n+i )

∥
∥
∥
∥
∥

≤ c
∥
∥ f (xk+1/2)

∥
∥

= c
∥
∥b − (I − M)xk+1/2

∥
∥

= c

∥
∥
∥
∥
∥
∥

mk∑

j=0

βk
j [b − (I − M)(b + Mxk−mk+ j )]

∥
∥
∥
∥
∥
∥

= c

∥
∥
∥
∥
∥
∥

mk∑

j=0

βk
j M[b − (I − M)xk−mk+ j ]

∥
∥
∥
∥
∥
∥

= c

∥
∥
∥
∥
∥
∥
M

mk∑

j=0

βk
j f (xk−mk+ j )

∥
∥
∥
∥
∥
∥

≤ c2 ‖ f (xk)‖ ,

(57)

where for the second equal sign, we use (54) and the fact that
∑n

i=0 β
k+1/2
i = 1; for

the first inequality sign, we use ‖M‖ = c < 1 and (56). Thus, we have

‖ f (xk+1)‖ ≤ c2 ‖ f (xk)‖ (c < 1),

this prove that the residuals converge q-linearly to zero. �
Moreover, let the error

e = x − x∗,
from (52), we have

f (x∗) = q(x∗) − x∗ = b − (I − M)x∗ = 0,

so
b = (I − M)x∗.
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Therefore,

f (x) = q(x) − x

= b − (I − M)x

= (I − M)x∗ − (I − M)x

= −(I − M)e.

(58)

Thus, the q-linear convergence of residuals implies that

(1 − c)‖ek+1‖ ≤ ‖ f (xk+1)‖ ≤ c2(k+1)‖ f (x0)‖ ≤ c2(k+1)(1 + c)‖e0‖.

So, we have the error

‖ek+1‖ ≤
(
1 + c

1 − c

)

c2(k+1)‖e0‖,
where c = ‖M‖ < 1.

6 Residual bounds estimation for nonlinear problems

In this section, we investigate the residual bounds of these composite Anderson accel-
eration methods. Here, we provide the residual bounds for AA(m, AA(1)) with inner
loop iteration i ter N = 1. Similarly, one can derive the rate of convergence to other
non-stationary composite AA methods AA(m, AA(n)). The main assumptions and
ideas of the proof are adopted from papers [13, 24, 31] with necessary modifications.
We numerically study these methods in Section7.

We first summarize the convergence result for Anderson acceleration with damping
factors as in Algorithm 2. Then, we provide the residual bounds estimations for our
proposed composite AA methods.

Theorem 6.1 Assume that

– q : Rn → Rn has a fixed point x∗ ∈ Rn such that q(x∗) = x∗.
– q is uniformly Lipschitz continuously differentiable in the ball B(ξ) = {x |‖x −

x∗‖2 ≤ ξ}.
– There exists κ ∈ (0, 1) such that ‖q(y) − q(x)‖2 ≤ κ‖y − x‖2, ∀x, y ∈ Rn.

Then, we have the following residual bound for AA(m) given in Algorithm 2:

‖ f (xk+1)‖2 ≤θk+1
[
(1 − γk) + κγk

] ‖ f (xk)‖2

+ O(‖ f (xk)‖
m∑

i=0

‖ f (xk−m+i )‖), (59)

where γk are damping factors with γk ∈ (0, 1] and the average gain

θk+1 = ‖∑m
i=0 βk

i f (xk−m+i )‖2
‖ f (xk)‖2
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with

xβ
k =

mk∑

i=0

β
(k)
i xk−mk+i , x̃β

k =
mk∑

i=0

β
(k)
i q(xk−mk+i ).

Proof The proof of this theorem can be found in this paper [24] for general damping
γk . The key ideas of the proof are relating the difference of consecutive iterates to
residuals based on performing the inner-optimization and explicitly defining the gain
in the optimization stage to be the ratio of improvement over a step of the unaccelerated
fixed-point iteration. �

Now, we give the residual bounds estimations for the composite Anderson acceler-
ation methods AA(m, AA(1)) with inner loop iteration i ter N = 1, which means the
window size for the outer loop is m and the window size for the inner loop iteration is
1.

Theorem 6.2 Assume that q : Rn → Rn has a fixed point x∗ ∈ Rn such that
q(x∗) = x∗ and satisfies all assumptions in Theorem 6.1. Then, we have the fol-
lowing convergence rate for AA(m, AA(1)) as in Algorithm 4 with i ter N = 1 inner
loop iterations:

‖ f (xk+1)‖2 ≤θ̄1θk+1κ
[
(1 − γk) + κγk

] ‖ f (xk)‖2

+ O(‖ f (xk)‖
m∑

i=0

‖ f (xk−m+i )‖), (60)

where

θk+1 = ‖∑m
i=0 βk

i f (xk−m+i )‖2
‖ f (xk)‖2 , θ̄1 = ‖β̄1

0 f (x̄0) + β̄1
1 f (x̄1)‖2

‖ f (x̄1)‖2
with

x̄0 = xk+1/2, x̄1 = q(x̄0).

Proof For the outer loop, according to the results in Theorem 6.1 with any damping
factor γk ∈ (0, 1], we have

‖ f (xk+1/2)‖2 ≤θk+1κ
[
(1 − γk) + κγk

] ‖ f (xk)‖2

+ O(‖ f (xk)‖
m∑

i=0

‖ f (xk−m+i )‖), (61)

where

θk+1 = ‖∑m
i=0 βk

i f (xk−m+i )‖2
‖ f (xk)‖2 .

As βk
i is the solution to the optimization problem in Algorithm 2 and the fact that

βk
k = 1, βk

j = 0, j �= k, is in the feasible set for the optimization problem, we
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immediately have
0 ≤ θk+1 ≤ 1.

For the inner loop with i ter N = 1, we have the initial guess x̄0 = xk+1/2, then
x̄1 = q(x̄0) and

f (x̄0) = q(x̄0) − x̄0, f (x̄1) = q(x̄1) − x̄1.

Let β̄0 and β̄1 be the solution to the inner loop optimization problem, then applying
Theorem 6.1 with m = 1 without damping, we have

‖ f (x̄2)‖2 ≤ θ̄1κ‖ f (x̄1)‖ + O(‖ f (x̄1)‖22) + O(‖ f (x̄0)‖22) (62)

with

θ̄1 = ‖β̄1
0 f (x̄0) + β̄1

1 f (x̄1)‖2
‖ f (x̄1)‖2 ,

where β̄1
0 and β̄1

1 solves the optimization problem of AA(1) in the inner loop iteration.
Similarly, since β̄1

0 = 0 and β̄1
1 = 1, is in the feasible set for the related optimization

problem, we get
0 ≤ θ̄1 ≤ 1.

Using (61) and the fact that the inner loop use x̄0 = xk+1/2 as an initial guess, we have
x̄1 = q(x̄0) = q(xk+1/2). Therefore,

‖ f (x̄1)‖2 ≤ θk+1κ‖ f (xk)‖2 + O(‖ f (xk)‖
m∑

i=0

‖ f (xk−m+i )‖). (63)

Since i ter N = 1, so after finishing the inner loop iteration, we will set xk+1 = x̄2.
Thus, from (62) and (63), we finally obtain

‖ f (xk+1)‖2 =‖ f (x̄2)‖2 ≤ θ̄1θk+1κ
[
(1 − γk) + κγk

] ‖ f (xk)‖2

+ O(‖ f (xk)‖
m∑

i=0

‖ f (xk−m+i )‖), (64)

which completes the proof of this theorem. �

7 Numerical experiments

In this section, we seek to illustrate how the theoretical results of this paper help in
understanding the improvement in asymptotic convergence speed resulting from the
acceleration of fixed-point iteration by AA(m) and AA(m,AA(n)) with inner loop
iteration i ter N = n.

We first introduce some notions and terminologies of convergence [9, 10].
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Definition 7.1 (r-linear convergence) Let {xk} be any sequence that converges to x∗.
Set

ρ{xk } = lim
k→∞ sup ‖xk − x∗‖ 1

k .

Then, we say{xk} converges r-linearly with r-linear convergence factor ρ{xk } if ρ{xk } ∈
(0, 1) and r-superlinearly if ρ{xk } = 0. The “r-” prefix stands for “root”.

We define the root-averaged error sequence of xk converging to x∗ as

σk = ‖xk − x∗‖ 1
k . (65)

Definition 7.2 (r-linear convergence of a fixed-point iteration) Consider the fixed-
point iteration xk+1 = q(xk). Define the set of iteration sequences that converge to a
given fixed point x∗ as

C(q, x∗) =
{

{xk}∞k=0|xk+1 = q(xk) f or k = 0, 1, 2, · · · , and lim
k→∞ xk = x∗

}

and the worst-case r-linear convergence factor over C(q, x∗) is defined as

ρq,x∗ = sup
{
ρ{xk }|{xk} ∈ C(q, x∗)

}
. (66)

We say that the fixed-point iteration converges r-linearly to x∗ with r-linearly conver-
gence factor ρq,x∗ if ρq,x∗ ∈ (0, 1).

If the iteration function q(x) in fixed-point iteration is differentiable at x∗, then the
following classical theorem [22] shows that the worst-case r-linear convergence factor
ρq,x∗ is determined by the spectral radius of the Jacobian q ′(x) evaluated at x∗:

Theorem 7.1 [Ostrowski Theorem [22]] Suppose that q : D ⊂ R
n → R

n has a
fixed point x∗ that is an interior point of D and it is differentiable at x∗. If the spectral
radius of q ′(x) satidfied 0 < ρ(q ′(x∗)) < 1, then the fixed-point iteration method
converges r-linearly with ρq,x∗ = ρ(q ′(x∗).

In order to compare the behaviors of non-stationary AA(m,AA(1)) with AA(m),
the numerical tests we consider in this section were mainly from De Sterck and He,
[9, 10] where they identify and shed interesting light on AA(m) convergence patterns
for those problems.

7.1 AA(m,AA(1)) for linear problems

Example 7.1 [ A 2 × 2 linear system with ρ(q ′(x)) < 1] [9, 10] Apply composite
Anderson acceleration AA(1,AA(1)) with inner loop iteration i ter N = 1 to accelerate
the following linear fixed-point iteration function q(x) = Mx , i.e., xk+1 = Mxk ,
where M is

M2×2 =
(
2/3 1/4
0 1/3

)
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with fixed point x∗ = (0, 0)T . It is easy to see that the eigenvalues of M are λ1 = 2/3
and λ2 = 1/3.

The results are shown in Figs. 1 and 2. Figure1a shows convergence curves for
the root-averaged error σk (defined in (65)) of the Fixed-point iteration, AA(1) accel-
eration and AA(1,AA(1)) acceleration, for initial condition x0 = (0.2, 0.1)T . Since
AA(1,AA(1)) with inner loop iteration i ter N = 1 will do two more function eval-
uations of q(x), in order to compare the performance with AA(1), we use function
evaluations of q(x) instead of iterations throughout this paper.Monte Carlo results with
a large number of random initial guesses (see Fig. 1b) are shown in Fig. 1c. Firstly, for
fixed-point iteration (FP), it is easy to see from Theorem 7.1 that the σk values of FP
iterations must converge to limk→∞ σk = ρq,x∗ = ρ(q ′(x)) = ρ(M) = λ1 = 2/3
for all initial conditions except when x0 lies in the eigenvector direction of λ2. Our
numerical results in Fig. 1c are consistent with this. Secondly, the r-linear convergence
factors ρ{xk } of AA(1) are smaller than λ1 = 2/3 but strongly depend on the initial
guess. De Sterck and He [9] for composite Anderson acceleration AA(1, AA(1)), we
calculate σk once every three function evaluations. Although σk also depends on ini-
tial guess, those σk values are relatively smaller than that of AA(1), which indicates

Fig. 1 Example 7.1
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Fig. 2 Asymptotic convergence factor as a function of initial condition for Example 7.1

a faster convergence rate. We further study this property in the next figure. Further-
more, compared with AA(1), Fig. 1d shows that the outer loop βk values used in
AA(1, AA(1)) are also oscillate but with smaller amplitude.

In Fig. 2, we show the convergence factors of AA(1) and AA(1,AA(1)) applied to
the linear Example 7.1 for different initial guesses x0 on a regular grid with 50 by
50 points and x1 = q(x0). Figure2a and b are the results for AA(1), also see De
Sterck and He [9]. Compared with AA(1), similar patterns are observed in Fig. 2c and
d. However, the convergence factors for AA(1,AA(1)) are much smaller than that of
AA(1), which is consistent with results in Fig. 1c. Besides, for this linear problem, a
clear radial invariance pattern in Fig. 2c also validates our Propositions 4 and 5

7.2 AA(m,AA(n)) for non-linear problems

Example 7.2 [ A 2×2 nonlinear systemwith ρ(q ′(x)) < 1] [9, 10] Apply composite
AA to solve the following nonlinear system:

x21 − x2 = 0,

x1 + (x1 − 1)2 + x22 = 1,
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with solution x∗ = (0, 0)T . Let x = (x1, x2)T and define the FP iteration function

q(x) =
[ 1

2 (x1 + x21 + x22 )
1
2 (x

2
1 + x2)

]

.

So the fixed-point for x = q(x), i.e.,

[
x1
x2

]

=
[ 1

2 (x1 + x21 + x22 )
1
2 (x

2
1 + x2)

]

is also the solution of the nonlinear equations. The Jacobian matrix of q(x) is

q ′(x) =
[
x1 + 1

2 x2
x1

1
2

]

.

We have

q ′(x∗) =
[ 1

2 0
0 1

2

]

and ρ(q ′(x∗)) = 1

2
< 1.

Figure3a shows convergence factors for the root-averaged error σk (defined in
(65)) of the FP iteration, AA(1) and AA(1,AA(1)) with initial condition x0 =
(0.2, 0.1)T . This result is consistent with the convergence rate result in Fig. 3b, where
AA(1, AA(1)) converges very fast and it seems to converge superlinearly insteadof lin-
early.Moreover,MonteCarlo resultswith a large number of random initial guesses (see
Fig. 3c) for Example 7.2 are shown in Fig. 3d. Again, since ρ(q ′(x∗)) = 1/2 < 1, the
σk of FP iteration converges to 1/2 for all initial guesses. The σk of AA(1) are smaller
than 1/2 but strongly depend on initial guesses. Like in linear cases, AA(1, AA(1))
has σk values that are very close to zero.

In Fig. 4, we show the convergence factor of AA(1,AA(1)) with x1 = q(x0) applied
to the nonlinear Example 7.2 for various initial guesses, where we take x0 on a uniform
grid with 101 by 101 points. Since this is a nonlinear problem, we do not have the scal-
ing invariance property. However, for AA(1), there are also preferred directions with
fast convergence for the initial condition near the solution x∗ = (0, 0), as in the linear
case. Again, for composite Anderson acceleration AA(1, AA(1)), the convergence
factors σk are smaller than that of AA(1).

Example 7.3 [ Trigonometric functions, k=10,50,100 ] [26] Apply composite AA to
solve the following larger nonlinear systems. Let

fi (x) = k −
n∑

j=1

cos(x j ) + i[1 − cos(xi )] − sin(xi ), i = 1, 2, · · · , k,

we create a manufacturing fixed-point x = [π
4 , · · · , π

4 ]T of the following system

n −
k∑

j=1

cos(x j ) + i[1 − cos(xi )] − sin(xi ) = fi (
π

4
), i = 1, 2, · · · , k.

123



Asymptotic convergence analysis... Page 27 of 34    94 

Fig. 3 Example 7.2

Next, we define the FP iteration function

qi (x) = x − 1

k

(
fi (x) − fi (

π

4
)
)

,

so the fixed point of x = q(x) is also the solution of the above nonlinear equations.

In this numerical test, we adopt an example from paper [26] such that a manufac-
turing solution is created. The initial guesses x0 ∈ R

n used here are random numbers
close to x∗ such that x0 ∈ (π/4−0.05, π/4+0.05)×· · ·× (π/4−0.05, π/4+0.05).
The results are shown in Fig. 5. Larger window sizes are used in Anderson accelera-
tion when the dimension n increases. From Fig. 5, we observe that the composite AA
converges faster than stationary AA for all cases k = 10, 50, 100.

7.3 Steady-state incompressible Navier–Stokes equation

The Navier–Stokes system is the basis for computational modeling of the flow of an
incompressible Newtonian fluid. In this experiment, we focus on solving the steady
incompressible Navier–Stokes equations. LetΩ ⊂ R

2 denote the region that enclosed
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Fig. 4 Asymptotic convergence factor as a function of initial condition for Example 7.2

the fluid. The steady-state NSE are given in a domain Ω by

− ν�u + (u · ∇)u + ∇ p = f (67)

∇ · u = 0 (68)

with appropriate boundary conditions. Here ν is the kinematic viscosity, f is a forcing,
u and p represent velocity and pressure. We will seek the velocity and pressure (u, p)
of the fluid motion in the spaces (X , Q) given by:

X :=
{
v : Ω → R

2 : v ∈ L2(Ω),∇v ∈ L2(Ω) and v = 0 on ∂Ω
}

,

Q :=
{

ω : Ω → R
2 : v ∈ L2(Ω) and

∫

Ω

ω = 0

}

.

To find the weak form, we multiply (67)-(68) by v ∈ X and ω ∈ Q and integrating
over Ω , so the solution (u, p) )satisfies

(ν∇u,∇v) + (u · ∇u, v) − (p,∇ · v) = ( f , v), (69)

(ω,∇ · u) = 0. (70)
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Fig. 5 Example 7.3

for all v ∈ X and ω ∈ Q. To numerically solve this problem, we discretize the domain
with Taylor-Hood finite elements (Xh, Qh) = ((P2)2, P1) and define the trilinear
form b∗ by

b∗(u, v, w) := ((u · ∇)v,w) + 1

2
((∇ · u)v,w),

then the discrete steady incompressible Navier–Stokes problem (with skew-symmetrized)
reads as follows: find (u, p) ∈ (Xh, Qh) satisfying for all (v, ω) ∈ (Xh, Qh),

b∗(u, u, v) + ν(∇u,∇v) − (p,∇ · v) = ( f , v) (71)

(∇ · u, ω) = 0 (72)
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Finally, we get the Picard iterations for the steady NSE which is given in Algorithm 5.
For sufficiently small data, the steady NSE and these iterations are well-posed [18].

Hence, we can consider the Picard iterations as fixed-point iterations uk+1 = q(uk),
where g is a solution operator of (73)-(74) for the Picard iterations. In this way,
we can apply both the Anderson Acceleration method and the composite Anderson
Acceleration method to accelerate the Picard iterations.

Example 7.4 2D lid-driven cavity The 2D lid-driven cavity uses a domain Ω =
(−1, 1)2 with no-slip boundary conditions on the sides and bottom and a “moving
lid” on the top which is implemented by enforcing the Dirichlet boundary condition:

{y = 1;−1 ≤ x ≤ 1|ux = 1 − x4} a regulari zed cavi t y.

Fig. 6 Lid-driven cavity: a Re = 2500, solution; b Re = 6000, solution
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There is no forcing and the kinematic viscosity ν is set to be ν = 1
Re . We discretize

with (P2 − P1) Taylor-Hood elements on a 64 × 64 non-uniform mesh and use the
corresponding discrete Stokes solution as initial guess.

We test it with Reynolds numbers of Re = 2500 and Re = 6000 as in the paper
of Evans et al. [13], respectively. In this example, we use inner loop window size
equals two. The results are shown in Figs. 6 and 7. In Fig. 6, we plot the streamlines of
the velocity and the pressure field for different Reynolds numbers. The convergence
results are shown in Fig. 7. Firstly, in both cases, we see that the Newton method
does not converge. We also observe similar results that the composite AA methods

Fig. 7 Lid-driven cavity convergence results: a Re = 2500; b Re = 6000
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Algorithm 5 Picard iteration for steady NSE.
Choose: u0 ∈ Xh
Find (uk , pk ) ∈ (Xh , Qh) satisfying for all (v, ω) ∈ (Xh , Qh),

b∗(uk−1, uk , v) + ν(∇uk , ∇v) − (pk , ∇ · v) = ( f , v) (73)
(∇ · uk , ω) = 0 (74)

AA(1, AA(2)) performs better than stationary AAmethod AA(3) and AA(2, AA(2))
performs better than AA(4).

8 Conclusions

In the present work, we study the polynomial residual update formulas for non-statio
nary AA(m,AA(1)) and find that AA(m,AA(1)) with general initial guesses is a multi-
Krylovmethod and it possesses amemory effect. For the linear problem,AA(m,AA(1))
potentially has higher order (at most) degree of polynomials and a stronger memory
effect than that of AA(m) at k-th iteration. Moreover, we further study the influence
of initial guess on the asymptotic convergence factor of AA(1, AA(1)). We show
a scaling invariance property of the initial guess x0 for AA(1,AA(1)) methods in
the linear case. Lastly, we numerically examine the influence of the initial guess
on the asymptotic convergence factor of AA(n) and AA(m,AA(n)) for both linear
and nonlinear problems. In general, AA(m,AA(n)) performs relatively better than
AA(m+n), especially in solving non-linear problems.

Funding This work was partially supported by the National Natural Science Foundation of China [grant
number 12001287]; the Startup Foundation for Introducing Talent of Nanjing University of Information
Science and Technology [grant number 2019r106].
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