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Abstract. Shifted Laplace preconditioners have attracted considerable attention as a technique
to speed up convergence of iterative solution methods for the Helmholtz equation. In this paper we
present a comprehensive spectral analysis of the Helmholtz operator preconditioned with a shifted
Laplacian. Our analysis is valid under general conditions. The propagating medium can be hetero-
geneous, and the analysis also holds for different types of damping, including a radiation condition
for the boundary of the computational domain. By combining the results of the spectral analysis of
the preconditioned Helmholtz operator with an upper bound on the GMRES-residual norm, we are
able to provide an optimal value for the shift and to explain the mesh-dependency of the convergence
of GMRES preconditioned with a shifted Laplacian. We illustrate our results with a seismic test
problem.
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1. Introduction. In this paper we investigate the spectral behavior of iterative
methods applied to the time-harmonic wave equation in heterogeneous media. The
underlying equation governs wave propagation and scattering phenomena arising in
acoustic problems in many areas, e.g., aeronautics, marine technology, geophysics,
and optical problems. In particular, we look for solutions of the Helmholtz equation
discretized by using finite difference, finite volume, or finite element discretizations.
Since the number of grid points per wavelength should be sufficiently large to re-
sult in acceptable solutions, for very high frequencies the discrete problem becomes
extremely large, prohibiting the use of direct solution methods. Krylov subspace iter-
ative methods are an interesting alternative. However, Krylov subspace methods are
not competitive without a good preconditioner.

Finding a suitable preconditioner for the Helmholtz equation is still an area of
active research; see, for example, [7]. A class of preconditioners that has recently
attracted considerable attention is the class of shifted Laplace preconditioners. Pre-
conditioning of the Helmholtz equation using the Laplace operator without shift was
first suggested in [1]. This approach has been enhanced in [8, 9] by adding a posi-
tive shift to the Laplace operator, resulting in a positive definite preconditioner. In
[2, 3, 4, 13] the class of shifted Laplace preconditioners is further generalized by also
considering general complex shifts.

It is well known that the spectral properties of the preconditioned matrix give
important insight in the convergence behavior of the preconditioned Krylov subspace
methods. Spectral analyses for the Helmholtz equation preconditioned by a shifted
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Laplace operator have previously been given in [2, 3, 4]. The analysis in [2], however,
is restricted to the homogeneous physical parameters case, for a purely imaginary
shift preconditioner. This analysis concerns the singular values of the preconditioned
matrix rather than the eigenvalues. Furthermore, only reflecting and pressure release
boundary conditions are considered. In [3], a convergence analysis of GMRES is dis-
cussed, under the same restriction as in [2]. A more thorough spectral analysis is
presented in [4] for the case when the preconditioning operation is performed approx-
imately by using multigrid. The analysis is based on rigorous Fourier analysis (RFA)
for homogeneous physical parameters. Results from RFA, however, give little insight
into the convergence of Krylov subspace methods.

This paper gives a spectral analysis from an algebraic point of view. Therefore,
the results are valid under the following rather general conditions:

- They do not depend on the discretization method;
- inhomogeneous physical parameters (such as sound speed, density, and damp-

ing) are allowed;
- the analysis is also valid for various types of boundary conditions (reflecting,

radiation, pressure release, and perfectly matched layer (PML) as well).
These generalizations are new, and they allow us to analyze shifted-Laplace precon-
ditioners for a much wider class of discrete Helmholtz problems than in previous
publications.

By combining the results of our analysis with a bound on the norm of the GMRES-
residual, we are able to derive a “quasi” optimal value for the shift. This result is
also new. The shift is derived under the assumption that the preconditioning oper-
ations with the shifted-Laplace preconditioner are performed sufficiently accurately.
In practice, the preconditioning operations are performed only approximately, for
example, by using a multigrid method or by making an ILU decomposition of the
shifted-Laplace operator. Of course, our results do not hold unconditionally in these
cases. However, the results that are reported in [2, 3, 4], where the preconditioning
operations are performed approximately using either a multigrid method or incom-
plete LU factorization (ILU), are obtained using shifts that are close to the optimal
shift that follows from our analysis. This indicates that the optimal shift that we
derive in this paper also gives strong guidelines for choosing the shift in the case when
the preconditioning operations are performed approximately.

This paper is organized as follows. In section 2 we describe the acoustic wave
equation and its discretization. We specify some properties of the matrices (symmetry,
complex valued, positive definiteness etc.), which form the coefficient matrix of the
resulting linear system. In section 3 we show that for the damped Helmholtz equation
with Dirichlet and Neumann boundary conditions, the eigenvalues are located on
a line or on a circle with a given parameterization for a special type of damping.
For radiation boundary conditions and for general viscous media we show that the
eigenvalues are located on one side of the line or within the circle. In section 4 we
use a simple bound on the GMRES-residual norm. Using this bound and the results
of our spectral analysis we are able to derive the optimal value of the shift in the
shifted Laplacian preconditioner. We also show for a number of applications that the
convergence of GMRES is independent of the grid size. Section 5 contains numerical
experiments to illustrate and verify the theoretical results derived in sections 3 and
4. Finally, section 6 contains the conclusions of this paper.

2. The Helmholtz equation.
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2.1. The acoustic wave equation. An acoustic medium with space-varying
density ρ(x) and sound speed c(x) occupies the volume Ω, bounded by the boundary
Γ = Γ1 ∪ Γ2 ∪ Γ3. In addition, the medium is assumed to be viscous with damping
coefficient γ(x). The wave equation for the acoustic pressure p(x, t) (with x spatial
coordinates and t time) in such a medium is

(1)
1

ρc2
∂2p

∂t2
+

γ

ρ

∂p

∂t
−∇ · 1

ρ
∇p =

s(x, t)

ρ
in Ω,

where ∇ denotes the gradient operator and ∇· the divergence. Realistic conditions
on the physical boundaries of an acoustic medium can be reflecting boundaries, which
are described by the homogeneous Neumann condition

(2)
∂p

∂n
= 0 on Γ1;

pressure release boundaries, which are described by the homogeneous Dirichlet con-
dition

(3) p = 0 on Γ2;

and radiating boundaries, which can be described by

(4)
∂p

∂n
= − 1

ρc

∂p

∂t
on Γ3,

where n is the outward pointing normal unit vector.
We will assume that the right-hand side function s(x, t) is a harmonic point source

s(x, t) = ae2πiftδ(x − xs), located at xs, which transmits a signal with amplitude a
and frequency f . Here, i =

√
−1.

2.2. The Helmholtz equation. If the source term is harmonic, then the pres-
sure field has the factored form

(5) p(x, t) = p̂(x)e2πift.

Substitution of (5) into (1) yields the so-called Helmholtz equation

(6)

(
−(2πf)2

ρc2
+ 2πif

γ

ρ

)
p̂−∇ · 1

ρ
∇p̂ =

a

ρ
δ(x − xs) in Ω,

with boundary conditions

(7)
∂p̂

∂n
= 0 on Γ1,

(8) p̂ = 0 on Γ2,

and

(9)
∂p̂

∂n
= −2πif

ρc
p̂ on Γ3.

This latter condition is also known as a Sommerfeld condition of the first kind.
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If the damping parameter has the special form

(10) γ(x, f) = 2πf
ν

c2
,

with ν a nonnegative constant, the Helmholtz equation (6) simplifies to

(11)

(
− (2πf)2

ρc2
(1 − iν) −∇ · 1

ρ
∇
)
p̂ = a

δ(x − xs)

ρ(xs)
in Ω.

Clearly, the assumption holds for nonviscous media, i.e., with γ = 0.
The above equation can be discretized with a discretization method such as the

finite element method, finite volume method, or finite difference method. Discretiza-
tion of the above equation plus boundary conditions with any of these methods yields
a discrete Helmholtz equation of the form

(12) (L + iC − z1M)x = b

in which L is the discretization of −∇ · 1
ρ∇, M corresponds to the discretized zeroth

order term 1
ρc2 , C corresponds to the Sommerfeld condition and/or to damping that

does not satisfy (10), and b to the source term. The complex number z1 is defined by

(13) z1 = (2πf)2(1 − iν).

Both L and C are real symmetric and positive semidefinite, and the matrix M is
real symmetric and positive definite. The matrix L+ iC − z1M , however, is complex
symmetric and indefinite.

For high frequencies, system (12) can be very large, in particular in three dimen-
sions. This is a consequence of the fact that each wavelength has to be sampled with
sufficient grid points. Numbers of unknowns in excess of 106 for realistic models are
quite common. Fortunately, system (12) is sparse. Krylov-type iterative solvers such
as GMRES [12] or Bi-CGSTAB [14] are among the most popular techniques for solving
large and sparse linear systems. They have proved to be particularly efficient for sys-
tems with an Hermitian positive definite matrix, or more generally, for systems with
a matrix with all eigenvalues in the right half of the complex plane. Helmholtz-type
systems such as (12), however, are highly indefinite, which means that the system
matrix has eigenvalues with both negative and positive real parts, a characteristic
that can result in a very slow convergence. In order to overcome this problem a suit-
able preconditioner has to be applied. A class of promising preconditioners that has
attracted a lot of attention is the class of shifted Laplace preconditioners [1, 8, 2, 3, 4].
In the next section we will analyze these preconditioners by locating in the complex
plane the spectrum of the preconditioned discrete Helmholtz operator.

3. Spectral analysis of the Helmholtz operator preconditioned with the
shifted Laplace preconditioner. Shifted Laplace preconditioners are precondition-
ers of the form

P = L + iC − z2M,

i.e., the same form as the discrete Helmholtz operator A = L + iC − z1M . The
shift parameter z2 has to be chosen such that the convergence of GMRES (or another
suitable iterative method) applied to the preconditioned system

(L + iC − z2M)−1(L + iC − z1M)x = (L + iC − z2M)−1b
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is considerably faster than GMRES applied to the original system. Moreover, z2

has to be chosen such that operations with the inverse of (L + iC − z2M) are easy
to perform. In practice this means that z2 is chosen such that operations with the
inverse of the preconditioner can be computed using a fast multigrid method [4].
Note that L+ iC is the operator that is being shifted. This means that all boundary
conditions, including the Sommerfeld condition, are included in the preconditioner,
as recommended in [10].

The complex numbers z1 and z2 can be written as

(14) z1 = α1 + iβ1, z2 = α2 + iβ2,

in which α1, β1, α2, and β2 are real. Recall that for our application, z1 is defined by
(13), and hence

α1 > 0, β1 ≤ 0.

Choices for the shift z2 that are considered in the literature are z2 = 0 [1], z2 = −α1

[8], z2 = −iα1 [2, 3], and z2 = (1 − 0.5i)α1 [4].
In this section we will study the spectrum of the preconditioned system. The

spectrum governs, to a large extent, the convergence of iterative methods as long as
the matrix of the eigenvectors is well conditioned.

3.1. The spectrum of the preconditioned Helmholtz operator without
the Sommerfeld condition. We will first assume that C = 0, and hence that the
damped Helmholtz operator is given by L − z1M . We recall that L is symmetric
positive semidefinite, M symmetric positive definite, and z1 is a complex number.
We will consider a shifted Laplace preconditioner, i.e., a matrix of the form L −
z2M , as a preconditioner for the Helmholtz operator and analyze how the location
of the eigenvalues σ of the preconditioned system depends on the parameters z1 and
z2. The eigenvalues σ of the preconditioned matrix are solutions of the generalized
eigenproblem

(15) (L− z1M)x = σ(L− z2M)x.

It is easy to see that the matrices (L−z1M) and (L−z2M) share the same eigenvectors,
which are the eigenvectors of

(16) Lx = λMx.

Since for our problem L is symmetric positive semidefinite and M symmetric positive
definite, the eigenvalues λ are real and nonnegative. Substitution of λMx for Lx in
(15) yields

(λ− z1)Mx = σ(λ− z2)Mx,

and hence

(17) λ− z1 = σ(λ− z2),

which, if z2 �= λ, gives

(18) σ =
λ− z1

λ− z2
.
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Note that if z2 coincides with an eigenvalue of (16), i.e., if z2 = λ, the preconditioner
P = L− z2M will be singular, which is a situation that has to be avoided. So in the
following we assume that z2 �= λ for all eigenvalues of (16). The eigenvalues λ can
be considered as a real parameterization of the curves (18) in the complex plane on
which the eigenvalues σ of the preconditioned system are located.

To determine these curves we write σ = σr + iσi and substitute this into (17),
which yields

λ− α1 − iβ1 = σr(λ− α2) − iσrβ2 + iσi(λ− α2) + σiβ2.

We can split this equation into an equation for the real terms and one for the imaginary
terms:

λ− α1 = σr(λ− α2) + σiβ2,

−β1 = −σrβ2 + σi(λ− α2).

If β1 = σrβ2, the second equation reduces to σi = 0. If this is not the case, we get for
λ that

λ = α2 +
σrβ2 − β1

σi
.

Substitution of λ in the equation for the real terms yields the following result:

(19) β2(σ
r)2 − (β1 + β2)σ

r + β2(σ
i)2 + (α1 − α2)σ

i = −β1.

This equation is valid for all values of α1, β1, α2, and β2, including the case β1 = σrβ2.
In the following we will distinguish between the cases β2 = 0 and β2 �= 0. Theorem

3.1 deals with the case β2 = 0.
Theorem 3.1. Let β2 = 0, let L be a symmetric positive semidefinite real matrix,

and let M be a symmetric positive definite real matrix. Then the eigenvalues σ =
σr + iσi of (15) are located on the straight line in the complex plane given by

(20) −β1σ
r + (α1 − α2)σ

i + β1 = 0.

Proof. The result follows directly from substituting β2 = 0 in (19).
The next theorem characterizes the spectrum in the case when β2 �= 0.
Theorem 3.2. Let β2 �= 0, let L be a symmetric positive semidefinite real matrix,

and let M be a symmetric positive definite real matrix. Then the eigenvalues σ =
σr + iσi of (15) are located on the circle given by

(21)

(
σr − β2 + β1

2β2

)2

+

(
σi − α2 − α1

2β2

)2

=
(β2 − β1)

2 + (α2 − α1)
2

(2β2)2
.

The center c of this circle is

c =

(
β2 + β1

2β2
,
α2 − α1

2β2

)

and the radius R is

R =

√
(β2 − β1)2 + (α2 − α1)2

(2β2)2
.
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Proof. Divide (19) by (2β2) and complete the square.
To understand the convergence of iterative methods it is important to know if the

origin is enclosed by the circle given in Theorem 3.2. The following theorem gives a
simple condition that determines this.

Theorem 3.3. If β1β2 > 0, the origin is not enclosed by the circle (21) given in
Theorem 3.2.

Proof. The origin is not enclosed by the circle if the distance of the center to the
origin is larger than the radius. Hence

(β2 + β1)
2 + (α2 − α1)

2

(2β2)2
>

(β2 − β1)
2

(2β2)2
+

(α2 − α1)
2

(2β2)2
,

which is clearly the case.
Remark. The center of the circle can also be written as

c =
z1 − z2

z2 − z2

and the radius as

R =

∣∣∣∣ z2 − z1

z2 − z2

∣∣∣∣ .
3.2. The spectrum of the preconditioned Helmholtz operator with the

Sommerfeld condition. We will now study the general damped Helmholtz operator
L + iC − z1M . As before, L and C are symmetric positive semidefinite matrices,
M is a symmetric and positive definite matrix, and z1 is a complex number. For
our problem, the matrix C stems either from the discretization of the Sommerfeld
boundary condition or from damping that does not satisfy (10). This means, for
example, that a damping matrix that stems from an absorbing layer is also covered
by the theory below. We consider a shifted Laplace preconditioner, i.e., a matrix of
the form L + iC − z2M , to precondition the Helmholtz operator. The eigenvalues of
this matrix are given by

(22) (L + iC − z1M)x = σS(L + iC − z2M)x.

Let λS be an eigenvalue of the generalized problem

(23) (L + iC)x = λSMx.

As in the previous section it is straightforward to show that (22) and (23) share the
same eigenvectors x and that the eigenvalues σS of the preconditioned system are
related to the eigenvalues λS by

(24) (λS − z2)σS = λS − z1.

The main difference from the previous section is that λS is complex, whereas λ in the
previous section was real, which allowed us to consider λ as a real valued parameter-
ization of a curve in the complex plane. Although the eigenvalues σS will in general
not be located on a straight line or on a circle in the complex plane if λS is complex,
it is still possible to establish useful results regarding the location of σS . To this end,
we will distinguish between the three cases β2 = 0, β2 > 0, and β2 < 0. Before we
proceed we will formulate the following lemma that we will need in the remainder of
this section.
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Lemma 3.1. Let L and C be symmetric positive semidefinite real matrices and let
M be a symmetric positive definite real matrix. Then the eigenvalues λS = λr

S + iλi
S

of the generalized eigenproblem (23) have a nonnegative imaginary part.
Proof. We use the fact that any matrix can be split into two Hermitian matrices:

(25) A =
1

2
(A + AH) + i

1

2i
(A−AH) = �(A) + i�(A),

where

(26) �(A) =
1

2
(A + AH) and �(A) =

1

2i
(A−AH) .

According to Bendixon’s theorem (see, e.g., [6, page 69]), we have

λ
�(A)
min ≤ Re(λA) ≤ λ�(A)

max ,

λ
�(A)
min ≤ Im(λA) ≤ λ�(A)

max .

The eigenvalues λS of the generalized problem (23) are also solutions of the standard
eigenproblem

U−1(L + iC)U−T y = λSy

in which M = UUT . This means that we can take A = U−1(L + iC)U−T , in which
case Im(A) = U−1CU−T . This latter matrix is positive semidefinite, so by Bendixon’s
theorem we have λi

S ≥ 0.
As in the previous section we first consider the case β2 = 0.
Theorem 3.4. Let β2 = 0, let L and C be symmetric positive semidefinite real

matrices, and let M be a symmetric positive definite real matrix. Then the eigenvalues
σS = σr

S + iσi
S of (22) are located in the half-plane

−β1σ
r
S + (α1 − α2)σ

i
S + β1 ≥ 0.

Proof. Since β2 = 0 we have

(λS − α2)σS = λS − z1.

Splitting this equation into an equation for the real terms and one for the imaginary
terms yields

λr
Sσ

r
S − λi

Sσ
i
S − α2σ

r
S = λr

S − α1

and

λr
Sσ

i
S + λi

Sσ
r
S − α2σ

i
S = λi

S − β1.

The second equation gives that either σi
S = 0 or

λr
S = α2 −

β1

σi
S

+ λi
S

1 − σr
S

σi
S

.

Substitution in the first equation and some straightforward manipulations yield

−β1σ
r
S + (α1 − α2)σ

i
S + β1 = λi

S((σr
S − 1)

2
+ σi

S

2
).
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By Lemma 3.1, λi
S ≥ 0, and hence the right-hand side term is greater than or equal

to zero.
If β2 < 0, the spectrum of the preconditioned matrix is characterized by Theorem

3.5.
Theorem 3.5. Let β2 < 0, let L and C be symmetric positive semidefinite real

matrices, and let M be a symmetric positive definite real matrix. Then the eigenvalues
σS of (22) are either inside or on the circle with center c = z1−z2

z2−z2
and radius R =

| z2−z1
z2−z2

|.
Proof. We have to prove that |σS − c| ≤ R if β2 < 0:

|σS − c| =

∣∣∣∣λS − z1

λS − z2
− z1 − z2

z2 − z2

∣∣∣∣ ,
=

∣∣∣∣ (λS − z1)(z2 − z2) − (λS − z2)(z1 − z2)

(λS − z2)(z2 − z2)

∣∣∣∣ ,
=

∣∣∣∣λS(z2 − z1) + (z1 − z2)z2

(λS − z2)(z2 − z2)

∣∣∣∣ ,
=

∣∣∣∣λS − z2

λS − z2

z2 − z1

z2 − z2

∣∣∣∣ ,
=

∣∣∣∣λS − z2

λS − z2

∣∣∣∣R.(27)

What is left to prove is that |λS−z2

λS−z2
| ≤ 1. Writing

λS = λr
S + iλi

S

we get

(28)

∣∣∣∣λS − z2

λS − z2

∣∣∣∣
2

=
(λr

S − α2)
2 + (λi

S + β2)
2

(λr
S − α2)2 + (λi

S − β2)2
.

Since β2 < 0 and by Lemma 3.1, λi
S ≥ 0, we have

(λr
S − α2)

2 + (λi
S + β2)

2

(λr
S − α2)2 + (λi

S − β2)2
≤ 1,

and hence the above condition is satisfied.
If β2 > 0, the spectrum of the preconditioned matrix is characterized by Theorem

3.6.
Theorem 3.6. Let β2 > 0, let L and C be symmetric positive semidefinite real

matrices, and let M be a symmetric positive definite real matrix. Then the eigenvalues
σS of (22) are either outside or on the circle with center c = z1−z2

z2−z2
and radius R =

| z2−z1
z2−z2

|.
Proof. This is analogous to the proof of Theorem 3.5.
Remark. The results presented above specify regions in the complex plane where

the eigenvalues of the preconditioned matrix are located. These regions are completely
determined by the parameters z1 and z2. Given the definition of z1, (13), these regions
depend only on the frequency f , on the damping parameter ν, and of course on the
shift for the preconditioner z2. It is important to note that the regions in the complex
plane where the eigenvalues are located do not depend on other physical parameters,
such as the sound speed or density, nor on computational parameters, such as the size
of the matrix, or on the mesh size h.
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4. Combination of the results of the spectral analysis with an upper
bound on the GMRES-residual norm. In this section we will combine the results
of the spectral analysis presented in the previous section with a well-known upper
bound on the GMRES-residual norm. This upper bound assumes that the spectrum
is enclosed by a circle, and hence this bound can be naturally combined with the circle
specified in Theorems 3.2 and 3.5.

Let the eigenvalues of the preconditioned matrix be enclosed by a circle with
radius R and center c as in Theorem 3.5. Then the GMRES-residual norm after k
iterations ‖rk‖ satisfies (see, e.g., [12])

(29)
‖rk‖
‖r0‖ ≤ c2(X)

(
R

|c|

)k

.

In this equation X is the matrix of eigenvectors and c2(X) its condition number in
the 2-norm. If this condition number is large, the upper bound gives no information
about the convergence, since in that case there is no relation between the location of
the eigenvalues and the convergence behavior of the preconditioned Krylov method
[5]. Fortunately, in our application we may expect that the condition number of the
eigenvector matrix is relatively small. If C = 0, the eigenvectors of the precondi-
tioned matrix are the same as in (16), and hence independent of the shift parameters.
Moreover, since the eigenvectors of (16) are M -orthogonal and M is a (scaled) mass
matrix. which is in general well conditioned, we expect that c2(X) will be small in
practice. This can be seen from

XTMX = I ⇔ c2(X
TMX) = 1 ⇔ c2(M

1
2X) = 1.

Since

c2(X) = c2(M
− 1

2M
1
2X) ≤ c2(M

− 1
2 )c2(M

1
2X),

we get

c2(X) ≤
√
c2(M).

If C �= 0, the eigenvectors of the preconditioned system are the same as of (23). These
are unfortunately not M -orthogonal, but for many problems we can consider (23) as
a relatively small perturbation of (16), in which case we can still expect that c2(X)
is small.

4.1. Optimization of the shift. Although (29) gives only an upper bound on
the GMRES-residual norm, it allows us to derive a “quasi” optimal choice for the
shift. We derive this shift by minimizing the upper bound. For this it is sufficient to
minimize the ratio R

|c| , or, using Theorem 3.5, the function

f(α2, β2) =
R2

|c|2 =
(α2 − α1)

2 + (β2 − β1)
2

(α2 − α1)2 + (β2 + β1)2
.

To analyze this function we differentiate with respect to α2,

∂f

∂α2
=

8(α2 − α1)β1β2

((α2 − α1)2 + (β2 + β1)2)2
,
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and with respect to β2,

∂f

∂β2
=

4β1((β
2
2 − β2

1) − (α2 − α1)
2)

((α2 − α1)2 + (β2 + β1)2)2
.

Clearly, both derivatives are zero at α1 = α2, β1 = β2. This choice for the shift mini-
mizes of course the upper bound since this corresponds to using the original operator
as a preconditioner, which means that performing the preconditioning operation is as
hard as solving the original system.

We are interested in the case when the preconditioning operation is relatively
cheap. In particular, we have in mind the situation when preconditioning operations
can be efficiently carried out using a fixed number of cycles of a multigrid method
for the whole range of shifts under consideration. We therefore restrict our analysis
to values for the shift for which multigrid is known to work well. We first consider
the purely imaginary shift [2, 3, 4]; this means that α2 equals zero. In this case, the
derivative with respect to β2 is zero if

(30) (β2
2 − β2

1) − α2
1 = 0,

yielding

β2 = ±|z1|.

Since by (13) β1 = −(2πf)2ν ≤ 0, we must choose by Theorem 3.3 β2 ≤ 0, and hence
z2 = −|z1|i as the shift that minimizes the upper bound (29). This choice is also
optimal if we consider all possible shifts for which α2 ≤ 0, meaning all possible shifts
for which the preconditioner has all its eigenvalues in the right half-plane. By (13),
α1 = (2πf)2 > 0, and by Theorem 3.3, β1β2 ≥ 0, so ∂f

∂α2
is negative for α2 ≤ 0.

Therefore f(α2, β2) takes its minimum on the edge α2 = 0. We conclude that the
choice

(31) z2 = −|z1|i

minimizes the upper bound (29) for all z2 ∈ C, with α2 ≤ 0.
The same methodology for deriving an optimal shift can still be used if we do not

restrict ourselves to the case α2 ≤ 0. Such a shift still (approximately) minimizes the
number of GMRES iterations. However, the performance of a multigrid method for
the preconditioning operations will deteriorate if z2 is too close to z1, and hence such
a shift would no longer minimize the total work of the whole solution process. How
to find a shift that minimizes the total work, if the performance of multigrid depends
on the shift, is of great practical importance, but is outside the scope of this paper.

4.2. Discussion. The upper bound (29) is meaningful only if the circle does not
enclose the origin. This is the case if β1 < 0, or equivalently if ν > 0. However,
because of continuity arguments, result (31) for the “quasi” optimal shift is still valid
if β1 = 0.

As was remarked in the previous section, the circle around the spectrum of the
preconditioned matrix depends only on z2, on f , and on ν. Consequently, if β1 < 0,
inequality (29) yields an upper bound on the GMRES-residual norm that also depends
only on the frequency f and on the damping parameter ν. Because of this, the number
of GMRES iterations should be bounded from above by a constant that is independent
of the mesh size.
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By scaling the shift z2 with the frequency we can make the upper bound on the
number of GMRES iterations also independent of frequency. To this end we introduce
the scaled shift

z̃2 = α̃2 + iβ̃2 =
z2

(2πf)2
.

Applying Theorem 3.5 and substituting z2 = (2πf)2z̃2 and the definition for z1 (13)
into (29) yield

(32)
‖rk‖
‖r0‖ ≤ c2(X)

(
R

|c|

)k

= c2(X)

√
(α̃2 − 1)2 + (β̃2 + ν)2

(α̃2 − 1)2 + (β̃2 − ν)2
.

Clearly, this upper bound depends only on the damping parameter ν and on the choice
for the parameter z̃2.

5. Experiments. In this section we describe a typical test problem with a vari-
able sound velocity. The location of the eigenvalues of the discretized operators are
compared with the theoretically predicted locations. The value of the optimal shift is
validated by numerical experiments. Finally, it appears that the convergence behavior
of GMRES is independent of the mesh size.

5.1. Description of the test problem. The test problem that we consider
mimics three layers with a simple heterogeneity and is taken from [11].

For ν ∈ R, find p ∈ C
N satisfying⎧⎪⎨

⎪⎩
−Δp− (1 − ν)( 2πf

c(x) )
2p = s in Ω = (0, 600) × (0, 1000) meter2,

s = δ(x1 − 300, x2), x1 = (0, 600), x2 = (0, 1000)

with Sommerfeld conditions or Neumann conditions on Γ ≡ ∂Ω.

(33)

The local sound velocity is given as in Figure 1. The density is assumed to be constant.
We have discretized the above problem with the finite element method using linear

triangular elements. The computations that are described in this section have been
performed with MATLAB.

5.2. Location of the eigenvalues. The first experiments validate the theorems
that are presented in section 3. To this end we have taken as source frequency f = 2
and we have discretized the problem with mesh size h = 100/2. We have calculated all
the eigenvalues of the preconditioned matrix for four typical combinations of values
of the scaled parameters z̃1 and z̃2. (See Figure 2.) The upper left-hand side subplot
shows the spectrum of the preconditioner if a real shift is chosen, as suggested in
[8]. As was predicted by Theorem 3.1, the eigenvalues for the Neumann problem,
which are indicate with the symbol *, are located on a line. Since the example
contains damping, the line does not pass through the origin. The eigenvalues of the
Sommerfeld problem, which are indicated with the symbol o, are all on one side of
the line, as is predicted by Theorem 3.4. Note that the eigenvalues move away from
the origin if the Neumann problem is replaced with the Sommerfeld problem.

The upper right-hand side subplot shows the spectrum of the preconditioner if
a purely imaginary shift is chosen. The eigenvalues of the Neumann problem are
located on the circle that is given by Theorem 3.2, and the eigenvalues of the Som-
merfeld problem are, as predicted by Theorem 3.5, either on or inside this circle. This
example does not contain damping (apart from the radiation condition): z̃1 is real.
Consequently, the circle contains the origin.
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Fig. 1. Problem geometry with sound velocity profile.

The lower left-hand side subplot shows another picture of the spectrum of the
preconditioner if a purely imaginary (negative) shift is chosen. In this case the problem
contains damping since z̃1 is complex. As a result, the circle is smaller than for the
previous example, and the origin is outside the circle.

The lower right-hand side subplot shows for the same z1 what happens if the sign
of the complex shift is wrongly (i.e., positively) chosen. According to Theorem 3.6
the eigenvalues of the Sommerfeld problem should in this case be either on or outside
the circle. This is confirmed by the numerical results. Moreover, by Theorem 3.3, the
origin should be enclosed by the circle, which is the case.

5.3. Optimization of the shift. The second group of experiments validates
the optimal value for the shift z2 that was found in section 4. This value is given by
(31).

The optimal value was determined by minimizing the ratio R
|c| . Using the scaled

variables z̃2 = z2/(2πf)2, this ratio can be written as

(34)
R

|c| =

√
(α̃2 − 1)2 + (β̃2 + ν)2

(α̃2 − 1)2 + (β̃2 − ν)2
.

This function takes values between 0 and 1. A small value of R
|c| indicates fast con-

vergence and a value close to 1 slow convergence. Figure 3 shows, for three different
damping parameters ν, how the value of R

|c| depends on α̃2 and β̃2. The values on

the contour lines correspond to the value of R
|c| . The three plots show clearly that

(34) takes its minimum when α̃2 = 0, and that the optimal β̃2 becomes more negative
when the damping parameter is increased. These observations are of course consistent
with the optimal value for the shift parameter (31) that was derived in section 4.
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Fig. 2. Spectra for different values of the complex shift in the preconditioner; h = 100/2, f =
2. The symbol * denotes eigenvalues for the Neumann problem; o denotes eigenvalues for the
Sommerfeld problem.
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Fig. 3. Contour plot of the convergence factor as a function of the complex shift.

To validate that this value is really (sub-) optimal in actual computations we solve
the Sommerfeld problem with scaled imaginary shifts ranging from 0 to −2. For the
mesh size we take h = 100/8 and perform the experiment for four different damping
parameters. The result is shown in Figure 4. Clearly, the more damping, the fewer the
number of GMRES iterations, and the larger (more negative) the optimal imaginary
shift.
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Fig. 4. Actual number of iteration as a function of the imaginary shift (h = 100/8).

Table 1

Number of iterations for “optimal” shift and minimum number of iterations.

Damping Optimal shift Iterations “optimal” shift Min. number of iterations

ν = 0 1 56 54
ν = 0.1 1.005 42 41
ν = 0.5 1.118 20 20
ν = 1 1.4142 13 13

Table 1 shows the minimum number of iterations and compares this with the
number of iterations when the “optimal” shift (31) is used. The results show that the
shift (31) is nearly optimal with respect to the number of GMRES iterations.

5.4. Mesh dependency. The last set of experiments examines the dependency
of the number of iterations of preconditioned GMRES on the mesh size.

Table 2 shows for an increasingly fine step size h the number of iterations for
the Sommerfeld problem. The experiment is performed for four different damping
parameters, and the frequency is kept fixed to f = 2. The results show that for all
four different values of the damping parameter the number of iterations is independent
of the step size h. Based on the discussion at the end of section 4, this could be
expected. The theory that is presented in section 4, however, does not make any
predictions about the mesh-dependent performance of preconditioned GMRES for
problems with a zero damping parameter.

The results of the same type of experiments, but now with a frequency that scales
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Table 2

Number of iterations under mesh refinement for a fixed frequency.

Number of iterations
h : 100/2 100/4 100/8 100/16 100/32
f : 2 2 2 2 2

ν = 0 14 13 13 13 13
ν = 0.1 13 12 12 12 13
ν = 0.5 11 10 11 11 11
ν = 1 9 9 9 9 9

Table 3

Number of iterations under mesh refinement for increasingly high frequencies.

Number of iterations
h : 100/2 100/4 100/8 100/16 100/32
f : 2 4 8 16 32

ν = 0 14 25 56 116 215
ν = 0.1 13 22 42 63 80
ν = 0.5 11 16 20 23 23
ν = 1 9 11 13 13 13

with the mesh size, are tabulated in Table 3. These results confirm that if the damping
parameter is nonzero, the number of GMRES iterations is bounded by a number that
is independent of the mesh size. This is most apparent in the results for ν = 0.5 and
ν = 1. The results for ν = 0 seem to indicate that the number of GMRES iterations
more or less doubles if the step size is halved. As was remarked above, the theory
presented in section 4 does not make any predictions for the case when ν = 0.

To check that c2(X) is actually small for the above test cases we have also com-
puted the condition numbers of the mass matrices on the five meshes. These condition
numbers are equal to 24 for all meshes; hence we have that

c2(X) ≤
√
c2(M) = 2

√
3.

6. Conclusions. We have presented a spectral analysis of the Helmholtz oper-
ator that is preconditioned with a shifted Laplace operator. We have shown that,
depending on the value of the shift, the eigenvalues of the preconditioned matrix are
located either in or on a circle, or in a half-plane. Combining these results concerning
the spectrum of the preconditioned matrix with a well-known bound on the GMRES-
residual norm allowed us to determine a close-to-optimal shift. Furthermore, we have
shown for problems with a nonzero damping parameter that there is an upper bound
on the number of GMRES iterations that depends only on the damping parameter
and hence is independent of the mesh size, the frequency, the sound speed, and the
density.

We have derived the close-to-optimal shift for the shifted-Laplace preconditioner
in combination with GMRES under the assumption that preconditioning operations
are performed exactly. In practice, however, preconditioning operations are performed
approximately, for example, using a multigrid method, and another Krylov method,
such as Bi-CGSTAB [14], may be used instead of GMRES. In this case the analysis
that has been presented in this paper no longer holds. However, experimental results
reported in [3], where Bi-CGSTAB is used as a Krylov solver and preconditioning
operations are performed approximately with one multigrid cycle, use values for the
shift that are close to the predicted value for the optimal shift we present in this
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paper. The experimental results are also in these cases quite satisfactory. We therefore
conclude that our results provide strong guidelines on how to select the shift parameter
for all Krylov methods, as well as for approximate preconditioners.
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