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Abstract

A stability analysis is presented for staggered schemes for the governing equations of compressible flow. The
method is based on Fourier analysis. The approximate nature of pressure-correction solution methods is taken into
account. 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The aim of this paper is to describe a simple way of analyzing the stability properties of staggered
schemes for the governing equations of compressible flow. These methods [1,4,7,9,14,16,17] are
extensions of incompressible methods, that are able to handle weakly compressible flow with Mach↓ 0
as well as fully compressible flow [1,8]. Frequently, in this type of method the primitive variables are
not updated collectively, but in some sequential order, as in fractional step methods. Such methods
will be referred to as segregated solution methods. For the stability conditions of these schemes only
heuristic arguments have been available, arising from the analysis of numerical schemes for a model
scalar convection equation. Here we present a stability analysis based on Fourier analysis of the coupled
system, that gives a prediction for the maximum allowable timestep for both (semi)-implicit and explicit
methods as a function of the Mach number. The analysis can serve as a guideline for the development of
new time integration schemes and solution procedures. The stability of the time stepping schemes can be
influenced by choosing different integration schemes for each equation as well as for different terms in
each equation (IMEX-approach). The latter can lead to unexpected stability properties.

The outline of the paper is as follows: In Section 2 we will consider a particular example of a segregated
solution method for compressible fluid flow, that we use to illustrate our approach.

* Corresponding author.
E-mail address: d.r.vanderheul@its.tudelft.nl (D.R. van der Heul).

1 Supported by the Netherlands Organization for Scientific Research (NWO).

0168-9274/01/$ – see front matter 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
PII: S0168-9274(01)00028-9



258 D.R. van der Heul et al. / Applied Numerical Mathematics 38 (2001) 257–274

In Section 3 the application of the Homogeneous Equilibrium Model (HEM) for two-phase flow
is briefly discussed. In the HEM the two-phase flow is modeled as a homogeneous mixture, with a
spatially strongly varying speed of sound. The latter fact will cause the Mach number (Ma≡ u/c,

u = velocity, c = speed of sound) in the flow domain to vary from the incompressible limit Ma= 0 to
the highly compressible values Ma= 20–30 and provides an excellent opportunity to test our predicted
threshold on the CFL number (CFL≡ sup(|u|)δt/δx). With the current approach we are able to find,
at least for simple temporal discretizations, an explicit expression relating CFLmax to the local Mach
number.

Section 4 describes our method for stability analysis. We start in Section 4.1 with a scheme for which
the heuristic approach for stability analysis leads to incorrect predictions of the stability bounds. Next
we treat this case to illustrate our method for stability analysis in Section 4.2. In Section 4.3 the more
advanced case where the solution procedure is also incorporated in the analysis is considered.

In Section 5 a verification of these results is given for a number of testcases based on one-dimensional
Riemann problems. For these cases the predicted bounds turn out to be very accurate. At the end of the
section we look at a two-dimensional testcase, for which the one-dimensional stability analysis gives a
conservative estimate of the stability bound.

2. Compressible pressure correction

In this paper we restrict ourselves to inviscid isothermal flow. The isothermal Euler equations are given
by

∂ρ

∂t
+ ∂m

∂x
= 0,

(1)
∂m

∂t
+ ∂

∂x
(um) = −∂p

∂x
.

As opposed to methods based on flux-vector/flux-difference splitting or approximate Riemann solvers,
here the equations are solved for sequentially. In the pressure correction method [1,5,18] the pressure is
taken implicit in the momentum equation. This ensures that in the incompressible limit the scheme will
reduce to the incompressible MAC-scheme, where the pressure acts as a Lagrangian multiplier to fulfill
the solenoidality constraint on the velocity. In the case of high Mach number flow, it is not necessary to
handle the pressure implicitly in the momentum equation. First a prediction is made of the momentum:

m∗ −mn

δt
+ ∂

∂x

(
unm∗) = − ∂

∂x
pn, (2)

whereδt is the timestep and superscriptn denotes the current timelevel.
Next the following correction is postulated:

mn+1 ≡ m∗ − δt
∂

∂x

(
pn+1 − pn

) ≡ m∗ − δt
∂

∂x
δp (3)

and substituted in the mass-conservation equation:

ρ(pn + δp)− ρn

δt
+ ∂mn+1

∂x
= 0 (4)
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to give the following pressure correction equation:

ρ(pn + δp)− ρn

δt
+ ∂

∂x

(
m∗ − δt

∂δp

∂x

)
= 0. (5)

In (5) we have expressed the time derivative ofρ in this way to incorporate a general nonlinear isothermal
equation of stateρ(p).

3. Homogeneous equilibrium model

Our motivation for studying the method outlined above lies in its ability to handle the governing
equations of the Homogeneous Equilibrium Model (HEM) very efficiently. The HEM is a simple model
for two-phase liquid-vapor flow. Assuming thermodynamic equilibrium and neglecting velocity slip
between both phases, it is possible to derive single phase equations for the two-phase mixture completed
with a mixture equation of state. The equation of statep = p(ρ) makes the density of the mixture equal
to the density of the liquid phase when the pressure is above the vapor pressure, and equal to the density
of the vapor phase below the vapor pressure, with a smooth, but artificial, transition in between. When the
pressure of the mixture is either well below or above the vapor pressure, the speed of sound is large but
finite and the flow is weakly compressible. In the phase transition region the speed of sound has a very
small value of O(1 m/s). In practical applications this means that the Mach number will vary from 0 to
an artificial value well in the range of 10–30. For efficient computation of two-phase flow with the HEM
it is therefore required that the time integration method is accurate and efficient uniformly in the Mach
number for 0< Ma< 30.

The HEM has been applied to model unsteady sheet cavitation on hydrofoils in [2,3,6,11–13,15,19].
This is a cyclic process involving periodic formation and shedding of thin vapor filled pockets on the
suction side of hydrofoils, as illustrated in Fig. 1. In each cycle, the cavity appears and grows to its
maximum size. Meanwhile a re-entrant jet develops at the aft end of the cavity, that moves forward
and upward as time progresses. At a certain instant the forward moving re-entrant jet touches the upper
liquid/vapor interface, and the aft part of the cavitation bubble is shed. The cyclic behavior becomes
periodic after a large number of cycles has been completed. To bridge this initial phase efficiently a time
integration scheme is required, that allows for large time steps.

Fig. 1. Cyclic behavior of unsteady sheet cavitation on hydrofoil.
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4. Stability analysis

First we show how a heuristic approach fails to predict the stability condition for a simple scheme.
Next an improved stability analysis is formulated and applied to the latter scheme and to one with a more
advanced spatial discretization and solution procedure. For brevity we restrict ourselves to isothermal
flow, but inclusion of an energy equation in the analysis is straightforward.

4.1. Breakdown of heuristic approach

We start with an example that shows how a heuristic approach fails to predict stability of the time
integration method. We consider the following discretized version of (2):

ρn+1
j − ρn

j

δt
+ 1

δx

(
ρn+1
j

1
2

(
ρn+1
j+1 + ρn+1

j

)mn+1
j+1/2 − ρn+1

j−1
1
2

(
ρn+1
j + ρn+1

j−1

)mn+1
j−1/2

)
= 0,

(6)
mn+1

j+1/2 −mn
j+1/2

δt
+ 1

δx

(
un
j+1/2m

n
j+1/2 − un

j−1/2m
n
j−1/2

) = − 1

δx

(
pn+1
j+1 − pn+1

j

)
,

where subscriptj denotes the grid cell position (Fig. 2), andδx is the mesh width. Note the following
features:

• staggering of momentumm with respect to the scalar unknownsρ andp (Fig. 2),
• spatial discretization of the convective terms in the momentum equation is first order upwind,

whereas the pressure gradient is centrally discretized,
• application of first order density upwind bias [1] in the mass conservation equation,
• explicit discretization of the convective term in the momentum equation, which removes the splitting

error, encountered in fully implicit pressure correction.
A heuristic approach to analyze the stability of this system is to look at the convection equation for a

scalarφ:

φt = −aφx, (7)

with the convection velocitya taken equal to the maximum signal speed of the isothermal Euler
equations,|u| + c, whereu is the fluid velocity andc is the speed of sound, defined as(dρ/dp)−1/2.
Either by Schur–Cohn theory or by the approach of [20] it is possible to analyze the stability for various
spatial and temporal discretizations. For a first order upwind discretization, the implicit Euler method is
unconditionally stable, and the explicit Euler method is stable under the following condition:

sup(|u| + c)δt

δx
< 1 ⇐⇒ sup(|u|)(1+ Ma−1)δt

δx
< 1, (8)

or

CFL≡ sup(|u|)δt
δx

� 1

1+ Ma−1 = Ma

1+ Ma
. (9)

Practical experience shows that this gives a useful indication for stability of colocated schemes that use
explicit Euler time stepping. Note that we do not use the more common definition CFL= sup(|u| +
c)δt/δx.

The scheme under consideration uses a mixture of implicit and explicit Euler timestepping, and
therefore one might think that a conservative estimate of the maximum allowable timestep could be
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Fig. 2. Staggered placement of unknowns.

made based on (9). However, numerical experiments for high Mach number Riemann problems revealed
that the scheme is stable only if the CFL number is taken much smaller than required by (9), and that the
maximum allowable CFL number decreases with increasing Mach number. This example illustrates, that
the stability properties of a system cannot be deduced in a simple manner from those of a scheme for a
single equation, when a staggered scheme is used. A more sophisticated stability analysis is needed, that
is able to handle different time integration schemes for the individual equations.

4.2. Fourier stability analysis; case 1

We start our analysis by reformulating the discretized system in the two variablesm andρ. To make
Fourier analysis possible we assume a linear equation of state:

ρ = c−2p.

A perturbed solution is postulated:(
ρj + δρj

mj + δmj

)
and substituted in the discretized system (6). Next the system is linearized. This leaves us with the
following system for the perturbations:

δρn+1
j − δρn

j

δt
+ 1

δx

[(
δmn+1

j+1/2 + 1

2
un+1
j+1/2

(
δρn+1

j − δρn+1
j+1

))
−

(
δmn+1

j−1/2 + 1

2
un+1
j−1/2

(
δρn+1

j−1 − δρn+1
j

))]
= 0, (10)

δmn+1
j+1/2 − δmn

j+1/2

δt
+ 1

δx

[(
2un

j+1/2δm
n
j+1/2 − (

un
j+1/2

)2
δρn

j+1/2

)
− (

2un
j−1/2δm

n
j−1/2 − (

un
j−1/2

)2
δρn

j−1/2

)] = − 1

δx
c2(δρn+1

j+1 − δρn+1
j

)
,

(11)

where we have written:

uj+1/2 ≡ 2mj+1/2

ρj + ρj+1
.



262 D.R. van der Heul et al. / Applied Numerical Mathematics 38 (2001) 257–274

In order to apply Fourier analysis to the “frozen coefficients” case we putun+1
j+1/2 = U = constant and

obtain (dropping the increment notation):

ρn+1
j − ρn

j

δt
+ 1

δx

[(
mn+1

j+1/2 −mn+1
j−1/2

) + 1

2
U

(−ρn+1
j−1 + 2ρn+1

j − ρn+1
j

)] = 0,

mn+1
j+1/2 −mn

j+1/2

δt
+ 1

δx

[(
2Umn

j+1/2 −U2
(
ρn
j+1

2

))
−

(
2Umn

j−1/2 −U2
(
ρn
j−1

2

))]

+ 1

δx
c2(ρn+1

j+1 − ρn+1
j

) = 0.

If the perturbations are postulated to have the following form:(
ρn
j

mn
j

)
=

(
ρ̃n

m̃n

)
eijθ ,

the system can be written as1+ Uδt

δx

(
1− cos(θ)

) 2δt

δx
i sin(θ/2)

2c2δt

δx
i sin(θ/2) 1

(
ρ̃n+1

m̃n+1

)

=
 1 0
U2δt

2δx
i sin(θ)eiθ/2 1− 4Uδt

δx
i sin(θ/2)e−iθ/2

(
ρ̃n

m̃n

)
,

or in brief

G2

(
ρ̃n+1

m̃n+1

)
=G1

(
ρ̃n

m̃n

)
.

The amplification matrix of the system isG−1
2 G1. The scheme isVon Neumann stable if:∣∣λ1,2

(
G−1

2 G1
)∣∣ � 1.

Note thatλ1,2 solve the equation

det(G1 − λG2) = 0,

which leads to:

λ1,2 = 1

2((1+ b)− a2c2)

[
2− 2(1+ b)ag − ak + b ± (

4(1+ b)2a2g2 − 4b(1+ b)ag

+ 4a2kg(1+ b)− 4ak + b2 − 2abk + a2k2 + 4a2c2 − 8a3gc2)1/2]
,

(12)

where

a = 2δt

δx
i sin(θ/2), g = Ue−iθ/2,

b = Uδt

δx

(
1− cos(θ)

)
, k = U2δt

δx
i sin(θ)e−iθ/2.
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(a) (b)

Fig. 3. Dependence of|λ1,2(G
−1
2 G1)| on θ . (a) Case of instability. (b) Case of stability.

Figs. 3(a) and (b) show graphs of|λ1,2| as a function ofθ . If both U , δt/δx andc are systematically
varied we find numerically that in all cases the graph is an even function ofθ and that a local extremum
occurs forθ = 0. As consistency requires that forθ = 0, λ1,2(G

−1
2 G1) = 1, the occurrence of a local

minimum for θ = 0 means that in the neighborhood ofθ = 0, |λ1,2(G
−1
2 G1)| will exceed unity and the

integration will be unstable.
Based on this argument we can formulate the following necessary, but not sufficient condition for

stability:

∃ε > 0 | ∀θ ∈ 〈−ε, ε〉 \ {0}: d2|λ1,2|
dθ2

< 0. (13)

Expansion for|θ | � 1 gives

λ1,2λ1,2 = 1+ b1,2θ + c1,2θ
2 + O

(
θ3).

Becauseb1,2 = 0, obviously, a necessary but not sufficient condition for stability is

(c1,2) � 0,

or (
4− 2

Ma2 ± 2Ma
)
Uδt

δx
� 3, (14)

which should be fulfilled for both the+ and− sign. If the Mach number is in the range 0.5< Ma< 1.5
we found that, although the eigenvalues are in the unit circle for|θ | < ε, |λ1,2| can exceed unity for
θ = ±π . For this an additional constraint can be formulated:

λiλi|θ=±π < 1
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which leads to the following conditions:

Uδt

δx
<

Ma2 − Ma2
√

9− 4/Ma2

1− 2Ma2 ,
2

3
< Ma, or

(15)
Uδt

δx
>

Ma2 + Ma2
√

9− 4/Ma2

1− 2Ma2 ,
2

3
< Ma.

For the case without density bias we can similarly derive from (13):(
4− 2

Ma2 ± 2Ma
)
Uδt

δx
� 2± Ma, (16)

together with:

Uδt

δx
< Ma2 + Ma2

√
1− 1

Ma2 , 1< Ma, or
(17)

Uδt

δx
> Ma2 − Ma2

√
1− 1

Ma2 , 1< Ma.

Taking the limit Ma↓ 0 in (14) or (16), one finds unconditional stability. However, this stability pre-
diction does not carry over to the multi-dimensional case. The one-dimensional case is special, because
in the incompressible limit the mass conservation reduces to the solenoidality constraint, which in one
spatial dimension means:

∂m

∂x
= 0 �⇒ m =m(t), (18)

and this means that the momentumfield is fully represented by the Fourier modeθ = 0. For a consistent
discretization the amplification factor of the zeroth order mode is unity by definition, and therefore the
scheme is unconditionally stable. However, the multi-dimensional equivalent of (18)

divm = 0,

does have a nontrivial solution, a solenoidal vector field, and the previous argument no longer holds. In
the multi-dimensional case we find indeed experimentally that for very small Mach numbers the scheme
is not unconditionally stable. But practical experience shows that for Ma∼= 0.3 the above necessary sta-
bility conditions give conservative predictions of the stability properties in the multi-dimensional case, if
the above conditions are applied on a component-by-component basis (Section 5).

In Fig. 4(a) the two conditions (14) and (15) are shown. The integration will be stable if the
CFL-number is chosen below curve (14) and curve (15). However, an additional region of stability exists
between curves (14) and (15), shown as the black region in Fig. 4(b). This additional region is of course
of no practical interest.

Fig. 5 shows the maximum allowable CFL number based on the heuristic prediction (9) and the one
following from the present Fourier analysis of the system. It is clear that only for Ma< 1.3 the heuristic
approach gives a conservative estimate of the maximum allowable CFL number, but that for Ma> 1.3
the heuristic condition is much weaker than (14). In Section 5 we will confirm the necessity of stability
threshold (14), by a number of numerical experiments.

To show the general applicability of the stability analysis we analyzed the following four variants of
scheme (6): either with an explicit or an implicit discretization of the convective terms in the momentum
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(a) (b)

Fig. 4. Stability conditions for (6). (a) Stability conditions (14) and (15). (b) Zoom of (a).

Fig. 5. Stability conditions for the time integration scheme (6).

equation and either with or without the density upwind bias in the mass conservation equation. For these
four schemes the calculated upper and lower bounds on the CFL-number for two different Mach numbers
are summarized in Table 1.

Note:
• For scheme 1 and Ma= 4 both an upper and a lower bound on the CFL-number should be satisfied,

which is impractical.
• Although scheme 2 is more diffusive than scheme 1, due to the density upwind bias, the former is

actually stable for a smaller CFL-number than the latter for Ma= 4.
• Only schemes 2 and 4 can be used for practical computations.
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Table 1
Stability properties of four variants of (6)

Scheme Momentum Density Ma= 4 Ma= 20

convection upwind bias

1 explicit no 0.485< CFL< 0.505 uncond. unstable

2 explicit yes CFL< 0.253 CFL< 0.068

3 implicit no uncond. unstable uncond. unstable

4 implicit yes CFL< 3.315 CFL< 2.1

• Although scheme 3 is discretized more implicitly than scheme 1, the latter actually has a stability
window, whereas the former has not.

• By implicitly discretizing the convective terms in the momentum equation, we can raise the stability
bound by a factor 10 or more. Moreover, the dependence of the stability on Ma of the implicit
scheme is much weaker than for the explicit case.

• The CFL-number threshold for scheme 4 of O(2), is what one would expect for an explicit scheme,
not for an almost fully implicit scheme.

We will check the anomalous behavior of schemes 1 and 3, and the stability bound for scheme 4, for
the case of Ma= 4 in Section 5.

4.3. Fourier stability analysis: case 2

If the convective terms in the momentum equation are discretized implicitly, the pressure correction
formulation will no longer be identical to the original scheme. This is due to the fact that in the postulated
momentum correction, the difference between the convective terms in the momentum predictor equation
and the discretized momentum equation is neglected. We distinguish between thetarget, actual and
resolved discretization. Thetarget discretization is obtained after finite volume discretization, can be
nonlinear, and can only be solved for in an iterative manner. Theactual discretization follows from
the target discretization after linearization, and the introduction of further approximations, such as
deferred or defect correction. Finally, theresolved discretization includes the segregated (pressure
correction) solution procedure. The stability properties oftarget and resolved discretization can differ
considerably. Fig. 6 shows the dependence of|λ1,2(G

−1
2 G1)| on θ , for the fully implicit version

of (6) (Scheme 4), both with and without inclusion of the pressure correction algorithm. The different
behavior of resolved and target discretization as observed in Fig. 6 shows that it is essential to
study the stability properties of the resolved discretization to make a correct estimate of the stability
thresholds.

In the second case we will discuss, we include the pressure correction method in the stability analysis
together with the necessary deferred correction steps, required to obtain a high order spatial discretization
on a compact stencil. The solution procedure is now as follows: First the momentum predictor equation
is solved with theκ-scheme in a deferred correction manner:

m∗
j+1/2 −mn

j+1/2

δt
+ 1

δx
(Fj+1 −Fj ) = − 1

δx

(
pn
j+1 − pn

j

)
,
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Fig. 6. Dependence of|λ1,2(G
−1
2 G1)| on θ , with (resolved discretization) and without inclusion of the pressure

correction algorithm (target discretization).

Fj+1 = un
j+1/2m

∗
j+1/2 − un

j+1/2m
n
j+1/2

+
(
κ − 1

4
un
j−1/2m

n
j−1/2 + 4− 2κ

4
un
j+1/2m

n
j+1/2 + κ + 1

4
un
j+3/2m

n
j+3/2

)
.

Application of theκ-scheme to the mass conservation equation in (6) in a deferred correction manner
leads, after linearization, to the following pressure correction equation:

ρn+1
j − ρn

j

δt
+ 1

δx
(Gj+1/2 −Gj−1/2) = 0,

Gj+1/2 = σ n
j+1/2,HOm

∗
j+1/2 +

(
δx

4ρ2c2

∂p

∂x
|m∗|

)
j+1/2

((
dρ

dp

)
j

δpj +
(

dρ

dp

)
j+1

δpj+1

)

+
(

− 1

2ρ
|m∗|

)
j+1/2

((
dρ

dp

)
j+1

δpj+1 −
(

dρ

dp

)
j

δpj

)
− σ n

j+1/2,HO
δt

#x
(δpj+1 − δpj )

+
((

σ n
LO − σ n

HO

)
m∗

2ρn

)
j+1/2

((
dρ

dp

)
j+1

δpj+1 +
(

dρ

dp

)
j

δpj

)
,

where

σ n
j+1/2,HO = 2

(
κ−1

4 ρn
j−1 + 4−2κ

4 ρn
j + κ+1

4 ρn
j+1

)
ρn
j + ρn

j+1
,

σ n
j+1/2,LO = 2ρn

j

ρn
j + ρn

j+1
.
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Application of the Fourier analysis procedure described in Section 4.2 leads to the following system of
equations:

• predictor step(
1 0

0 1+ ag

)(
ρ̂∗

m̂∗

)
=

(
1 0

−q − ac2 1+ ag − p

)(
ρ̂n

m̂n

)
,

• corrector step(
1+ ag − l + s 0

ac2 1

)(
ρ̂n+1

m̂n+1

)
=

(
1+ s 0

ac2 0

)(
ρ̂n

m̂n

)
+

(
ag − 1

2p −a

0 1

)(
ρ̂∗

m̂∗

)
,

where we have introduced the following abbreviations:

s = 1− 2cos(θ), p = 1

4
Uλ

(
e−2iθ − 7e−iθ + 3+ 3eiθ), l = Uλi sin(θ),

q = 1

16
U2λρ̂n+1(−e−21

2 iθ + 6e−11
2 iθ + 4e− 1

2 iθ − 6e
1
2 iθ − 3e11

2 iθ).
Or in operator form:

G1

(
ρ̃∗

m̃∗

)
= G0

(
ρ̃n

m̃n

)
,

G4

(
ρ̃n+1

m̃n+1

)
=G3

(
ρ̃n

m̃n

)
+G2

(
ρ̃∗

m̃∗

)
.

The amplification matrix is now given by

G−1
4

(
G3 +G2G

−1
1 G0

)
.

Fig. 7. Dependence of|λ1,2(G
−1
2 G1)| on θ , for 1st-order upwind scheme with and without higher order upwind

deferred correction.
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For stability we require that∣∣λ1,2
(
G−1

4

(
G3 +G2G

−1
1 G0

))∣∣ � 1.

We have not succeeded yet in deriving from this simple necessary stability conditions, as in the first
case. Instead, we compute|λ1,2(θ)| for a sufficiently fine distribution of−π < θ < π . For a scalar
convection diffusion equation, we know [10] that stability is not affected by a deferred correction step.
Fig. 7 shows, however, that in the case of a system the functional dependence of|λ1,2| onθ is qualitatively
different from that for the first order upwind scheme. Generally the CFL-number threshold for the higher
order upwind scheme is much smaller than for the first order upwind scheme.

5. Verification of stability thresholds

We will first verify experimentally the stability conditions (14) and (15) for a number of testcases
with increasing Mach-number. The testcase is a one-dimensional Riemann problem for the isothermal
Euler equations (2), with the initial states sufficiently close together. This means we can regard the
solution of the Riemann problem as a small but structured perturbation of the initial conditions.
The solution is computed on a uniform mesh covering[−Lleft,Lright], with in the supersonic cases
Lleft �Lright. On[−Lleft,0] the initial conditions arepleft, ρleft, uleft and on〈0,Lright] pright, ρright, uright,
respectively.

Table 2
Initial conditions for Riemann problems

Ma ρleft pleft uleft ρright pright uright c

0.1 0.01 1.1 00.099 1 1.09 0.1 1

1 1.01 1.1 00.990 1 1.09 1 1

5 1.01 1.1 04.950 1 1.09 5 1

10 1.01 1.1 09.901 1 1.09 10 1

15 1.01 1.1 14.851 1 1.09 15 1

Table 3
Numerical verification of the stability thresholds (14) and (15) for one-dimensional testcase

Mach-number CFL-number

stable predicted (14), (15) predicted (9) unstable

present approach heuristic approach

0.1 4.000 ∞ 0.009 –

1 0.600 0.618 0.500 0.650

5 0.200 0.215 0.833 0.250

10 0.080 0.125 0.909 0.170

15 0.060 0.088 0.938 0.100
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The initial conditions and the speed of sound for the different testcases have been summarized in
Table 2.

Table 3 shows the predicted threshold for the CFL number together with the smallest CFL number
tested that induced instability and the largest CFL number tested that preserved stability for a range of
Mach numbers. It is clear that the predicted stability threshold is very accurate. For the case Ma= 1, use
is made of the additional condition (15).

Figs. 8 and 9 show results for the testcase Ma= 5. At the start of the computation stability is dominated
by nonlinear effects due to the discontinuous initial condition. An initial overshoot is created, but when
the CFL number is chosen within the stability limits, it is eventually damped out.

Next we will verify experimentally the stability thresholds for the schemes presented in Table 1 in
Section 4.2 for a testcase with Ma≈ 4. The initial conditions for this Riemann problem are listed in
Table 4. First we choose scheme 1, for which both an upper and a lower bound on the CFL-number

(a) (b)

Fig. 8. Stable integration of Ma= 5 testcase, CFL= 0.20. (a)|u|∞ as function of time. (b) Solutionu at t = 100,
t = 300,t = 500 andt = 700.

(a) (b)

Fig. 9. Unstable integration of Ma= 5 testcase, CFL= 0.25. (a)|u|∞ as function of time. (b) Solutionu at t = 100,
t = 200 andt = 300.
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Fig. 10. Unstable integration with scheme 1, CFL= 0.430.

Fig. 11. Stable integration with scheme 1, CFL= 0.493.

Table 4
Initial conditions for Mach= 4 Riemann problem

uleft = 4.1666 uright = 4.1584

ρleft = 1.2000 ρright = 1.0000

pleft = 1.1000 pright = 0.9000

c = 1.0000

should be fulfilled. Fig. 10 shows results for CFL= 0.43 chosen slightly smaller than the lower bound.
The wiggles are clearly amplified. Next we choose CFL= 0.493, halfway between the upper and
lower bound. Although wiggles occur during the startup phase, they are clearly damped out in time
(Fig. 11).
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Fig. 12. Unstable integration with scheme 3, CFL= 0.493.

Fig. 13. Stable integration with scheme 4, CFL= 3.19.

Next scheme 3 is used, with the same CFL= 0.493. Although this scheme is more implicit than
scheme 1, Fig. 12 shows that the integration is unstable, in complete agreement with our analysis! Finally
we will verify the stability threshold for scheme 4. Fig. 13 shows a computation with CFL= 3.19, and
Fig. 14 with CFL= 3.61. In the first case the solution remains stable, whereas in the second case a
smooth wiggle is formed. The smoothness of this overshoot is due to the fact that the absolute value of
the eigenvalues of the amplification matrix exceeds unity in the low frequency domain, nearθ = 0. Of
course only the schemes with density bias can be used for practical computations.

Finally we look at a two-dimensional testcase. The inviscid isothermal flow in a two-dimensional
channel with a 10% circular bump is computed for a number of inflow Mach numbers. Taking into
account that in this testcase the transversal velocity is much smaller than the longitudinal velocity, we
impose our one-dimensional stability criterion on the CFLmax on the maximum longitudinal velocity. The
predicted one-dimensional stability threshold and the actual stability threshold are listed in Table 5. It is
clear that the one-dimensional criterion gives a conservative estimate of CFLmax. To get a more accurate
prediction of the stability threshold, this analysis can be extended to two dimensions in a straightforward
manner.
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Fig. 14. Unstable integration with scheme 4, CFL= 3.61.

Table 5
Numerical verification of the stability thresholds (14) and (15) for
two-dimensional testcase

Machmax CFLmax,stable CFLmax,predicted(14) (15)

1.1 0.74 0.66

1.8 0.48 0.43

3 0.60 0.37

6. Conclusions and future extensions

Stability conditions based on heuristic extension of stability results for a scalar model problem are
found not to be generally valid for segregated solution procedures. Therefore a more refined method
of analysis is used, in which it is possible to include the details of the sequential solution procedure,
and different time integration schemes for the individual equations. A number of numerical experiments
support the derived stability thresholds.

We note that among the schemes considered only the last scheme discussed in Section 5 has reasonable
stability properties, and that only for moderate Mach numbers. But with our stability analysis method we
can optimize the scheme, to obtain a solution method, with unconditional stability and accuracy uniform
in the Mach number, with special interest for efficient computations with the HEM.
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