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Abstract

In this paper we apply a new method to solve multi-phase fluid flow problem for 1D and 2D fluid systems.
This method is developed at TNO and presented in [1] for spatially homogeneous systems. We call this method the
numerical density-enthalpy method (or ρ-h method) because density-enthalpy phase diagrams (or ρ-h diagrams) play
an important role in it. Finite elements are used for spatial discretization along with the streamline upwind Petrov-
Galerkin method. In contrast to conventional methods, the ρ-h method eliminates the requirement of separate sets
of equations for various phases and necessitates fewer parametric assumptions. Therefore, it is aimed at a simple
formulation and at an increase of efficiency.
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1. Introduction

Physical models for multi-phase fluid systems in porous media have applications in industrial processes such as
drying, steam production, and freezing. These models are meant to simulate the processes to enhance the quality
of products. Food items, in general, can be considered as a porous medium (bread, potato etc). In the context of
the ρ-h method, Arendsen has presented many applications in his work [1, 2, 3] (a boiler system, potato drying etc).
Since several types of phases are present, the interface between adjacent phases has to be tracked. The so called
moving interface problems or free boundary problems, are typically solved by methods such as the level-set, moving-
grid, and the phase-field model [6, 7, 8]. Level-set and moving-grid models use a sharp interface between adjacent
phases. In contrast, the phase-field model allows a diffuse region where, for example, the mass density between the
two coexisting phases varies smoothly from one phase to the other [7]. In this paper, we present and use a different
method, namely the numerical density-enthalpy method. In [1, 2] a comparison is made of the ρ-h method and standard
approaches for modeling thermal processes with phase change. It is a common practice to solve the energy or mass
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balance equations alone or to assume constant boiling pressure and temperature. Arendsen also explained that only
taking the energy or mass balance is valid for a limited range and that their physical basis is incomplete. Furthermore,
the assumption of constant ambient pressure and a fixed phase-change temperature profile cannot always be justified
[1, 4]. Another drawback of the aforementioned approaches is that they keep track of the phase change boundary,
which might take place only for a small time interval as compared to the whole process. Then these methods switch
to another set of equations with a change in phase, which might cause numerical instabilities.

1.1. Density-enthalpy phase diagrams

In this paper we use the mass and energy balances together and use density ρ and enthalpy h as our state variables.
These coupled partial differential equations are solved by using finite elements, with a Streamline Upwind Petrov-
Galerkin approach. A set of ρ-h diagrams is then used to determine temperature T , pressure P, and mass fractions
[1]. In Figure 1, three such diagrams are shown for Propane (C3H8), where XG is the gas mass fraction. Each curve is
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Figure 1: ρ-h diagrams for C3H8, (a) Plots of isotherms, (b) isobars, and (c) constant gas mass fraction curves.

obtained through constrained minimization of the total Gibbs free energy as a function of T , P, and mass distribution
at given ρ and h [1]. For a given substance (e.g., C3H8) we have a unique set of ρ-h diagrams. These diagrams work
in a similar way as lookup tables (in the solution algorithm), where ρ and h act as row and column, respectively,
whereas the curve color serves as the the table entry for the corresponding variable (i.e., P, T , or XG). In Figure 1(c),
liquid and gas phases are labeled as ’L’ and ’G’ respectively. The transitional zone is marked with ’L + G’ which
is noticeably larger than the ’L’ and ’G’ zones. Other sets of phase diagrams are also available, which provide, for
example, a transformation from (T , XG) to (ρ, h, and P). In Section 4, numerical results are given as obtained by
solving the mass and energy balances for ρ and h and computing P, T , and XG from ρ-h diagrams. The obtained
results are explained qualitatively on the basis of physical laws. This method does not require a constant ambient
pressure or a constant phase change temperature. In our view, the ρ-h method is potentially a better approach to model
multi-phase fluid systems. Furthermore, it is a multiphysics system in the sense that thermodynamics is considered
alongside convection and diffusion aspects in a porous medium. The multiscale aspect is mentioned in Section 5.

2. Problem Definition

We consider the flow of propane (C3H8) in a unit square (porous medium) where the interior is represented by
Ω and the boundary is designated by Γ. The mathematical model for the two-dimensional system is given by the
following partial differential equations.

∂ρ

∂t
+ ∇ · (ρv) = 0, x ∈ Ω, t > 0, (mass conservation), (1)

∂(ρh)
∂t
+ ∇ · (ρhv) = ∇ · (λ∇T ) + q, x ∈ Ω, t > 0, (energy conservation), (2)

v = −K
μ
∇P, (Darcy′s Law). (3)
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where the permeability K, dynamic viscosity μ, and heat diffusivity λ are assumed to be constants and q is a heat
source. We neglected gravitational effects. Density (ρ) and enthalpy (h) are taken as state variables. Other variables
such as temperature (T ), pressure (P), and gas mass fraction (XG) are computed by using ρ-h diagrams. Initial
conditions are given by

ρ(x, 0) = ρ0 x ∈ Ω, (4)

h(x, 0) = h0 x ∈ Ω. (5)

From a practical point of view, it is more convenient to have initial conditions in terms of T and XG. Initial conditions
for other variables (ρ, h, and P) can be computed from them through phase diagrams. Furthermore, we use Robin
boundary conditions. The external mass transfer is proportional to the difference in the internal density (ρ) and the
ambient density (ρa),

ρv · n = km(ρ − ρa), t > 0, x ∈ Γ, (6)

where km is a mass transfer coefficient and n is an outward unit vector normal to Γ. Equation (6) is the boundary
condition for the mass equation. The energy transport across the boundaries takes place if there is a difference in
temperature or a difference in density, across boundaries,

−λ∇T · n + (ρh)v · n = kh(T − Ta) + hakm(ρ − ρa), t > 0, x ∈ Γ. (7)

where kh is a heat transfer coefficient.

3. Method description

We solve equations (1) and (2) for ρ and h. The ρ-h diagrams are then used to determine T , P, and XG. Once
the pressure P is obtained, equation (3) is used to find v. To solve the fluid system with finite elements, we start with
the standard Galerkin algorithm. Later on the streamline upwind Patrove-Galerkin part of the solution procedure is
added.

3.1. Discretization of the mass equation with standard Galerkin approach
In order to get the weak formulation, we discretize equation (1) in time (the Euler backward scheme), multiply it

by a test function η(x), and integrate over Ω
∫

Ω

ρτ − ρτ−1

Δt
ηdΩ = −

∫

Ω

∇ · (ρτvτ−1)ηdΩ, 1 ≤ τ ≤ τmax, (8)

where τ is a time index. Note that the velocity v is taken at the previous time step τ− 1. The number of time iterations
τmax depends on the value of the time step (Δt) between successive iterations. The choice of Δt is discussed later. Now
using a vector product rule ∇ · (ρvη) = η∇ · (ρv) + ρv · ∇η, and the divergence theorem

∫
Ω
∇ · FdΩ =

∫
Γ

F · ndΓ, in
equation (8) we have

∫

Ω

ρτ − ρτ−1

Δt
ηdΩ = −

∫

Γ

ρτηvτ−1 · ndΓ +
∫

Ω

ρτvτ−1 · ∇ηdΩ. (9)

We choose a set of basis functions {φi(x)}1≤i≤Nd
, where Nd, is the number of mesh nodes for unknowns. The solution is

approximated by ρτ(x) =
∑Nd

j=1 ρ
τ
jφ j(x). After substitution in the weak form, and choosing η(x) = φi, for i = 1, ...,Nd,

we obtain

Nd∑

j=1

ρτj − ρτ−1

Δt

(∫

Ω

φiφ jdΩ

)
= I1 +

Nd∑

j=1

(∫

Ω

φ jvτ−1 · ∇φidΩ

)
ρτj , (10)

where I1 incorporates boundary conditions for an inward velocity, i.e.,

I1 =

⎧⎪⎪⎨⎪⎪⎩
−∑Nd

j=1

(∫
Γ

kmφiφ jdΓ
)
ρτj +
∫
Γ

kmφiρadΓ if vτ−1
i · n < 0,

−∑Nd
j=1

(∫
Γ
φiφ jvτ−1 · ndΓ

)
ρτj if vτ−1

i · n ≥ 0.
(11)
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The problem domain is discretized by using bilinear elements [10]. This gives a system of difference equations of the
form

M
ρτ − ρτ−1

Δt
= S τ−1

1 ρ
τ + fτ−1

1 , (12)

where the mass matrix M = {Mi j}, for i, j ∈ {1, ...,Nd}, is given by

Mi j =

∫

Ω

φiφ jdΩ, (13)

and the stiffness matrix S τ−1
1 = {S τ−1

1i j
}, for i, j ∈ {1, ...,Nd}, is

S τ−1
1i j
=

∫

Ω

φ jvτ−1 · ∇φidΩ + I2. (14)

The integral I2 includes boundary conditions for an inwards velocity.

I2i j =

⎧⎪⎪⎨⎪⎪⎩
−
∫
Γ

kmφiφ jdΓ, if vτ−1
i · n < 0, i, j = 1, 2,

−
∫
Γ
φiφ jvτ−1 · ndΓ, if vτ−1

i · n ≥ 0.
(15)

The vector fτ−1
1 = {fτ−1

1i
}, for i ∈ {1, ...,Nd}, is

fτ−1
1 =

⎧⎪⎪⎨⎪⎪⎩

∫
Γ

kmφiρadΓ, if vτ−1
i · n < 0,

0, if vτ−1
i · n ≥ 0.

(16)

Global matrices [M]Nd×Nd and [S 1]Nd×Nd and the vector [f1]Nd×1 are easier to determine through their respective element
matrices (and element vector). For the assembly procedure from element matrices to global matrices, we refer to [10].

3.1.1. Computation of element matrices
By using equation (13), we can determine the element mass matrix for the kth element ek, k = 1, 2, ..,Ne (Ne=

number of elements, whereas Nd is the number of node points)

Mei j = δi j
Δk

4
, i, j = 1, 2, 3, 4, (17)

where δi j represents the Kronecker delta and Δk is the area of the kth element. In this paper we use the following
Newton-Cotes quadrature rule (for a rectangle)

∫

ek

I(x, y)dxdy ≈ 1
4

4∑

i=1

I(xi, yi). (18)

where {(xi, yi), i = 1, 2, 3, 4} are the corner points of an individual element ek. In this case, the use of a higher order
quadrature rule (e.g., Gaussian quadrature) does not decrease the order of the error because the accuracy is already
determined by the nature of the currently used bilinear basis functions for the spatial discretiaztion. The stiffness
matrix S 1 is assembled from 2 element matrices, SΩe and I3e . The matrix [SΩe ]4×4 is related to inner rectangular
elements whereas [I3e ]2×2 takes care of boundary elements (line segments). We compute them by using equation (14)
and (15)

SΩei j
= (∇ jφi · vτ−1

j )
Δk

4
, i, j = 1, 2, 3, 4, (19)

I3i j =

⎧⎪⎪⎨⎪⎪⎩
δi j

L
2 vτ−1

i · n if vτ−1
i · n ≥ 0,

−δi jkm
L
2 if vτ−1

i · n < 0,
i, j = 1, 2, (20)

where L is the length of a boundary element. Using equation (16) to compute fτ−1
1e

for each element at Γ

f1ei
=

⎧⎪⎪⎨⎪⎪⎩
0 if vi · n ≥ 0,

kmρa
L
2 if vi · n < 0, i = 1, 2.

(21)

The global vector f1 is updated after computation of the element vector f1e .
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3.2. Discretization of the energy equation with standard Galerkin approach
We take s = ρh and follow a similar procedure as carried out for the mass equation. The time discretized form of

equation (2) is given by

sτ − sτ−1

Δt
= ∇ · (sτvτ−1) + ∇ · (λ∇T τ−1) + qτ, (22)

where v and T are taken at the previous time step τ − 1. The weak form is given by
∫

Ω

sτ − sτ−1

Δt
ηdΩ = −

∫

Ω

∇ · (sτvτ−1)ηdΩ +
∫

Ω

∇ · (λ∇T τ−1)ηdΩ +
∫

Ω

qτηdη. (23)

Substituting
∫

Ω

∇ · (sv)ηdΩ = −
∫

Γ

sηv · ndΓ +
∫

Ω

sv · ∇ηdΩ,

and
∫

Ω

∇ · (λ∇T )ηdΩ =
∫

Γ

λ
∂T
∂n
ηdΓ −

∫

Ω

λ∇T · ∇ηdΩ,

into equation (23) we get
∫

Ω

sτ − sτ−1

Δt
ηdΩ = −

∫

Γ

sτηvτ−1 · ndΓ +
∫

Ω

sτvτ−1 · ∇ηdΩ+
∫

Γ

λ
∂T τ−1

∂n
ηdΓ −

∫

Ω

λ∇T τ−1 · ∇ηdΩ +
∫

Ω

qτηdΩ. (24)

Depending on the velocity direction, two boundary integrals in equation (24) can be written as

−
∫

Γ

sτηvτ−1 · ndΓ +
∫

Γ

λ
∂T τ−1

∂n
ηdΓ =

⎧⎪⎪⎨⎪⎪⎩
−
∫
Γ

hakm(ρτ − ρa)dΓ −
∫
Γ

kh(T τ−1 − Ta)dΓ, v · n < 0

−
∫
Γ

sτηvτ−1 · ndΓ −
∫
Γ

kh(T τ−1 − Ta)dΓ, v · n ≥ 0

The system of difference equations corresponding to equation (24) is given as

M
sτ − sτ−1

Δt
= S τ−1

2 sτ + fτ−1
2 , (25)

where M is the same as in the previous subsection. The stiffness matrix S 2 is assembled from two element matrices,
SΩek

and I4e . The matrix [S ek ]4×4 is given earlier and [I4e ]2×2 is given as

I4ei j
=

⎧⎪⎪⎨⎪⎪⎩
δi j

L
2 vτ−1

i · n if vτ−1
i · n ≥ 0, i, j = 1, 2

0 if vτ−1
i · n < 0.

(26)

The R.H.S. vector fτ−1
2 , for k ∈ {1, ...,Nd} is given by

fτ−1
2i
= −
∫

Γ

kh(T τ−1 − Ta)φidΓ −
∫

Ω

λ∇T τ−1 · ∇φidΩ +
∫

Ω

qτφidΩ + I5, (27)

I5 =

⎧⎪⎪⎨⎪⎪⎩
0, if vτ−1 · n ≥ 0,

−
∫
Γ

kmha (ρτ − ρa) φidΓ, if vτ−1 · n < 0.
(28)

In our algorithm, the R.H.S. vector [f2]Nd×1 is assembled from two element vectors [fΩe ]4×1 and [fΓe ]2×1, corresponding
to inner elements ek and boundary elements, respectively.

fΩei
= −
∫

exy

λ∇T τ−1 · ∇φidxdy +
∫

exy

qτφidxdy, i = 1, 2, 3, 4 (29)

= −
4∑

j=1

4∑

l=1

λ

4
T τ−1

k

(
∂φi

∂x j

∂φl

∂x j
+
∂φi

∂y j

∂φl

∂y j

)
Δk +

1
4

4∑

j=1

qτjΔk. (30)
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fΓei
=

⎧⎪⎪⎨⎪⎪⎩
Ie if vτ−1 · n ≥ 0, i = 1, 2,

−kmha
L
2 (ρτi − ρa) + Iei if vτ−1 · n < 0,

(31)

where Ie comes from the first integral on the R.H.S. of equation (27) and it is given by

Iei = −
∫

eΓ

kh(T τ−1 − Ta)φidΓ

= −kh
L
2

(T τ−1
i − Ta). (32)

3.3. Calculation of the velocity from Darcy’s law

Once ρ and h have been determined, ρ-h diagrams are used to compute T , P, and XG. Subsequently, Darcy’s law
is used to calculate v from P. To this extent, we use a weak form of Darcy’s law, which reads as

∫

Ω

vxηdΩ = −
∫

Ω

K
μ

∂P
∂x
ηdΩ, (33)

∫

Ω

vyηdΩ = −
∫

Ω

K
μ

∂P
∂y
ηdΩ, (34)

for both components of the velocity v. We write vx(x) =
∑Nd

j=1 vx jφ j(x), vy(x) =
∑Nd

j=1 vyjφ j(x), and P(x) =
∑Nd

j=1 Pjφ j(x)
to obtain

Nd∑

j=1

vx j

∫

Ω

φiφ jdΩ = −
Nd∑

j=1

Pj

∫

Ω

K
μ

∂φ j

∂x
φi dΩ, i = 1, 2, ...,Nd, (35)

Nd∑

j=1

vy j

∫

Ω

φiφ jdΩ = −
Nd∑

j=1

Pj

∫

Ω

K
μ

∂φ j

∂y
φi dΩ, i = 1, 2, ...,Nd. (36)

Let mi j =
∫
Ω
φiφ jdΩ, fxi = −

∫
Ω

K
μ
∂
∂x

(∑Nd
j=1 Pjφ j

)
dΩ, and fyi = −

∫
Ω

K
μ
∂
∂y

(∑Nd
j=1 Pjφ j

)
dΩ, then these matrices assem-

bled from the following element matrices

m2i j =
Δk

4
δi j, (37)

fxi = −
Δk

4
K
μ

4∑

j=1

Pj
∂φ j

∂xk
, (38)

fyi = −
Δk

4
K
μ

4∑

j=1

Pj
∂φ j

∂yk
. (39)

Since M2 = [mi j]Nd×Nd is a diagonal matrix, the solution procedure of the system of equations is trivial.

3.4. Streamline Upwind Petrov-Galerkin method

We use this method to avoid numerical oscillations caused by a convection dominant problem. In this method,
the test function η(x) includes another term p(x) alongside the classical part (say w(x)). The classical part ensures
consistency of the scheme and p(x) introduces some artificial diffusion (and hence some loss of accuracy). In our case

p(x) =
D
2

v · ∇φi

|v| , |v| > 0. (40)

The value of D depends on the direction of the velocity and element dimensions [10]. With the modified test function,
η(x) = w(x) + p(x), we need to repeat all the steps carried out in the preceding subsections to determine element and
global matrices [10].
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Symbol value comments/units
K 10−10 [m2]
ha 3.5 × 104 [J/Kg]
Δt 1/16000 (with Δx =0.025)[s]
μ 5 × 10−5 Pa.s
λ 0.05 [W/m/K]

Table 1: Parametric values.

4. Numerical Experiments

For the simulation results of this section, the 2D domain is divided into 40×40 elements (and 1D into 40 elements).
We assume no heat source (q = 0) for the given examples. Few other parameter values are provided in Table 1

4.1. Case Study 1. Inwardly insulated system

We start with a simpler case, where no mass and heat is allowed to enter the fluid system by setting km = kh = 0.
The model and the solution procedure still allow an outflow of the mass and energy. To ensure a positive initial
velocity, we take the following initial conditions

T (x, 0) = 292 − 2x, x ∈ Ω,
XG(x, 0) = 0.1, x ∈ Ω,

where Ω is a unit length line segment for 1D and a unit square for 2D model. An exact relation between T and P
is not known in the context of the numerical ρ-h method. However, in our case, it is known experimentally (and
partially supported by Van der Waals equation), that a linear temperature profile results in an almost linear pressure.
The simulation results for all solution variables, ρ, ρh, T , P, XG, and v (1D case) are given in Figure 2. The 2D

Figure 2: Case Study 1. Inwardly insulated system, (km = 0, kh = 0). Solution variables at t = 0, 0.25, 5.0 [s], (a) density, (b) total enthalpy ρh,
(c) temperature T , (d) pressure P, (e) gas mass fraction XG , and (f) velocity v.

Ibrahim et al. / Procedia Computer Science 1 (2010) 781–790 787
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Figure 3: Case Study 1. (a) total mass, (b) total energy, (c) mass flow rate, and (d) energy flow rate.

results are given in Figure 4 and 5 with a similar initial conditions. A higher pressure value in the left part of the
domain, as compared to the right part (Figure 2(d)), forces a positive velocity (Figure 2(f)). The mass cannot enter
from the left boundary (km = 0), therefore, the velocity at the left boundary node goes to zero immediately. A positive
velocity means that the density in the left side decreases with time (Figure 2(a)). It also means that the mass and the

Figure 4: Case Study 1. Inwardly insulated system (km = 0, kh = 0), 2D model with 1D conditions, (left) density ρ, (middle) total enthalpy ρh, and
(right) temperature T .

Figure 5: Case Study 1. 2D model with 1D conditions. Solution variables at t = 3.0 (left) pressure P, (middle) gas mass fraction XG , and (right)
velocity vx in x-direction.

energy are flowing out from the right boundary. A decreasing density in the left side implies that the gas mass fraction
(relative to liquid mass fraction) is increasing in that section (Figure 2(e)). Figure 3(a) shows that the total mass in the
fluid system (

∫
Ω
ρdΩ) decreases with time, before reaching to a steady-state value. The total energy (

∫
Ω
ρhdΩ) is also

shown in Figure 3(b). The total energy decreases because of the outward mass transportation. The mass and energy
flow rates are given by equations (6) and (7) (analytically). For their efficient numerical computation, see [4]. These
flow rates (as given in Figure 3(c) and 3(d)) are also used to check for the mass and energy conservation conditions.
In accordance with Fourier’s law, the temperature (and pressure) decreases in the left part and as the time proceeds

788 Ibrahim et al. / Procedia Computer Science 1 (2010) 781–790
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Figure 6: Case 1. Inwardly insulated system (km = 0, kh = 0), comparison of 1D density plots with graphs taken from cross-section of 2D plots.

(a) density values at t = 0.3 [s] (b) density values at t = 3.0 [s] (c) the relative difference of two density curves given in (a), i.e.,

(
ρτi

)
2D
−
(
ρτi

)
1D(

ρτi

)
2D

, 1 ≤
i ≤ 41 and (d) the relative difference of two density curves given in (b).

the temperature (and pressure) gradient decreases (Figure 2(c) and 2(d)). A decreasing pressure gradient lowers the
magnitude of the velocity. Both, the mass and heat, flow from left to right, therefore, the total enthalpy also decreases
in the left part and increases, relatively, in the right side as shown in Figure 2(b). Apart from the comparison of
ρ, h, T , and P values in left and right sides, they always decrease in absolute terms due to the mass outflow. The
transport of mass and energy continues until the temperature (and pressure) gradient becomes zero. It is obvious that
the temperature and pressure are the main drivers for all transport. Other variables (ρ, h, XG, and v) depend on T and P
whereas T and P tend to a steady state. The transfer of mass and heat stops as soon the system reaches its steady state
value (thermal equilibrium). A comparison for density graphs of 1- and 2D calculations is given in Figure 6, where
cross-sections of 2D density graphs (along the x-axis) are provided along with 1D graphs for given time instances.

There is no significant relative difference ( (ρτi )2D−(ρτi )1D

(ρτi )2D
, 1 ≤ i ≤ 41) between the two models for this example.

4.2. Case Study 2. Mass and energy flowing into the system

Figure 7: Case Study 2. Mass and energy are flowing into the system, (km = 1.5, kh = 105). Solution variables at t = 0, 2, 20 [s], (a) density, (b)
total enthalpy ρh, (c) temperature T , (d) pressure P, (e) gas mass fraction XG , and (f) velocity v.

In this Case Study, we set initial conditions (T (x, 0) = 290 [K], XG = 0.1 [kg/kg]) and the ambient temperature
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(Ta = 293) for an inward initial velocity and hence an inward transport of mass (km = 1.5 [m/s]) and heat (kh = 105).
Simulation results (1D model) are given in Figure 7. Again, the temperature (and pressure combination) is the main
driver of the system dynamics. For more explanations, we refer to the subsection for Case Study 1 and [10]. Note that
the system (Figure 7) approaches a steady state as soon the temperature T approaches Ta (=293).

5. Conclusions

The numerical ρ-h method can be successfully applied to multi-phase fluid systems where we have certain spatial
profiles for the system variables. The solution of 1D and 2D models leads to comparable results for problems with a
1D solution profile. At this moment, the time step Δt should be chosen very small. This leads to excessive amounts
of computing times. For this model we do not have an analytic upper bound for Δt in order to obtain a stable time
integration. The upperbound is determined experimentally. Currently, we are investigating the origin of the small
Δt requirement. In our view, multiple time scales are involved in this model, which makes the resulting system of
discretized partial differential equations very stiff. The physical background of the multi time scales are the time-
scale of the convection diffusion process and the time-scale of the phase change process. In the future we plan to
investigate the cause of the stiffness. Thereafter we consider a fully implicit time integration, an adaptive Δt strategy,
and an adaptation of the thermodynamic model in the neighborhood of phase changes in order to reduce the computing
times.
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