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ON THE DESIGN OF BLOCK PRECONDITIONERS FOR
MARITIME ENGINEERING

C.M. KLAIJ∗, X. HE† and C. VUIK‡

∗ Maritime Research Institute Netherlands
P.O.Box 28, 6700AA Wageningen, The Netherlands

email: c.klaij@marin.nl, web page: http://www.marin.nl/

† Institute of Computing Technology, Chinese Academy of Sciences
No.6 Kexueyuan South Road Zhongguancun Haidian District Beijing, P.R.China 100190

email: hexin2016@ict.ac.cn, web page: http://english.ict.cas.cn/

‡ Delft University of Technology
Mekelweg 4, 2628CD Delft, The Netherlands

email: c.vuik@tudelft.nl, web page: http://www.ewi.tudelft.nl/

Keywords: incompressible flow, Reynolds-averaged Navier-Stokes, segregated and coupled
solvers, block preconditioners, Schur complement approximation

Abstract. The iterative error can be an important part of the total numerical error of any Com-
putational Fluid Dynamics simulation when the iterative convergence stagnates or when loose
convergence criteria are used. In the quest for better iterative convergence of CFD simulations,
we consider the design of iterative methods for the Reynolds-averaged Navier-Stokes equations,
discretized by finite-volume methods with cell-centered, co-located variables. The central point
is the approximation of the Schur complement (pressure matrix) in the block factorization of the
discrete system of mass and momentum equations. We show particular approximations of these
blocks that yield either segregated solvers or block preconditioners for fully coupled solvers. The
performance of these solvers are then demonstrated by computing the flow over a flat plate and
around a tanker on both structured and unstructured grids. We find that iterative convergence
to machine precision is attainable despite the high Reynolds numbers and mesh aspect ratio’s.
Improved approximations of the Schur complement do result in improved convergence rates, but
do not seem to pay-off in terms of total cost compared to the basic SIMPLE-type approximation.

1 INTRODUCTION

Applications of Computational Fluid Dynamics (CFD) in maritime engineering typically
involves incompressible, turbulent flow around complex geometries. Most commercial and open-
source CFD packages rely on the Reynolds-averaged Navier-Stokes (RaNS) equations to model
such flows, on finite-volume methods with co-located variables to discretize these equations, and
on SIMPLE-type methods to solve the resulting discrete systems [1, 2, 3]. Various procedures
can be applied to quantify the total numerical error of a CFD simulation before making design
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choices [4, 5, 6]. The total numerical error consists of a discretization error that can be reduced
by grid refinement and of an iterative error that can be reduced by tightening the convergence
criteria. Unfortunately, as the grid is refined, the convergence rate of methods such as SIMPLE
typically deteriorates to the point where even loose criteria are out of reach. Therefore, in this
paper, we focus on alternative iterative methods.

Two alternatives emerge from the vast literature on scalable methods for the incompressible
Navier-Stokes equations. Both share the idea of solving the coupled mass-momentum system
(instead of solving a SIMPLE-type decomposition), but differ in the way this is achieved. One
way is to interlace the velocity and pressure unknowns to form a system of small 4-by-4 blocks.
The small blocks on the diagonal are easily inverted, which can be exploited in multigrid methods
[7, 8, 9] or in Krylov subspace methods [10]. The other way is to separate the velocity and
pressure unknowns to form a system with 4 large blocks and exploit this structure in Krylov
subspace methods with block preconditioners. This seems to be a popular choice in the finite-
element context (see [11] for an overview), but less so in the finite-volume context, although
some results are found in [12] for RaNS on co-located grids. On staggered grids, we find results
for the Stokes and Oseen equations in [13, 14, 15].

Our research is focused on the design of efficient preconditioners for industrial CFD ap-
plications. We have shown in [16, 17] that SIMPLE-type methods can effectively be used as
preconditioners, resulting in significant savings of CPU time compared to their standard usage
as solvers. In [18], we have shown that the stabilization which is typically used for finite-volume
methods with co-located variables to avoid spurious pressure oscillations is particularly favorable
for SIMPLE-type methods. Furthermore, we have ported the Augmented Lagrangian Precondi-
tioner [19], which is popular in finite-element context, to the finite-volume context in [20] with
promising results for academic test cases.

In this paper, we consider Schur complement preconditioners that are readily available in
PETSc [21] once the coupled mass-momentum matrix is provided. Many variations are possible,
ranging from the exact Schur complement preconditioner to SIMPLE-type preconditioners and
any approximation in-between. We apply three variations to test cases that are relevant for
maritime engineering and report iteration counts which, together with a basic cost model, serve
as a measure for potential savings in CPU time.

The paper is thus organized in two parts: first a description of the overall algorithm, the
mass-momentum matrix, the preconditioners and their relative cost, then followed by examples
of the preconditioners’ performance for the three test case.

2 ITERATIVE SOLUTION OF THE RANS EQUATIONS

2.1 Non-linear iteration and coupling

To solve the Reynolds-averaged Navier-Stokes equations we start by linearizing the momen-
tum equations. Since the non-linearity comes from the convective term div(ρṽv), it can be
linearized by assuming that the mass flux ρṽ is known from a previous iteration. For finite-
volume discretization with co-located variables, computing this mass flux involves the pressure-
weighted interpolation (PWI) of the velocity, symbolized here by writing ṽ instead of v. The
PWI effectively couples the mass and momentum equations and thereby avoids spurious pressure
oscillations. Furthermore, the coupling between the Navier-Stokes equations and the turbulence
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model takes place through the convective terms div(ρṽφ) in the turbulence transport equa-
tions where φ is a quantity such as turbulent kinetic energy, and through the diffusive terms
div(µeff(gradv+ (gradv)T ) in the momentum equations. In these terms, the effective viscosity
µeff is the sum of the (constant) dynamic viscosity µ and the (variable) turbulent eddy viscosity
µt provided by the turbulence model. The effective viscosity is assumed to be known when
solving the momentum equations. The iterative process of solving the mass and momentum
equations with known effective viscosity, computing the mass flux and solving the turbulence
equations is repeated until a convergence criterion is met. The solution of the system of mass
and momentum equations within this procedure is of the form

xk+1 = xk + x′

= xk + (Ak)−1(bk −Akxk) k = 0, 1, . . .
(1)

with unknowns x = [v, p]T . Thus, at non-linear iteration k, the value xk is corrected by x′,
which is the solution of Akx′ = rk with rk = bk−Akxk the residual of the mass and momentum
equations. We are interested in solvers that can exploit the structure of A, which we discuss
first.

2.2 Structure of the mass-momentum matrix

We consider a finite-volume discretization where the variables are co-located in the cell cen-
ters. On a three-dimensional computational mesh with N cells, we order the 4N unknowns by
equation as [(v1)1, . . . , (v1)N , (v2)1, . . . , (v2)N , (v3)1 . . . (v3)N , p1, . . . , pN ]T . The system of mass
and momentum equations Akx′ = rk then has the following form









Q1 0 0 G1

0 Q2 0 G2

0 0 Q3 G3

D1 D2 D3 C

















v1
v2
v3
p









′

=









r1
r2
r3
rp









where each block is a sparse N -by-N matrix. Here, Q contains the contribution from the
convection and diffusion, G from the pressure gradient, D from the velocity divergence and C

from the PWI.
The block diagonal form of Q follows not only from the linearization that takes the mass flux

ρṽ from the previous iteration, but also requires the second part of the diffusion term, (gradv)T ,
to be taken from the previous iteration. Notice that the matrices Qi are equal because they
only contain the convection term div(ρṽvi) and the remaining diffusion term div(µeff(grad vi)).
To avoid the order barrier [3], higher-order convection schemes are non-linear even though the
convection term is linear. Such schemes are implemented in defect-correction form [3, 22] and
combined with iteration (1)

The gradient matrix G and divergence matrix D are obtained by Gauss’ theorem and linear
interpolation. Eccentricity and non-orthogonality corrections [2] are implemented in defect-
correction form and combined with (1). The stabilization matrix C follows from the pressure-
weighted interpolation and has the particular form [18]

C = −
1

dQ
L+D

1

dQ
G
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with L the N -by-N Laplacian matrix and dQ the diagonal of Q. This stabilization is particu-
larly favorable for SIMPLE-type solvers. Notice that C, as the difference between two ways of
discretizing second-order derivatives, is in some sense close to zero. Solving Akx′ = rk by the
Jacobi iterative method is impossible, because the diagonal elements of C can be zero. For this
reason we investigate linear solvers which can be applied even if C = 0.

2.3 Segregated and coupled solvers

For brevity, we will continue with the following shorthand notation for Ax′ = r and consider
the LDU factorization of the matrix A:

[

Q G

D C

] [

v

p

]

′

=

[

rv
rp

]

,

[

Q G

D C

]

=

[

I 0
DQ−1 I

] [

Q 0
0 S

] [

I Q−1G

0 I

]

with S = C −DQ−1G the Schur complement. The corresponding inverse

[

Q G

D C

]

−1

=

[

I −Q−1G
0 I

] [

Q−1 0
0 S−1

] [

I 0
−DQ−1 I

]

shows that the solution of Ax′ = r involves the solution of momentum sub-systems (Q−1)
and pressure sub-systems (S−1). The main problem is that S is a dense matrix that cannot
be explicitly constructed in real-life applications. Therefore, it needs to be approximated, for
example by the SIMPLE approximation S̃ = C −D 1

dQ
G = − 1

dQ
L that exploits the particular

form of C. If we disregard the upper block, we obtain the following solver x′ = P−1r with

[

v

p

]

′

=

[

Q−1 0

0 S̃−1

] [

I 0
−DQ−1 I

] [

rv
rp

]

=

[

Q−1rv

S̃−1(rp −DQ−1rv)

]

Here, we recognize the first two steps of the SIMPLE method: 1) momentum solve Qu′ = rv and
2) pressure solve S̃p′ = rp−Du′. The third step of SIMPLE is obtained when we also include the
upper block in the approximation together with the approximation Q−1 ≈ 1

dQ
that was already

used for the Schur complement. Other solvers can be devised by making other approximations,
the trade-off being that a better approximation is usually more expensive.

Note that x′ = P−1r is referred to as a segregated solver: it does not involve the matrix
A. The matching coupled solver x′ = A−1r is obtained by using P−1 as a preconditioner,
i.e. by solving P−1Ax′ = P−1r with a Krylov subspace method such as GMRES. Since the
coupled solver computes the corrections x′ with the original matrix A instead of the cheaper
approximation P , we expect faster convergence of the sequence {xk} but also a higher cost per
iteration.

Once the matrix A is provided, PETSc can readily construct preconditioners based on the
inverse of the LDU factorization with any desired approximation. Here, we will consider three
variations 1:

• ‘exact Schur’: full factorization with momentum and pressure sub-systems solved to a
relative tolerance of 10−12. Preconditioner for S based on the SIMPLE approximation S̃.

1Be careful, similar names in literature can have slightly different meaning.

896



C.M. Klaij, X. He and C. Vuik

• ‘approx Schur’: same as exact Schur but with a relative tolerance of 10−2 instead of 10−12.

• ‘SIMPLE’: same as approx Schur but with S̃ instead of S.

For the mass-momentum system we use FGMRES with any of these preconditioners, for the sub-
systems we use GMRES with ILU(0) preconditioning. The exact Schur preconditioner should
lead to convergence in two steps [23], which is the main motivation for considering cheaper
approximations that are feasible in real-life applications.

2.4 Solver cost model

Wall-clock time may be the obvious measure to discriminate between different solvers but
since it highly depends on machine and implementation, we get more insight from a basic cost
model.

First consider the cost of the segregated SIMPLE solver. This forms the baseline for evaluat-
ing the cost of other solvers. At each non-linear iteration, SIMPLE solves the three momentum
equations (‘mom-u’) and the pressure equation (‘mass-p’) to a certain relative tolerance, which
we assume to be fixed. Thus, the total cost expressed in solves per non-linear iteration is

• segregated SIMPLE: 3 mom-u + 1 mass-p.

Now consider the cost of using SIMPLE as a preconditioner for a Krylov subspace method that
solves the coupled mass-momentum system to a certain relative tolerance in nx iterations. The
preconditioner is applied at each Krylov iteration. Therefore, if all other costs are assumed
negligible compared to the cost of the preconditioner, we arrive at a total cost of

• coupled, SIMPLE preconditioner: nx × (3 mom-u + 1 mass-p)

per non-linear iteration. Clearly, this higher cost per non-linear iteration only pays-off if the
number of non-linear iterations required to achieve convergence is significantly reduced compared
to the baseline solver.

Finally consider the cost of the Schur preconditioners. Again these preconditioners are applied
at each Krylov iteration of a coupled mass-momentum solver. However, the matrix in the
pressure equation is now different. Instead of solving S̃p′ = rp with S̃ = C −D 1

dQ
G we are now

solving with S = C −DQ−1G. To quantify the cost of this pressure solve we have to consider
it in more detail. In both cases, we solve the pressure sub-system with a preconditioned Krylov
subspace method up to a certain relative tolerance in np iterations. In both cases, we use the
same preconditioner, ILU(0) based on the matrix S̃. Thus, the application of the preconditioner
has the same cost. But preconditioned Krylov subspace methods further require the application
of the matrix itself and this is where both approaches differ. In the first case, the matrix is
readily available. In the second case, applying the matrix involves four steps: multiplication
with G, three mom-u solves, multiplication by D and subtraction from C. If we neglect the
multiplications and subtraction, we arrive at a total cost of

• coupled, Schur preconditioner: nx × (3× (np + 1) mom-u + 1 mass-p)
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Figure 1: Impression of the grids. Flat-plate grid with 160×120 cells and max aspect ratio of order
1 : 104 (left). Tanker grids, unstructured with 176K cells and max aspect ratio of order 1 : 102 (middle)
and structured with 256K cells and max aspect ratio of order 1 : 104 (right).

per non-linear iteration. The nx × np factor reflects the nesting of a momentum solve within

the pressure solve. Clearly, this higher cost only pays-off if the number of linear iterations is
significantly reduced compared to the SIMPLE preconditioner.

Thus, by quantifying the number of non-linear iterations and the number of Krylov iterations
nx and np in the following numerical experiments, we can already get an impression of the relative
cost of the proposed solvers.

3 NUMERICAL EXPERIMENTS

The following numerical experiments were done with a pilot implementation in MARIN’s
CFD software package ReFRESCO [24].

3.1 Description of test cases

Flow over finite flat plate The friction resistance coefficient of an infinitely thin plate,
expressed as function of the Reynolds number, is known as the friction line and plays an impor-
tant role in the extrapolation of model-scale results to full scale. The flow over a finite flat plate
therefore became a standard test case in maritime engineering. Numerical friction lines for var-
ious turbulence models were already proposed in [25] and compared to experimental lines such
as the ITTC’57 line. Detailed results for ReFRESCO are found in [26], including a numerical
uncertainty analysis with the procedure from [6]. Here, we will reconsider the fully turbulent
flow at Re = 107 on the same series of grids. These block-structured grids are refined near the
leading and trailing edge of the plate and spread out in the wake of the plate, see Figure 1. Near
the middle of the plate, the cells have an aspect ratio of order 1 : 104.

Flow around model tanker Another important test case in maritime engineering is the
flow around the Kriso Very Large Crude Carrier 2, see [27] for a summary of the results from
literature and for a detailed study of various turbulence models with ReFRESCO. Results for
different segregated and coupled solvers can be found in [17]. Here, we reconsider the model-
scale case at Reynolds number 4.6 · 106 on two types of grids, structured and unstructured. The
structured grid has 256K cells and the unstructured grid 176K cells, which is very coarse for this
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Figure 2: Non-linear convergence to steady-state for the flat plate on 80×60 grid. Segregated solver
(left) and coupled solver (right).

application. The main difference is that the unstructured grid allows local refinement towards
the hull using hanging nodes, see Figure 1. The structured grid has a maximum aspect ratio
around 1 : 104 and the boundary layer is fully resolved (max y

+
≈ 1) while the unstructured

grid has a maximum aspect ratio around 1 : 102 and part of the boundary layer is modeled with
wall functions (max y

+
≈ 350).

3.2 Non-linear iteration

Figure 2 illustrates the benefit of the coupled solver: it requires less non-linear iterations
to achieve a certain convergence criterion than the segregated solver. The same relaxation
parameters were used for both solvers, so the difference in convergence is solely due to the
coupled solution of the mass-momentum system. As shown in [17], this difference increases with
grid refinement, leading to significant savings in CPU time on finer grids. The coupled solver
also proved to be less sensitive to relaxation parameters. Note that the non-linear iterations are
more expensive than those of a segregated solver, so the actual saving highly depends on the
efficiency of the linear solver and preconditioner for the mass-momentum system, which is the
main topic of this paper.

3.3 Linear iteration

Figure 3 shows an example of the convergence of FGMRES with the three different precon-
ditioners discussed in Section 2.3. We see that FGMRES converges to machine accuracy in
nx = 2 iterations when the exact Schur preconditioner is used, as predicted by theory. When
the approximate Schur preconditioner is used, nx = 6 iterations are needed to reach machine
accuracy for the flat plate, nx = 12 for the tanker on the unstructured grid and nx = 13 on
the structured grid. The SIMPLE preconditioner does not converge very well in comparison,
it only achieves one or two orders of convergence in nx = 20 iterations. Clearly, in terms of
linear iterations for the mass-momentum system, there is a lot to be gained by using better
approximations than SIMPLE.

However, according to the cost model from Section 2.4 we should also consider the linear
iterations of the pressure sub-system involved. For each iteration, the exact Schur preconditioner
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Figure 3: Linear convergence of the coupled mass-momentum system at the 10th non-linear iteration
with three preconditioners (left) and corresponding number of iterations needed to solve the pressure sub-
system (right). Flat plate on 80×60 grid (top), tanker on unstructured grid (middle) and on structured
grid (bottom).
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(which solves sub-systems to relative tolerance 10−12) needs more than np = 300 iterations to
solve the pressure sub-system for the flat plate, more than np = 500 for the tanker on the
unstructured grid and more than np = 1700 for the structured grid. The approximate Schur
preconditioner (which solves sub-systems to relative tolerance 10−2) needs about np = 50 for
the flat plate, np = 80 for the tanker on the unstructured grid and np = 200 for the structured
grid. The SIMPLE preconditioner (which solves sub-systems to relative tolerance 10−2 and
approximates the Schur complement) needs less than np = 25 for all cases. Clearly, the reduced
number of iterations for the mass-momentum system obtained with the approximate Schur
preconditioner comes with an increased number of iterations for the sub-systems.

So far, we considered the solution of the mass-momentum system arising at the tenth non-
linear iteration. In the context of a non-linear solver, it is often not necessary to solve this system
very accurately and a relative tolerance of 0.01 is already sufficient [17]. Therefore, we continue
with this tolerance and considering the first one-hundred non-linear iterations. Figure 4 shows
the number nx of linear iterations needed to solve the mass-momentum system at each non-linear
iteration and the average number of iterations np needed to solve the pressure sub-system.

Considering that the test cases vary from 2D to 3D, from structured to unstructured and
from moderate to high aspect ratio’s, we find the number nx to be remarkably constant: around
5 for the approximate Schur preconditioner and around 20 for the SIMPLE preconditioner.
The number np is less constant and depends both on the case and on the non-linear iteration.
Extreme differences are found for the tanker on the structured grid: in the first forty non-
linear iterations np is around 140 for the approximate Schur preconditioner and around 25 for
the SIMPLE preconditioner, then these numbers drop to around 60 and 10, respectively. This
makes it hard to draw any definite conclusions. Nevertheless, if we assume typical values for the
approximate Schur preconditioner to be nx = 5 and np = 50 we get a total cost per non-linear
iteration of

• coupled, approx Schur preconditioner: 765 mom-u + 5 mass-p

while the SIMPLE preconditioner with typical value of nx = 20 gives a total cost of

• coupled, SIMPLE preconditioner: 60 mom-u + 20 mass-p

From these numbers, we tentatively conclude that the reduction of iterations nx achieved with
the approximate Schur preconditioner is not nearly enough to compensate for the momentum
solve needed at every iteration of the pressure solve.

One could also conclude that the SIMPLE approximation S̃ is a poor preconditioner for the
true Schur complement S: a better preconditioner might reduce np and shift the cost balance.
Furthermore, note that all cases presented here were done on a single process. In parallel, the
preconditioner is built from S̃ using ILU(0) per sub-domain and Jacobi between sub-domains,
which leads to a dramatic increase of np. A possible explanation is that S̃ is sparse, whereas S,
if it were constructed, would be dense. With parallelization using ILU(0) per sub-domain and
Jacobi between sub-domains, the preconditioner built from S̃ becomes even more sparse, which
could explain the significant loss in performance when used for solving dense S. This drop in
performance has prevented us from presenting thorough scalability studies.
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Figure 4: Linear iterations needed to solve the mass-momentum system with relative tolerance 0.01
(left) and average number of iterations needed to solve the pressure sub-system (right). Flat plate on
80×60 grid (top) and tanker on unstructured grid (middle) and on structured grid (bottom).
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4 DISCUSSION

We have compared the behavior of three preconditioners for the solution of the mass-momentum
system that arises from the finite-volume discretization with co-located variables of the steady,
incompressible RaNS equations, using three test cases that are representative of maritime engi-
neering.

These preconditioners are readily available in PETSc and differ only in the approximation
of the Schur complement and in the relative tolerance of the sub-system solves. The main idea
was to keep the true Schur complement in the pressure sub-system and use the SIMPLE-type
approximation to build its preconditioner. This gives much better performance than replacing
the true Schur complement altogether, at least when expressed in linear iterations for the mass-
momentum system.

However, the total cost in terms of linear iterations for the sub-systems turns out to be
an order higher for the three considered cases. The main reason for this difference is that
each pressure sub-system iteration with the true Schur complement involves the solution of the
momentum sub-system. For our test cases, this easily leads to hundreds of momentum solves
within each pressure solve. Besides, the SIMPLE-type approximation turns out not to be a
very good preconditioner for the true Schur complement, especially in combination with block
Jacobi parallelization. This has prevented us from presenting grid studies and scalability results
in this paper. Future research should therefore aim at understanding the exact causes of these
problems.

ACKNOWLEDGEMENT

This research is partly funded by the Dutch Ministry of Economic Affairs.

REFERENCES

[1] S.V. Patankar. Numerical heat transfer and fluid flow. McGraw-Hill, New York, 1980.
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