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Abstract. The discretization of incompressible Navier-Stokes equation leads to a large
linear system with a nonsymmetric and indefinite coefficient matrix. Many methods are
known to overcome these difficulties: Uzawa method, SIMPLE-type methods, penalty
method, pressure correction method, etc. In this paper, Krylov accelerated versions of the
SIMPLE(R) methods: GCR-SIMPLE(R) are investigated, where SIMPLE(R) are used as
preconditioners. Preconditioning plays a key role in Krylov methods. We analyze the spec-
tral structure of these SIMPLE-type preconditioners. Some formulations are established to
characterize the eigenvalue distributions of these preconditioning methods. Spectral com-
parisons with Elman’s preconditioner and ILU preconditioners are discussed. This gives
insight into the convergence of the iterative methods. Some numerical test results are
presented.
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1 INTRODUCTION

The steady state incompressible Navier-Stokes equations{ −ν∆u + u · grad u + grad p = f,
− div u = 0,

combined with some boundary conditions, are widely used to simulate the incompressible
flow of a fluid. Discretization and linearization of the equations leads to the following
large sparse linear algebraic system(

Q G
GT O

)(
u
p

)
=

(
b1

b2

)
, (1)

where Q ∈ Rn×n, G ∈ Rn×m,m 6 n, det(Q) 6= 0, rank(G) = m; u ∈ Rn and p ∈ Rm are
the velocity vector and the pressure vector respectively. For problems with three space
dimensions, iterative solvers are required. Preconditioning often determines the numerical
performance of the Krylov subspace solvers [2].

In [11, 12], Vuik proposed GCR-SIMPLE(R) algorithm for solving the large linear
system (1). The algorithm can be considered as a combination of the Krylov subspace
method GCR [3] with the SIMPLE(R) algorithm[7]. In this combined algorithm, the
SIMPLE(R) iteration is collaborated as a preconditioner with the GCR method. Numer-
ical tests indicate that the SIMPLE(R) preconditioning is effective and competitive for
practical use.

In this paper, we focus on the eigenvalue analysis of the SIMPLE preconditioned matrix
Ã. Two related formulations are derived to describe the spectrum of Ã. The spectrum
has some connection with that of the Schur complement of the matrix A. The relationship
between the two different formulations has been investigated by using the theory of ma-
trix singular value decomposition. A diagonal scaling technique proposed by Vuik[11] is
studied. Some useful eigenvalue bounds have been got in symmetric situation. Numerical
tests are used to illustrate the theoretical bounds.

In the remaining parts of this paper, the linear system (1) is abbreviated as Ax = b,
where A ∈ R(n+m)×(n+m), b ∈ Rn+m. Notations have the same meaning with references
[12, 11]. σ(A) represents the set of all eigenvalues of matrix A, for example. Besides, we
assume that the matrix Q, its diagonal matrix D := diag(Q), are all nonsingular in this
paper.

2 SIMPLE TYPE METHODS AND GCR-SIMPLE(R) ALGORITHMS

In this section, we review briefly the SIMPLE and SIMPLER methods and its combi-
nation with one Krylov methods:GCR-SIMPLE(R) algorithm.

2.1 SIMPLE type methods

If we denote R := −GT D−1G, where D := diag(Q) is the diagonal of the matrix Q,
then the SIMPLE method proposed by Patanker [7] is given by the following algorithms:
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Algorithm 2.1. SIMPLE algorithm
1. Choose an initial guess p∗.
2. Solve Qu∗ = b1 −Gp∗.
3. Solve Rδp = b2 −GT u∗.
4. Compute u = u∗ −D−1Gδp, and p := p∗ + δp.
5. If not converged take p∗ = p and go to 2.

The SIMPLE method can be seen as a distributive method. Instead of solving the
system Ax = b the system ABy = b, x = By will be solved.Choosing B and M as:

B =

(
I −D−1G
O I

)
, M =

(
Q O
GT R

)
, (2)

and using the splitting AB = M−N , the following iteration is equivalent to the SIMPLE
method [13]:

xk+1 = xk + BM−1(b− Axk), k = 0, 1, 2, · · · , niter.

When the velocity vector u is known, p is a solution of the system:

Rp = b2 −GT D−1((D −Q)u + b1).

The idea is used in the SIMPLER method:

Algorithm 2.2. SIMPLER algorithm
1. Solve Rp∗ = b2 −GT D−1((D −Q)uk + b1).
2. Solve Qu∗ = b1 −Gp∗.
3. Solve Rδp = b2 −GT u∗.
4. Compute uk+1 = u∗ −D−1Gδp, and p := p∗ + δp.
5. If not converged take p∗ = p and go to 2.

Similar to SIMPLE method, SIMPLER method can also be expressed as:

xk+1 = xk + P (b− Axk), k = 0, 1, 2, · · · , niter.

Where,
P = BM−1 −BM−1AM−1

L BL + M−1
L BL, (3)

BL =

(
I O

−GT D−1 I

)
, ML =

(
Q G
O R

)
,
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2.2 GCR-SIMPLE(R) algorithms

Many Krylov subspace methods are known to solve non-symmetric linear systems. We
choose the GCR method [3] because the method is robust,minimizes the residual and
allows a variable preconditioner [12]. The preconditioned GCR method is described as
following:

Algorithm 2.3. Preconditioned GCR Method

r0 = b− Ax0

for k = 0, 1, · · · , ngcr
sk+1 = P−1

k rk

vk+1 = Ask+1

for i = 0, 1, · · · , k
vk+1 = vk+1 − (vk+1, vi)vi

sk+1 = sk+1 − (vk+1, vi)si

end for
vk+1 = vk+1/

∥∥vk+1
∥∥

2

sk+1 = sk+1/
∥∥vk+1

∥∥
2

xk+1 = xk + (rk, vk+1)sk+1

rk+1 = rk − (rk, vk+1)vk+1

end for

Here, P−1
k is a preconditioner. We call it GCR-SIMPLE algorithm when P−1

k is chosen
as BM−1 defined by (2), and GCR-SIMPLER algorithm when P−1

k is chosen as P defined
by (3).

GCR-SIMPLE algorithm and GCR-SIMPLER algorithm are efficient and practical.
For the numerical tests relating with industrial modelling we refer to [11], [12] for reference.
Next sections will be devoted to explore the theoretical aspects by using spectral analysis.

3 TWO FORMULATIONS OF THE SPECTRUM OF THE SIMPLE PRE-
CONDITIONED MATRIX

Consider the right preconditioning to the linear system (1)

AP−1y = b, x = P−1y. (4)

When the SIMPLE algorithm is used as preconditioning, it is equivalent to choose the
preconditioner P−1 as[12, 13]

P−1 = BM−1 , P = MB−1, (5)

where,

B =

(
I −D−1G
O I

)
, M =

(
Q O
GT R

)
, D = diag(Q), R = −GT D−1G.
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We call this preconditioning a SIMPLE preconditioning, and the preconditioner P−1 as
SIMPLE preconditioner. For SIMPLE preconditioning, we have the following result:

Proposition 3.1. If the right preconditioner P−1 is taken to be the matrix defined by
(5), then the preconditioned matrix is

Ã := AP−1 =

(
I − (I −QD−1)GR−1GT Q−1 (I −QD−1)GR−1

O I

)
. (6)

And, therefore, the spectrum of the SIMPLE preconditioned matrix Ã is

σ(Ã) = {1} ∪ σ(I − (I −QD−1)GR−1GT Q−1). (7)

Proof. It is easy to verify that

M−1 =

(
Q−1 O

−R−1GT Q−1 R−1

)
, (8)

and
Ã = AP−1 = ABM−1

=

(
Q G
GT O

)(
I −D−1G
O I

)(
Q−1 O

−R−1GT Q−1 R−1

)

=

(
I − (I −QD−1)GR−1GT Q−1 (I −QD−1)GR−1

O I

)
.

So, the fact about the spectrum of Ã, described by (7), follows.

Now, we study the spectrum defined by (7) in more detail. By multiplying with matri-
ces Q−1 and Q from the left- and right-hand side of the matrix I−(I−QD−1)GR−1GT Q−1

respectively, we get

σ(I − (I −QD−1)GR−1GT Q−1) = σ(I − (Q−1 −D−1)GR−1GT )
= σ(I −D−1(D −Q)Q−1GR−1GT )
= σ(I − J Q−1GR−1GT )

,

in which, the matrix J := D−1(D − Q) is the Jacobi iteration matrix for the matrix Q.
This observation leads to the following proposition:

Proposition 3.2. For the SIMPLE preconditioned matrix Ã,

1. 1 is an eigenvalue with multiplicity at least of m, and

2. the remaining eigenvalues are 1−µi, i = 1, 2, · · · , n, where µi is the i− th eigenvalue
of the generalized eigenvalue problem

ZEx = µx, (9)

where,
E = GR−1GT ∈ Rn×n, Z = JQ−1 ∈ Rn×n.
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Next, to investigate the spectrum of Ã more accurately, we derive another formulation
of it. Consider the eigenvalue problem

Ãx = λx,

i.e.,
AP−1x = λx. (10)

We know that AP−1 has the same spectrum as P−1A except for some possible zero
eigenvalues [1]. When matrices A and P are both nonsingular, it holds that σ(AP−1) =
σ(P−1A). So, the eigenvalue problem (10) is equivalent to the generalized eigenvalue
problem

Ax = λPx. (11)

Here,

A =

(
Q G
GT O

)
,

and

P = MB−1 =

(
Q O
GT R

)(
I D−1G
O I

)
=

(
Q QD−1G
GT O

)
.

The generalized eigenvalue problem (11) can be written as
(

Q G
GT O

)(
u
p

)
= λ

(
Q QD−1G
GT O

)(
u
p

)
, (12)

that is {
Qu + Gp = λ(Qu + QD−1Gp),

GT u = λGT u.

Multiply by Q−1 from the left to the first equation, and re-arrange the two equations as
{

(1− λ)u = (λD−1 −Q−1)Gp,
GT (1− λ)u = 0.

(13)

From (13), we see that 1 is an eigenvalue of (12). From the right-hand side of the first
equation of (13)(λ = 1),we can see that the eigenvectors corresponding to eigenvalue 1
are:

vi =

(
ui

0

)
∈ R(n+m), ui ∈ Rn, i = 1, 2, · · · , n,

where, {ui}n
i=1 is a basis of Rn.

For λ 6= 1, it follows from the second equation in (13) that GT u = 0. Multiplying the
first equation in (13) with GT shows that

0 = −GT Q−1Gp + λGT D−1Gp,
−GT Q−1Gp = −λGT D−1Gp.
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It follows that
Sp = λRp,

in which, S = −GT Q−1G ∈ Rm×m is the Schur complement of the matrix A, and R =
−GT D−1G ∈ Rm×m.

To conclude the above analysis, the following proposition is derived.

Proposition 3.3. For the SIMPLE preconditioned matrix Ã,

1. 1 is an eigenvalue with multiplicity of n, and

2. the remaining eigenvalues are defined by the generalized eigenvalue problem

Sp = λRp. (14)

In the following section, we investigate the generalized eigenvalue problems in more
detail.

4 THE RELATION BETWEEN BOTH SPECTRAL FORMULATIONS

In section 3, two different generalized eigenvalue problems (9) and (14) have been de-

rived to describe the spectrum of Ã. In this section, we shall show that the two generalized
eigenvalue problems are closely related.

Firstly, we investigate the generalized eigenvalue problem (14). Re-write matrix R as

R = −GT D−1G = −(D− 1
2 G)T (D− 1

2 G).

Making the singular value decomposition of the matrix D− 1
2 G ∈ Rn×m, we have

D− 1
2 G = UΣV T , (15)

in which,U ∈ Rn×n, V ∈ Rm×m are unitary matrices,i.e., UT U = I ∈ Rn×n, V T V = I ∈
Rm×m, and

Σ =




σ1

σ2 O

O
. . .

σm


 ∈ Rn×m,

σi, i = 1, 2, · · · ,m, are the singular values of the matrix D− 1
2 G, which are all positive

numbers since rank(D− 1
2 G) = m. So,

G = D
1
2 UΣV T ,

R = −(UΣV T )T (UΣV T ) = −V ΣT ΣV T ,
S = −GT Q−1G

= −(D
1
2 UΣV T )T Q−1(D

1
2 UΣV T )

= −V ΣT UT D
1
2 Q−1D

1
2 UΣV T .
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It follows that
R−1S = V (ΣT Σ)−1ΣT UT D

1
2 Q−1D

1
2 UΣV T . (16)

To study the generalized eigenvalue problem (9), by using the same singular value

decomposition for matrix D− 1
2 G, we have

E = GR−1GT

= (D
1
2 UΣV T )(−V (ΣT Σ)−1V T )(D

1
2 UΣV T )T

= −D
1
2 UΣ(ΣT Σ)−1ΣT UT D

1
2 ,

and
Z = JQ−1 = D−1(D −Q)Q−1 = (Q−1 −D−1).

Finally, we get
ZE = −(Q−1 −D−1)D

1
2 UΣ(ΣT Σ)−1ΣT UT D

1
2 . (17)

Multiplying by UT D
1
2 and D− 1

2 U to (17) from the left-side and right-side respectively, a
spectrum equivalent matrix is produced as

UT D
1
2 ZED− 1

2 U = −UT D
1
2 Q−1D

1
2 UΣ(ΣT Σ)−1ΣT + Σ(ΣT Σ)−1ΣT .

We denote this equation by

UT D
1
2 ZED− 1

2 U = −MN + N, (18)

in which,
M = UT D

1
2 Q−1D

1
2 U ∈ Rn×n,

and

N = Σ(ΣT Σ)−1ΣT =

(
Im O
O O

)
∈ Rn×n.

Partitioning matrix M according to the structure of N , (18) can be written in a sub-
matrix form

UT D
1
2 ZED− 1

2 U = −MN + N

= −
(

M11 M12

M21 M22

)(
Im O
O O

)
+

(
Im O
O O

)

=

(
Im −M11 O
−M21 O

)
.

(19)

Its characteristic polynomial is

det(µI − UT D
1
2 ZED− 1

2 U) = µn−m det((µ− 1)Im + M11).

So, we get to know that 0 is an eigenvalue of ZE with multiplicity of n − m, and the
remaining eigenvalues are µi = 1 − ηi, i = 1, 2, · · · ,m, where ηi is the i−th nonzero
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eigenvalue of the sub-matrix M11. From (19),ηi is also an eigenvalue of MN at the same
time, since that

det(ηI −MN) = ηn−m det(ηIm −M11).

By proposition 2.2, we have

σ(Ã) = {1} ∪ {1− µi} = {1} ∪ {ηi}, (20)

in which, the eigenvalue 1 has the multiplicity of m+(n−m) = n, and ηi ∈ σ(MN), ηi 6=
0, i = 1, 2, · · · ,m.

On the other hand, if we denote

T1 := UT D
1
2 Q−1D

1
2 UΣ ∈ Rn×m,

and
T2 := (ΣT Σ)−1ΣT ∈ Rm×n,

then MN = T1T2. We know that T1T2 ∈ Rn×n and T2T1 ∈ Rm×m have the same spectrum
except for the possible zero eigenvalue [1, pp.69]. The spectrum of T2T1 is

σ(T2T1) = σ((ΣT Σ)−1ΣT UT D
1
2 Q−1D

1
2 UΣ)

= σ(V (ΣT Σ)−1ΣT UT D
1
2 Q−1D

1
2 UΣV T )

= σ(R−1S).

The last equation is based on the fact of equation (16). This relation motivates the
following proposition.

Proposition 4.1. For the two generalized eigenvalue problem (9) and (14), suppose that
µi ∈ σ(ZE), i = 1, 2, · · · , n, and λi ∈ σ(R−1S), i = 1, 2, · · · ,m, the relationship between
the two problems is that µ = 0 is an eigenvalue of (9) with multiplicity of n −m, which
can be denoted as µm+1 = µm+2 = · · · = µn = 0, and that λi = 1 − µi, i = 1, 2, · · · ,m,
holds for the remaining m eigenvalues.

5 THE DIAGONAL SCALING

Vuik [11, 12] proposed a diagonal scaling strategy for practical implementation of the
SIMPLE preconditioning. Scale the coefficient matrix A by (left) multiplying the diagonal
matrix

D̂ :=

(
D−1 O
O D−1

R

)
, (21)

where,
D = diag(Q), DR = diag(R), R = −GT D−1G.

After the scaling, the coefficient matrix becomes to be

A := D̂A =

(
D−1Q D−1G
D−1

R GT O

)
. (22)

9
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At this moment,

D = diag(D−1Q) = I ∈ Rn×n,R = −(D−1
R GT )D−1(D−1G) = D−1

R R ∈ Rm×m,

and

B =

(
I −D−1G
O I

)
,M =

(
D−1Q O
D−1

R GT R
)

,M−1 =

(
Q−1D O

−R−1D−1
R GT Q−1D R−1

)
.

The SIMPLE preconditioned matrix now is

Ã = ABM−1

=

(
D−1Q D−1G
D−1

R GT O

)(
I −D−1G
O I

)(
Q−1D O

−R−1D−1
R GT Q−1D R−1

)

=

(
Ã11 Ã12

Ã21 Ã22

)
,

in which, by doing some elementary matrix calculation, these sub-matrices are:

Ã11 = I + D−1
[
QD−1GR−1D−1

R GT Q−1 −GR−1D−1
R GT Q−1

]
D

= I −D−1Q(Q−1 −D−1)GR−1GT Q−1D,

Ã12 = −D−1QD−1GR−1 + D−1GR−1 = D−1(I −QD−1)GR−1,

Ã21 = D−1
R GT Q−1D + D−1

R GT D−1GR−1D−1
R GT Q−1D = O,

Ã22 = −D−1
R GT D−1GR−1 = I.

Finally, it follows that

Ã =

(
I −D−1Q(Q−1 −D−1)GR−1GT Q−1D D−1(I −QD−1)GR−1DR

O I

)
. (23)

Comparing the matrix Ã in (23) with the matrix Ã defined by (6), we find that the
spectra of both matrices are exactly the same. So, theoretically speaking, there is no
influence to the spectrum of the SIMPLE preconditioned matrix by the diagonal scaling
(21).

6 EIGENVALUE BOUNDS FOR SYMMETRIC CASE

In this section, we assume that Q is symmetric positive definite, which corresponds to
the cases when term u grad u is deleted from Navier-Stokes equations in incompressible
flow. In this case, the coefficient matrix A is symmetric and indefinite.

Consider the generalized eigenvalue problem (14)

Sp = λRp. (24)

10
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It is obvious that the problem −Sp = −λRp is completely equivalent to the problem
Sp = λRp. Since both −S and −R are s.p.d. matrices, we call (24) as a s.p.d. gener-
alized eigenvalue problem by neglecting the negative signs in both sides. For the s.p.d.
generalized eigenvalue problem, the extreme eigenvalues (λmax and λmin) are the extreme
values of [1, pp.379]:

pT Sp

pT Rp
=

pT GT Q−1Gp

pT GT D−1Gp
, p 6= 0, p ∈ Rm, (25)

which is the ratio of the Rayleigh quotients of S and R. So,

λmax = max
p6=0

pT GT Q−1Gp

pT GT D−1Gp
= max

p6=0

(Gp)T Q−1(Gp)

(Gp)T D−1(Gp)
. (26)

Since that the matrix G has column full rank, i.e. rank(G) = m, Gp = 0 if and only if
p = 0. Denoting y = Gp, it follows that

λmax 6 max
y 6=0

yT Q−1y

yT D−1y
. (27)

Let µ1, µn be the largest and the smallest eigenvalues of the matrix Q, and d1, dn be the
largest and the smallest diagonal elements of Q respectively, then

λmax 6 d1

µn

. (28)

It is easy to show that

λmin > dn

µ1

(29)

by a similar argument.
So, combining (28), (29) and proposition 2.3, we get the following bounds for the

eigenvalues of the preconditioned matrix Ã:

min
{
1,

dn

µ1

}
6 λ 6 max

{
1,

d1

µn

}
, ∀λ ∈ σ(Ã). (30)

If the both sides of (30) are taken to be dn
µ1

and d1
µn

respectively, then

κ(Ã) =
λmax

λmin

6 d1

dn

· µ1

µn

=
d1

dn

κ(Q), (31)

where, κ(·) represents for the (spectral) condition number.

11
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7 NUMERICAL TESTS

Several numerical test results are reported here to illustrate the discussions above.

Example 7.1. In this example, the coefficient matrix is taken from a discretised Navier-
Stokes equations on a 16 × 16 grid [12](length= 2, ν = 1).The dimensions are n =
544,m = 256, and n + m = 800. A ∈ R800×800 is a nonsymmetric matrix.

The eigenvalues of the preconditioned matrix Ã were computed by both proposition
3.2 and proposition 3.3. The computing results were the same, which coincided with
the theoretical analysis. Spectra of A and Ã are plotted in Fig. 7.1, and some extreme
eigenvalues are listed in table 7.1.

0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

2

4

6

8

Fig.7.1: Spectrum of A and Ã.
The ’+’ represents for the eigenvalues of A, while ’o’ for that of the preconditioned Ã.

matrix max<(λi) min<(λi) max=(λi) max |λi| min |λi|
A 2.79074 0.03559 6.56341 6.76892 0.06018

Ã 1.46960 0.03000 0.70700 1.61894 0.21395

Table 7.1: The extreme eigenvalues of A and Ã.

Example 7.2. The matrix A is obtained from a discretised Stokes equation on a 16× 16
grid by removing the Dirichlet boundary conditions. The resulted coefficient matrix A ∈
R800×800 is symmetric, and Q ∈ R544×544 is a s.p.d. matrix.

12
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The extreme eigenvalues of A and Ã are listed in Table 7.2.

matrix λmin min |λi| λmax κ(·)
A −23.4555 0.0501 25.3762 1.7295× 103

Ã 0.5049 0.5049 46.7880 344.1452
Q 0.0154 0.0154 2.5477 232.9809

diag(Q) 0.9600 0.9600 1.6000 1.6667

Table 7.2: The extreme eigenvalues of A and Ã for example 7.2.

From example 7.1, we can see that the eigenvalues of the SIMPLE preconditioned
matrix Ã are clustered in a smaller region in the right -half plane. The results of example
7.2 agree with the theoretical eigenvalue bounds in section 6, which are:

0.96

2.547
= 0.377, and

1.6

0.0154
= 103.9.

We have also achieved some theoretical results on the spectral analysis of the SIM-
PLER preconditioning. We refer to [6] for reference. Next test is about the SIMPLER
preconditioning.

Example 7.3. In this example, the coefficient matrix is taken from a discretised Navier-
Stokes equations on a 24 × 24 grid [12](lengthy = 2, ν = 1).The dimensions are n =
1200,m = 576, and n + m = 1776. A ∈ R1776×1776 is a nonsymmetric matrix.

The eigenvalues of the SIMPLER preconditioned matrix Ã are plotted in Fig. 7.2 and
Fig. 7.3, and some comparisons for the numerical performance of GCR (without any
preconditioning), GCR-SIMPLE, and GCR-SIMPLER are listed in Table 7.3.

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Fig.7.2: Spectrum of the SIMPLER preconditioned matrix Ã. ’o’ for the eigenvalues of Ã.
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Fig. 7.3: Spectrum of A and Ã.
The ’+’ represents for the eigenvalues of A, while ’o’ for that of Ã.

GCR GCR-SIMPLE GCR-SIMPLER
iteration 907 64 10
CPU (s) 189.45 23.08 18.83

Table 7.3: Comparison of Example 7.3.

8 CONCLUSIONS

• GCR-SIMPLE(R) is a good combination of Krylov subspace method with SIMPLE
type preconditioning. It is an efficient and robust method to simulate incompressible
flows.

• The GCR acceleration can easily be added in an existing CFD code.

• SIMPLE(R) preconditioners are effective in terms of its spectrum clustering.

• The eigenvalue analysis gives a good explanation of the convergence acceleration for
the Stokes problem.

• The eigenvalue analysis here could be helpful to analyze the other preconditioners
for solving linear system (1).
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