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Abstract The iterative solution of large systems of equa-
tions may benefit from parallel processing. However, using
a straight-forward domain decomposition in “layered”
geomechanical finite element models with significantly dif-
ferent stiffnesses may lead to slow or non-converging solu-
tions. Physics-based domain decomposition is the answer
to such problems, as explained in this paper and demon-
strated on the basis of a few examples. Together with a
two-level preconditioner comprising an additive Schwarz
preconditioner that operates on the sub-domain level, an
algebraic coarse grid preconditioner that operates on the
global level, and additional load balancing measures, the
described solver provides an efficient and robust solution
of large systems of equations. Although the solver has been
developed primarily for geomechanical problems, the ideas
are applicable to the solution of other physical problems
involving large differences in material properties.
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1 Introduction

Finite element models of 3-D geomechanical problems
result in linear systems

Ka = f (1)

in which K is a sparse matrix that is often symmetric pos-
itive definite. In realistic models, the system of equations
can involve more degrees of freedom than can be handled
at the present time by direct solver implementations on cur-
rent workstation-class computers. Switching to an iterative
solver, such as the Conjugate Gradient method, is one possi-
ble way to overcome this problem, provided that the solver
is combined with a good preconditioner [12]. The solver
will not converge without such a preconditioner because
the large variation in material parameters typically results
in a very ill-conditioned system. For instance, the stiffness
of a loose soil layer can be four to five orders of mag-
nitude smaller than the stiffness of a concrete structure
within the same model. This results in a comparable differ-
ence in the magnitude of the (diagonal) coefficients of the
matrix K .

An effective preconditioner is based on an incomplete
Cholesky decomposition of the matrix K combined with
an adaptive drop tolerance [11, 14]. Indeed, this precon-
ditioner typically limits the number of solver iterations to
100 and often much less. It has been used successfully in
the commercial computer program PLAXIS [1] for solving a
wide range of 3-D geomechanical problems. Unfortunately,
this preconditioner cannot be implemented in a way that
efficiently exploits parallel computers, including multi-core
processors [3, 18]. This is a significant drawback as the
sequential processing speed more or less stagnates while the
number of processing cores increases. Another drawback of
the preconditioner is that it operates only at the matrix level;
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it does not directly use any information from the underlying
physical model.

This paper presents an iterative solver that can be imple-
mented efficiently on multi-core processors and parallel
computers, and that exploits the physical properties of the
problem to be solved. Although it has been developed pri-
marily for solving problems in geomechanics, it can also
be used to solve other types of problems in solid mechan-
ics involving large jumps in material properties. The solver
makes use of domain decomposition to obtain parallelism
and to separate regions with large differences in material
properties. It features a two-level preconditioner comprising
an additive Schwarz preconditioner that operates on the sub-
domain level, and an algebraic coarse grid preconditioner
that operates on the global level[16, 17, 19]. The former
is based on the incomplete Cholesky decomposition—
similar to the one used in the original PLAXIS solver—of
the sub-domain matrices. The latter uses the rigid body
modes of the sub-domains to construct the algebraic coarse
grid. Its task is to ensure that the convergence rate of the
solver does not deteriorate as the number of sub-domains
increases.

Previous research [7] also involved a second-level pre-
conditioner for mechanical problems. There are some
important differences, however, between that research and
the current research:

• The sub-domains in the previous research are formed
before the sub-domain matrices are assembled; the
sub-domain matrices are obtained by assembling the
element matrices associated with each sub-domain. In
the current research, the domain is decomposed after
the global matrix has been assembled; the sub-domain
matrices are obtained by extracting sections from the
global matrix.

• The target machines in the previous research are clus-
ters of PCs, whereas the current research targets multi-
core shared-memory machines.

• The primary preconditioner used in the previous
research is based on the additive Schwarz method. The
current research, on the other hand, uses the restricted
additive Schwarz method.

• The implementation of the solver developed in the pre-
vious research is aimed at a specific class of problems,
whereas the implementation in this research is more of
a black-box nature.

The current implementation of the solver targets multi-
core shared-memory computers because this architecture
represents almost all modern (desktop) computers. There
is no other reason why this architecture has been selected;
the algorithms on which the solver is based can be imple-
mented equally well on parallel computers with a distributed
memory architecture.

The performance of the solver has been examined on
a standard eight-core workstation. The original solver in
PLAXIS has been used to obtain a reference point with
which the performance of the new solver has been com-
pared. The number of cores has been varied from one to
eight to determine the parallel scalability of the solver.

The remainder of this paper is structured as follows.
Section 2 starts with a description of the geomechanical
finite element models that are targeted by the solver. This
section introduces the terminology that is used throughout
the subsequent sections. Section 3 continues with a (math-
ematical) description of the solver. After that, Section 4
explains how the solver has been implemented on top
of a small thread-based message passing library. Next,
Section 5 discusses the performance of the solver for vari-
ous geomechanical problems. Finally, Section 6 presents the
conclusions.

2 Description of the finite element models

The geomechanical problems of interest typically involve
a (large) volume of soil (or rock) and various structural
objects. The soil is often composed of multiple (semi-)
horizontal layers with different mechanical properties. The
structural objects are embedded in the soil or are located on
the top of the soil. They may include steel or concrete walls,
foundations, piles, anchors, and tunnels.

Finite element models are used to compute the deforma-
tion of the soil and the structural objects. Such a model is
composed of volume elements that model the soil and thick
structural objects; shell elements that model plates and thin-
walled structural objects; line elements that model piles and
anchors; and interface elements that model the interaction
between the soil and structural objects. The displacement
field u in an element e is approximated by

u(x) ≈ Ne(x)ae (2)

in which Ne is a matrix containing the element shape func-
tions and ae is a vector containing the degrees of freedom in
the nodes of the element. The latter are the displacements
along the three coordinate axes, and the rotations about
those axes if the element is a shell element. Note that adja-
cent elements share the degrees of freedom in their common
nodes.

Substitution of the approximate displacement field into
the constitutive equations yields a nonlinear system of equa-
tions that is solved with a (quasi) Newton method. Each
Newton iteration requires the solution of a linear system of
equations of the form

Ka = f (3)
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in which K is the tangent stiffness matrix (or an approx-
imation thereof), a is a vector containing the incremental
degrees of freedom in all the nodes, and f is a vector con-
taining the unbalanced forces and moments in the nodes.
The solution of this linear system can be approximated with
moderate accuracy because it is only an intermediate of the
nonlinear system to be solved. This is an advantage when
using an iterative solver.

3 Description of the solver

The solver is made up of the following building blocks:

• a physics-based domain decomposition method;
• a standard iterative solver;
• a two-level preconditioner.

Although these building blocks are not new, they have
been adapted in various ways to obtain an efficient solution
algorithm for geomechanical problems.

3.1 Physics-based domain decomposition

The domain decomposition method can be viewed as a vari-
ation of the age-old divide-and-conquer strategy. The idea
is to divide the problem to be solved into multiple sub-
problems which are more or less solved independently. As
the sub-problems are not completely independent, informa-
tion needs to be exchanged between the sub-problems to
obtain the solution of the global problem.

In the context of this paper, the domain decomposition
method is applied to the degrees of freedom. The degrees
of freedom are first partitioned into ns non-overlapping
groups, each one making up one sub-domain. The sub-
domains are then extended by adding degrees of freedom
from neighboring sub-domains to obtain ns slightly over-
lapping sub-domains. The original degrees of freedom in
a sub-domain are called the internal degrees of freedom,
and the additional degrees of freedom are called the overlap
degrees of freedom. Note that each degree of freedom is an
internal degree of freedom in exactly one sub-domain. Also
note that an overlap degree of freedom in one sub-domain
is also an internal degree of freedom in exactly one other
sub-domain.

The sub-domains are assigned to different threads of exe-
cution that are responsible for executing all computations
related to the degrees of freedom in their sub-domain. The
threads are also responsible for storing all data related to the
degrees of freedom in their sub-domain. No data are shared
between the threads, except for the data structures that are
needed to exchange data between the threads.

By defining restriction operators for each sub-
domain, the global stiffness matrix K can be expressed

in terms of slightly overlapping sub-domain matrices Ki as
follows:

K =
ns∑

i=1

LT
i KiRi

where Li and Ri are the left and right restriction oper-
ators, respectively, associated with the i-th sub-domain.
Both operators are non-square boolean matrices containing
ones and zeroes; each row contains at most one non-zero
entry. Note that the domain decomposition method typi-
cally involves only the right restriction operators. However,
the sub-domain matrices in this context are not obtained
by assembling the element matrices but by extracting them
from the assembled stiffness matrix.

The left restriction operators determine how the rows
in the sub-domain matrices are mapped to the rows in the
global matrix, while the right restriction operators determine
how the columns in the sub-domain matrices are mapped to
the columns in the global matrix.

The left restriction operators have the property that:

LiL
T
j = 0 if i �= j

That is, each left restriction operator Li has a unique set of
non-zero columns corresponding with the internal degrees
of freedom in the i-th sub-domain. The right restriction
operator is a superset of the left restriction operator; the
matrix (Ri − Li) is a boolean matrix in which the non-zero
columns correspond with the overlap degrees of freedom in
the i-th sub-domain. The right restriction operator can be
used to extract a sub-domain matrix from the global matrix
as follows:

Ki = RiKRT
i

The right restriction operator can also be used to extract a
sub-domain vector from a global vector as follows:

xi = Rix

in which xi is a sub-domain vector containing the elements
from the global vector x that are associated with the i-
th sub-domain. Note that the sub-domain vectors can be
assembled into a global vector using the left restriction
operators:

x =
ns∑

i=1

LT
i xi

The sub-domains are created by a partitioning
algorithm—partitioner in short—that has three objectives:
minimize the number of overlap degrees of freedom; mini-
mize the variation in sub-domain sizes; and separate degrees
of freedom associated with different material properties.
The first objective is based on the relation between the num-
ber of overlap degrees of freedom and the amount of data to
be exchanged between the sub-domains. A smaller number
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of overlap degrees of freedom results in a smaller amount
of data to be exchanged, which results in a lower com-
munication and synchronization overhead, which results
in a better parallel performance. The second objective is
based on the relation between the size of a sub-domain (the
number of degrees of freedom in that sub-domain) and the
amount of work associated with that sub-domain. A smaller
variation in sub-domain sizes results in a better distribution
of the total work load over the sub-domains, which results
in a higher parallel efficiency. The third objective is based
on the observation that the preconditioner becomes more
effective when the large jumps in material properties coin-
cide with the sub-domain boundaries. That is, when degrees
of freedom associated with different materials in the
underlying finite element model are assigned to different
sub-domains.

In general, all three objectives cannot be achieved at
the same time. The last objective, in particular, can restrict
the way in which the sub-domains are created. The parti-
tioner, therefore, applies a number of heuristics that have
been tuned by solving a range of problems, involving dif-
ferent geometries and material compositions, with a varying
number of sub-domains.

The partitioner does not actually operate on the level
of degrees of freedom but on the level of nodes. That is,
it first divides the nodes into overlapping groups and then
collects all degrees of freedom that are associated with
the nodes in those groups to obtain the sub-domains. This
has the advantage that all degrees of freedom associated
with the same node are assigned to the same sub-domain.
Another advantage is that the number of nodes is less than
the number of degrees of freedom so that the partitioner
requires less processing time and memory. As there is a
one-to-one mapping between the groups of nodes and the
sub-domains, the latter term will also be used for the groups
of nodes.

The partitioner creates the sub-domain in four stages:
form the initial sub-domains by identifying groups of con-
nected nodes associated with the same material type; merge
small sub-domains into larger ones; split large sub-domains
into smaller ones by applying a conventional graph parti-
tioning algorithm; and extend each sub-domain with one
or more levels of adjacent nodes to obtain the final sub-
domains. These four steps are described in detail in a
separate report [10].

Note that the number of sub-domains varies during the
execution of the first three stages. After the third stage, it is
equal to the desired number of sub-domains which equals
the number of threads. The number of sub-domains remains
equal to the number of threads during the execution of the
fourth stage.

3.2 The iterative solver

The parallel solver presented here uses a Krylov method
to compute the solution of the linear system of equations.
It implements both the Conjugate Gradient (CG) and the
Generalized Minimum Residual (GMRES) method [13].
Although the latter requires more memory and more work
per iteration than CG, it can deal with non-symmetric
matrices and preconditioners. This will be shown to be a
significant advantage.

A preconditioner is applied (either from the left or
from the right) to increase the convergence rate of the
Krylov method. The preconditioner is the most impor-
tant part of the solver as it largely determines the overall
performance. It is composed of an additive Schwarz pre-
conditioner that operates on the sub-domain level and an
algebraic coarse grid preconditioner that operates on the
global level.

The solver executes four types of operations: a vector
addition, a scalar vector product, a sparse matrix-vector
product, and a preconditioner-vector product. The first oper-
ation is trivial to execute in parallel: each thread simply adds
its own sub-domain vectors; no data exchange is needed
between the threads. The other two types of operations
are relatively straightforward to execute and are described
below. The last type of operation is explained in the next
two sub-sections.

A scalar vector product is computed in parallel as fol-
lows:

s = xT y =
ns∑

i=1

xT
i LiL

T
i yi

in which the matrix LiL
T
i is a boolean diagonal matrix

containing non-zero values for the unique set of degrees
of freedom in the i-th sub-domain. The above equation is
equivalent with a series of local scalar vector products fol-
lowed by a global sum that requires data exchanges between
threads. The time required to execute these data exchanges
is at least proportional to the logarithm of the number of
threads, which means that a scalar vector product lowers
the parallel efficiency of the solver. The solver, therefore,
tries to compute multiple scalar products at the same time
with the aim of lowering the communication latency that
typically makes up a large fraction of the communication
overhead.

A matrix-vector product can be written as:

y = Kx =
ns∑

i=1

LT
i KiRix =

ns∑

i=1

LT
i Kixi
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The resulting vector associated with the i-th sub-domain is
therefore given by:

yi = Riy =
ns∑

j=1

RiL
T
j Kjxj

As the matrix product RiL
T
j is non-zero only if the sub-

domains i and j share common degrees of freedom, the
matrix-vector product can be computed in two steps. First,
each thread independently computes its local matrix-vector
product Kixi . After that, it adds the contributions from the
sub-domains that share degrees of freedom with its own
sub-domain. This requires a data exchange between threads
owning adjacent sub-domains. As these data exchanges can
be executed in parallel, the communication overhead does
not increase with the number of threads, provided that the
available communication bandwidth scales with the number
of processing cores.

3.3 The two-level preconditioner

The classic additive Schwarz (AS) preconditioner is con-
structed as follows [17]:

P −1 =
n∑

i=1

RT
i P −1

i Ri

in which P −1
i is a sub-domain preconditioner that is

obtained by means of an incomplete Cholesky decomposi-
tion in a similar way as the original PLAXIS solver computes
the preconditioner [14]. Because the additive Schwarz pre-
conditioner has the same structure as the global stiffness
matrix K , a product of the form

y = P −1x

can be computed in the same way as a matrix-vector prod-
uct. In fact, the same data exchange procedures can be used.

The AS preconditioner can be formulated in an alterna-
tive way by using both the left and right location operators:

P −1 =
n∑

i=1

LT
i P −1

i Ri

This formulation, also known as the restricted additive
Schwarz (RAS) preconditioner, is actually (much) more
effective than the classic AS preconditioner [2]. It gener-
ally results in a higher convergence rate of the solver, and
it requires less data to be exchanged between the threads.
A drawback, however, is that the RAS preconditioner is not
symmetric, even when the sub-domain preconditioners are
symmetric. This means that the RAS preconditioner must
be combined with a non-symmetric Krylov method like
GMRES.

The coarse preconditioner P −1
0 is obtained by project-

ing the stiffness matrix onto a vector space that forms the
algebraic coarse grid. If this vector space is spanned by the
columns of the matrix V , then

P −1
0 = V A−1V T = V

(
V T KV

)−1
V T

with A the projected stiffness matrix, also called the coarse
matrix. The effectiveness of the coarse preconditioner is
determined by the construction of the matrix V . A good
choice has proven to be:

V = [
RT

1 N1 · · · RT
n Nn

]

That is, the columns of V are formed by the columns of
the sub-domain matrices Ni , of which the exact definition
will be given later. By introducing the coarse restriction
operators Ci , the matrix V can also be written as:

V =
n∑

i=1

RT
i NiCi

Each coarse restriction operator has a unique set of non-zero
columns so that

CiC
T
j =

{
0 if i �= j,

I if i = j

The coarse restriction operators can be used to extract a
coarse sub-domain vector from a global coarse vector:

xi = Cix

Note that the length of the coarse sub-domain vector xi

equals the number of columns in the matrix Ni , and that the
length of the global coarse vector x equals the number of
columns in the matrix V .

The coarse matrix can be constructed the column wise
through a series of parallel matrix-vector products and data
exchanges. If Aj denotes the j -th column of the coarse
matrix, then:

Aj = Aej = V T KV ej = V T Kaj = V T bj =
n∑

i=1

CT
i NT

i Rib
j (4)

with

aj = V ej = RT
i NiCie

j , bj = Kaj =
n∑

i=1

LT
i KiRia

j

and with ej the j -th column of the identity matrix.
The columns of the coarse matrix are not stored as a sin-

gle entities; each thread i stores only the partial columns
A

j
i that are obtained by applying the restriction operator Ci

to the columns of the coarse matrix. These partial columns
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can be computed in parallel by executing the following
algorithm.

1. Form the coarse sub-domain vector e
j
i = Cie

j . Note
that this vector is non-zero for only one thread.

2. Compute ã
j
i = Nie

j
i .

3. Exchange data to obtain a
j
i = ∑n

k=1 RiR
T
k ã

j
k .

4. Compute b̃
j
i = Kia

j
i .

5. Exchange data to obtain b
j
i = ∑n

k=1 RiL
T
k b̃

j
k .

6. Compute A
j
i = CiA

j = NT
i b

j
i .

Although this algorithm is relatively straightforward to
implement, it does not exploit the special structure of the
unit vectors ej . To be precise, it will perform a number of
matrix-vector multiplications involving zero vectors. It is
possible to implement a more efficient algorithm, but the
gain in performance would only be significant for larger
numbers of sub-domains.

The coarse preconditioner is formed by computing the
QR-decomposition [6] of the coarse matrix:

A = QU

in which Q is an orthonormal matrix and U is an upper tri-
angular matrix. They can be obtained by applying a Gram-
Schmidt orthonormalization procedure to the columns of A.
To execute this procedure in parallel, each thread computes
the partial decomposition

Ai = CiA = CiQU = QiU

This means that each thread stores the sub-matrix Qi and a
full copy of the matrix U . A drawback of this procedure is
that a backward substitution of the form

y = U−1x

takes a constant time, regardless of the number of threads. A
more scalable approach is to explicitly compute the inverse
of the upper triangular matrix U so that a backward substi-
tution becomes a matrix-vector product. Such a product can
be executed in parallel by dividing the inverse matrix U−1

row-wise between the threads in the same way as the matrix
Q. That is, each thread stores the sub-matrix

(
U−1

)

i
= CiU

−1

The inverse matrix U−1 can be computed by executing
a parallel algorithm that is similar to the GCR algorithm
[4, 9].

The application of the coarse preconditioner involves a
series of parallel matrix-vector products, inner products, and
data exchanges. This follows from:

y = P −1
0 x = V A−1V T x = V U−1QT V T x

= V U−1QT a = V U−1b = V c

=
n∑

i=1

RT
i NiCic

with

a = V T x =
n∑

i=1

CT
i NT

i Rix

b = QT a =
n∑

i=1

QT
i Cia

c = U−1b =
n∑

i=1

CT
i

(
U−1

)

i
b

To evaluate these equations, all threads execute the follow-
ing procedure in parallel.

1. Compute ai = NT
i xi with xi = Rix.

2. Compute bi = QT
i ai .

3. Compute b = ∑n
i=1 bi . This requires a global sum over

all threads. Each thread stores a copy of b.
4. Compute ci = (

U−1
)
i
b.

5. Compute ỹi = Nici .
6. Exchange data to obtain yi = ∑n

k=1 RiR
T
k ỹk .

The coarse preconditioner is most effective when it
removes problematic eigenvalues from the stiffness matrix
that cannot be removed by the RAS preconditioner. In
geomechanical applications, these eigenvalues are typically
related to the rigid body modes of the sub-domains. This
implies that each matrix Ni contains six columns repre-
senting three rigid translations and three rigid (linearized)
rotations of the i-th sub-domain. The six column vectors can
be viewed as a series of sextets, one for each node in the
sub-domain, representing the three displacements along the
global coordinate axes and the rotations about those axes.
These sextets are given by:

translation along the x-axis : [1, 0, 0, 0, 0, 0]
translation along the y-axis : [0, 1, 0, 0, 0, 0]
translation along the z-axis : [0, 0, 1, 0, 0, 0]
rotation about the x-axis : [0, −z, y, 1, 0, 0]
rotation about the y-axis : [z, 0, −x, 0, 1, 0]
rotation about the z-axis : [−y, x, 0, 0, 0, 1]

where x, y, and z are the coordinates of the node with
which the sextet is associated. Note that the rotational
degrees of freedom is only present when a shell element is
attached to a node. Otherwise, only the translational degrees
of freedom will be present.
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The rigid body modes do not need to be computed for
each sub-domain on an individual basis. An alternative
approach is to setup a global matrix N of which the six
columns represent the six rigid body modes of the complete
finite element model without constraints. The rigid body
modes for each sub-domain can then simply be obtained by
applying the right restriction operator:

Ni = RiN

This approach simplifies the programming interface of the
solver as the user only has to provide one matrix containing
the global rigid body modes.

In the case that a sub-domain contains degrees of free-
dom that are associated with different materials, the effec-
tiveness of the coarse preconditioner can be increased by
using more than six rigid body modes. To be precise, a
set of rigid body modes is used for each group of con-
nected degrees of freedom that is associated with the same
material. Although this results in a larger coarse grid, the
extra computational effort can be more than offset by the
increased effectiveness of the preconditioner. The current
implementation of the solver created at most four groups per
sub-domain. If the number of groups is larger, than adjacent
groups are merged until four groups remain.

The coarse preconditioner can be combined with the AS
or RAS preconditioner in an additive or a multiplicative
way. In the former approach, the coarse preconditioner is
simply added to the AS or RAS preconditioner. In the latter
approach, the two preconditioners are applied as follows:

ỹ = P −1x

r̃ = x − Kỹ

y = P −1
0 r̃

This scheme has proven to be much more efficient, even
though it requires one extra matrix-vector product per solver
iteration. Note that the combined preconditioner is not sym-
metric, even when using a symmetric AS preconditioner. A
symmetric preconditioner can be obtained by applying the
AS preconditioner a second time in a multiplicative way, but
this raises the computational cost of the total preconditioner
considerably.

4 Implementation of the solver

The solver has been implemented in C as a stand-alone,
portable library with programming interfaces for Fortran 77
and Fortran 90. The library is more or less a black box that
can be linked with a serial program. It provides a small set of
functions for defining a sparse matrix; for creating a precon-
ditioner associated with that matrix; for solving a system of
equations; for setting runtime parameters and options; and

for retrieving information about the state and progress of the
solver.

4.1 The message passing programming model

The solver library is based on a multi-threaded message
passing programming model to execute the solution algo-
rithms in parallel. When a program defines a sparse matrix,
the solver library spawns a number of threads, creates the
sub-domains, and assigns one sub-domain to each thread. A
custom-made and light-weight message passing module is
used to exchange data between adjacent sub-domains and to
perform global reduction operations such as a global sum.
Because the threads share a common memory space, mes-
sages sent by one thread to another can be copied directly
from the source memory area to the destination memory
area without intervention of the operating system, and with-
out using intermediate memory buffers. To synchronize the
execution of the threads, the message passing module uses
POSIX mutexes and condition variables, or Windows serial
sections and event objects. It tries to reduce system-call
overhead by spinning for a short while when one thread
needs to wait for another. Note that spinning is turned
off when the number of threads exceeds the number of
processor cores.

A significant part of the implementation is dedicated
to error handling. If a system error or a numerical error
occurs, the library will try very hard to return to a well-
defined state and report the error to the calling program.
A complicated situation occurs when a thread needs to
abort an operation because of an error that is local to that
thread. If this happens, the library will signal all other
threads so that they can abort their operation too. In this
way, a thread will not be waiting forever on an event
that never occurs because another thread has aborted an
operation.

By using threads and an integrated message passing mod-
ule, the solver library can be incorporated easily into an
existing serial program; there is no need to install external
libraries and set-up a special runtime environment. A draw-
back of a thread-based implementation is that the solver
cannot make use of distributed memory systems. However,
it would not be much work to replace the integrated message
passing module by an external message passing library that
supports distributed memory systems (one based on MPI,
for instance).

4.2 Some implementation details

Both the GMRES algorithm and the coarse grid precon-
ditioner make use of the Gram-Schmidt orthogonalization
procedure. The solver implements a combination of the
classic and the modified Gram-Schmidt procedure to find
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a balance between numerical accuracy and low communi-
cation overhead. The hybrid algorithm applies the modified
Gram-Schmidt procedure to bundles of four (or six in case
of the coarse preconditioner) vectors at a time, as shown
in Algorithm 1. Because the four scalar vector products in
the first inner for-loop are independent, only one global
reduction operation is required to sum the partial products
computed by the threads.

Algorithm 1 Create a vector u that is orthonormal to a set
of n vectors vi . This algorithm combines the classic and
modified Gram-Schmidt procedures.

1: for i = 1 to n step 4 do
2: for j = i to i + 3 do
3: aj = uT vj

4: end for
5: for j = i to i + 3 do
6: u = u − ajvj

7: end for
8: end for

To improve the performance of the GMRES algorithm,
the solver bundles each consecutive set of four Krylov vec-
tors into one dense matrix of which the elements are stored
row wise in memory. This makes it possible to replace the
four scalar vector products in the first inner loop of hybrid
Gram-Schmidt procedure by a dense matrix-vector product.
This, in turn, increases the utilization of the memory cache
and, therefore, reduces the execution time of the solver. Note
that if the number of Krylov vectors is not a multiple of four,
then up to three zero vectors are added to fill a bundle of
four Krylov vectors.

The solver speeds up the construction of the coarse
matrix by computing bundles of four columns at the same
time. To see how this helps, consider the main operation
in the computation of one coarse matrix column: a matrix-
vector product involving the global stiffness matrix. This

Fig. 1 The geomechanical model that has been used to analyze the
performance of the solver

Table 1 The stiffness moduli associated with the different parts of the
model

Part Stiffness modulus [MPa]

Yellow-colored soil 1.0

Green-colored soil 1.0 · 103

Concrete block 1.0 · 105

operation requires that all matrix elements are transported
from the (slow) main memory to the processor. The cache
memory is typically not effective because the amount of
data stored in the stiffness matrix tends to be much larger
than the size of the cache. The execution time of one matrix-
vector product is therefore dictated primarily by the memory
bandwidth and much less by the processor speed. The only
way to overcome this bottleneck is to reuse each matrix
element once it has been fetched from the main memory.
This is exactly what happens when multiple, independent,
matrix-vector products are executed in one pass.

The maximum number of Krylov vectors is an impor-
tant parameter in the GMRES algorithm. If this parameter
is too large, then the solver may run out of memory or the
time per GMRES iteration may become excessively large. If
this parameter is too small, on the other hand, then GMRES
may be forced to make many restarts with a low conver-
gence rate as a result. As the average user can probably
not make an informed choice, the solver sets the maximum
number of Krylov vectors so that the space needed for stor-
ing the Krylov vectors is at most equal to the space required
for storing the stiffness matrix and the preconditioner. This
automatic approach seems to strike a good balance between
performance and memory usage.

Although the original solver in PLAXIS and the new
solver use essentially the same Cholesky preconditioner,
their implementations differ in three ways. These differ-
ences affect the way in which the preconditioners perform,
as will be shown in Section 5.

The first difference concerns the algorithm for order-
ing the degrees of freedom before the incomplete fac-
tors are computed. The original solver uses the reverse
Cuthill–McKee algorithm [5] in combination with an algo-
rithm that tries to reduce the bandwidth of the stiffness
matrix by sorting the nodes according to their X, Y, or
Z coordinates. The new solver, on the other hand, uses
a slightly modified reverse Cuthill–McKee algorithm in
which the vertex degrees are updated during the execu-
tion of the algorithm instead of keeping those degrees
constant.

The second difference is that the drop tolerance is
increased in a different way when the number of fill-ins
exceeds a given limit. While the new solver uses the method
described by Saukh [14], the original solver maintains a
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Fig. 2 The performance results
that have been obtained for the
four solver runs listed in
Table 2. The upper left graph
shows the wall-clock time
required to create the
preconditioner as function of the
number of threads. The upper
right graph shows the time
required to solve one system of
equations as function of the
number of threads. The lower
graph shows the number of
solver iterations as function of
the number of threads. Note that
the number of threads equals the
number of sub-domains
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cumulative histogram that keeps track of the number of
non-zero entries in the Cholesky factors as function of
their magnitude. This has the advantage that the solver can
quickly determine a new drop tolerance when the number of
non-zero entries exceeds a predefined limit.

The third difference concerns the method for computing
the maximum number of fill-ins allowed per row/column.
The original solver imposes no maximum; it only drops
entries that are smaller than the drop tolerance. The new
solver does the same thing, but it also limits the total num-
ber of fill-ins per row/column to a user-defined maximum. If
the number of non-zero entries is larger than that maximum,
say m, the solver only keeps the m largest entries.

4.3 Hardware considerations

To achieve good parallel performance, the solver requires
sufficient memory bandwidth for all processor cores com-
bined. In each solver iteration, all threads need to fetch their
sub-domain matrix and preconditioner from the main mem-
ory as the cache memory is typically much too small to store
all the data. Unfortunately it is not possible to reduce the
memory traffic by using (parts of) a sub-domain matrix or
preconditioner multiple times within one iteration.

The available memory bandwidth must be sufficient to
provide each thread full-speed access to the main mem-
ory. Otherwise, one thread will have to wait for another
while it is fetching data from memory. This used to be a
real problem in shared memory machines as the process-
ing cores had to share one memory bus. Fortunately, both
AMD and Intel have adopted a memory architecture that can
scale with the number of processor cores. That is, each CPU
(containing multiple processing cores) has its own memory
connection; adding more CPUs will increase the number of
memory connections. Note that some computer vendors will
try to reduce costs by routing multiple memory connections
through one CPU. This will reduce the available memory
bandwidth and may reduce the parallel performance of the
solver. One simple way to maximize the memory band-
width is to fill all available memory slots so that all memory
connections are used.

5 Performance of the solver

The performance of the solver has been measured by solv-
ing various systems of equations on a workstation with two
quad-core Intel Xeon E5620 processors, 24 GB memory

Table 2 Description of the four solver runs

Run Description

1 The original PLAXIS solver.

2 The new solver, without the physics-based domain decomposition method and without the coarse grid preconditioner.

3 The new solver, with the physics-based domain decomposition method but without the coarse grid preconditioner.

4 The new solver, with the physics-based domain decomposition method and with the coarse grid preconditioner.
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Fig. 3 The number of solver iterations with the AS and RAS precon-
ditioners versus the number of threads

and running Windows 7. Both processors can access the
main memory through independent interconnects so that
the maximum possible memory bandwidth can be obtained.
The systems of equations have been obtained from vari-
ous geomechanical problems using the commercial finite
element program PLAXIS. Note that all reported execution
times are wall-clock times.

The next sub-section uses an academic problem to ana-
lyze the various components making up the solver. The goal
here is to gain insight in the way that those components
effect the overall performance of the solver. The second sub-
section shows what kind of performance can be obtained for
two representative geomechanical problems. The third and
last sub-section shows the performance of the solver for a
difficult problem. The aim of this sub-section is to highlight
the current limitations of the solver.

5.1 Analysis of the performance

Figure 1 shows the geomechanical model that has been used
to analyze the performance of the various solver compo-
nents. The model comprises about 1,400 15-node wedge
elements and 10,000 degrees of freedom, and consists of
a rectangular block of soil that is composed of five layers
with large variations in stiffness. A uniform load (indicated
by the blue arrows) is applied to an embedded block of
concrete. A simple linear elastic material model (based on
Hooke’s elasticity law) is used to describe the deformations

Table 3 The stiffness moduli associated with the different parts of the
two models shown in Fig. 4

The soil layers are listed from top to bottom

of the soil and the concrete. The relevant material parameter
in this model is the stiffness modulus that differs five orders
of magnitude between the different parts of the model; see
Table 1.

Figure 2 shows the performance results that have been
obtained for the four solver runs listed in Table 2. The first
run makes use of the original solver in PLAXIS that is based
on the CG algorithm in combination with an incomplete
Cholesky decomposition as preconditioner. The second run
uses the new solver but without the physics-based domain
decomposition method; it simply uses the METIS [8] par-
titioning library to create the sub-domains without taking
advantage of the underlying model. The third run uses the
new solver with the physics-based domain decomposition
method, but without the algebraic coarse grid precondi-
tioner. This preconditioner is added in the fourth run.

Note that the original solver uses only one thread; the
results obtained with the original solver have been plotted as
horizontal lines in the three graphs. Also note that the runs
with the new solver are based on the GMRES algorithm in
combination with the RAS preconditioner. Finally, note that
the maximum number of threads (16) exceeds the number
of processor cores (eight). The reason for this is that a larger
number of threads—and therefore sub-domains—provides
some insight into the numerical scalability of the solver.

One can draw the following four conclusions from Fig. 2.
First, the original solver is less efficient than the new solver
when using a single thread or sub-domain. This is because
the original solver implements the incomplete Cholesky

Fig. 4 The two representative
models that have been used to
test the real-world performance
of the solver. The colors indicate
different material properties; see
Table 3
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Table 4 Performance results obtained for the two models

Model 1

Solver # Threads Precon [s] Solve [s] # Iter

PARDISO 8 200 25 1

Original 1 320 130 140

New

1 140 75 134

2 84 29 80

4 43 29 111

8 23 21 113

Model 2

Solver # Threads Precon [s] Solve [s] # Iter

PARDISO 8 71 12 1

Original 1 170 19 32

New

1 58 19 62

2 22 15 74

4 19 4.8 39

8 14 3.9 45

The first column specifies the solver for which the results have
been obtained. The second column lists the number of threads or
sub-domains. The remaining three columns list the wall-clock time
required to set-up the preconditioner and to solve the system of equa-
tions, and the number of solver iterations. Note that in the case of
PARDISO, the third column specifies the time required to factor the
matrix

preconditioner in a slightly different—and apparently less
efficient—way than the new solver. Note, however, that
this is not always the case; for some other problems
the situation is reversed and the original solver is more
efficient.

The second conclusion is that the physics-based domain
decomposition method is absolutely essential to get decent
performance with the new solver; without it, the num-
ber of solver iterations varies wildly with the number of
sub-domains. Indeed, the maximum number of iterations
is about a factor five larger than the minimum number of
iterations.

The third conclusion is that the coarse grid precondi-
tioner raises the efficiency of the solver by a significant
measure. It significantly lowers both the number of solver
iterations and the solution time, without adding much to the
time that is required to set-up the preconditioner.

The final conclusion is that the new solver scales very
well with the number of threads. Indeed, both the time
required to set-up the preconditioner and the time required
to solve the system of equations are more than eight times
smaller when using eight threads instead of one. This is
partly caused by a numerical speedup: the sub-domain wise
incomplete Cholesky preconditioner requires less retries to
find the appropriate drop tolerance and the solver requires
less iterations to satisfy the convergence criterion. The
remainder of the speedup is the result of using more than
one processor core.

Figure 3 shows the number of solver iterations when the
RAS preconditioner is replaced by the AS preconditioner.
It is clear that the RAS preconditioner is much more effi-
cient in this case than the AS preconditioner. Indeed, the
effectiveness of the RAS preconditioner justifies the use of
GMRES instead of CG.

5.2 Results for two representative models

The new solver has been the standard iterative solver in
PLAXIS since the end of 2010 and it has been used to solve
a wide range of geomechanical problems. Two representa-
tive models (see Fig. 4) have been selected to show what
kind of performance can be obtained in practice. Model 1
involves 680,000 degrees of freedom and is composed of
a concrete foundation on top of several soil layers with a
varying stiffness. Model 2 involves 414,000 degrees of free-
dom and is similar to Model 1, except that the foundation
has been replaced by a tunnel. Table 3 lists the stiff-
ness moduli associated with the different parts of the two
models.

The soil is modeled with 10-node tetrahedral elements
with quadratic shape functions. The concrete foundation and
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Fig. 5 The parallel speedup obtained for the two models. The curve
labeled “Precon” depicts the parallel speedup of the preconditioner.
The curve labeled “Solve” depicts the parallel speedup of the solver,

excluding the time required to set up the preconditioner. The curve
labeled “Total” depicts the total speedup that is based on the time for
setting up the preconditioner and for solving the system of equations
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the tunnel walls are modeled with 6-node triangular Mindlin
elements that can handle bending moments, normal forces,
and shear deformations. Both types of elements incorporate
a linear elastic material model based on Hooke’s elasticity
law.

Table 4 shows the performance results that have been
obtained for the two models. It also shows the results
obtained with the original solver and with PARDISO [15], a
fast parallel direct solver that is available on a commercial
basis. Note that the original solver uses a single processing
core and PARDISO uses all eight processing cores. Figure 5
shows the parallel speedup that has been obtained with the
new solver. The speedup is defined as the ratio between the
execution time with n threads over the execution time with
one thread.

Four observations can be made when looking at these
results. First, the performance of the new solver varies con-
siderably between the two models, especially when looking
at the number of solver iterations versus the number of
threads. One reason is that the solver is not able to sepa-
rate the different materials well enough when the number of
threads (and sub-domains) is relatively small. Another rea-
son is that the solver needs to make a trade-off between a
well-balanced work load and sub-domains that do not cut
through material boundaries, resulting in a sub-optimal con-
figuration of sub-domains. Because of this, the solver is
allowed to use twice as many threads as processor cores,
unless the number of threads has been explicitly set by the
user.

The second observation is that the new solver is faster
than the original one when using a single thread. The reason
is that the new solver implements a somewhat different and
more efficient incomplete Cholesky decomposition algo-
rithm. This algorithm does not only lower the time to set-up
the preconditioner, but also to solve the system of equations,
even when the new solver requires more iterations.

The third observation is that the construction of the
preconditioner scales well with the number of threads.
This is not surprising as the construction of the precondi-
tioner requires relatively a little communication between the
threads; a large fraction of the computations is local to the
threads. When solving the system of equations, on the other

Fig. 6 A model of the Toulon tunnel in France. Part of the soil is not
shown so that the tunnel is visible

Table 5 Performance results obtained with PARDISO, the original
solver. and the new solver for the model of the Toulon tunnel

Solver # Threads Precon [s] Solve [s] # Iter

PARDISO 8 16.5 6.8 1

Original 1 290 17 33

New

1 110 19 59

2 31 50 214

4 54 38 150

8 17 27 139

hand, the communication between the threads makes up a
larger fraction of the execution time. In addition, there is
less scope for reusing data that resides in the local caches of
the processor cores so that the memory bandwidth becomes
a more limiting factor.

The final observation is that the new solver is faster than
PARDISO when eight threads are used, both in precondition-
ing time and solve time. The total performance gain in the
given examples ranges from 4.6 to 5.

5.3 Seeking the limits of the solver

The new solver still has some limitations that can become
apparent when solving difficult problems. One of those
problems involves a nonlinear model for simulating the
construction of a tunnel at Toulon in France; see Fig. 6.
The model has about 750,000 degrees of freedom and
consists of solid elements, shell elements, and embedded
pile elements with a stiffness modulus that ranges from
1.0 to 2.1 · 105 MPa. A complete simulation of the con-
struction process requires the solution of multiple linear sys-
tems of equations. Only the first system is considered here
because the subsequent systems of equations are slightly
different when using different solvers or different numbers
of threads.
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Fig. 7 The parallel speedup obtained for the model of the Toulon
tunnel
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The soil and the tunnel walls are modeled with the
same type of elements that have been used in the previous
two models. The embedded piles are modeled with 3-node
Mindlin line elements that can handle normal, shear, and
moment deformations. Because the piles can pass through
solid elements at arbitrary locations, interface elements are
used to model the interaction between the piles and the solid
elements.

The problem is difficult to solve for at least three reasons.
First, there is the large variation in the stiffness modulus,
but this is also the case for the two models in the previous
sub-section. A second reason is that the simulation of the
construction process involves cutting away part of the soil,
resulting in a very small elements. A third reason is that the
beam elements only have a very small rotational stiffness
to prevent the system of equations from becoming singular.
All these three factors lead to a stiffness matrix of which the
diagonal elements differ 14 orders of magnitude. This does
not need to be a problem per se, but it does indicate that this
is a non-standard problem.

Table 5 and Fig. 7 show the performance results that
have been obtained for the model of the Toulon tunnel.
It is clear that the new solver does not perform very
well because the number of solver iterations increases
substantially when using more than one thread. The exact
cause of this is not known at this moment. One possibility
is that a node-based domain decomposition algorithm is not
able to separate the different materials and element types
into different sub-domains. In that case, switching to an
element-based decomposition algorithm would help, but
this would make it more difficult to use the solver as a black
box.

Note that in this case PARDISO is much faster than both
the new and the old solver.

6 Conclusions

The solver proposed in this paper can solve geomechan-
ical problems efficiently on multi-core machines, even
when they involve materials with very different prop-
erties, for instance a stiffness modulus that varies five
orders of magnitude. As the solver is not tightly cou-
pled to the geomechanical nature of the underlying prob-
lem, it is reasonable to expect that the solver can also
be used efficiently for solving other types of solid
mechanics problems involving large variations in material
properties.

The physics-based domain decomposition approach
plays an important role in the efficiency of the solver.
Examples with straight-forward domain decomposition of
“layered” finite element models showed a low conver-
gence rate, whereas physics-based domain decomposition

clearly improves the efficiency and robustness of the
solver. This means that the solver can lower the run-
time significantly even when using only one processor
core.

The new solver has been the standard iterative solver
in PLAXIS since 2010 and it has shown good perfor-
mance for a wide range of problems in geomechan-
ics. Indeed, the new solver is between seven and eight
times faster than the original solver on an eight-core
machine for two representative problems discussed in this
paper.

The new solver has its limitations and in some cases
it performs worse than the original solver. This has been
illustrated with a difficult problem involving the sim-
ulation of the construction of a tunnel at Toulon in
France. The reason for the sub-optimal performance is
not yet completely clear; this is the subject of future
research.

The solver has been implemented as a kind of black box
that can easily be linked with a serial program without need-
ing additional libraries or a special runtime environment.
To achieve this, the solver is currently limited to shared
memory machines. However, the use of a message passing
programming model makes it possible to port the solver to
distributed memory systems without much effort.
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