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SUMMARY
Preconditioning can be used to damp slowly varying error modes in the linear solver residuals,
corresponding to extreme eigenvalues. Existing multiscale solvers use a sequence of aggressive restriction,
coarse-grid correction and prolongation operators to handle low-frequency modes on the coarse grid.
High-frequency errors are then resolved by employing a smoother on fine grid.
  
In reservoir simulations, the Jacobian system is usually solved by FGMRES method with two-level
Constrained Pressure Residual (CPR) preconditioner. In this paper, a parallel fully implicit smoothed
particle hydrodynamics (SPH) based multiscale method for solving pressure system is presented. The
prolongation and restriction operators in this method are based on a SPH gradient approximation (instead
of solving localized flow problems) commonly used in the meshless community for thermal, viscous, and
pressure projection problems.
     
This method has been prototyped in a commercially available simulator. This method does not require a
coarse partition and can be applied to general unstructured topology of the fine scale. The SPH based
multiscale method provides a reasonably good approximation to the pressure system and speeds up the
convergence when used as a preconditioner for an iterative fine-scale solver. In addition, it exhibits
expected good scalability during parallel simulations. Numerical results are presented and discussed.



ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery 
29 August – 1 September 2016, Amsterdam, Netherlands 

 Introduction

Academia and the corporate sectors are moving towards exascale simulations with highly complex prop-
erties of the underlying numerical domain (e.g., geology, fracture network, micro-inclusions), where it
is required to compute an accurate solution with the reasonable time. Hence, current computational
problems deal with the high resolutions simulations, which contain billions of degrees of freedom (i.e.,
unknowns). Existing modern computational resources stimulate the development of novel solver tech-
niques tailored to these problems. At the same time, specialized parallel and multicore architectures
have driven the implementation of these new methods with unprecedented performance expectations.

Commercial reservoir simulators usually uses the Newton-Raphson method to solve the non-linear gov-
erning equations for a given timestep. The corresponding Jacobian matrix and linear system are solved
by the Flexible Generalized Minimum Residual Method (FGMRES) (Saad and Schultz (1986)) precon-
ditioned by the Constrained Pressure Residual (CPR) preconditioner (see, e.g., Wallis (1983), Wallis
(1985), Cao et al. (2005)). CPR decouples the linear system into two sets of equations, exploiting the
specific properties of the pressure equation and transport equations. The former is solved with an Alge-
braic Multigrid (AMG) preconditioner (see, Ruge and Stuben (1987)), while the fully coupled system
is solved using an ILU(k) type preconditioner. Cao et al. (2005) showed that a linear solver based on
CPR-AMG preconditioning is extremely robust in terms of algorithmic efficiency. However, there are
still challenges to overcome in implementing a near-ideal scalable AMG solver. Also, the second stage
of CPR preconditioning often includes some variant of an incomplete LU factorization (e.g., ILU(0)),
which again is non-trivial to parallelize. As a result, the linear solver is still far from near-ideal scalabil-
ity.

To improve the AMG robustness, Klie et al. (2007) tried to consider deflation AMG solvers for highly
ill-conditioned reservoir simulation problems. However, the manual construction of the deflation vec-
tors is a time consuming process and will most likely lead to sub-optimal results (see, van der Linden
(2013)). However, the deflation strategy (which has a lower algebraic complexity and is inexpensive
to set up) may lead to a robust alternative of AMG in general. Furthermore, the deflation strategy also
(strongly) scalable which can be combined with the robust preconditioners. Deflation was first proposed
for symmetric systems and the CG method by Nicolaides (1987) and Dostál (1988). Both construct
a deflation subspace consisting of deflation vectors to deflate problematic eigenvalues from the linear
system. A plethora of widely used deflation algorithms have been developed since, differing primarily
in the application of the deflation operator (e.g. as a preconditioner or projection preconditioner) and
the method to construct the deflation vectors (see, Frank and Vuik (2001), Vuik et al. (2002), Tang and
Vuik (2007a), Tang and Vuik (2007c), Tang and Vuik (2007b), Tang (2008a), Jönsthövel et al. (2009),
Jönsthövel et al. (2011), van der Linden et al. (2016)).

Also, as alternative to AMG solver for the pressure system, two-level multiscale solvers (MS) have re-
ceived considerable attention in the literature over the past decades (see, e.g., Hou and Wu (1997), Jenny
et al. (2003), Lunati and Jenny (2006), Hajibeygi et al. (2008), Efendiev and Hou (2009), Lunati et al.
(2011), Zhou and Tchelepi (2012), Cortinovis and Jenny (2014), Wang et al. (2014), Tene et al. (2014),
Lukyanov et al. (2014a), Cusini et al. (2014), Kozlova et al. (2015), Manea et al. (2015), Cusini et al.
(2015), Møyner and Lie (2016)). Existing multiscale solvers use a sequence of aggressive restriction,
coarse-grid correction and prolongation operators to handle low-frequency modes on the coarse grid.
High-frequency errors are then resolved by employing a smoother on fine grid, which could be expen-
sive if large number of smoothing iterations is required in the Newton-Raphson step. This is usually the
case when multiscale solvers are used as a liner solver with the very small tolerance. However, both
AMG and MS methods are used incompletely, i.e. 1 V cycle of AMG and one step of MS. In all cases,
the goal is to construct a relatively good approximate pressure solution before computing remaining
variables and applying a second stage preconditioner.

The multiscale solvers seem to be naturally scalable and can be used as a preconditioner. However, usage
of the smoothers on the fine grid and solution of the coarse system form a bottleneck in constructing
embarrassingly parallel algorithm. Hence, to reduce the impact of the smoothers on the fine grid, the
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 quality of the pressure solution after one step of MS should be of acceptable accuracy. Furthermore,
the combination of a multiscale solver and the deflation method can also be constructed to improve the
quality of the pressure solution Lukyanov et al. (2015).

The outline of the paper is as follows. The second paragraph contains the description of the common
features of the multiscale, multilevel, multigrid and deflation methods. In the following paragraph, we
discuss the constructions of the deflation vectors and their connection to the multiscale methods. The
fourth section presents the meshless deflation vectors and their construction in the case of two-level
solution technique which can be generalized to multilevel applications. The section with numerical
examples for serial and parallel runs follows this. The paper is concluded by the summary.

Multiscale, Multilevel, Multigrid and Deflation Methods

There are a number of common and fundamental features in currently used state-of-the-art methods.
Given the fine-scale system of the governing equations, (two-level and multi-level) multiscale, mul-
tilevel, (algebraic and geometric) multigrid and deflation solvers construct a coarse-scale system by
applying (one or several depending on the number of coarsing levels) restriction R and prolongation
P operators, solve the solution at coarse level, and then prolong (interpolate) it back to the original
fine-scale system by using (one or several depending on the number of coarsing levels) prolongation
operators P. This can be applied a pre-defined number of times as

Ak+1 = RkAkPk (1)

where k is the level of the appropriate step of multiscale, multilevel, multigrid, and deflation methods,
Ak+1 is the matrix on the next level (for the pressure system), Rk, Pk are the restriction and prolongation
operators at the level k. Hence, the level k has a different meaning depending on the selected method.
For example, for deflation method this corresponds to a different deflated eigenspace. Typical V-cycle
scheme of five levels for (multilevel-) multiscale, multigrid, and multilevel deflated method is shown in
Figure 1.

Level 0 (finest)

Level 1

Level 2

Level 3

Level 4 (coarsest)

smoothing

restriction

prolongation

Figure 1 Typical V-cycle scheme of five levels for (multilevel-) multiscale, multigrid, and multilevel 
deflated method.

Naturally, some generalization (multilevel-) multiscale, multigrid, and multilevel deflated method can 
be constructed using a W -cycle. It is obvious how this works in case of (multilevel-) multiscale and 
multigrid methods. The non-trivial multilevel deflated method can be constructed as f ollows. Let A k ∈ 
Rn×n be the non-symmetric linear system matrix at the level k. Then we define the matrix at the next 
level (coarse matrix). Similar to the (multilevel-) multiscale, multigrid methods, the matrix Ak+1 ∈ Rd×d 

is defined using either Galerkin (note that non-Galerkin projection can also be applied, see Falgout and 
Schroeder (2014), Lukyanov et al. (2014a)) as

Ak+1 = RkAkPk, (2)
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 and the deflation matrices at the level k (i.e., Dk
1 and Dk

2) are defined as

Dk
1 = I−AkPk

(
Ak+1

)−1
Rk,

Dk
2 = I−Pk

(
Ak+1

)−1
RkAk.

(3)

where A1 = A is the original fine scale matrix. The
(
Ak+1

)−1 is constructed to avoid a direct inversion

of the matrix and expensive matrix-matrix product in the expression
(
Ak+1

)−1 Rk. This is achieved
by doing an user defined number pre- and a post-smoothing (e.g., Gauss-Seidel (GS) or ILU(0)) steps
similar to Multigrid Solver (see, Lukyanov et al. (2014b)). Finally, the solution to the original linear
system can be found using the relation:

x =
k

∑
i=1

Pi (Ai+1)−1
(Ri)T b+

k

∏
i=1

Di
2x̂ (4)

where x̂ is a solution of the ’deflated system’:

k

∏
i=1

Di
1Ax̂ =

k

∏
i=1

Di
1b (5)

The prolongation Pi and restriction Ri operators in deflation method are defined using the deflation
matrix, Zi (by no limiting example) as follows

Pi = Zi, Ri =
(
Zi)T

(6)

where Zi is the the deflation matrix between levels i and i + 1. Let us recall that the prolongation
operator P in multiscale methods such as the multiscale finite element (MSFE) and multiscale finite
volume (MSFV) are constructed based on local solutions (basis functions) of the fine-scale problem with
different boundary conditions. The local support for the basis functions are obtained by first imposing a
coarse grid (Ω̆k) on the given fine-grid cells. The coarse grid operator is then constructed using Galerkin
condition (1). The restriction operator, i.e., mapping fine scale to coarse scale, can be obtained by using
either a finite element (MSFE) or finite volume (MSFV) methods as per terminology of the reservoir
simulation community. The former employs a transpose of the prolongation operator, i.e.,

RFE = PT , (7)

There is a clear similarity in constructing a coarse system between multiscale (MSFE, MSFV) and defla-
tion method. The high-frequency errors at the fine scale in multiscale (MSFE, MSFV) are then resolved
by employing a smoother on fine grid. The equivalent step in deflation method is the solution of the
’deflated system’ defined by the equation (5). It is clear that direct solution step of the ’deflated sys-
tem’ can be substituted by performing smoothing iterations using either the original matrix A or deflated
matrix

(
∏

k
i=1 Dk

1A
)
. Hence, the primary difference between (two-level or multi-level) multiscale and

(two-level or multi-level) deflation method is the selection of the restriction and prolongation operators.
Multiscale methods have been developed to describe local heterogeneities within the sub-domains in the
coarse system by using purely locally-supported basis functions. The deflation methods use a different
strategy in constructing the restriction and prolongation operators based on the detailed analysis of the
underlying spectrum of the preconditioned matrix.

In recent years, the multiscale restriction smoothed basis (MsRSB) method was introduced (see, Møyner
and Lie (2016)) to overcome the geological complexities and the use of complex grid geometries re-
quired to compute compute the underlying basis functions. Below, it will be shown that the basis func-
tions employed by MsRSB method have been extensively used in the deflation methods for various
applications Tang and Vuik (2007a), Tang and Vuik (2007c), Tang and Vuik (2007b), Frank and Vuik
(2001), Vuik et al. (2002), van der Linden et al. (2016)



ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery 
29 August – 1 September 2016, Amsterdam, Netherlands 

Z
0

Figure 2 Subdomain (a), levelset (b) and subdomain-levelset deflation (c).

Multiscale Restriction Smoothed Basis and Deflation Vectors

In both methods (i.e., MsRSB and Deflation), the discretized computational domain Ω  is first decom-
posed into d non-overlapping subdomains Ω̄ j with j ∈ {1, . . . ,d}. The deflation v ector  ̄j  f orms j-th 
column of the deflation operator Z or initial basis functions P j of MsRSB method, corresponding t o Ω̄ j
and it is defined as (see, Frank and Vuik (2001), Tang (2008b), van der Linden (2013), van der Linden 
et al. (2016), Møyner and Lie (2016), Shah et al. (2016))

(
P0

j
)

i
= (Z̄ j)i =

{
1, xi ∈ Ω̄ j

0, xi ∈Ω\ Ω̄ j,
(8)

where x j is a fine-scale grid cell center. Based on the above definition, Z̄ j and P0
j are piecewise-

constant vectors or functions (equal to a constant value of one inside the corresponding coarse domain
Ω̄ j), disjoint and orthogonal. For this choice of the deflation subspace, the deflation projectors P1 and
P2 essentially agglomerate each subdomain in a single cell. Hence, the subdomain deflation and MsRSB
are closely related to domain-decomposition methods and multigrid (see, Frank and Vuik (2001)). For
problems in the bubbly flow, the span of the deflation vectors (8) approximates the span of the eigenvec-
tors corresponding to the smallest eigenvalues Tang and Vuik (2007c). In our case, as studied by Vuik
et al. (2002), the subdomains can be defined using the underlying heterogeneity, e.g., a low-permeable
region can be separated from the high-permeable regions and form d decompositions. As it was noted
in Vermolen et al. (2004), it is better to use no overlap subdomains. This fact leads to the weighted
overlap method, which mimics average and no overlap in the case of no contrasts and large contrasts,
respectively. It is shown that the overlap is crucial in approximating the eigenvectors corresponding to
the extreme eigenvalues.

In highly heterogeneous computational domain with large jumps in the permeability field, the subdomain-
levelset deflation can be used (see, Tang and Vuik (2007c)). In this case where subdomain deflation does
not take jumps into account, the subdomain-levelset deflation identifies different regions in the domain
with similar properties. A simple example is given in Figure 2. The fine grid is 12×14 with the coarse
grid 2×2 are shown in Figure 2. In each case, the values shown on the fine cells correspond to the values
in the first deflation vector. In the middle and right figure, the border between the yellow circles (high
permeability) and white circles (low permeability) exemplifies a sharp contrast in the matrix coefficient.
The figures shows the following:

• In the left figure, subdomain deflation is used. The red solid line divides the domain into the four
subdomains Ω̄1,Ω̄2,Ω̄3 and Ω̄4. Each subdomain corresponds to a unique deflation vector.

• In the middle figure, levelset deflation is used. This time, the red solid line coincides with the
contrast in the matrix coefficient. As a result, we get the two domains Ω̄1 and Ω̄2.
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 • In the right figure, subdomain-levelset deflation is used. The subdomain division is determined
using certain criteria, which in this example leads to the division red solid line between Ω̄1 and
Ω̄2. Within each subdomain, levelset deflation uses the jump between the high permeability and
low permeability cells to obtain the subdomains Ω̄1,Ω̄2,Ω̄3 and Ω̄4.

In this paper, the subdomain-levelset deflation concept is used. We highlight the fact that the algorithm
is particularly suitable for a parallel implementation. We can apply the levelset deflation method to
each subdomain (coarse cells), and append the deflation vectors with zeros for all cells outside the
neighboring subdomains. Furthermore, it is important to note that deflation vectors can be constructed
based on the jump in the PVT data (e.g., bubbly flow Tang and Vuik (2007c)). For example, during
the polymer flooding the aqueous viscosity changes drastically in the presence of polymer. Hence, the
deflation vectors can be constructed based on the location of the polymer with in the reservoir.

Although we have identify a full analogy between deflated vectors Z and initial basis functions P0
j of

MsRSB method, the final restriction-smoothed basis functions are computed by employing a modified
form of the damped-Jacobi smoothing approach:

δPη

k =−ωD−1APη

k (9)

where A is the fine-scale matrix, D = diag(A) is the diagonal part of the matrix A. The final update for
prolongation operator is defined as

Pη+1
k = Pη

k +δP̂η

k (10)

where δP̂η

k is the restricted iterative increments (see, Møyner and Lie (2016), Shah et al. (2016)). To
ensure that basis functions have local support, the increments δPη

k is restricted to have nonzero values
only inside Ω̄k leading to the definition of the δP̂k. Finally, the the basis functions (9)-(10) of the
MsRSB method can be written in the abstract form as:

Pk = M
1
2
MsRBSP

0
k (11)

where M
1
2
MsRBS is the predefined smoothing matrix of MsRBS method defined by (9)-(10) and restriction

expression (see, Møyner and Lie (2016), Shah et al. (2016)).

Remarks

• The proposed method is similar to smoothed aggregation-based multigrid methods (see, Vanek
(1992), Vanek et al. (1996))

• A deflation technique applied to a preconditioned system with preconditioner M−1 at different
level k

D̃k
1 = I− ÃkP̃k

(
Ãk+1

)−1
R̃k, D̃k

2 = I− P̃k
(

Ãk+1
)−1

R̃kÃk,

Ãi+1 = R̃iÃiP̃i, P̃i = Z̃i, R̃i =
(
Z̃i
)T

, Z = M−
1
2 Z̃

(12)

is equivalent to preconditioning of a deflated system

k

∏
i=1

Di
1M−1Ax̂ =

k

∏
i=1

Di
1M−1b, x =

k

∑
i=1

Pi
(

Âi+1
)−1

(Ri)T (M−1b)+
k

∏
i=1

Di
2x̂ (13)

Here Âi+1 =
i

∏
l=1

Rl(M−1A)Pl , ˆ̃x is a solution of the preconditioned ’deflated system’. The matrix

Z̃ is interpreted as a preconditioned deflation-subspace matrix (see, Tang (2008b) who formulated
this for a two-level deflation method applied to symmetric positive definite matrix):

Z̃ = M
1
2 Z (14)
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where M is the specified preconditioner. Comparison of the equation (14) with the equation
(11) and taking into account that P0

j = Z̄ j leads to the fact that two-level (preconditioned with the

matrix M
1
2
MsRBS) deflation projection with the post smoothing used in MsRBS should give identical

results with MsRBS. Commonly, the deflation matrix (matrix of basis functions) Z is applied to
preconditioned matrix M−1A and, hence, the smoothing (14) is not applied since it is equivalent
to have twice preconditioning of the matrix A.

• Localization can be constructed using any partition of unity (PU) functions {ϕi} with Ωi =
supp(ϕi) at any level k as follows

p =
N

∑
i=1

ϕi pi =
N

∑
i=1

(
ϕi pi

smooth +ϕi pi
jump +ϕi pi

singular

)
(15)

where pi
smooth is the smooth part of the solution, pi

singular is the part of the solution with singularity,
pi

jump is the part of the solution with the jumps, and functions ϕi play the role of “glue”.

Meshless Deflation Vectors

The meshless deflation vectors (basis functions) utilize some advantages of the existing multiscale
schemes and meshless methods. In light of this, the meshless deflation vectors (basis functions) are
constructed using two sets of computational points (see, Lukyanov et al. (2014b)):

1. Fine points set SF (e.g., cell centers of underlying mesh), i.e. Ω = span
{

Ω̄XI ,h̄/I = 1, ...,NF
}

consisting of NF patches which are interior to the support of the kernel W̄
(
X−XI, h̄

)
, i.e. ΩX,h =

suppW̄ (X−ξ , h̄), NF is the number of points, hF is the fine scale diameter (or smoothing length);

2. Coarse points set SC (e.g., user defined points), i.e. Ω = span
{

Ω̃XJ ,h/J = 1, ...,NC
}

consisting of
NC patches which are interior to the support of the kernel W̄ (XI−X,h), i.e. ΩX,h = suppW̄ (X−
ξ ,h), NC < NF is the number of points, hC is the coarse scale diameter (or smoothing length);

In both cases (fine and coarse), the same cubic spline for kernel function W̄ was used (see, Lukyanov
et al. (2014b)). Following the conventional multiscale approach, the approximation of the fine scale
pressure distribution pF using coarse set values pC is constructed as

pF (X)≈
NC

∑
J=1

VξJ ·W̄ (X−ξJ,hC) · pC (ξJ) (16)

or

pF (XI)≈

XI ·

(
NC

∑
J=1

VξJ ·W̄ (XI−ξJ,hC)

[
NC

∑
K=1

[pC (ξK)− pC (ξJ)]∇
∗W̄ (ξJ−ξK ,hC)

])
+

+
NC

∑
J=1

[
VξJ ·W̄ (XI−ξJ,hC) ·

(
pC (ξJ)−ξJ ·

(
NC

∑
K=1

[pC (ξK)− pC (ξJ)]∇
∗W̄ (ξJ−ξK ,hC)

))] (17)

The scheme (17) provides a first-order consistent prolongation from a coarse set of particles into a fine
set of particles, i.e. it provides an exact solution for a linear pressure distribution at both scales. In
case where coarse level points do not form a subset of fine level points, the aggressive restriction is also
applied following relations (zero and first-order consistent operators) such as:

pC (X)≈
NF

∑
J=1

VξJ ·W̄ (X−ξJ,hF) · pF (ξJ) (18)
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 or

pC(XI)≈ XI ·

(
NF

∑
J=1

VξJ ·W̄ (XI−ξJ,hF)

[
NF

∑
K=1

[pF(ξK)− pF(ξJ)]∇
∗W̄ (ξJ−ξK ,hF)

])
+

+
NF

∑
J=1

[
VξJ ·W̄ (XI−ξJ,hF) ·

(
pF (ξJ)−ξJ ·

(
NF

∑
K=1

[pF(ξK)− pF(ξJ)]∇
∗W̄ (ξJ−ξK ,hF)

))] (19)

It is important to note that relations (16), (17), (18), (19) can be written using matrix notation:

uF = W̄P ·uC, W̄P : SC→ SF uC = W̄R ·uF , W̄R : SF → SC˜̄WR
= B−1

W W̄R, BW = W̄RW̄P, ˜̄WR
W̄P = I, ˜̄WR

: SF → SC˜̄WP
= W̄PB−1

W , BW = W̄RW̄P, W̄R˜̄WP
= I, ˜̄WP

: SC→ SF

(20)

where W̄P and ˜̄WP
are the prolongation operators, W̄R and ˜̄WR

are the restriction operators. In general,
it is clear that W̄R 6=

(
W̄P
)T . As a result, the following options are available to construct deflation

vectors for restriction and prolongation operators:

(I) P = W̄P, R =
(
W̄P)T

, (II) P = ˜̄WP
, R =

(˜̄WP
)T

(III) P = W̄P, R = W̄R, (IV ) P = W̄P, R = ˜̄WR
, (V ) P = ˜̄WP

, R = W̄R

(V I) P =
(
W̄R)T

, R = W̄R, (V II) P =

(˜̄WR
)T

, R = ˜̄WR

The option (I) is used in this paper. The prolongation and restriction operators in this method are based
on a SPH gradient approximation (instead of solving localized flow problems) commonly used in the
meshless community for thermal, viscous, and pressure projection problems. Furthermore, the smooth-
ing length hC can be selected to maintain only the host particle in the compact support resulting in the
basis functions defined by the equation (8). Hence, the meshless basis functions provide a more flexible
framework for constructing deflation vectors (or basis functions).

Multiscale Meshless Based Method

The linear system of equations (primary focus is the pressure equations) with the matrix AF and right
hand side bF can be difficult to solve, if its condition number k = ‖AF‖

∥∥A−1
F

∥∥ is large. This motivates
the concept of preconditioning. Let V be an approximation of A−1, which is easy to construct and to
solve for a given input. Hence, we can write a simple Richardson iteration scheme with the predefined
number of application of the multilevel multiscale meshless based preconditioner:

[pF ]
m+1 = [pF ]

m +V · (bF −AF [pF ]
m) (21)

where m is the iteration index, (pF)
m is the pressure vector at the iteration m, V is the left multiscale

meshless based preconditioner defined as an operational object. A meshless multiscale preconditioner is
constructed as follows for a given input vF and output zF using a two-level case by no limiting example:

[zF ] = P(AC)
−1 R [vF ] , AC = RAFP (22)

[wF ] = [zF ]+S−1
γ · ([vF ]−AF [zF ]) (23)

where S−1
γ is the smoothing operator (e.g., Gauss-Seidel (GS) or ILU(k) or BILU(k) smoothing method

or Krylov-space accelerator) applied γ times. The multiscale meshless based method involves setting up
the restriction and prolongation operators, which can be constructed at the beginning of the simulations.

The coarse pressure system ACv = w can be solved with different strategies depending on the size of the
coarse pressure matrix. The size of the coarse pressure matrix is defined by the size of the model and
the choice of the coarsening factors. If the size of the coarse system is small a direct solver can be used.
The iterative methods are used for the large coarse system.
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 Numerical Experiments

In this section, the performance results of the fully implicit smoothed particle hydrodynamics (meshless)
based multiscale method (MsMBM) are presented. The method has been prototyped in a commercial
reservoir simulator and the method was compared against the two stage CPR-AMG-ILU(0) solver, which
is the default solution strategy in majority of commercial simulators.

The test cases are classified by the number of grid cells, fluid models and time discretization. The
following characteristics were compared between the default and proposed solutions.

• Time steps: the total number of time steps required to complete the simulation.

• Non-linear iterations: the number of non-linear iterations in the simulation.

• Linear iterations: the number of iterations used to solve the linear systems generated by the non-
linear solver.

• Linear solver time: the amount of time needed to solve the linear systems.

• CPU time: the overall computational time required to complete the simulation.

Test Cases

Table 1 describes all the running five test cases ranging from relatively small (not too small) models to
relatively large (not too large) real life test cases. The black oil, iso-thermal and thermal compositional

Active cells Dimensions Fluid model Implicitness
Number of

Number of active
phases components

389557 154×90×34 Compositional AIM IMPES 3 13Isothermal
348807 238×192×114 Black Oil Isothermal Fully Implicit 3 3

348812 238×192×114 Compositional AIM IMPES 3 8Isothermal

1722781 18×1126×85 Compositional Thermal Fully Implicit 3 3with steam permitted

164945 not a ‘box’ Compositional Thermal Fully Implicit 3 3with steam permitted

Table 1 Basic properties of the simulated test cases.

models with varying degree of heterogeneity in the reservoir grid properties are considered in this paper 
to test the performance of the Multiscale Meshless Based Method (MsMBM). The names of the test 
cases correspond to the total number of cells in the models. Table 1 contains several examples where 
the number of active cells is lower than the number of cells suggested by the dimensions. In those 
cases, the domain includes a number of inactive cells. The settings for the simulation test cases can be 
found in Table 2, where the parameter k represents the number of the top level GMRES accelerations 
with MsMBM preconditioner. The following tables and figures shows the performance results for all 
experimental tests including reference performance results (CPR-AMG-ILU(0)).

In general, Multiscale Meshless Based Method (MsMBM) does not change the number of time steps and 
non-linear iterations compared to the CPR-AMG-ILU(0) solution strategy in the considered simulations. 
This is due to second stage preconditioner ILU(0), which eliminates all the differences in the pressure 
solver, where AMG and MsMBM are applied. However, in all cases there is a significant effect on the 
number of linear iterations. This is a very common observations for multiscale solutions strategies (see,
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 Pre-smoothing Post-smoothing MsMBM-GMRES(k) Coarse Solver
389557 GS GS k = 3 AMG
348807 GS GS k = 3 AMG
348812 GS GS k = 3 AMG
1722781 GS GS k = 3 AMG
164945 GS GS k = 3 AMG

Table 2 Experimental settings.

Lukyanov et al. (2014b), Cusini et al. (2014), Cusini et al. (2015)) which leads to a larger number of 
linear iterations in general. This is, of course, a subject to a number of smoothing iterations on the fine 
scale. This indicates that the convergence rate of the multiscale method is worse than default AMG as 
other components of the linear solver have not changed. However, the increase in linear iterations is 
acceptable given the fact that the MsMBM has a more favorable CPUs in mapping information from 
fine to coarse level and solving this at the coarse level. The localized construction of the multiscale basis 
functions has strong affect on parallel scalability of multiscale method in general. Below, the CPUs time 
of different cases are presented.

Figure 3 shows the total time (CPUs) of the linear solver stage for different cases in serial runs. The 
MsMDM algorithm improves the results of the default method CPR-AMG-ILU(0) method in terms 
of total simulation time. The total simulation time is significantly r educed i n a ll c ases. Comparing 
the performance results of different simulations, it is clear that moderate number of cheap smoothing 
iterations reduces considerably the number of linear iterations and it allows a substantial speedup. If the 
correct settings are chosen CPR-MsMDM-ILU(0) results to be more than 20 % faster than CPR-AMG-
ILU(0) in serial runs. The simulation tests clearly shows that MsMBM leads to a substantial speedup

389557 348807 348812 1722781 164945
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Figure 3 Total time of the linear solver stage for CPR-AMG-ILU(0) and MsMDM solution strategies.

around 20% in general for serial runs. If the correct settings are chosen then the multiscale meshless 
based method preconditioner in the Krylov subspace iterative solvers results in a speedup relative to the 
reference settings (i.e., CPR-AMG-ILU(0)).

The size and complexity of modern reservoir simulation problems require vast computational resources 
and parallel computation. Hence, the state-of-the-art solvers, for example, the AMG preconditoner 
is used for parallel computing of large problems. Figure 4 shows preliminary results of the parallel 
scalability of the proposed multiscale method versus the default solver (i.e., CPR-AMG-ILU(0))
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Figure 4 Scalability of the total time of the simulation runs for CPR-AMG-ILU(0) and MsMDM solu-
tion strategies in the case 389557.

It is clear that further analysis of the method and its scalability is required to obtain full picture about 
capabilities of the proposed method.

Conclusions

A preconditioned Krylov subspace method such as the preconditioned FGMRES method can signif-
icantly improve the convergence and robustness of a numerical simulator. This paper considers the 
preconditioned GMRES method with multilevel multiscale meshless based method for solving such 
pressure system. The solution technique proposed in this paper uses a meshless approximation method 
to construct a priori the deflation space (or basis functions s pace). The analysis of the common funda-
mental features of different multiscale strategies are presented.

In this paper, a parallel fully implicit smoothed particle hydrodynamics (SPH) based multiscale method 
for solving pressure system is presented. The prolongation and restriction operators in this method are 
based on a SPH gradient approximation (instead of solving localized flow problems) commonly used 
in the meshless community for thermal, viscous, and pressure projection problems. This method can 
reduce to the recently proposed MsRSB. In general, it gives more flexibility i n c onstructing various 
restriction and prolongation operators.

This method has been prototyped in a commercially available simulator. This method does not require 
a coarse partition and, hence, can be applied to general unstructured topology of the fine s cale. The 
SPH (or meshless) based multiscale method provides a reasonably good approximation to the pressure 
system and speeds up the convergence when used as a preconditioner for an iterative fine-scale solver. 
In addition, it exhibits expected good scalability during parallel simulations. Presented numerical results 
support theoretical and practical expectations from this method. Additional analysis of this method is 
required to identify the optimal parameters of this method.
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