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Abstract The reservoir simulation of the complex reservoirs with anisotropic
permeability, which includes faults and non-orthogonal grids, with a fully discontin-
uous permeability tensor in the discretization is a major challenge. Several methods
have already been developed and implemented within industry standard reservoir
simulators for non-orthogonal grids (e.g., Multi-Point Flux Approximation (MPFA)
“O” method). However, it has been noticed that some of the numerical methods
for elliptic/parabolic equations may violate the maximum principle (i.e., lead to
spurious oscillations), especially when the anisotropy is particularly strong. It has
been found that the oscillations are closely related to the poor approximation of the
pressure gradient in the flux computation. Therefore, proposed methods must cor-
rectly approximate underlying operators, satisfy a discrete maximum principle and
have coercivity properties. Furthermore, the method must be robust and efficient.
This paper presents the meshless multi-point flux approximation of second order
elliptic operators containing a tensor coefficient. The method is based on a pressure
gradient approximation commonly used in meshless methods (or Smoothed Particle
Hydrodynamics method—SPH method). The proposed discretization schemes can
be written as a sum of sparse positive semidefinite matrix and perturbation matrix.
We show that convergence rates are retained as for finite difference methods
O.h˛/; 1 � ˛ < 2, where h denotes the maximum particle spacing. The results
are presented, discussed and future studies are outlined.
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1 Introduction

The multi-point flux approximation, MPFA, is a discretization method developed
by the oil industry to be the next generation method in reservoir simulations and it
can be applied to different types of mesh, for example using quadrilateral meshes as
in Aavatsmark et al. [2, 3], Aavatsmark [1], Edwards and Rogers [12], Klausen and
Russell [17] or unstructured grids as in Edwards [11] to approximate the following
operator:

L .p .r// D �r .M .r; p .r// rp .r// � g .r/ ; 8r 2 � � R
n (1)

where p .r/ is the pressure, M .r; p .r// D �
m˛ˇ

�
is the mobility tensor, g .r/ is the

known sink / source term, n D 1; 2; 3 is the spatial dimension. Consider the operator
in the expression (1) with a piecewise constant mobility M .r; p .r// 2 L2 .�/.

Several methods have already been developed and implemented within an
industry standard reservoir simulator for non-orthogonal grids. The methods are
known as the O-method, U-method and the L-method for quadrilateral meshes in
two and three dimensions (see [1, 12, 18]. The MPFA methods are not restricted to
quadrilateral meshes and have been investigated in Edwards [11]. It has been noticed
that some of the numerical methods for elliptic/parabolic equations may violate the
maximum principle (i.e. lead to spurious oscillations). Therefore, proposed methods
must satisfy a discrete maximum principle to avoid any spurious oscillations. The
discrete maximum principle for MPFA methods was discussed, e.g., in Edwards and
Rogers [12], Mlacnik and Durlofsky [28], Lee et al. [19].

However, non-physical oscillations can appear in the developed multi-point flux
approximations when the anisotropy is particularly strong. It has been found that the
oscillations are closely related to the poor approximation of the pressure gradient in
the flux computation. In this paper, the meshless multi-point flux approximation for
the general fluid flow in porous media is proposed. The discretization scheme is
based both on the generalized Laplace approximation and on a gradient approxima-
tion commonly used in the Smoothed Particle Hydrodynamics (SPH) community for
thermal, viscous, and pressure projection problems and can be extended to include
higher-order terms in the appropriate Taylor series. The proposed discretization
scheme is combined with mixed corrections, which ensure linear completeness. The
mixed correction utilizes Shepard Functions in combination with a correction to
derivative approximations. Incompleteness of the kernel support combined with the
lack of consistency of the kernel interpolation in conventional meshless methods
results in fuzzy boundaries. In corrected meshless methods, the domain boundaries
and field variables at the boundaries are approximated with the improved accuracy
comparing to the conventional SPH method. The resulting schemes improve the
particle deficiency (kernel support incompleteness) problem. Although, the analysis
of the different discretization schemes in this paper is restricted to 2D (i.e., n D 2),
the results can be applied in any space.
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2 Fluid Flow Modelling Using SPH

To calculate the second derivatives of F, several methods were proposed (Chen et al.
[7]; Bonet and Kulasegaram [4]; Colin et al. [9]). However, second-order derivatives
can often be avoided entirely if the PDE is written in a weak form. It is important
to note that approximations using second-order derivatives of the kernel are often
noisy and sensitive to the particle distributions, particularly for spline kernels of
lower orders.

Brookshaw [6] proposed an approximation of the Laplacian for an inhomoge-
neous scalar field m .r/ that only includes first order derivatives:

hr .m .rI/ rF .rI//i D
D

X

�rI ;h

VrJ ŒF .rJ/ � F .rI/�
.rJ � rI/ � .mJ C mI/ rW .rJ � rI ; h/

krJ � rIk2
(2)

where VrJ is the volume of a particle J, k�k is the Euclidean norm throughout this
paper, F .r/ is the unknown scalar or vector field (e.g., pressure p) 8r 2 � � R

n,
mI D m .rI/, rI 2 � � R

n and mJ D m .rJ/, rJ 2 � � R
n are the field coefficients,

W .rJ � rI ; h/ is the Kernel.
This Laplacian approximation was used by Brookshaw [6], Cleary and Mon-

aghan [8], Jubelgas et al. [16] for thermal conduction, Morris et al. [29] for
modelling viscous diffusion, Cummins and Rudman [10] for a vortex spin-down
and Rayleigh-Taylor instability, Shao and Lo [33] for simulating Newtonian and
non-Newtonian flows with a free surface, Moulinec et al. [20] for comparisons of
weakly compressible and truly incompressible algorithms, Hu and Adams [15] for
macroscopic and mesoscopic flows, Zhang et al. [34] for simulations of the solid-
fluid mixture flow. There are several numerical SPH schemes commonly used in
numerical simulations for a scalar inhomogeneous field m .r/. High order accuracy
approximations can also be derived by using SPH discretization based on higher
order Taylor series expansions [13, 14, 22, 31]. However, it is usually required
that the discrete numerical schemes can reproduce linear fields [5, 23, 27, 30] or
polynomials up to a given order [21].

The correction terms to Brookshaw’s formulation, which improve the accuracy
of the Laplacian operator near boundaries, were proposed by Schwaiger [31]:

hr .m .rI/ rF .rI//i D
��1

ˇˇ

n

8
<

:

X

�rI ;h

VrJ ŒF .rJ/ � F .rI/�
.rJ � rI/ � .mJ C mI/ rW .rJ � rI ; h/

krJ � rIk2

9
=

;
�

���1
ˇˇ

n
fŒhr˛.m .rI/F .rI//i � F .rI/ hr˛m .rI/i C m .rI/ hr˛F .rI/i�N˛g

(3)
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N˛ .rI/ D
2

4
X

�rI ;h

VrJ r˛W .rJ � rI; h/

3

5 (4)

hr˛F .rI/i D
X

�rI ;h

VrJ ŒF .rJ/ � F .rI/� r �̨W .rJ � rI ; h/ (5)

r �̨W D A�1
˛ˇ rˇW; A˛ˇ D

2

4
X

�rI ;h

VrJ

�
r˛

J � r˛
I

� rˇW .rJ � rI; h/

3

5 (6)

where n D 1; 2; 3 is the spatial dimension, the gradient approximation hr˛F .rI/i is
computed using (5) and the tensor �˛ˇ is defined by

�˛ˇ .rI/ D
X

�rI ;h

VrJ

�
r�

J � r�
I

� r� W .rJ � rI; h/

krJ � rIk2

�
r˛

J � r˛
I

� �
rˇ

J � rˇ
I

�
(7)

Throughout this paper, the summation by repeated Greek indices is assumed. For
multi-dimensional problems, the correction tensor �˛ˇ .rI/ is a matrix. If the particle
rI has entire stencil support (i.e., the domain support for all kernels W .rJ � rI; h/

is entire and symmetric) then �˛ˇ .rI/ � ı˛ˇ , ı˛ˇ is the Kronecker symbol.
Unfortunately, �˛ˇ .rI/ deviates from ı˛ˇ for the provided algorithm and, hence,
it is important to minimize this deviation from ı˛ˇ in the new methods.

Remark 1 It is important to note that correction tensors �˛ˇ and A˛ˇ are the same
tensors. Indeed, using the following identity:

�
r˛

J � r˛
I

�
�
r�

J � r�
I

� r� W .rJ � rI; h/

krJ � rIk2
D

D ˙1

h

dW

dz

�
r˛

J � r˛
I

�

krJ � rIk D r˛W .rJ � rI ; h/ ; 8˛

(8)

where z D krJ � rIk =h, 8rJ ; rI 2 � � R
n, the following relations can be

established:

�˛ˇ .rI/ D
X

�rI ;h

VrJ

�
r�

J � r�
I

� r� W .rJ � rI ; h/

krJ � rIk2

�
r˛

J � r˛
I

� �
rˇ

J � rˇ
I

�
D

D
X

�rI ;h

VrJ

�
r˛

J � r˛
I

� rˇW .rJ � rI; h/ D A˛ˇ .rI/
(9)

To calculate coefficients in the scheme (3)–(7) is a trivial task. However, in general,
it should be performed at each Newton-Raphson iteration in the non-linear case
(i.e., m D m .F/). It also requires additional efforts to invert the correction matrix
A˛ˇ (inversion of n � n matrices per each particle, where n D 1; 2; 3 is the
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spatial dimension) and storage cost of r˛W .rJ � rI; h/, r �̨W .rJ � rI; h/, and
corresponding ��1

˛˛ D A�1
˛˛ per each particle.

2.1 Kernel Property

A central point of the SPH formalism is the concept of the interpolating function (or
kernel) through which the continuum properties of the medium are recovered from
a discrete sample of N points with prescribed mass mI (for conventional Lagrangian
methods) or volume VI (for fully Eulerian methods). In the Lagrangian description,
these points move according to the specified governing laws, whereas these points
are fixed in space for the Eulerian description. A good interpolating kernel must
satisfy a few basic requirements: it must tend to the delta function in the continuum
limit and has to be a continuous function with definite first derivatives at least. From
a more practical point of view it is also advisable to deal with symmetric finite
range kernels, the latter is to avoid N2 calculations. In this paper, the cubic spline is
used:

W.z; h/ D „

hn

8
ˆ̂
<̂

ˆ̂
:̂

1 � 3

2
z2 C 3

4
z3; 0 � z � 1

1

4
.2 � z/3; 1 � z � 2

0; z > 2

(10)

where z D ��r0 � r
�� =h, 8r; r0 2 � � R

n and „ D 3

2
;

10

7�
;

1

�
in 1D (i.e., n D 1),

2D (i.e., n D 2) and 3D (i.e., n D 3), respectively.

3 Meshless Transmissibilities

The well-known two-point flux approximation (TPFA) is a numerical scheme used
in most commercial reservoir simulators for the pressure Eq. (1): L .p/ D 0.
The net flow rate of a fluid (single phase and component fluid) from a cell I
into neighbouring cells is obtained by summing fluxes over the neighbouring
cells J:

q D
X

J

eTJI Œp .rJ/ � p .rI/� ; TJI 	 0 (11)

where eTJI is the transmissibility between cells J and I, q is the total flux through
the boundary of the control volume located at the point rI . The transmissibility eTJI



72 A.A. Lukyanov and C. Vuik

defined at an interior face f between cells J and I is calculated as

eTJI D 1
" �

�rf ;J

�
�2

SfMrf ;J
C

�
�rf ;I

�
�2

SfMrf ;I

# (12)

where rf ;J and rf ;I are the vectors from centres of cells J and I to the face f
respectively, Sf is the area vector of the face f . In the case of M-orthogonal
mesh, when MSf and ŒrJ � rI � are collinear, the expression (11) reduces to the
form of the central finite difference scheme and approximates the flux with
O �

h2
�

order of accuracy for any mobility tensor field M. The expression (12)
ensures that the flux into the adjoining region is continuous [8]. The TPFA
scheme (11) is unconditionally monotone scheme. It is clear that the expression
(3) cannot be written in the form (11) due to terms hr˛ .m .rI/F .rI//iN˛ and
F .rI/ hr˛m .rI/iN˛. Hence, it is only possible in this case to introduce a definition
of a partial meshless transmissibility between particles rJ and rI as follows:

T .rJ; rI/ D TJI D ��1
ˇˇ

n
�

8
<

:

X

�rI ;h

VrJ

.rJ � rI/ � .mJ C mI/ � rW .rJ � rI; h/

krJ � rIk2
� VrJ mIrW .rJ � rI; h/N˛

9
=

;

(13)

It is important to note that transmissibilities TJI and eTJI have different physical units.
Furthermore, it raises the question wherever the proposed scheme (3) is monotone.
Hence, let � be a bounded domain in R

n (a compact) with a piecewise boundary
@� D N�D [ N�N , N�D \ N�N D ;, where measure � .�D/ ¤ 0, �D is the part of the
boundary corresponding to the Dirichlet boundary condition, �N is the part of the
boundary corresponding to the Neumann boundary condition. In the following sec-
tions this question will be analysed in details for some modified schemes by stating
that the solution of the equation for M .r; p .r// D m .r; p .r// � I, m .r; p .r// 	 0:

� r .M .r; p .r// rp .r// D g .r/ ; 8r 2 � � R
n (14)

is non-negative subject to its existence and that the solution pk for each kth—Picard
iteration is a non-negative vector and the linear system is solved exactly, I is the
unit tensor. Modifications were introduced due to the following theorem.

Theorem 1 The discretization scheme ((3)–(7)) is at least O .h!/ ; 1 � ! < 2

order of accuracy in average for any scalar mobility field m .r; p .r// 2 C2 .�/ 	 0

everywhere within the numerical domain � sufficiently far away from the boundary
@�.
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Proof Using Taylor series expansions about a point rI and the relation (5), the
following relations can be written:

F .rJ/ D F .rI/ C F;˛ .rI/
�
r˛

J � r˛
I

� C
C1

2
F;˛� .rI/

�
r˛

J � r˛
I

� �
r�

J � r�
I

� C O �
h3

� (15)

m .rJ/ D m .rI/ C m;˛ .rI/
�
r˛

J � r˛
I

� C O �
h2

�
(16)

mI hF .rI/i˛ D mIF;˛ .rI/ C O �
h2

�
(17)

X

�rI ;h

VrJ

�
r�

J � r�
I

� r �̨W .rJ � rI; h/ D ı�˛; 8�; ˛ (18)

�
r˛

J � r˛
I

�
�
r�

J � r�
I

� r� W .rJ � rI; h/

krJ � rIk2
D r˛W .rJ � rI; h/ ; 8˛ (19)

Substituting relations ((15)–(17)) into the scheme (3) and taking into account the
relations (18) and (19), it leads to the following relations:

X

�rI ;h

VrJ ŒF .rJ/ � F .rI/�
.rJ � rI/ � .mJ C mI/ � rW .rJ � rI; h/

krJ � rIk2
D

D 2m .rI/F;˛ .rI/
X

�rI ;h

VrJ

�
r˛

J � r˛
I

� .rJ � rI/ � rW .rJ � rI ; h/

krJ � rIk2
C

Cm .rI/F;˛� .rI/
X

�r;h

VrJ

�
r˛

J � r˛
I

� �
r�

J � r�
I

� .rJ � rI/ � rW .rJ � rI ; h/

krJ � rIk2

Cm;˛ .rI/F;� .rI/
X

�rI ;h

VrJ

�
r˛

J � r˛
I

� �
r�

J � r�
I

� .rJ � rI/ � rW .rJ � rI ; h/

krJ � rIk2

CO �
h2

�

(20)

Œhr˛ .m .rI/F .rI//i � F .rI/ hr˛m .rI/i C m .rI/ hr˛F .rI/i� D
D 2m .rI/F;˛ .rI/ C O �

h2
� (21)

The claim of the theorem can be seen from the comparison of relations (20) and (21)
and the fact is that

X

�rI ;h

VrJ

�
r˛

J � r˛
I

�
�
r�

J � r�
I

� r� W .rJ � rI; h/

krJ � rIk2
D N˛; 8˛ (22)
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and

��1
ˇˇ

n
�

0

@
X

�rI ;h

VrJ

�
r�

J � r�
I

� �
r˛

J � r˛
I

�
�
rˇ

J � rˇ
I

�
rˇW .rJ � rI; h/

krJ � rIk2

1

A D

D ı�˛ C O .h!/ ; 1 � ! < 2; 8�; ˛

(23)

for all points rI located sufficiently far away from the boundary @�. The order
of accuracy O .h!/ has to be understood in statistical average sense with some
dispersion around the average value. The scheme ((3)–(7)) does not require exact
expressions for the gradient (i.e., spatial derivatives) of the mobility field r� m .r; p/

to keep a higher order of accuracy for any mobility field. Hence, this scheme can be
used with the a discontinuous (or piece-wise) mobility field m .r; p .r// 2 L2 .�/.
The case of a discontinuous mobility field is considered below.

4 Discontinuous Mobility Case

Using the same idea behind the expression (13) and heterogeneous discontinues
mobility field m .r/, it can be shown that the effect of requiring the flux into
the adjoining region to be continuous leads to the equivalent to the expression
(13) in terms of the effective mobility between particle rI and rJ (clearly and
Monaghan [8]):

meff D
	

m .rJ/ � m .rI/

m .rJ/ C m .rI/



(24)

It can be seen that the effective mobility .m .rJ/ C m .rI// does not guarantee the
continuity of the flux between the particles with discontinuous mobilities. Taking
this into account and applying the relation (24), the final discretization scheme for
the discontinuous scalar mobility field can be written as

hr˛ .m .rI/ r˛F .rI//i D
4 � ��1

ˇˇ

n

8
<

:

X

�rI ;h

VrJ � meff � ŒF .rJ/ � F .rI/�

�
r˛

J � r˛
I

� � r˛W .rJ � rI; h/

krJ � rIk2

9
=

;

�2 � ��1
ˇˇ

n

8
<

:

0

@
X

�rI ;h

VrJ � mI � ŒF .rJ/ � F .rI/� r �̨W .rJ � rI ; h/

1

AN˛

9
=

;

(25)

This numerical scheme is the final one for the heterogeneous discontinuous isotropic
scalar mobility field, which is used for numerical tests throughout this paper.
It ensures that the flux is automatically continuous between particles with the
reasonable accuracy. Multiple regions with substantially different fluid properties
and specific mobilities can then be simulated.
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The analytical analysis of the aforementioned scheme for a fully anisotropic
mobility tensor field is complicated. However, the numerical analysis reveals that
these schemes do not produce a reasonable approximation for a linear pressure field
for the anisotropic mobility tensor field. The following section describes a scheme
applicable to a fully anisotropic mobility tensor field.

4.1 Anisotropic Case

Generally speaking, any second order tensor can be decomposed into the spherical
and deviatorical parts. In the case of continuum mechanics, the decomposition of
the second order tensor (e.g., stress tensor or strain tensor) into their volumetric
and deviatoric components have certain physical justifications. This step is done in
order to distinguish between volumetric and shear responses. Hence, any mobility
field M .r; p .r// can also be split as:

M .r; p .r// D MS .r; p .r// �ICMD .r; p .r// ; MS .r; p .r// D 1

3
tr .M .r// (26)

where MS .r; p .r// � I is the spherical part of the mobility tensor, MD .r; p .r// is the
deviatoric part of the mobility tensor. In addition, the Darcy velocity can be written
as

v .r/ D vS .r/ C vD .r/ ;

vS .r/ D �MS .r; p .r// rp .r/ ;

vD .r/ D �MD .r; p .r// rp .r/
(27)

where vS .r/ is the volumetric velocity, vD .r/ is the deviatoric velocity. The problem
discussed in this paper is the discretization of the elliptic operator:

rv .r/ D rvS .r/ C rvD .r/ D g .r/ ; 8r 2 � � R
n (28)

Hence, the discretization scheme can be constructed in two steps. The first step is to
discretize the volumetric term rvS .r/ following the scheme (25):

�hrvS .r/i D
4 � ��1

ˇˇ

n

8
<

:

X

�rI ;h

VrJ � MS
eff � ŒF .rJ/ � F .rI/�

�
r˛

J � r˛
I

� � r˛W .rJ � rI; h/

krJ � rIk2

9
=

;

�2 � ��1
ˇˇ

n

8
<

:

0

@
X

�rI ;h

VrJ � MS .rI/ � ŒF .rJ/ � F .rI/� r �̨W .rJ � rI; h/

1

AN˛

9
=

;

(29)



76 A.A. Lukyanov and C. Vuik

where MS
eff is defined as

MS
eff D

	
MS .rJ/ � MS .rI/

MS .rJ/ C MS .rI/



(30)

The second step is to discretize the deviatoric term rvD .r/ as follows:

hrvD .r/i D
X

�rI ;h

VrJ

�hvD .rJ/i � hvD .rI/i
� r�W .rJ � rI; h/ (31)

hvD .rI/i D �MDhrp .rI/i;
hrp .rI/i D

X

�rI ;h

VrJ Œ p .rJ/ � p .rI/� r�W .rJ � rI ; h/ (32)

The numerical scheme (31)–(32) can be directly applied to discretize the original
Laplace operator (1) with the anisotropic mobility tensor M .r; p .r// 2 L2 .�/.
This scheme provides an exact answer for the linear pressure distribution in
both homogeneous and heterogeneous (linear) mobility fields. Figure 1 shows the
comparison between numerical and analytical values of the generalized Laplace
operator for the linear pressure distribution p .r/ D 11 � x C 5 � y C 17 and for
mobility tensors defined as

.a/ M .r/ D
	

6 3

3 5



;

.b/ M .r/ D
	

10 C 10 � x C 6 � y 2 C 2 � x C 2 � y
2 C 2 � x C 2 � y 4 C 4 � x C y


 (33)

The observed error is of a machine tolerance, which confirms theoretical claims
by numerical experiments. Incompleteness of the kernel support combined with the

Fig. 1 Comparison between analytical and numerical values for the generalized Laplace operator
for the linear pressure and (a) homogenous mobility field, and (b) heterogeneous mobility field
defined in (33)
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Fig. 2 Comparison between analytical and numerical values for the generalized Laplace operator
for the quadratic pressure and homogenous mobility field defined in (33) case (a)

lack of consistency of the kernel interpolation in conventional meshless method
results in fuzzy boundaries. For the scheme (31)–(32), the error starts occurring
at the boundary particles for quadratic and higher polynomials of the pressure
distribution. Figure 2 demonstrates the values of the generalized Laplace operator
for the homogeneous mobility field in (33) case (a) for the quadratic pressure

distribution p .r/ D 1

2

�
11 � x2 C 5 � y2 C 17

�
. In spite of perfectly adequate general

discretization properties, the numerical scheme (31)–(32) is not unconditionally
monotone. Knowledge of the capabilities and limitations of these different numeri-
cal schemes leads to a better understanding of their impact on various applications
and future research on improving and extending modeling capabilities. Hence, it is
important to make here a few remarks.

Remark 2 The aforementioned schemes (25) and (31)–(32) can be written in the
form:

hL .p .r//i D
X

S

NTM
SI pS;

X

S

NTM
SI D 0 (34)

where operator L is defined by either MS or MD and NTM
SI is the meshless transmissi-

bilities. In the case of the conventional Laplace operator r2p (i.e., m .rI/ 
 1 ), it
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can be derived 8rI:

.a/
X

S

NTM
SI D 0;

.b/
X

S

NTM
SI ŒrS � rI� D 0;

.c/
1

2

X

S

NTM
SI ŒrS � rI � � ŒrS � rI�

T ¤ I

(35)

This follows from the fact that the Taylor expansion of the pressure around the point
rI can be written as

p .rS/ D p .rI/ C rp .rI/ � ŒrS � rI � C
C1

2
ŒrS � rI�

T � r ˝ rp .rI/ � ŒrS � rI � C O �
h3

� (36)

The constraints (35) lead to significant differences between proposed meshless
multi-point flux approximation schemes and meshfree finite difference approxima-
tion schemes (see, Seibold [32]). It is important to recall here that meshfree finite
difference approximation schemes, which satisfy the constraints (a)–(b) and

1

2

X

S

NTM
SI ŒrS � rI � � ŒrS � rI �

T D I

are based on the following steps: (1) to define the neighbours list for each point (it is
important to choose more neighbours than constraints); (2) to select unique stencil
which can be satisfied addition requirements (e.g., monotonicity Seibold [32]).

Remark 3 The scheme (31)–(32) can be applied directly to the Darcy velocity (27)
with the full mobility tensor. Furthermore, the following theorem is valid for the full
mobility tensor:

Theorem 2 The discretization scheme (31)–(32) is at least of O �
h2

�
order of

accuracy for any differentiable heterogeneous full mobility tensor field everywhere
within the numerical domain �.

The proof of Theorem 2 can be seen from the construction of the scheme (31)–(32).
However, the scheme (31)–(32) is not unconditionally monotone but as was shown
by Seibold [32] in case of meshfree finite difference methods, it is possible to have
positive stencils in the scheme (31)–(32), i.e. all neighbor entries are of the same
sign.

Remark 4 The schemes (25) and (31)–(32) do not require exact expressions for
the gradient (i.e., spatial derivatives) of the mobility field r�M˛ˇ .r; p .r// D
M˛ˇ;� .r; p .r// to keep O.h˛/; 1 � ˛ < 2 order of accuracy) for any mobility
field M .r; p .r// 2 L2 .�/. Hence, an important feature of reservoir simulations
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that the mobility field M .r; p .r// is to be a discontinuous (or piece-wise function)
is allowed in this scheme.

Remark 5 Applying aforementioned meshless discretization schemes to the elliptic
problem L .p/ D 0 results in formulating a general non-linear system which can be
solved by iterative Newton-Raphson or Picard methods leading to the sequence of
linear systems with the matrix A D �

aij
�

1�i�n;1�j�n
2 R

n�n:

Ap D b (37)

where the pressure vector p contains approximations to the pressure p .r/. It is
assumed that L .p .r// D 0 admits a unique solution with a discontinuity perme-
ability tensor. The I-th row of the matrix A consists of the stencil corresponding to
the point rI . Let the unknowns be labeled by an index set N same as particles labels.
We consider square matrices A 2 R

n�n .

Definition 1 A matrix A is called essentially irreducible if every point is connected
to a Dirichlet boundary point.

The matrix A resulting from the meshless discretization is a essentially irreducible,
which is guaranteed by selecting Kernel supports and the Heine-Borel theorem.

Remark 6 Meshless multi-point flux approximation matrices are in general non-
symmetric. Consider two points rI and rJ with the corresponding smoothing lengths
hI and hJ. Since each stencil entry depends on the smoothing length, the point rJ

influences the matrix entry aij if krJ � rIk � � � hI whereas rI does not influence
the matrix entry aji if krJ � rIk > � � hJ, where � is the scaling factor defined
by the shape of the Kernel function. A number of symmetrization methods can be
used to overcome this problem. In this paper, the homogeneous smoothing length
hI D hJ ; 8I; J is used.

This ends the derivation of a meshless multi-point flux approximation method
that can be used to solve different boundary value problems.

5 Numerical Experiments

The verification process is intended to provide, and quantify, the confidence in
numerical modelling and the results from the corresponding simulations. Therefore,
in order to be confident that the proposed meshless multi-point flux approximation
provides the announced accuracy of the elliptic operator (1), it was tested for several
functions and different media (diagonal and non-diagonal mobility tensors).

In this section, the results of the numerical experiments using the proposed
scheme in Sect. 2.1 are presented, which confirm some of the theoretical results
from the previous sections. The problems are solved using 2D (i.e., n D 2) square
domains (see Fig. 3) with Dirichlet boundary conditions. Following the work by
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Fig. 3 Numerical domains with different particle distributions

Lukyanov [24–26], the inhomogeneous Dirichlet test cases are considered for the
verification purpose in this paper subject to the assumption that g .r/ D 0; 8r 2
� � R

2, linear and quadratic pressure boundary conditions:

p .r/ D 10 � x C 12 � y C 1; 8r D .x; y/ 2 @� � R
2;

p .r/ D 1

2
� �

11 � x2 C 12 � y2 C 1
�

; 8r D .x; y/ 2 @� � R
2 (38)

The rectangular 2D (i.e., n D 2) domain � D f.x; y/ 2 Œ0I L� � Œ0I H�g � R
n of

width L D 4:9 m and height H D 4:9 m with and without a circle inclusion are
considered (see, Fig. 3 cases (a) and (b), respectively).

The components of the heterogeneous mobility field in SI units are defined using
the normal distribution with the mean mobility tensor M .r/ and standard deviation
matrix D .r/:

M .r/ D
	

12 5

5 12



; D .r/ D

	
0:1 0:2

0:2 0:1



(39)

It is clear that the pressure field depicted at Figs. 4 and 5 does not have any spurious
oscillations and, hence, satisfies a discrete maximum principle. This suggests that
the meshless multi-point flux approximation provides a good approximation of the
pressure gradient in the flux computation at least for this study.

Convergence rates are established by running for five levels of particles refine-
ment, starting with the particle distance h D 0:245 m on level 1 and refining by
a factor of 2 for each successive level. Assuming that the error takes the form
Cph˛p , where Cp and ˛p are determined to give the best least square fit the data.
We consider two types of particle distributions: (a) uniform particle distribution and
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Fig. 4 Single-phase incompressible problem with full-permeability tensor (Cartesian grid)

Fig. 5 Different approximate solutions of Dirichlet boundary value problems with the Laplace
operator (1) and nonlinear boundary conditions: (a) boundary and internal pressure distribution,
(b) comparison of solutions for different particle distributions

(b) non-uniform particle distribution that is a random perturbation of the uniform
particles. The results for the Dirichlet problems using the numerical domain Fig. 3
cases (a) are presented in Table 1. Quadrature rules are used for calculating the error:

kp � phk2 D
X

	K

V	K .p .	K/ � ph .	K//2 (40)

that is, the results presented for the pressure. The approximation rate for the pressure
is between O .h/ and O �

h2
�
. Although, there is no solid proof that the proposed

scheme is unconditionally monotone. Numerical results indicate that a relatively
small spacing between particles leads to the unconditional monotonicity condition.
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Table 1 Approximation
rates for the relatively simple
Dirichlet problem
kp � phk � Cph˛p

Tensor Particle distribution Cp ˛p

Diagonal Uniform 0.348 1.991

Diagonal Weakly distorted 0.231 1.923

Diagonal Highly distorted 0.257 1.732

Non-diagonal Uniform 0.391 1.990

Non-diagonal Weakly distorted 0.272 1.919

Non-diagonal Highly distorted 0.293 1.727

6 Conclusion

Several methods have been proposed to address the difficulties involved in calculat-
ing second-order derivatives with SPH for heterogeneous scalar mobility fields by
calculating the Hessian or requiring that the discrete equations exactly reproduce
quadratic or higher order polynomials. In this paper, the proposed method provides
a simple discretization of the generalized Laplace operator occurring in modeling
fluid flows in anisotropic porous media, anisotropic viscous fluids.

The resulting meshless multi-point flux scheme not only ensures first order
consistency O.h/ but also improves the particle deficiency (kernel support incom-
pleteness) problem. The proposed scheme was tested by solving an inhomogeneous
Dirichlet boundary value problem for the generalized Laplacian equation with good
accuracy. Furthermore, including gradient corrections significantly improves the
Laplacian approximation near boundaries, although this requires an n � n matrix
inversion for each particle.

The discretization was tested for several boundary value problems using a variety
of boundary conditions. Approximation rates of the discretization scheme is smaller
with particle disorder; however, the solution remains robust. It is possible that these
rates may be improved with different approximations of the spherical part of the
Darcy velocity.
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