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ABSTRACT

In this article we introduce new bounds for the condition numbers of deflated symmetric positive definite

systems, used with and without classical preconditioning. For the case of a subdomain deflation such

as that of Nicolaides (1987), these lemmas can provide direction in choosing a proper decomposition

into subdomains and a proper choice of classical preconditioner. If grid refinement is done keeping the

subdomain resolutions fixed, the condition number can be shown to be independent of the number of

subdomains.
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1. Background: preconditioning and deflation

It is well known that the convergence rate of the conjugate gradient method depends on the
condition number of the system matrix to which it is applied. Let A ∈ Rn×n be symmetric
positive definite. We assume that the vector b ∈ Rn represents a discrete function on a grid Ω and
that we are searching for the vector x ∈ Rn on Ω which solves the linear system

Ax = b.

Such systems are encountered, for example, when a finite volume/difference/element method is
used to discretize an elliptic partial differential equation on a domain D, the continuous analog of
Ω.

Let us denote the spectrum of A by σ(A) and the ith eigenvalue in nondecreasing order by λi(A) or
simply by λi when it is clear to which matrix we are referring. After k iterations of the conjugate
gradient method, the error is bounded by (cf. [8], Thm. 10.2.6):

‖x− xk‖A ≤ 2 ‖x− x0‖A
(√

κ− 1√
κ+ 1

)k
(1.1)

where κ(A) = λn/λ1 is the condition number of A and the A-norm of x is given by ‖x‖A =
(xTAx)1/2. The error bound (1.1) does not tell the whole story, however, because the convergence
may be significantly faster if the eigenvalues of A are clustered into groups [21].

When A is the discrete approximation to an elliptic PDE, the condition number can become very
large as the grid is refined, slowing convergence. In this case it is advisable to solve, instead, a
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preconditioned system K−1Ax = K−1b, where the symmetric positive definite preconditioner K
is chosen such that the spectrum of K−1A is either more clustered or has a smaller condition
number than that of A. Furthermore, K must be relatively cheap to solve compared to the
improvement it provides in convergence rate. A final desirable property in a preconditioner is
that it should parallelize well, especially on distributed memory computers. Probably the most
effective preconditioning strategy in common use is to takeK = LLT to be an incomplete Cholesky
factorization of A [16]. For discretizations of second order PDEs in two dimensions, defined on a
grid with spacing h, we have with incomplete Cholesky factorization, κ ∼ h−2; with a modified IC
factorization[9, 1], κ ∼ h−1; and with a multigrid cycle, κ ∼ 1. Preconditioners such as multigrid
and some domain decomposition methods, for which the condition number of the preconditioned
system is independent of the grid size, are termed optimal.

Another preconditioning strategy that has proven successful when there are a few isolated extremal
eigenvalues is deflation [18, 14, 15]. In this case we define the projection P by

P = I −AZ(ZTAZ)−1ZT , Z ∈ Rn×m, (1.2)

where I is the identity matrix of appropriate size. We assume that m � n and that Z has rank
m so that Ac ≡ ZTAZ may be easily computed and factored. Note that Ac is symmetric positive
definite in this case. Since x = (I − PT )x+ PTx and since

(I − PT )x = Z(ZTAZ)−1ZTAx = ZA−1
c ZT b (1.3)

can be immediately computed, we need only compute PTx. In light of the identity APT = PA,
we can solve the deflated system

PAx̃ = Pb (1.4)

for x̃ using the conjugate gradient method and premultiply this by PT . Obviously (1.4) is singular,
and this raises a few questions. First, the solution x̃ may contain an arbitrary component in the
null space of PA, i.e. in span{Z}.1 This is not a problem, however, because the projected solution
PTx is unique. Second, what consequences does the singularity of (1.4) imply for the conjugate
gradient method?

Kaasschieter [12] notes that a positive semidefinite system can be solved as long as the right hand
side is consistent (i.e. as long it contains no component in the null space span{Z}). This is
certainly the case for (1.4), since the same projection is applied to both sides of the equation.
Furthermore, he notes (with reference to [21]) that since the null space never enters the iteration,
the corresponding zero-eigenvalues do not affect the convergence. To this end we define the effective
condition number of a positive semidefinite matrix A∗ ∈ Rn×n with corank m to be the ratio of
its largest to smallest nonzero eigenvalues:

κeff(A∗) =
λn
λm+1

.

Example. To see that the condition number of PA may be better than that of A, consider the case
in which Z is an invariant subspace of A. Note that PAZ = 0, so that PA has m zero-eigenvalues.
Furthermore, since A is symmetric positive definite, we may choose the remaining eigenspace Y in the
orthogonal complement of span{Z}, i.e. Y TZ = 0 so that PY = Y . However, AY = Y B for some
invertible B; therefore PAY = PY B = Y B, and span{Y } is an invariant subspace of PA. Evidently,
when Z is an invariant subspace of A,

κeff(PA) =
λn(A)

λm+1(A)
.

In summary, deflation of an invariant subspace cancels the corresponding eigenvalues, leaving the rest of

the spectrum untouched.

1We use the notation span{Z} to denote the column space of Z.
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This idea has been used in various ways by several authors. For nonsymmetric systems, approxi-
mate eigenvectors can be extracted from the Krylov subspace produced by GMRES. Morgan [17]
uses this approach to improve the convergence after a restart. In this case, deflation is not applied
as a preconditioner, but the deflation vectors are augmented with the Krylov subspace and the
minimization property of GMRES ensures that the deflation space is removed from the spectrum.
For more discussion on deflation methods for nonsymmetric systems, see [13, 7, 5, 19, 4, 2]. Other
authors have attempted to choose a priori a subspace to effectively represent the slowest modes.
In [24] deflation is used to remove a few stubborn but known modes from the spectrum. Mansfield
[14] shows how Schur complement-type domain decomposition methods can be seen as a series
of deflations. Nicolaides [18] chooses Z to be a piecewise constant interpolation from a set of m
subdomains and points out that deflation might be effectively used with a conventional precondi-
tioner. Mansfield [15] uses the same “subdomain deflation” in combination with damped Jacobi
smoothing, obtaining a preconditioner which is similar to the two-grid method.

In this article we introduce new bounds for the condition numbers of deflated symmetric positive
definite systems, used with and without classical preconditioning. For the case of a subdomain
deflation such as that of Nicolaides (1987), these lemmas can provide direction in choosing a
proper decomposition into subdomains and a proper choice of classical preconditioner. If grid
refinement is done keeping the subdomain resolutions fixed, the condition number can be shown
to be independent of the number of subdomains.

2. A condition number bound for deflation

Nicolaides [18] proves the following bound on the spectrum of PA:

λm+1 = min
vT v

vTA−1v
, λn = max

vT v

vTA−1v
,

where v is taken in span{Z}⊥. In this section we give a bound of a different flavor which will be used
in the subsequent sections to construct a preconditioning strategy with an optimal convergence
property.

First we prove two supplemental lemmas. The first has to do with preservation of positive semidef-
initeness under deflation.

Lemma 2.1 Let C be positive semidefinite and P be a projection (P 2 = P ), then if PC is
symmetric, it is positive semidefinite.

Proof. By hypothesis, 0 ≤ xTCx for all x. In particular, 0 ≤ (PTx)TC(PTx) = xTPCPTx so
that PCPT = P 2C = PC is positive semi-definite. �
The second lemma gives the norm of the projection matrix P .

Lemma 2.2 For P defined as in (1.2), ‖P‖2 = 1.

Proof. Define the spaces V = span{Z}⊥ and W = span{AZ} with dimensions n −m and m,
respectively. The direct sum of these spaces is Rn. If this were not so, there would be a vector y
in both spaces. Since y ∈ W , y = Az for some nonzero z ∈ span{Z}. On the other hand, since
y ∈ V , y must be perpendicular to z that is, 〈z,Az〉 = 0, contradicting the positive definiteness of
A.

Any vector in RN can be written as the sum of components in W and V ; i.e. u = v + w, v ∈ V ,
w ∈W . Note that Pw = w and Pv = 0. Now we have

‖P‖2 = max
u6=0

‖Pu‖2
‖u‖2

= max
u=v+w 6=0

‖w‖2
‖v + w‖2

= 1.

�
The following lemma provides a bound on the condition number of PA, and is our main result:
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Lemma 2.3 Let A be symmetric positive definite, P be defined by (1.2), and suppose there exists
a splitting A = A∗ + C such that A∗ and C are symmetric positive semidefinite with N (A∗) =
span{Z} the null space of A∗. Then

λi(A∗) ≤ λi(PA) ≤ λi(A∗) + λmax(PC). (2.1)

Moreover, the effective condition number of PA is bounded by

κeff(PA) ≤ λn(A)
λm+1(A∗)

. (2.2)

Proof. From (1.2) it is obvious that PA is symmetric. Since Z is in the null space of A∗, we
have that PA∗ = A∗ and is therefore also symmetric by hypothesis. Symmetry of PC = PA−A∗
follows immediately; and by assumption C is positive semidefinite, so we can apply Lemma 2.1
to arrive at λmin(PC) ≥ 0, with equality holding in any case due to singularity of P . The bound
(2.1) now follows from Theorem 8.1.5 of [8]:

λi(PA∗) + λmin(PC) ≤ λi(PA) ≤ λi(PA∗) + λmax(PC).

Furthermore, λn(PA) = ‖PA‖2 ≤ ‖P‖2‖A‖2 = ‖A‖2, as a result of Lemma 2.2. This upper
bound together with the lower bound in (2.1) proves (2.2). �
There is also a preconditioned version of the previous lemma.

Lemma 2.4 Assume the conditions of Lemma 2.3 and let K be a symmetric positive definite
preconditioner with Cholesky factorization K = LLT . Then,

λi(L−1A∗L−T ) ≤ λi(L−1PAL−T ) ≤ λi(L−1A∗L−T ) + λmax(L−1PCL−T ), (2.3)

and the effective condition number of L−1PAL−T is bounded by

κeff(L−1PAL−T ) ≤ λn(L−1AL−T )
λm+1(L−1A∗L−T )

. (2.4)

Proof. Define Â = L−1AL−T , Â∗ = L−1A∗L−T , Ĉ = L−1CL−T (all congruence transforma-
tions), Ẑ = LTZ and

P̂ = I − ÂẐ(ẐT ÂẐ)−1ẐT = L−1PL.

Note that P̂ is a projection and P̂ Â is symmetric, also that Ẑ is in the null space of Â∗ so that
P̂ Â∗ = Â∗. Thus, Lemma 2.3 applies directly to the deflated system matrix P̂ Â. The conclusions
follow immediately from the definitions of Â and Â∗. �
Remark. Experience shows that the greatest improvement in convergence is obtained by remov-
ing the smallest eigenvalues from the spectrum. It is therefore the lower bounds of (2.1) and (2.3)
which are of greatest concern. It follows from Lemma 2.4 that one should choose the precondi-
tioner K = LLT to be effective on the spectrum of A∗ rather than on that of A. See Kaasschieter
[12] for a discussion of the preconditioning of indefinite systems.

In the next section we consider applications of Lemmas 2.3 and 2.4 in lieu of a specific choice of
the subspace of deflation Z.
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3. Subdomain deflation

The results of the previous section are independent of the selection of a deflation subspace Z in
(1.2). As mentioned in Section 1, deflation of an eigenspace cancels the corresponding eigenvalues
without affecting the rest of the spectrum. This has led some authors to try to deflate with
“nearly invariant” subspaces obtained during the iteration, and led others to try to choose in
advance subspaces which represent the extremal modes.

For the remainder of this article we make a specific choice for the subspace Z in (1.2), based on a
decomposition of the domain Ω with index set I = {i|xi ∈ Ω} into m nonoverlapping subdomains
Ωj , j = 1, . . . ,m with respective index sets Ij = {i ∈ I|xi ∈ Ωj}. We assume that the Ωj are
simply connected regions covering Ω. Define Z by:

zij =
{

1, i ∈ Ij ,
0, i 6∈ Ij .

. (3.1)

With this choice of Z, the projection (1.2) will be referred to as subdomain deflation. Such a
deflation subspace has been used by Nicolaides [18] and Mansfield [14, 15].

This choice of deflation subspace is related to domain decomposition and multigrid methods. The
projection P can be seen as a subspace correction in which each subdomain is agglomerated into a
single cell, see for example [11]. As a multigrid method, P can be seen as a coarse grid correction
using a piecewise constant interpolation operator with very extreme coarsening.

Note that the matrix Ac = ZTAZ, the projection of A onto the deflation subspace Z, has the
same sparsity pattern as A. We will see that the effective condition number of PA improves as
the number of subdomains is increased (for a fixed problem size). However this implies that the
dimension of Ac also increases, making direct solution expensive. By analogy with multigrid, it
might become to solve Ac recursively. In a parallel implementation this would lead to additional
idle time, as it does with multigrid.

3.1 Application to Stieltjes matrices
Using subdomain deflation, we can identify matrices A∗ and C needed for application of the
deflation Lemmas 2.3 and 2.4 to the class of irreducibly diagonally dominant Stieltjes matrices (i.e.
symmetric M-matrices). Such matrices commonly arise as a result of discretization of symmetric
elliptic and parabolic PDEs. For our purposes the following characteristics are important:

• A is symmetric positive definite and irreducible

• aii > 0, aij ≤ 0, for i 6= j.

• aii −
∑
i6=j aij ≥ 0 with strict inequality holding for some i.

For a matrix A, define the subdomain block-Jacobi matrix B(A) ∈ Rn×n associated with A by

bij =
{
aij , if i, j ∈ Ik, for some k
0, otherwise . (3.2)

Notice that since each block Bjj is a principle submatrix of A, it is symmetric positive definite.
Also, since B is obtained from A by deleting off-diagonal blocks containing only negative elements,
the Bjj are at least as diagonally dominant as the corresponding rows of A. Furthermore, the
irreducibility of A implies that A itself cannot be written in block diagonal form, so to construct
B it is necessary to delete at least one nonzero block from each block-row. As a result, at least one
row of eachBjj is strictly diagonally dominant. We will further assume that the so-constructedBjj
are irreducible.2 It follows from Corollary 6.4.11 of [10] that the Bjj are again Stieltjes matrices.

2This is generally the case with matrices arising from discretization of PDEs on simply connected domains. If a
block Bii is reducible, then it may be possible to decompose Bii into additional subdomains which are irreducible.
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Figure 1: The eigenvalues of A(◦), PA(*) and A∗(· · · ).

Additionally, define Σ(A) ≡ A1 to be the vector containing the row sums of A, where 1 denotes
the vector of appropriate length containing all ones. Let the matrix A∗ be defined by

A∗ = B − diag (Σ(B)) . (3.3)

Each block A∗jj of A∗ has zero row sums—so 1 is in the null space of each block—but is further
irreducible and weakly diagonally dominant and has the M-matrix property. According to Theorem
4.16 of [3], a singular M-matrix has a null space of rank exactly one. It follows that the matrix Z
defined by (3.1) is a basis for the null space of A∗.

Putting these ideas together we formulate:

Theorem 3.1 If A is an irreducibly diagonally dominant M-matrix and A∗ defined by (3.3) has
only irreducible blocks, then the hypotheses of Lemma 2.3 are met.

Example. Consider a Poisson equation on the unit square with homogeneous Dirichlet boundary
conditions

∆u = f, u = 0, u ∈ ∂Ω, Ω = [0, 1]× [0, 1]. (3.4)

The problem is discretized using central finite differences on a 9 × 9 grid, and subdomain deflation is
applied with a 3× 3 decomposition into 3× 3 blocks. The system matrix A is pre- and post-multiplied by
the square root of its diagonal. Figure 1 shows the eigenvalues of A, PA and A∗. The extreme positive
eigenvalues of these three matrices are:

λmin λmax

A 0.06 1.94
PA 0.27 1.91
A∗ 0.25 1.50

Both the table and the figure support the conclusions of Lemma 2.3; namely, that the largest eigenvalue

of A and the smallest nonzero eigenvalue of A∗ bound the spectrum of PA. Note that the bounds are

reasonably sharp.
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Figure 2: The domain Ω is decomposed into two subdomains (the shaded region is Ir)

Note that the diagonal blocks A∗jj of the matrix A∗ as defined by (3.3) can be interpreted as the
discretizations of a set of m related Neumann problems on the corresponding subdomain grids.
By Lemma 2.3, the effective condition number of the deflated matrix PA is determined by the
smallest nonzero eigenvalue of A∗—in this case, the smallest nonzero eigenvalue over the set of
related Neumann problems on the subdomain grids, i.e.

λm+1(PA) = min
j
λ2(A∗jj).

Lemma 2.3 thus says that subdomain deflation effectively decouples the original system into a set
of independent Neumann problems on the subdomains, with convergence governed by the “worst
conditioned” Neumann problem. This implies an optimality result, since—if we can somehow
refine the grid without affecting the worst conditioned Neumann problem—the condition number
will also remain unchanged.

For an isotropic problem on a uniform grid, for example, this can be achieved by simply fixing
the subgrid resolutions and performing refinement by adding more subdomains. The numerical
experiments of Section 6 support this observation.

3.2 Application to finite element stiffness matrices
A result similar to the above discussion on M-matrices holds for finite element stiffness matrices.
We briefly describe it here. Suppose we have a domain Ω whose boundary is given by ∂Ω =
∂ΩD ∪ ∂ΩN , with Dirichlet boundary conditions on ∂ΩD and Neumann boundary conditions on
∂ΩN . Let Ω be decomposed into m nonoverlapping subdomains Ωj , j = 1, . . . ,m, and define the
finite element decomposition of Ω by

Ω̄ = ∪i∈I ēi,

Let the index set I be divided into m+ 1 disjoint subsets I1, . . . , Im and Ir, defined by

Ij =
{
j ∈ I|ej ⊂ Ωj and ēj ∩ ∂ΩD = ∅

}
,

and Ir = I\ ∪j Ij . Figure 2 shows an example of a domain with quadrilateral elements and two
subdomains.

The stiffness matrix A is defined as the sum of elemental stiffness matrices Aei :

A =
∑
i∈I

Aei ,
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where the elemental matrices are assumed to be positive semidefinite. This is always the case when
the integrals in the element matrices are computed analytically. We assume that A is symmetric
positive definite. This is normally true if the solution is prescribed somewhere on the boundary.
The matrix A∗ needed for Lemma 2.3 is defined by

A∗ =
∑

i∈I\Ir

Aei .

Note that A∗ is block diagonal and the blocks A∗jj can be interpreted as a finite element dis-
cretization of the original system on the subdomain Ωj with homogeneous Neumann boundary
conditions. This implies that λ1(A∗jj) = 0 and that Z is in the null space of A∗. Clearly A∗ is
positive semidefinite, as is

C =
∑
i∈Ir

Aei .

To ensure that λm+1(A∗) 6= 0, it is necessary that every grid point xk ∈ Ω̄\∂ΩD is contained in a
finite element ei with i ∈ ∪mj=1Ij ; otherwise the jth row of A∗ contains only zero elements.

4. Guidelines for selecting subdomains

We can use the results of the previous section to give guidance in choosing a good decomposition
of the domain Ω such that the worst conditioned related Neumann problem is as well conditioned
as possible. We consider two cases: a Poisson equation on a stretched uniform grid, and a diffusion
equation with a discontinuity in the diffusion coefficient.

4.1 Large domain/grid aspect ratios
Consider the Poisson equation with homogeneous Neumann boundary conditions on a rectangular
domain Ω:

∆u = f, ∂u/∂n = 0, u ∈ ∂Ω.

This equation is discretized with standard central finite differences on a uniform Nx × Ny grid
having cell dimensions hx × hy:

1
h2
x

(uj−1,k − 2uj,k + uj+1,k) +
1
h2
y

(uj,k−1 − 2uj,k + uj,k+1) = fj,k,

for j = 0, . . . , Nx and k = 0, . . . , Ny. Assume central discretization of the boundary conditions

u−1,k = u0,k, etc.

The eigenvalues of the discretization matrix3 are given by:

λj,k =
4
h2
x

sin2

(
jπ

2(Nx + 1)

)
+

4
h2
y

sin2

(
kπ

2(Ny + 1)

)
. (4.1)

The largest eigenvalue is λNx,Ny and the smallest nonzero eigenvalue is the minimum of λ0,1 and
λ1,0. Substituting into (4.1), and assuming Nx, Ny � 1, we get

λNx,Ny ≈
4
h2
x

+
4
h2
y

,

λ0,1 ≈
4
h2
y

(
π

2(Ny + 1)

)2

=
π2

h2
y(Ny + 1)2

,

λ1,0 ≈
4
h2
x

(
π

2(Nx + 1)

)2

=
π2

h2
x(Nx + 1)2

. (4.2)

3We are grateful to Jos van Kan for supplying this formula for the eigenvalues of the discrete Laplacian.
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4 x 42 x 8 8 x 2

Figure 3: Three decompositions of the unit square into 16 subdomains.

The decomposition problem can be stated as: for a fixed cell aspect ratio Qc ≡ hx/hy and a fixed
total number of cells C ≡ NxNy = const, find the grid aspect ratio Qg ≡ Nx/Ny minimizing the
effective condition number

κeff = max
(
λNx,Ny
λ0,1

,
λNx,Ny
λ1,0

)
= 4/π2 max

(
(1 +Q−2

c )(C/Nx + 1)2, (1 +Q2
c)(Nx + 1)2

)
.

Since both arguments of the maximum are monotone functions of positive Nx, one increasing and
the other decreasing, the condition number is minimized when these arguments are equal:

(1 +Q−2
c )(C/Nx + 1)2 = (1 +Q2

c)(Nx + 1)2

1
Q2
c

=
1 +Q−2

c

1 +Q2
c

=
(Nx + 1)2

(Ny + 1)2
≈ Q2

g.

Thus, for constant coefficients and a uniform grid, one should choose a decomposition such that
the subdomain grid aspect ratio is the reciprocal of the cell aspect ratio; that is, one should strive
for a subdomain aspect ratio Qd ≡ (Nxhx)/(Nyhy) of 1:

Qd = QgQc = 1.

Example. Again take the Poisson equation on the unit square (3.4), with a grid resolution Nx = 16,
Ny = 32. We compare the condition number of PA for three decompositions into 16 subdomains as shown
in Figure 3:

λmin(A∗) λmin(PA) κ(PA)

2× 8 0.013 0.024 83.0
4× 4 0.053 0.062 32.2
8× 2 0.014 0.024 81.8

The 4 × 4 decomposition provides a subdomain aspect ratio of Qd = 1, and this is the best-conditioned
case, as predicted.

The decomposition problem discussed above assumes that the number of domains is given. This
would be the case, for example, if a parallel decomposition is desired on a prescribed number of
processors. For a serial computation, or if there are an unlimited number of available processors,
a better approach would be to ask what number of domains gives the fastest solution. Suppose
we decompose into subdomains of unit aspect ratio, as described above. By comparison with
(4.2), the smallest positive eigenvalue of A∗ scales as 1/N2

x , with Nx the number of grid cells in
the x direction for the worst conditioned Neumann problem. Thus if we split each subdomain
horizontally and vertically into four equal smaller subdomains, the condition number of A∗ is
improved by a factor 4, roughly speaking. On the other hand, the dimension of the coarse grid
matrix Ac will be increased by a factor 4, causing the direct (or recursive) solution of this system
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to be relatively more expensive. In the extreme case of one unknown per subdomain, Ac = A,
so that solving Ac is as expensive as solving A. Clearly there must be an optimal value for the
number of subdomains; however, this will depend on the convergence of the conjugate gradients
process, and therefore also on the distribution of eigenvalues.

4.2 Strongly varying coefficients
When a problem has a large jump in coefficients at some location, it may be helpful to apply
subdomain deflation, choosing the subdomain interface at the discontinuity. Since the related
Neumann problems are decoupled, a diagonal scaling preconditioner is sufficient to make the
condition number independent of the jump in coefficients. This is best illustrated with an example.

Example. Consider a one-dimensional diffusion problem with Neumann and Dirichlet boundary con-
ditions

∂

∂x
α(x)

∂u

∂x
= f(x), x ∈ [0, 8.5],

dy

dx
(0) = 0, y(8.5) = 1,

and a jump discontinuity in the coefficient

α(x) =

{
1, x ≤ 3.5,
ε, x > 3.5,

for some ε > 0. The interval is discretized on a grid xi = i + 0.5, i = 0, . . . , 8, where the Neumann
boundary condition is discretized using a fictitious grid point x−1 = −0.5, and the prescribed value at
x = 8.5 is eliminated from the system. The resulting matrix A is symmetric and positive definite, so that
its diagonal is positive and we may define the preconditioner D1/2 = diag(A)1/2.

To define A∗ we decompose the problem into two subdomain problems

d2y

dx2
= f(x), x ∈ [0, 4],

dy

dx
(0) =

dy

dx
(4) = 0

and

ε
d2y

dx2
= f(x), x ∈ [4, 8],

dy

dx
(4) =

dy

dx
(8) = 0,

each discretized on 4 grid points, again using fictive grid points to discretize the boundary conditions.
The subdomain deflation space Z is defined by (3.1) with Ω1 = [0, 4] and Ω2 = [4, 8].

The eigenvalues of D−1A and D−1PA (equivalent to the eigenvalues of the symmetrically preconditioned
case D−1/2AD−1/2, etc.) are shown in Figure 4 for ε = 1 and ε = 0.01 with the eigenvalues of D−1A∗

appearing as dotted lines. Note that the smallest positive eigenvalue of D−1A∗ bounds from below the
smallest positive eigenvalue of D−1PA, as predicted by Lemma 2.4.

In the following table we give the effective condition numbers relevant for convergence of the preconditioned
conjugate gradient method.

ε λ1(D−1A) κ(D−1A) λ3(D−1PA) κeff(D−1PA)

1 1.9 · 10−2 1 · 102 2.9 · 10−1 6.5
10−2 3.3 · 10−4 6 · 10−3 2.9 · 10−1 6.8
10−4 3.3 · 10−6 6 · 10−5 2.9 · 10−1 6.8

Due to diagonal preconditioning, the smallest eigenvalue of D−1A∗ is independent of ε. As predicted by

Lemma 2.4, the same holds for D−1PA. The smallest eigenvalue of D−1A, however, decreases propor-

tionally to ε, leading to a large condition number and slow convergence of the conjugate gradient method

applied to D−1Ax = D−1b.

5. Additional considerations

In this section we discuss extension of deflation methods to the nonsymmetric case and describe
an efficient parallel implementation of the subdomain deflation method.
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Figure 4: Eigenvalues of D−1A (∗) and D−1PA (◦) for ε = 1 (left) and ε = 0.01 (right). The
spectrum of D−1A∗ is indicated by the dotted lines.

5.1 The nonsymmetric case
A generalization of the projection P for a nonsymmetric matrix A ∈ Rn×n is used in [24]. In this
case there is somewhat more freedom in selecting the projection subspaces. Let P and Q be given
by

P = I −AZ(Y TAZ)−1Y T , Q = I − Z(Y TAZ)−1Y TA.

where Z and Y are suitable subspaces of dimension n ×m. The operator Ac on the projection
subspace is given by Ac = Y TAZ. 4 We have the following properties for P and Q:

• P 2 = P , Q2 = Q

• PAZ = Y TP = 0, Y TAQ = QZ = 0

• PA = AQ

To solve the system Ax = b using deflation, note that x can be written as

x = (I −Q)x+Qx

and that (I − Q)x = Z(Y TAZ)−1Y TAx = Z(Y TAZ)−1Y T b can be computed immediately (cf.
(1.3)). Furthermore Qx can be obtained by solving the deflated system

PAx̃ = Pb (5.1)

for x̃ (cf. (1.4)) and pre-multiplying the result with Q.

Also in the nonsymmetric case deflation can be combined with preconditioning. Suppose K is a
suitable preconditioner of A, then (5.1) can be replaced by: solve x̃ from

K−1PAx̃ = K−1Pb, (5.2)

4In multigrid terminology, Z is the projection or interpolation operator, and Y T is the restriction operator.
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and form Qx̃, or solve ỹ from

PAK−1ỹ = Pb, (5.3)

and form QK−1ỹ. Both systems can be solved by one’s favorite Krylov subspace solver, such as:
GMRES [20], GCR [6, 23], Bi-CGSTAB [22] etc.

The question remains how to choose Y . We consider two possibilities:

1. Suppose Z consists of eigenvectors of A. Choose Y as the corresponding eigenvectors of AT .

2. Choose Y = Z.

For both choices we can prove some results about the spectrum of PA.

Assumption 5.1 We assume that A has real eigenvalues and is nondefective.

Whenever A satisfies Assumption 5.1 there exists a matrix X ∈ Rn×n such that X−1AX =
diag(λ1, . . . , λn). For the first choice, which is related to Hotelling deflation (see [25] p. 585), we
have the following result.

Lemma 5.1 If A satisfies Assumption 5.1, Z = [x1 . . . xm], and Y is the matrix composed of the
first m columns of X−T , then

X−1PAX = diag(0, ..., 0, λm+1, ..., λn).

Proof. From the definition of P we obtain PAZ = 0, so PAxi = 0, i = 1, . . . ,m. For the other
vectors xi, i = m+ 1, . . . , n we note that

PAxi = Axi −AZ(Y TAZ)−1Y TAxi = λixi −AZ(Y TAZ)−1λiY
Txi = λixi.

�
The second choice Y = Z has the following properties.

Lemma 5.2 For Y = Z one has:

(i) If A is positive definite and Z has full rank, Ac = ZTAZ is nonsingular.

(ii) If A satisfies Assumption 5.1 and Z = [x1 . . . xm], the eigenvalues of PA are {0, λm+1, ..., λn},
where m is the multiplicity of eigenvalue 0.

Proof. (i) For Y = Z the matrix Ac = ZTAZ is nonsingular since sTAcs > 0 for all s ∈ Rm and
s 6= 0.

(ii) Again PAxi = 0, for i = 1, . . . ,m. For the other eigenvalues we define the vectors

vi = xi −AZA−1
c ZTxi, i = m+ 1, . . . , n.

These vectors are nonzero, because x1, ..., xn form an independent set. Multiplication of vi by PA
yields:

PAvi = PA(xi −AZA−1
c ZTxi) = PAxi = Axi −AZA−1

c ZTAxi = λivi,

which proves the lemma. �
From these lemmas we conclude that both choices of Y lead to the same spectrum of PA. The
second choice has the following advantages: when A is positive definite we have proven that Ac is
nonsingular, it is not necessary to determine (or approximate) the eigenvectors of AT , and finally
only one set of vectors z1, . . . , zm has to be stored in memory. This motivates us to use the choice
Y = Z. In our applications Z is not an approximation of an invariant subspace of A but is defined
as in (3.1).

Lemmas 2.3 and 2.4 do not apply to the nonsymmetric case. However, our experience has shown
that the convergence of (5.1) is similar to that of (1.4) as long as the asymmetric part of A is not
too dominant.
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5.2 Parallel implementation
In this section we describe an efficient parallel implementation of the subdomain deflation method
with Z defined by (3.1). We distribute the unknowns according to subdomain across available
processors. For the discussion we will assume one subdomain per processor. The coupling with
neighboring domains is realized through the use of virtual cells added to the local grids. In this
way, a block-row of Ax = b corresponding to the subdomain ordering

A =

A11 · · · A1m

...
...

...
Am1 · · · Amm

 , (5.4)

can be represented locally on one processor: the diagonal block Aii represents coupling between
local unknowns of subdomain i, and the off-diagonal blocks of block-row i represent coupling
between local unknowns and the virtual cells.

Computation of element (i, j) of ZTAZ can be done locally on processor i by summing the coef-
ficients corresponding to block Aij of (5.4).

Use of the deflation P within a Krylov subspace method involves pre-multiplying a vector v by
PA:

PAv = (I −AZ(ZTAZ)−1ZT )Av.

Assuming (ZTAZ)−1 has been stored in factored form, this operation requires two multiplications
with A. However, the special form of Z given by (3.1) allows some simplification. Since Z is
piecewise constant, we can compute and store on processor i the vectors

{cj = Aij1; j|Aij 6= 0}. (5.5)

Then, local computation of AZẽ for a given (m-dimensional) vector ẽ consists of scaling the
nonzero cj by the corresponding ẽj and summing them up. The vectors cj , j 6= i have nonzero
elements only for local unknowns with connections to the virtual cells. Furthermore, for many
applications the elements of ci corresponding to grid points interior to a subdomain will be zero.

In parallel, we first compute and store the (nonzero parts of the) cj and (ZTAZ)−1 (factored)
on each processor. Then to compute PAv we first perform the matrix-vector multiplication w =
Av, requiring nearest neighbor communications. Next we compute the local contribution to the
restriction w̃ = ZTw and distribute this to all processes. With this done, we can solve ẽ =
(ZTAZ)−1w̃ and compute AZẽ locally.

The total communications involved in the matrix vector multiplication and deflation are a nearest
neighbor communication of the length of the interfaces and a global all-gather of dimension m.

The computational and communication costs plus storage requirements of subdomain deflation are
summarized in the following table, assuming a five-point discretization stencil on an Nx×Ny grid
with Mx×My decomposition into nx×ny blocks (nx = Nx/Mx, ny = Ny/My). The abbreviation
GaBr (m) refers to a gather-broadcast operation in which a set of m distributed floating point
numbers are gathered from the participating processors and then whole set returned to each
processor. The construction costs are incurred only once, whereas the iteration costs are in each
conjugate gradient iteration. Also included in the table are the costs of an (in the parallel case,
block-wise) incomplete factorization preconditioner with zero fill-in, ILU(0).
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sequential parallel
work storage work storage comms

Construction:
ILU(0) 6NxNy NxNy 6nxny nxny 0
Ac 5NxNy 5MxMy 5nxny 5MxMy GaBr (5MxMy)
Band-factor Ac 2M3

xMy 2M2
xMy 2M3

xMy 2M2
xMy 0

AZ 9NxNy 5NxNy 9nxny 9nxny 0

Iteration:
Backsolve IC(0): 10NxNy 10nxny 0
Restriction: s = ZTAv NxNy nxny 0
Backsolve: Acẽ = s 4M2

xMy 4M2
xMy GaBr (MxMy)

Prolongation: AZẽ 5NxNy 5nxny 0
Vector update: Av −AZẽ NxNy nxny 0

Besides the items tabulated above, there are computation and communication costs associated
with the matrix-vector multiplication and inner products as well as computational costs of vector
updates, associated with the CG method. Based on this table, we expect the added iteration
expense of deflation to be less expensive than an ILU(0) factorization, and that the method will
parallelize very efficiently on a distributed memory computer.

6. Numerical experiments

In conducting numerical experiments, we are interested in the following issues:

• verification of the theoretical results of this article

• the properties of subdomain deflation for nonsymmetric systems

• the parallel performance of the method

To this end we consider the Poisson equation with nonsymmetric preconditioning. The model
problem5 reads:

uxx + uyy = 1.

We discretize this using a cell-centered finite volume method on a rectangular grid.

The test cases are:

I. a uniform grid on Ω = [0, 1]× [0, 1], u = 0 on ∂Ω; and

II. a stretched grid on Ω = [0, 3]× [0, 1], ∆x = 3/Nx and ∆y = 1/Ny, u = 0 on ∂Ω.

We solve the resulting discrete (symmetric) system using GMRES with a restart of 20 and sub-
domain deflation:

PAx = Pb.

Due to boundary conditions, a nonsymmetric matrix may be obtained by multiplying Ax = b on
the left by the inverse of D = diag(A). We assume that this has been done prior to constructing
the deflation operators and preconditioner, and do not write D explicitly. The preconditioned
nonsymmetric system to be solved is therefore:

K−1PAx = K−1Pb.
5We checked that replacing the right hand side by a random vector gives the same qualitative behavior reported

here.
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Convergence is declared when, in the Jth iteration, ‖rJ‖ ≤ tol · ‖r0‖, for tol = 10−6.

The preconditioner used on the blocks is the relaxed incomplete LU (RILU) factorization of [1],
with relaxation parameter ω = 0.975. We choose this preconditioner because it is simple to
implement (for a five point stencil, modifications only occur on the diagonal) and is reasonably
effective. Certainly, more advanced preconditioners could be designed based on the blocks of A∗.

6.1 Convergence results
In this section we give convergence results with Problems I and II to illustrate the insensitivity of
the convergence to the number of subdomains, the optimal decomposition on stretched grids, and
the effectiveness of the method for problems with discontinuous coefficients.

6.1.1 Near grid independence In this section we illustrate the extent to which subdomain de-
flation can provide nearly grid-independent convergence. The symmetric discretization matrix for
Problem I is considered, without diagonal scaling and preconditioning. Keeping the resolution
of each subdomain fixed, the number of subdomains is increased. In so doing, the blocks of A∗

remain roughly the same as the grid is refined, and the bound in (2.1) becomes insensitive to the
number of blocks m for large enough m.

Assume the domain is decomposed into Mx ×My subdomains of equal size, each containing a
nx × ny grid.

Consider Problem I with Mx = My and nx = ny. Table 1 gives the number of GMRES iterations
required to solve Problem I as the grid is refined keeping the subdomain resolution nx fixed.

Table 1: Iterations Required for Problem I with Grid Refinement

m = M2
x nx = 5 nx = 10 nx = 20 nx = 50 nx = 100
1 4 11 44 175 596
4 11 44 138 596 2119
9 18 51 152 642 2336

16 27 56 155 644 2408
25 26 54 152 637 2442
36 27 54 147 627 2458
64 26 52 139 602 2474

It is apparent that—using only subdomain deflation—the number of iterations required for con-
vergence is bounded independent of the number of subdomains. The same qualitative behavior is
observed with preconditioning.

6.1.2 Stretched grid We consider Problem II with Nx = 36 and Ny = 72. The cell aspect ratio
is Qc = hx/hy = (3/36)/(1/72) = 6. Based on the discussion of Section 4.1, the best condition
number is expected for a for a subdomain aspect ratio Qd = 1, associated with a subdomain grid
aspect ratio of Qg = Qd/Qc = 1/6. Table 2 gives the number of iterations required for convergence
for 5 different decompositions into 12 equally sized subdomains. The 6 × 2 decomposition with
Qd = 1 gives the minimum number of iterations, in keeping with the discussion.

6.2 Parallel performance
For the results in this section, the RILU preconditioner is constructed on the blocks of B(A)
rather than A∗. To measure the parallel performance we consider test Problem I. The domain Ω
is decomposed in to Mx ×My subdomains of size 1/Mx × 1/My upon each of which an nx × ny
uniform grid is constructed (for the experiments presented here, Mx = My and nx = ny). An
initial guess u(0) = 0 is used.
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Table 2: Iterations required for Problem II for different decompositions

Mx ×My nx × ny Qd J
2× 6 18× 12 9 369
3× 4 12× 18 4 245
4× 3 9× 24 9/4 247
6× 2 6× 36 1 189

12× 1 3× 72 1/4 191

Our implementation does not take advantage of symmetry or the fact that some of the row sums
may be zero in (5.5). Each processor is responsible for exactly one subdomain. Parallel communi-
cations were performed with MPI, using simple point to point and collective communications. No
exploitation of the network topology was used. Parallel results were obtained from a Cray T3E.
Wall-clock times were measured using the MPI timing routine.

6.2.1 Speedup for fixed problem size. To measure the speedup, we choose p = M2
x processors

for Mx = 1, 2, 3, 4, 5, 6, 8 and nx = Nx/Mx. The results are given in Tables 3 and 4 for Nx = 120
and Nx = 480, respectively. The total number of iterations is denoted by J ; the time to construct
the incomplete factorization and deflation operator is denoted by tconst; and the time spent in
iterations is denoted by titer. The speedup is determined from s = titer|p=1/titer|p=M2

x
and parallel

efficiency by eff = s/p.

In Table 3 the parallel efficiency decreases from 44 percent on four processors to only 16 percent on
64 processors, whereas in Table 4 greater than 100 percent efficiency (compared to the single sub-
domain, nondeflated case) was attained for all parallel runs. This behavior is not yet understood,
but the following factors may contribute:

• As more subdomains are added, the relative size of the deflation system Ac increases, making
it more expensive to solve, but at the same time, its solution becomes a better approximation
of the global solution.

• As the size of the subdomain grids decreases, the RILU preconditioner becomes a better
approximation of the exact solution of the subdomain problems.

• Global communications become more expensive for many subdomains.

• There may be cache effects in play.

Table 3: Speedup for Problem I on a 120× 120 grid.

p J tconst titer s eff
1 40 8.5 · 10−3 2.72 – –
4 95 1.2 · 10−2 1.56 1.8 0.44
9 124 6.4 · 10−3 1.04 2.6 0.29

16 120 4.3 · 10−3 0.60 4.6 0.29
25 107 6.7 · 10−3 0.50 5.5 0.22
36 96 7.9 · 10−3 0.41 6.6 0.18
64 76 1.1 · 10−2 0.27 9.9 0.16
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Table 4: Speedup for Problem I on a 480× 480 grid.

p J tconst titer s eff
1 484 1.4 · 10−1 638.3 – –
4 321 1.3 · 10−1 95.3 6.7 1.68
9 351 6.4 · 10−2 54.6 11.7 1.30

16 378 3.4 · 10−2 27.4 23.3 1.45
25 316 2.5 · 10−2 17.6 36.3 1.45
36 409 2.2 · 10−2 14.1 45.4 1.26
64 317 1.4 · 10−2 5.9 108.3 1.69

6.2.2 Scaled performance for fixed subdomain size. Table 5 gives the computation times obtained
for fixed subdomain sizes nx = 5, 10, 20, 50, 100, 200 as the number of processors is increased, with
and without subdomain deflation. It is clear that the effect of deflation is to make the parallel
computation time less sensitive to the number of processors. The ∗ indicates the method did not
converge in 3000 iterations for the case in question.

We have already seen that the number of iterations levels off as a function of the number of
subdomains. The results of this table show that also the parallel iteration time becomes relatively
insensitive to an increase in the number of blocks. Some overhead is incurred in the form of global
communications, and in solving the deflation subsystem. As a result, the computation times are
not bounded independent of the number of subdomains. At the time of printing, the 64-processor
cases with nx = 100 and nx = 200 (indicated by †) were not available.

Table 5: Scaled performance for Problem I with fixed subdomain size n.

nx = 5 nx = 10 nx = 20 nx = 50 nx = 100 nx = 200
p = 1 no deflation 6 · 10−4 2 · 10−3 9 · 10−3 0.17 1.19 12.16
p = 4 no deflation 8 · 10−3 2 · 10−2 7 · 10−2 0.87 9.38 74.49

deflation 8 · 10−3 2 · 10−2 7 · 10−2 0.90 8.15 56.08
p = 9 no deflation 3 · 10−2 9 · 10−2 0.24 2.99 21.71 174.85

deflation 3 · 10−2 7 · 10−2 0.21 2.10 14.44 110.35
p = 16 no deflation 4 · 10−2 0.11 0.42 4.66 40.90 373.80

deflation 3 · 10−2 8 · 10−2 0.24 2.46 14.86 125.13
p = 25 no deflation 9 · 10−2 0.21 0.91 7.99 ∗ ∗

deflation 6 · 10−2 0.13 0.34 3.04 15.78 129.31
p = 36 no deflation 0.12 0.34 1.19 14.13 ∗ ∗

deflation 7 · 10−2 0.15 0.41 3.20 19.32 158.20
p = 64 no deflation 0.12 0.48 1.43 ∗ ∗ ∗

deflation 7 · 10−2 0.16 0.44 3.17 † †

7. Conclusions

In this paper we have given new effective condition number bounds for deflated systems, both
with and without conventional preconditioning. Specifically, we show that choosing the deflation
subspace to be constant on subdomains effectively decouples the problem into a set of related
Neumann problems, with the convergence governed by the “worst conditioned” Neumann problem.
This knowledge can help to choose an effective decomposition of the domain, and is especially useful
for problems with large discontinuities in the coefficients. Numerical experiments illustrate that
the convergence rate is nearly independent of the number of subdomains, and that the method
can be very efficiently implemented on distributed memory parallel computer.
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