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Abstract—Coupling single-carrier networks into multi-carrier
energy systems (MESs) has recently become more important.
Various formulations of the single-carrier load flow problem
(LFP) are used. Moreover, different coupling models lead to
different integrated systems of equations for the LFP of MESs.
Both could affect the convergence of the Newton-Raphson method
(NR) used to solve the nonlinear system of equations. This paper
considers the steady-state LFP for example MESs of varying
size, with various coupling models and topologies, and various
formulations in the single-carrier parts. Based on numerical
experiments, this paper compares the convergence behavior of
NR for the various single- and multi-carrier systems. For these
examples, NR of the steady-state LFP of the MESs is independent
of the size of the network and of the coupling, and NR requires
at most as many iterations as the slowest single-carrier network.

Index Terms—Integrated energy systems, Load flow analysis,
Multi-carrier energy networks, Numerical analysis, Power flow
analysis

I. INTRODUCTION

Multi-carrier energy systems (MESs) have become more
important over the years, as the need for efficient, reliable and
low carbon energy systems increases. In these energy systems,
different energy carriers, such as electricity and heat, interact
with each other leading to one integrated energy network. An
important tool for the design and operation of energy systems
is steady-state load flow analysis. Load flow models for single-
carrier networks (SCNs) have been widely studied, but only
recently load flow models for MESs have been proposed. For
instance, in [1] and [2] the energy hub concept (EH) is used,
in [3]–[5] a more ad hoc approach, and in [6] a graph-based
framework. All these approaches lead to one integrated system
of nonlinear equations. Generally, both for the SCNs and for
the MESs, the Newton-Raphson method (NR) is used to solve
the system of nonlinear load flow equations.

However, different couplings lead to different integrated
systems of equations for the load flow problem (LFP). More-
over, various formulations of the single-carrier (SC) load flow
equations are used (e.g. [7] for gas). To the best of the authors
knowledge, the effect of different couplings, and of different
formulations of the systems of equations, on the convergence
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behavior of NR for the integrated system of equations has not
been discussed.

In this paper, we investigate the effect of coupling and the
effect of the formulation of the LFP in the SC parts, on the
convergence behavior of NR for the steady-state LFP of MESs.
For the SCNs, we consider two versions of the flow equation
in a pipe combined with two formulations of the LFP in the
gas network, and two types of boundary conditions (BCs)
for a load combined with two formulations of LFP in the
heat network. Furthermore, various components, models, and
topologies for coupling are used to combine the SCNs into a
multi-carrier network (MCN).

We use a graph-based formulation for general MESs [6],
to solve the steady-state LFP for several example MESs. We
consider a base network and a larger extended network, both
consisting of gas, electricity, and heat. Four different topolo-
gies for coupling are used. Based on numerical experiments
for the example MESs, we compare the convergence behavior
of NR between the MESs and the SCNs, between the different
coupling models, and between the different formulations of the
LFP for the SCNs.

II. LOAD FLOW EQUATIONS

Energy systems are represented by a network, which is a
collection of nodes, connected by (directed) links. Flow enters
or leaves the network through sources or sinks, both called
loads, represented by terminal links. For steady-state load flow,
the variables and the elements they are associated with are
given in Tab. I. Conservation of energy holds for all the SC
nodes. All SC links representing a physical component have a
link equation that relates link and nodal variables. We use the
same load flow equations as used in [6], with the following
changes. All equations and variables are in SI units.

A. Single-carrier networks

For a transmission line in the electrical network, represented
by a link k from node i to node j, we use a π-line model (e.g.
[8]).

In a gas network, the general steady-state flow equation of
a pipe [7], represented by a link k from node i to node j,
can either express the link flow as a function of pressures,
denoted as fq(∆p), or express the pressure drop as a function
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TABLE I
VARIABLES FOR A GAS, HEAT, AND ELECTRICAL NETWORK.

Network Node Link Terminal node
Gas pressure pg flow q injected flow q

Heat pressure ph flow m injected flow m

supply temperature T s outflow temperature T o

return temperature T r heat power ϕ
Electricity voltage V current I injected current I

injected complex power S

of link flow, denoted by f∆p(q). Defining the pressure drop
by ∆pgk := (pgi )

2 −
(
pgj
)2

, we have

f
q(∆p)
k := qk − Cgksign (∆pgk) (fgk )

− 1
2 |∆pgk|

1
2 = 0 (1a)

f
∆p(q)
k := ∆pgk − (Cgk)

−2
fgk |qk|qk = 0 (1b)

with qk is the link flow, pgi the nodal pressure, fgk the friction
factor, and Cgk the pipe constant.

In a heat network, a heat source or sink, represented by a
terminal link l connected to node i, has a heat power equation
Cpmi,l∆Ti,l−ϕi,l = 0, with a temperature difference defined
by:

∆Ti,l :=

{
T si − T oi,l , if l is a sink

T oi,l − T ri , if l is a source
(2)

Here, ϕi,l is the heat power, mi,l is the mass flow, T oi,l is the
outflow temperature of the load, and Cp the specific heat of
the water. We assume that a heat node can have only sink or
only source terminal links connected to it, such that we can
call the node a sink or a source respectively.

B. Coupling

The SCNs are connected through a coupling node to form
a MCN [6]. The coupling variables are associated with the
(terminal) links connected to the coupling node. The coupling
node can represent various coupling units, and can be used
with various models. We consider a combined heat and power
plant (CHP), and a gas boiler (GB) combined with a gas-
fired generator (GG). For the models, we use a linear model
for the CHP and the GB, a linear model for a basic GG
and a nonlinear model for a gas-fired generator with valve-
point effect (GG VP). Since all these units convert gas to
electricity and heat, we also consider the energy hub (EH)
concept as coupling model [1]. Every coupling node has at
least one coupling equation. Furthermore, every coupling unit
that produces heat has a heat power equation.

For the linear coupling models, we use ϕc = ηGBGHVqc

for the GB, GHVqc = (ηgeCHP)−1P c + (ηghCHP)−1ϕc for the
CHP, and P c = ηGGGHVqc for the GG, with GHV the gross-
heating value of the gas, and η the efficiency. For the nonlinear
model of the GG, we use the model as stated in [3].

For the EH we use P c = cgeGHVqc and ϕc = cghGHVqc,
where we take cge = 1⁄2ηGG and cgh = 1⁄2ηGB, to model a GG
and a GB as an EH.

III. SYSTEM OF EQUATIONS

Typically, collecting all the load flow equations for the
SCNs still leaves more variables than equations. Therefore,
some variables are assumed known, which we will call the
boundary conditions (BCs) of the network. A node type is as-
signed to every node based on the known variables. Moreover,
the coupling models generally introduce more variables than
equations, such that additional BCs are needed for the MCN
[6]. The load flow equations and the BCs can be combined in
various ways to form the system of equations for the SCNs
and MCNs. We consider three formulations in the gas network,
and four in the heat network.

A. Various Formulations

For the gas network, we consider the nodal formulation [7],
and the full formulation. In the nodal formulation, the link
equations (1a) are substituted in conservation of mass. In the
full formulation, the link equations (either (1a) or (1b)) are
not substituted, and the link flows are added as unknowns.

For the heat network, we use two different types of BCs
for the load nodes, and two different formulations of the
hydraulic-thermal system of equations, giving a total of four
formulations. For the BCs at the load nodes, ϕi,l and either T oi,l
or ∆Ti,l are assumed known. The first formulation, which we
call the terminal link formulation, does not substitute terminal
flows. If ∆Ti,l is known for loads, T oi,l is added as a variable,
and (2) is added to the system of equations. The system of
nonlinear equations for the terminal link formulation is given
by:

Fh = (Fm FL FTs

FTr

Fϕ F∆T)
T

= 0,

xh = (mL mTL ph Ts Tr To)
T

(3)

with mL, mTL, ph, Ts, Tr, and To the vectors of unknown
link mass flows, terminal mass flows, nodal pressures, supply
and return temperatures, and terminal outflow temperatures,
and with Fm, FL, FTS

, FTr

, Fϕ, and F∆T the vectors of
conservation of mass, link equations, supply line mixing rules,
return line mixing rules, heat power equations, and temperature
difference equations.

The second formulation, which we call the standard formu-
lation, is generally used (see e.g. [5] or [6]). This system of
equations is smaller than (3), but Fm is now nonlinear, and the
supply line mixing rule FTs

depends on Tr and vice versa.
For the electrical network we use the commonly used

complex power formulation in polar coordinates (e.g. [8]).
For the coupling part, we use the system of equations as

stated in [6]. Note that assuming one or more of the coupling
(energy) flows known effectively decouples the system of
equations, such that there is no need to model the system as
one integrated system. Therefore, we assume P c, Qc, qc, ϕc

and mc unknown. However, if a coupling unit produces heat,
T o,c or ∆T c can be assumed known as a BC. Additionally
required BCs must be imposed in the SC parts of the network.

The load flow equations for the SCNs and the coupling part
can be combined into one system of nonlinear equations:
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(d) Coupled at node 2, GB and GG.
: gas network : electricity network : heat network

Fig. 1. MES network topology. Arrows show defined direction of flow.

F = (Fg Fe Fh Fc)
T

= 0,

x = (xg xe xh xc)
T

(4)

with Fg, Fg, Fe, Fc and xg, xe, xh, xc the system of equa-
tions and variables for the gas, electricity, heat, and coupling
part of the MES, respectively.

B. Newton-Raphson

We scale the integrated system of equations (4) by ma-
trix multiplication, and solve this scaled system using the
Newton-Raphson method (NR). The equations and variables
are scaled by diagonal matrices DF = Diag (1/Fb) and
Dx = Diag (1/xb) respectively, with Fb and xb the vectors
with base values for each equation and base values for each
variable. The scaled system is then given by F̂ := DFF, with
scaled variables x̂ := Dxx. The iteration scheme of NR in
multiple dimensions, for the scaled system, is given by:

x̂k+1 = x̂k − Ĵ
(
xk
)−1

F̂
(
xk
)

(5)

with xk = D−1
x x̂k, and Ĵ

(
xk
)

= DFJ
(
xk
)
D−1
x . The

Jacobian matrix J is given by:

J =


Jgg Jge Jgh Jgc
Jeg Jee Jeh Jec
Jhg Jhe Jhh Jhc
Jcg Jce Jch Jcc

 =


Jgg 0 0 Jgc
0 Jee 0 Jec
0 0 Jhh Jhc
0 0 Jch Jcc

 (6)

where the submatrices are defined as Jαβ = ∂Fα

∂xβ for α, β ∈
{g, e, h, c}. Since the BCs additionally required due to the
coupling are imposed in the SC parts of the network, these
submatrices will generally not be square.

NR is stopped when the error ||DFF
(
xk
)
||2 < 10−6, or

when the maximum number of iterations is reached.

IV. EXAMPLES

To investigate the convergence of NR for SCNs and MCNs,
we consider a gas, electrical, and heat SCN. We consider two
cases, a base case with a fixed small topology, and an extended
case, which takes the base case and increases the SCNs to
various sizes. The coupling part is the same for both cases.

1 2

J1

L2

3

Ss

S1

L1

J1

L2

Jm

Ln

Ln

Jm

L1

Fig. 2. Network topology of a SCN, extended with s streets S, each consisting
of n loads L. In every street, m junctions J are connected to two loads.

TABLE II
BC NODE SETS FOR THE EXAMPLE SCNS

Gas Electricity Heat
Node Type Specified Type Specified Type Specified
1 ref. pg slack |V |, δ source ref. slack T s, ph

2 load q gen. P, |V | load (source) T o, ϕ

3 load q load P, Q load (sink) T o, ϕ

A. Topology

Each SCN in the base case consist of three nodes. For all
three carriers, node 1 is a source, and node 3 is a sink. For the
electrical network and the heat network, node 2 is an additional
source. For coupling, we consider components that convert gas
to electricity, heat, or both, see Sec. II-B. One electrical and
one heat source are replaced with a coupling, such that the
SCNs are coupled at node 1 or at node 2. The networks are
coupled by a single node representing a CHP or an EH, or
by two nodes representing a GB and a GG. Fig. 1 shows the
possible topologies for the base case MES.

For the extended case, the base network from Fig. 1 is
extended by ‘streets’ of additional loads in every SC part, see
Fig. 2. There are s streets, S1 - Ss, which are all connected to
node 3 of the base SCN through a junction node. The streets
consists of n loads, L1 - Ln, connected to the main street
links by junctions, m of which, J1 - Jm, are connected to
two loads. Fig. 2 shows the topology of such an extended SCN,
consisting of 3+s (2n−m+ 1) nodes and 2+s (2n−m+ 1)
links. The extended MES is created by coupling the SCNs in
the same way as for the base network, shown in Fig. 1.

B. Boundary Conditions

Tab. II gives the node types used for the LFP in the SCNs,
based on which variables are specified. Note that the electrical
and heat network do not necessarily have a physical solution.
For instance, if |ϕ2| > ϕ3 > 0, the source slack node 1 would
have to behave as a sink, which is unphysical.

Node 1 is the slack node in all three SCNs, such that load
flow analysis determines the amount of injected flow or energy
entering node 1. Replacing the slacks of the electrical and heat
network with a coupling is then straightforward. The electrical
and heat SC parts of the MES will determine ϕc and P c, after
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TABLE III
BC NODE SETS FOR THE EXAMPLE MESS, COUPLING AT NODE 1.

CHP or GB + GG EH
Node node set 1 node set 2 node set 1 node set 2
1g pg pg pg pg

2g q q q q

3g q q q q

1e P, Q, |V |, δ P, Q, |V |, δ Q, |V |, δ P, Q, |V |, δ
2e P, |V | P, |V | P, |V | P, |V |
3e P, Q P, Q P, Q P, Q

1h T s, ph, m = 0 ph, m = 0 T s, ph, m = 0 T s, ph

2h T o, ϕ T o, ϕ T o, ϕ T o, ϕ

3h T o, ϕ T o, ϕ T o, ϕ T o, ϕ

1c - T o - T o

2c - - - -

TABLE IV
BC NODE SETS FOR THE EXAMPLE MESS, COUPLING AT NODE 2.

CHP or GB + GG EH
Node node set 1 node set 2 node set 3 node set 1 node set 2 node set 3
1g pg , q pg , q p pg , q p p

2g q q q q q q

3g q q q q q q

1e P, |V | |V |, δ P, |V | |V |, δ P, |V | |V |, δ
2e P, Q, |V |, δ P, Q, |V | P, Q, |V |, δ P, Q, |V | P, Q, |V |, δ P, Q, |V |
3e P, Q P, Q P, Q P, Q P, Q P, Q

1h T s, ph ph, T o, ϕ ph, T o, ϕ T s, ph T s, ph ph, T o, ϕ

2h m = 0 m = 0 m = 0 m = 0 m = 0 m = 0

3h T o, ϕ T o, ϕ T o, ϕ T o, ϕ T o, ϕ T o, ϕ

1c T o T o T o T o T o T o

2c - - - - - -

which the coupling equations for a CHP, or for a GB and a
GG, uniquely determine qc. For the EH, the coupling equation
needs only P c or ϕc to uniquely determine qc and ϕc or P c.
Hence, either the electrical or the heat network will need an
additional slack.

Conversely, node 2 was a generator or a source node in the
SC electrical and heat network, such that P and ϕ were given.
Replacing those sources with the coupling, after which P c and
ϕc are unknown, means BCs must be chosen such that the SC
parts can determine qc, P c, or ϕc for the coupling equation(s)
to be able to determine the others.

Tab. III and Tab. IV give the various sets of BCs used in
the MCNs, for the base case. The node sets for the extended
case are the same, the additional nodes are junction or load
nodes.

C. Numerical Experiments

For the numerical experiments, we consider the base case
MESs with the topologies as shown in Figs. 1a-1b and the
node sets given in Tab. III when coupled at node 1, and the
topologies shown in Fig. 1c-1d and the nodes sets given in
Tab. IV when coupled at node 2. The extended case uses the
same node sets, and 30 nodes per SCN (n = 5,m = 2, s = 3)
for a medium network, or 323 nodes per SCN (n = 10,m =
5, s = 20) for a large network.

We use a flat initial guess of NR, except for a linear profile
for pg, ph, and Ts, where the nodes furthest from the source
have the lowest value.

0 1 2 3 4 5 6
Iteration k

10−13

10−11

10−9

10−7

10−5
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10−1

101

E
rr

or
||D

F
F

(x
k
)||

2

gas: full, fq(∆p)

gas: full, f∆p(q)

gas: nodal, fq(∆p)

electrical
heat: standard, T o

heat: standard, ∆T

heat: terminal link, T o

heat: terminal link, ∆T

tolerance

Fig. 3. Convergence of NR for the extended SCNs, with n = 10, m = 5,
and s = 20, using various formulations in gas and in heat.

TABLE V
NR ITERATIONS FOR LFP OF SCNS.

Case (number of nodes per SCN)
Carrier Formulation Base Ext. medium (30) Ext. large (323)

Gas
nodal, fq(∆p) 4 6 6
full, fq(∆p) 4 6 6
full, f∆p(q) 3 5 4

Electricity 2 3 5

Heat

standard, T o 3 3 3
standard, ∆T 2 2 2
terminal link, T o 3 3 3
terminal link, ∆T 2 2 2

The convergence of NR for the SCNs shows very similar
behavior for all network sizes. However, the convergence is
different for the various formulations in the gas network and
in the heat network. Fig. 3 shows the convergence behavior
for the largest network, as an example. Tab. V summarizes
the iterations needed by NR to converge. For the gas network,
link equation f∆p(q) results in slightly faster convergence
than fq(∆p). With fq(∆p), the nodal and full formulation
give the same results. For the heat network, convergence
shows no difference between the terminal link or the standard
formulation. Assuming ∆Ti,l known for a heat load instead
of T oi,l gives better convergence. Hereafter, we only show the
results of the LFP for the MESs with the full formulation in gas
and the terminal link formulation, with ∆Ti,l known, in heat.
Using the nodal formulation in gas, and standard formulation
or terminal link formulation with T oi,l known in heat, give
similar results.

Fig. 4 shows typical convergence of NR for the base case
MES coupled at node 2, using different topologies, coupling
components, and all node sets. Numerical experiments show
similar convergence for the extended case coupled at node 2,
and for the base and extended case coupled at node 1, for all
considered topologies, coupling components, and node sets.

For comparison, we give the results for the node sets in
which the coupling component functions as a slack for the heat
network. That is, we use node set 1 when coupling at node 1,
and node set 3 when coupling at node 2. Tab. VI shows the
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Fig. 4. Convergence of NR for the base case MES, coupled at node 2, using
full formulation with f∆p(q) in gas, and terminal link formulation with ∆Ti,l
known in heat. Most of the curves are indistinguishable at this scale.

TABLE VI
NR ITERATIONS FOR LFP OF THE MESS.

Size Form. gas Coupled at CHP GB & GG GB & GG VP EH Max. SC

base
full, fq(∆p) node 1 4 4 4 4 4

node 2 4 4 4 4 4

full, f∆p(q) node 1 3 3 3 3 3
node 2 3 3 3 3 3

medium
n = 5
m = 2
s = 3

full, fq(∆p) node 1 6 6 6 6 6
node 2 6 6 6 6 6

full, f∆p(q) node 1 5 5 5 5 5
node 2 5 5 5 5 5

large
n = 10
m = 5
s = 20

full, fq(∆p) node 1 6 6 6 6 6
node 2 6 6 6 6 6

full, f∆p(q) node 1 4 4 4 4 5
node 2 4 4 4 4 5

number of iterations needed by NR for the base and extended
case MESs, for these two node sets, to converge. Numerical
experiments show similar results for the other node sets, and
other formulations. Given a formulation of the SC parts, the
NR iterations for MESs follow a similar pattern for both
points of coupling, all four coupling components and models,
and all node sets. Hence, for this example, the convergence
behavior of the MES is determined by the SCNs, and not by
the coupling. Moreover, we find that for the extended case,
the number of iterations barely increases when the size of the
network increases, both for the SCNs and for the MESs.

For these examples, NR for the integrated system of load
flow equations requires a number of iterations roughly equal to
the maximum number of iterations of NR for the correspond-
ing SCNs. Hence, the convergence of NR is independent of the
coupling. This could be due to the topology and the choice
of BCs. All node sets are chosen such that the steady-state
LFP can be solved uniquely for one or two SCNs, with the
coupling energy as unknown. The coupling equations can then
be used to compute the other coupling energies or energy,
which serve as a BC for the other SCNs. Hence, the LFP for
the examples MESs could be solved by sequentially solving
the SC LFPs, instead of solving one integrated system of
equations. In other words, the Jacobian matrix (6) used in
NR could easily be reordered into block upper triangular form

where the coupling part in included with the SC parts. This
may induce the solution paths of the subsystems to be very
similar to those of the individual subsystems when solved
separately, so that the number of iterations of the integrated
systems is automatically near the maximum of the iteration
numbers of the individual subsystems.

We expect similar convergence behavior for other MESs
where the integrated LFP can easily be decomposed into
solvable SC subsystems, but further research is required.

V. CONCLUSION

We modeled steady-state load flow for MESs by solving
the integrated system of nonlinear equations for various small
and large example networks. We compared the convergence
behavior of NR for the various MESs and SCNs.

Various formulations of the system of equations were used
in the gas and heat SC parts. For the example networks,
expressing flow as a function of pressure drop for the link
equations in the gas network resulted in slower convergence
compared with expressing pressure drop as a function of flow.
There is no difference in convergence behavior between the
nodal and the full formulation in the gas network. Assuming
the temperature difference for a heat load known, instead of
the outflow temperature, results in faster convergence for the
heat network. There is no difference in convergence behavior
between the standard and the terminal link formulation in the
heat network. Furthermore, increasing the size of the SCNs
barely increases the number of NR iterations.

To couple the SCNs, we considered an EH, a CHP, and a
gas-boiler combined with a gas-fired generator. The networks
were either coupled at their slack nodes (node 1), or at a heat
source and electrical generator (node 2). The convergence of
NR for the MESs is independent of the coupling component,
point of coupling, coupling model, and node set.

For these examples, NR for LFP of the MES requires at
most as many iterations as the slowest SCN. Moreover, the
number of NR iterations are independent of the coupling and
almost independent of the size of the network.
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