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Abstract. In this paper we compare various preconditioners for the numerical solution of partial
differential equations. We compare a coarse grid correction preconditioner used in domain decom-
position methods with a so-called deflation preconditioner. We prove that the effective condition
number of the deflated preconditioned system is always, for all deflation vectors and all restrictions
and prolongations, below the condition number of the system preconditioned by the coarse grid
correction. This implies that the conjugate gradient method applied to the deflated preconditioned
system is expected always to converge faster than the conjugate gradient method applied to the sys-
tem preconditioned by the coarse grid correction. Numerical results for porous media flows emphasize
the theoretical results.
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1. Introduction. It is well known that the convergence rate of the conjugate
gradient (CG) method is bounded as a function of the condition number of the system
matrix to which it is applied. Let A ∈ R

n×n be symmetric positive definite. We
assume that the vector b ∈ R

n represents a discrete function on a grid Ω and that we
are searching for the vector x ∈ R

n on Ω which solves the linear system

Ax = b.

Such systems are encountered, for example, when a finite volume/difference/element
method is used to discretize an elliptic PDE defined on the continuous analogue of Ω.

Let us denote the ith eigenvalue in nondecreasing order by λi(A) or simply by
λi when it is clear to which matrix we are referring. After k iterations of the CG
method, the error is bounded by (cf. [9, Thm. 10.2.6])

‖x− xk‖A ≤ 2 ‖x− x0‖A
(√

κ− 1√
κ + 1

)k

,(1.1)

where κ = κ(A) = λn/λ1 is the spectral condition number of A and the A-norm of
x is given by ‖x‖A = (xTAx)1/2. The convergence may be significantly faster if the
eigenvalues of A are clustered (see [24]).

If the condition number of A is large it is advisable to solve, instead, a precondi-
tioned system M−1Ax = M−1b, where the symmetric positive definite preconditioner
M is chosen such that M−1A has a more clustered spectrum or a smaller condition
number than that of A. Furthermore, M must be cheap to solve relative to the
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improvement it provides in convergence rate. A final desirable property in a precon-
ditioner is that it should parallelize well, especially on distributed memory computers.
Probably one of the most effective preconditioning strategies in common use is to take
M = LLT to be an incomplete Cholesky (IC) factorization of A (see [16]). We denote
the preconditioned conjugate gradient method as PCG.

With respect to the known preconditioners, at least two problems remain:
• If there are large jumps in the coefficients of the discretized PDE, the con-

vergence of PCG becomes very slow, and
• if a block preconditioner is used in a domain decomposition algorithm the

condition number of the preconditioned matrix deteriorates if the number of
blocks increases.

Both problems can be solved by a deflation technique or a suitable coarse grid
correction. In this section we describe both methods, which are compared in the next
sections. To describe the deflation method we define the projection PD by

PD = I −AZ(ZTAZ)−1ZT , Z ∈ R
n×r,(1.2)

where the column space of Z is the deflation subspace, i.e., the space to be projected
out of the residual, and I is the identity matrix of appropriate size. We assume
that r � n and that Z has rank r. Under this assumption E ≡ ZTAZ may be easily
computed and factored and is symmetric positive definite. Since x = (I−PT

D)x+PT
Dx

and because

(I − PT
D)x = Z(ZTAZ)−1ZTAx = ZE−1ZT b(1.3)

can be immediately computed, we only need to compute PT
Dx. In light of the identity

APT
D = PDA, we can solve the deflated system

PDAx̃ = PDb(1.4)

for x̃ using the CG method, premultiply this by PT
D , and add it to (1.3).

Obviously (1.4) is singular. What consequences does the singularity of (1.4) imply
for the CG method? Kaasschieter [12] notes that a positive semidefinite system can
be solved as long as the right-hand side is consistent (i.e., as long as b = Ax for some
x). This is certainly true for (1.4), where the same projection is applied to both sides
of the nonsingular system. Furthermore, he notes (with reference to [24]) that because
the null space never enters the iteration, the corresponding zero eigenvalues do not
influence the convergence. Motivated by this fact, we define the effective condition
number of a positive semidefinite matrix C ∈ R

n×n with r zero eigenvalues to be the
ratio of its largest to smallest positive eigenvalues:

κeff(C) =
λn

λr+1
.

It is possible to combine both a standard preconditioning and preconditioning
by deflation (for details, see [8]). The convergence is then described by the effective
condition number of M−1PDA.

The deflation technique has been exploited by several authors. For nonsymmetric
systems, approximate eigenvectors can be extracted from the Krylov subspace pro-
duced by GMRES. Morgan [17] uses this approach to improve the convergence after
a restart. In this case, deflation is not applied as a preconditioner, but the deflation
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vectors are augmented with the Krylov subspace and the minimization property of
GMRES ensures that the deflation subspace is projected out of the residual (for re-
lated references, we refer the reader to [8] and [7]). A comparable approach for the
CG method is described in [22]. Mansfield [14] shows how Schur complement-type
domain decomposition methods can be seen as a series of deflations. Nicolaides [19]
chooses Z to be a piecewise constant interpolation from a set of r subdomains and
points out that deflation might be effectively used with a conventional preconditioner.
Mansfield [15] uses the same “subdomain deflation” in combination with damped Ja-
cobi smoothing, obtaining a preconditioner which is related to the two-grid method.
In [13] Kolotilina uses a twofold deflation technique for simultaneously deflating the
r largest and the r smallest eigenvalues using an appropriate deflating subspace of
dimension r. Other authors have attempted to choose a subspace a priori that effec-
tively represents the slowest modes. In [27] deflation is used to remove a few stubborn
but known modes from the spectrum. This method is used in [3] to solve electromag-
netic problems with large jumps in the coefficients. Thereafter this method has been
generalized to other choices of the deflation vectors (see [26, 28]). Finally, an analysis
of the effective condition number and a parallel implementation is given in [8, 25].

We compare the deflation preconditioner with a well-known coarse grid correction
preconditioner of the form

PC = I + ZE−1ZT(1.5)

and in the preconditioned case

PCM−1 = M−1 + ZE−1ZT .(1.6)

In the multigrid or domain decomposition language the matrices Z and ZT are
known as restriction and prolongation or interpolation operator. Moreover, the matrix
E = ZTAZ is the Galerkin operator.

The above coarse grid correction preconditioner belongs to the class of additive
Schwarz preconditioner. It is called the two-level additive Schwarz preconditioner. If
used in domain decomposition methods, typically M−1 is the sum of the local (exact
or inexact) solves in each domain. To speed up convergence a coarse grid correction
ZE−1ZT is added.

These methods are introduced by Bramble, Pasciak, and Schatz [2], Dryja and
Widlund [5, 6], and Dryja [4]. They show under mild conditions that the convergence
rate of the PCG method is independent of the grid sizes.

For more details about this preconditioner we refer the reader to the books of
Quarteroni and Valli [21] and Smith, Bjørstad, and Gropp [23]. A more abstract
analysis of this preconditioner is given by Padiy, Axelsson, and Polman [20]. To
make the condition number of PCM−1A smaller, Padiy, Axelsson, and Polman used a
parameter σ > 0 and considered

PC = I + σZE−1ZT(1.7)

and

PCM−1 = M−1 + σZE−1ZT .(1.8)

If M = I, Z consists of eigenvectors, and λmax is known, then a good choice is
σ = λmax, which implies that κ(PCA) ≤ 2λmax

λr+1
(see [20]). If M �= I and/or Z consists

of general vectors, and λmax is not known, it is not clear how to choose σ.
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More abstract results about Schwarz methods applied to nonsymmetric problems
are given by Benzi et al. [1] and Nabben [18].

In this paper we prove that the effective condition number of the deflated pre-
conditioned system M−1PDA is always below the condition number of the system
preconditioned by the coarse grid correction PCM−1A. This implies that for all ma-
trices Z ∈ R

n×r and all positive definite preconditioners M−1 the CG method applied
to the deflated preconditioned system is expected always to converge faster than the
CG method applied to the system preconditioned by the coarse grid correction. These
results are stated in section 2. In section 3 we compare other properties of the de-
flation and coarse grid preconditioner. These properties are scaling, approximation
of E−1, and an estimate of the smallest eigenvalue. Section 4 contains our numerical
results for porous media flows and parallel problems.

2. Spectral properties. In this section we compare the effective condition num-
ber for the deflation and coarse grid correction preconditioned matrices. In section 2.1
we give some definitions and preliminary results. Thereafter a comparison is made if
the projection vectors are equal to eigenvectors in section 2.2 and for general projec-
tion vectors in section 2.3.

2.1. Notations and preliminary results. In the following we denote by λi(M)
the eigenvalues of a matrix M . If the eigenvalues are real, the λi(M)’s are ordered
increasingly.

For two Hermitian n× n matrices A and B we write A � B, if A−B is positive
semidefinite.

Next we mention well-known properties of the eigenvalues of Hermitian matrices.
Lemma 2.1. Let A,B ∈ C

n×n be Hermitian. For each k = 1, 2, . . . , n we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B).

From the above lemma we easily obtain the next lemma.
Lemma 2.2. If A,B ∈ C

n×n are positive semidefinite with A � B, then λi(A) ≥
λi(B).

Moreover, we will use the following lemma.
Lemma 2.3. Let A,B ∈ C

n×n be Hermitian, and suppose that B has rank at
most r. Then

• λk(A + B) ≤ λk+r(A), k = 1, 2, · · ·n− r,
• λk(A) ≤ λk+r(A + B), k = 1, 2, · · ·n− r.

Lemmas 2.1, 2.2, and 2.3 can be found, e.g., as Theorem 4.3.1, Corollary 7.7.4.,
and Theorem 4.3.6, respectively, in [10].

2.2. Projection vectors chosen as eigenvectors. In this section we compare
the effective condition number of PDA and PCA if the projection vectors are equal to
eigenvectors of A.

Definition 2.4. Choose the eigenvectors vk of A such that vTk vj = δkj, and
define Z = [v1 . . . vr].

Theorem 2.5. Using Z as given in Definition 2.4, the spectra of PDA and PCA
given in (1.2) and (1.7) are

spectrum(PDA) = {0, . . . , 0, λr+1, . . . , λn} and

spectrum(PCA) = {σ + λ1, . . . , σ + λr, λr+1, . . . , λn}.
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Proof. For this choice of Z we have that

E = ZTAZ = diag(λ1, . . . , λr).(2.1)

To prove the first part we note that (2.1) implies PD = I − AZE−1ZT = I − ZZT .
Consider PDAvk = (I − ZZT )λkvk for k = 1, . . . , n. Since ZZT vk = vk, for k =
1, . . . , r and ZZT vk = 0 for k = r + 1, . . . , n it is easy to show that

PDAvk = 0, for k = 1, . . . , r, and PDAvk = λkvk, for k = r + 1, . . . , n,

which proves the first part.
Second, we consider PCAvk. For k = 1, . . . , r we obtain

PCAvk =

(
I + σZ diag

(
1

λ1
, . . . ,

1

λr

)
ZT

)
λkvk = (σ + λk)vk,

whereas for k = r + 1, . . . , n it appears that

PCAvk =

(
I + σZ diag

(
1

λ1
, . . . ,

1

λr

)
ZT

)
λkvk = λkvk

since ZT vk = 0 for k = r + 1, . . . , n. This proves the second part (cf. Theorem 2.6
in [20]).

In order to compare both approaches we note that

κeff (PDA) =
λn

λr+1
(2.2)

and

κ(PCA) =
max{σ + λr, λn}

min{σ + λ1, λr+1}
.(2.3)

From (2.2) and (2.3) it follows that κ(PCA) ≥ κeff (PDA), so the convergence
bound based on the effective condition number implies that deflated CG converges
faster than CG combined with coarse grid correction if both methods use the eigen-
vectors corresponding to the r smallest eigenvalues as projection vectors.

2.3. Projection vectors chosen as general vectors. In the last section we
showed that the deflation technique is better than a coarse grid correction, if eigenvec-
tors are used. However, computing the r smallest eigenvalues is, in general, very ex-
pensive. Moreover, in multigrid methods and domain decomposition methods special
interpolation and prolongation matrices are used to obtain grid independent conver-
gence rates. So a comparison only for eigenvectors is not enough. But in this section
we generalize the results of section 2.2. We prove that the effective condition number
of the deflated preconditioned system is always, for all matrices Z ∈ R

n×r, below the
condition number of the system preconditioned by the coarse grid correction.

Theorem 2.6. Let A ∈ R
n×n be symmetric positive definite. Let Z ∈ R

n×r with
rank Z = r. Then the preconditioner defined in (1.2) and (1.7) satisfies

λ1(PDA) = · · · = λr(PDA) = 0,(2.4)

λn(PDA) ≤ λn(PCA),(2.5)

λr+1(PDA) ≥ λ1(PCA).(2.6)
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Proof. Obviously all eigenvalues of PCA are real and positive. By Lemma 2.1
of [8], PDA is positive semidefinite. Thus, all eigenvalues of PDA are real and non-
negative. Since PDAZ = 0, statement (2.4) holds.

We obtain

A
1
2PCA

1
2 − PDA = AZE−1ZTA + σA

1
2ZE−1ZTA

1
2 .

The right-hand side is positive semidefinite. Thus, we have with Lemma 2.2 that

λi(PCA) = λi(A
1
2PCA

1
2 ) ≥ λi(PDA).

Hence, (2.5) holds. Next consider

PCAPC − PDA = A + σZE−1ZTA + σAZE−1ZT + σ2ZE−1ZTAZE−1ZT

−A + AZE−1ZTA

= σZE−1ZTA + σAZE−1ZT + σ2ZE−1ZT + AZE−1ZTA

= (A + σI)ZE−1ZT (A + σI).

Thus, PCAPC − PDA is symmetric and of rank r. Using Lemma 2.3 we obtain

λr+1(PDA) ≥ λ1(PCAPC) = λ1(P
2
CA).

But since PC − I is positive semidefinite, P 2
C − PC and A

1
2P 2

CA
1
2 − A

1
2PCA

1
2 are

positive semidefinite also. Hence,

λi(P
2
CA) = λi(A

1
2P 2

CA
1
2 ) ≥ λi(A

1
2PCA

1
2 ) = λi(PCA).

Thus,

λr+1(PDA) ≥ λ1(P
2
CA) ≥ λ1(PCA).

It follows from Theorem 2.6 that

κ(PCA) ≥ κeff (PDA),

so the convergence bound based on the effective condition number implies that de-
flated CG converges faster than CG combined with coarse grid correction for arbitrary
matrices Z ∈ R

n×r.
In Theorem 2.11 we will extend this result to the preconditioned versions of the

deflation and coarse grid correction preconditioners.
Before that, we will show how the deflated preconditioner behaves if we increase

the number of deflation vectors. In detail we will show that the effective condition
number decreases if we use a matrix Z2 in (1.2) satisfying ImZ ⊆ ImZ2 rather than
Z. To do so we need several lemmas.

The first lemma is probably well known, but for completeness we give the proof
here.

Lemma 2.7. Let A ∈ R
n×n be nonsingular and be partitioned as

A =

[
A11 A12

A21 A22

]
,

where A11 ∈ Mr(R) and A22 ∈ Mn−r(R). Assume that A11 is nonsingular. Define

Ã−1
11 :=

[
A−1

11 0
0 0

]
.
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Then, rank (A−1 − Ã−1
11 ) = n− r.

Proof. The inverse of A is given by

A−1 =

[
A−1

11 + A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]
,

where S = A22 −A21A
−1
11 A12. Hence

A−1 − Ã−1
11 =

[
A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]

=

[
A−1

11 A12S
−1

−S−1

] [
A21A

−1
11 ,−I

]
.

Since S and the n− r× n− r identity matrix I have rank n− r, we get rank (A−1 −
Ã−1

11 ) = n− r.
In the next lemma we compare the preconditioned matrices if a different number

of deflation vectors is used.
Lemma 2.8. Let A ∈ R

n×n be symmetric positive definite. Let Z1 ∈ R
n×r

and Z2 ∈ R
n×s with rank Z1 = r and rank Z2 = s. Define E1 := ZT

1 AZ1 and
E2 := ZT

2 AZ2. If ImZ1 ⊆ ImZ2, then

(I −AZ1E
−1
1 ZT

1 )A � (I −AZ2E
−1
2 ZT

2 )A.

Proof. It suffices to prove that

Z2E
−1
2 ZT

2 � Z1E
−1
1 ZT

1 .

Since ImZ1 ⊆ ImZ2, there exists a matrix T ∈ Ms×r(R) such that

Z1 = Z2T.

Therefore,

Z2E
−1
2 ZT

2 − Z1E
−1
1 ZT

1 = Z2(E
−1
2 − TE−1

1 TT )ZT
2

= Z2E
− 1

2
2 (I − E

1
2
2 TE

−1
1 TTE

1
2
2 )E

− 1
2

2 ZT
2 .

Moreover, we have

(E
1
2
2 TE

−1
1 TTE

1
2
2 )2 = E

1
2
2 TE

−1
1 TTE2TE

−1
1 TTE

1
2
2

= E
1
2
2 TE

−1
1 TTZT

2 AZ2TE
−1
1 TTE

1
2
2

= E
1
2
2 TE

−1
1 ZT

1 AZ1E
−1
1 TTE

1
2
2

= E
1
2
2 TE

−1
1 E1E

−1
1 TTE

1
2
2

= E
1
2
2 TE

−1
1 TTE

1
2
2 .

Hence, E
1
2
2 TE

−1
1 TTE

1
2
2 is an orthogonal projection. Thus E

1
2
2 TE

−1
1 TTE

1
2
2 has only

the eigenvalues 0 and 1. Hence, I−E
1
2
2 TE

−1
1 TTE

1
2
2 is positive semidefinite. Therefore,

Z2E
−1
2 ZT

2 � Z1E
−1
1 ZT

1 .
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In the next lemma we show that PD1A = PD2A, if ImZ1 = ImZ2.
Lemma 2.9. Let A ∈ R

n×n be symmetric positive definite. Let Z1 ∈ R
n×r and

Z2 ∈ R
n×r with rankZ1 = rankZ2 = r. Define E1 := ZT

1 AZ1 and E2 := ZT
2 AZ2. If

ImZ1 = ImZ2, then

(I −AZ1E
−1
1 ZT

1 )A = (I −AZ2E
−1
2 ZT

2 )A.

Proof. We can follow the proof of Lemma 2.8. Since ImZ1 = ImZ2, the matrix
T is nonsingular. Hence,

Z2E
−1
2 ZT

2 − Z1E
−1
1 ZT

1 = Z2(E
−1
2 − TE−1

1 TT )ZT
2

= Z2E
− 1

2
2 (I − E

1
2
2 TE

−1
1 TTE

1
2
2 )E

− 1
2

2 ZT
2 .

= Z2E
− 1

2
2 (I − E

1
2
2 T (TTE2T )−1TTE

1
2
2 )E

− 1
2

2 ZT
2

= Z2E
− 1

2
2 (I − E

1
2
2 TT

−1E−1
2 T−TTTE

1
2
2 )E

− 1
2

2 ZT
2

= 0.

Using the above lemmas, we can prove the following theorem.
Theorem 2.10. Let A ∈ R

n×n be symmetric positive definite. Let Z1 ∈ R
n×r and

Z2 ∈ R
n×s with rankZ1 = r and rankZ2 = s. Let E1 := ZT

1 AZ1 and E2 := ZT
2 AZ2.

If ImZ1 ⊆ ImZ2, then

λn((I −AZ1E
−1
1 ZT

1 )A) ≥ λn((I −AZ2E
−1
2 ZT

2 )A),(2.7)

λr+1((I −AZ1E
−1
1 ZT

1 )A) ≤ λs+1((I −AZ2E
−1
2 ZT

2 )A).(2.8)

Proof. With Lemmas 2.2 and 2.8 we obtain inequality (2.7).
Next, we will prove (2.8). Observe that Z1E

−1
1 ZT

1 and Z2E
−1
2 ZT

2 are invariant
under permutations of the columns of Z1 and Z2, respectively.

Thus, using Lemma 2.9, we can assume without loss of generality that Z2 =
[Z1, D] with D ∈ R

n×s−r.
Moreover, define the s× s matrix

Ẽ−1
1 =

[
E−1

1 0
0 0

]
.

Obviously, we then obtain

Z1E
−1
1 ZT

1 = Z2Ẽ
−1
1 ZT

2 .

Thus,

(I −AZ2E
−1
2 ZT

2 )A− (I −AZ1E
−1
1 ZT

1 )A = A(Z1E
−1
1 ZT

1 − Z2E
−1
2 ZT

2 )A

= A(Z2Ẽ
−1
1 Z2 − Z2E

−1
2 ZT

2 )A

= AZ2(Ẽ
−1
1 − E−1

2 )ZT
2 A.

But since E1 is the leading principal r× r submatrix of E2, we can apply Lemma
2.7. Thus (I − AZ2E

−1
2 ZT

2 )A − (I − AZ1E
−1
1 ZT

1 )A is of rank s − r. Hence, with
Lemma 2.3,

λr+1((I −AZ1E
−1
1 ZT

1 )A) ≤ λs+1((I −AZ2E
−1
2 ZT

2 )A).
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Theorem 2.10 states that the effective condition number decreases if we increase
the number of deflation vectors. However, the dimension of the system ZTAZ which
has to be solved increases also.

Next, we include an additional symmetric positive definite preconditioner M−1.
Then we consider the coarse grid preconditioner

PCM−1 := M−1 + σZE−1ZT .(2.9)

This type of preconditioner includes many well-known preconditioners. It belongs
to the class of additive Schwarz preconditioners and is called the two-level additive
Schwarz preconditioner. If used in domain decomposition methods, typically M−1 is
the sum of the local (exact or inexact) solves in each domain. To speed up convergence
a coarse grid correction ZE−1ZT is added. Notice that the Bramble–Pasciak–Schatz
(BPS) preconditioner introduced in [2] and by Dryja and Widlund [5, 6] and Dryja
[4] are of the same type. They show under mild conditions that the convergence rate
of the PCG method is independent of the grid sizes.

We compare the preconditioner (2.9) with the corresponding deflated precondi-
tioner

M−1PD.(2.10)

We obtain the following theorem.
Theorem 2.11. Let A ∈ R

n×n and M ∈ R
n×n be symmetric positive definite.

Let Z ∈ R
n×r with rankZ = r. Then

λn(M−1PDA) ≤ λn(PCM−1A),(2.11)

λr+1(M
−1PDA) ≥ λ1(PCM−1A).(2.12)

Proof. First observe that Theorem 2.6 still holds if we replace A everywhere by
L−1AL−T with an arbitrary nonsingular matrix L. Here, we will consider M− 1

2AM− 1
2 .

The idea is to transform PD and PC to this form. We start with

M−1PDA = M−1(A−AZE−1ZTA).

The eigenvalues of this matrix are the same as the eigenvalues of

M− 1
2PDAM− 1

2 = M− 1
2 (A−AZE−1ZTA)M− 1

2 .

Define the matrix G such that G = M
1
2Z and thus Z = M− 1

2G. Substituting this in
the previous matrix leads to E = ZTAZ = GTM− 1

2AM− 1
2G and

M− 1
2PDAM− 1

2 = M− 1
2 (A−AM− 1

2GE−1GTM− 1
2A)M− 1

2

= (I −M− 1
2AM− 1

2GE−1GT )M− 1
2AM− 1

2 ,

which is in the required form.
In the same way we can transform PCM−1A = (M−1 + σZE−1ZT )A to

PCM−1A = M−1A + σM− 1
2GE−1GTM− 1

2A,

which has the same eigenvalues as

M− 1
2AM− 1

2 + σGE−1GTM− 1
2AM− 1

2 = (I + σGE−1GT )M− 1
2AM− 1

2 ,



1640 R. NABBEN AND C. VUIK

which is also in the required form.
Thus, Theorem 2.6 gives the desired result.
For the case L−1AL−T the same result can be proved if one chooses G = LTZ.
Theorem 2.11 describes the most general case. Arbitrary vectors or matrices

Z ∈ R
n×r combined with arbitrary preconditioners are considered. The effective con-

dition number of the deflated CG method is always below the condition number of
the CG method preconditioned by the coarse grid correction. Thus, the interpola-
tion or prolongation matrices Z used, for example, in the BPS method give a better
preconditioner if used in a deflation technique.

At the end of this section we generalize Theorem 2.10.
Theorem 2.12. Let A,M ∈ R

n×n be symmetric positive definite. Let Z1 ∈
R

n×r and Z2 ∈ R
n×s with rankZ1 = r and rankZ2 = s. Let E1 := ZT

1 AZ1 and
E2 := ZT

2 AZ2. If ImZ1 ⊆ ImZ2, then

λn(M−1(I −AZ1E
−1
1 ZT

1 )A) ≥ λn(M−1(I −AZ2E
−1
2 ZT

2 )A),(2.13)

λr+1(M
−1(I −AZ1E

−1
1 ZT

1 )A) ≤ λs+1(M
−1(I −AZ2E

−1
2 ZT

2 )A).(2.14)

Proof. The proof is almost the same as the proof of Theorem 2.10.

3. Other properties of deflation and coarse grid correction. In this sec-
tion we compare other properties of deflation and coarse grid correction. These prop-
erties are scaling, inaccurate solution, and an estimate of the smallest eigenvalue.

Scaling. Note that PDA is scaling invariant, whereas PCA is not scaling invariant.
This means that if deflation is applied to a system γAx = γb, the effective condition
number of PDγAγA = (I − γAZ(ZT γAZ)−1ZT )γA is independent of the scalar γ,
i.e.,

κeff (PDγAγA) =
γλn(PDAA)

γλr+1(PDAA)
= κeff (PDAA).

Whereas the condition number of PCγA depends on the choice of γ,

κ(PCγAγA) �= κ(PCAA).

Inaccurate solution. If the dimension matrix E becomes large (i.e., many projec-
tion vectors are used), it seems to be good to compute E−1 approximately (by an
iterative method or by doing the procedure recursively). It appears that the coarse
grid correction operator is insensitive to the accuracy of the approximation of E−1,
while the deflation is sensitive to it. A proof of this property if the projection vectors
are eigenvectors is given in the next lemma.

Lemma 3.1. Use Z as given in Definition 2.4, and assume that

Ẽ−1 = diag

(
1

λ1
(1 − ε1), . . . ,

1

λr
(1 − εr)

)

is an approximation of E−1, where |εi| is small. The spectra of P̃DA and P̃CA given
in (1.2) and (1.5), where E−1 is replaced by Ẽ−1, are

spectrum(P̃DA) = {λ1ε1, . . . , λrεr, λr+1, . . . , λn} and

spectrum(P̃CA) = {λ1 + σ(1 − ε1), . . . , λr + σ(1 − εr), λr+1, . . . , λn}.
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Proof. The proof of this lemma is almost the same as the proof of Theorem
2.5.

For general vectors a similar situation appears. Assume that Ẽ−1 = (I−F )E−1(I−
F ) is a symmetric approximation (F = FT ) of E−1. Let H := −FE−1 − E−1F +
FE−1F . Then we have

P̃DA = PDA + AZHZTA.

Hence, using Lemma 2.1 we obtain

λk(PDA) + λ1(AZHZTA) ≤ λk(P̃DA) ≤ λk(PDA) + λn(AZHZTA).

Since the first r eigenvalues of λk(PDA) are 0, we get for i = 1, . . . , r,

λ1(AZHZTA) ≤ λi(P̃DA) ≤ λn(AZHZTA).

If all eigenvalues of AZHZTA are small, the first r eigenvalues λi(P̃DA) also are
very small. Observe that λ1(P̃DA) can be negative if the perturbation H is negative
definite.

For the coarse grid correction

P̃CA = PCA + ZHZTA,

we obtain

λk(PCA) + λ1(ZHZTA) ≤ λk(P̃CA) ≤ λk(PCA) + λn(ZHZTA).

Thus, if all eigenvalues of ZHZTA are small, the perturbation does not have
much effect.

Hence, the coarse grid correction operator is insensitive for the accuracy of the
approximation, whereas deflation is sensitive.

To illustrate this we consider two problems. The first one is motivated by a porous
media flow with large contrasts in the coefficients (ratio 10−6; see the seven-layer
problem in section 4), and the second one is a Poisson problem. In both examples
r = 7 algebraic projection vectors are used (see [28, Def. 4]). We replace E−1 by
Ẽ−1 = (I + εR)E−1(I + εR), where R is a symmetric r × r matrix with random
elements chosen from the interval [− 1

2 ,
1
2 ]. From Figure 3.1 (porous media flow) it

follows that the convergence of the error remains good for |ε| < 10−12. For larger
values of |ε| we see that the convergence stagnates. For the Poisson problem it appears
that the convergence is good as long as |ε| < 10−6 (see Figure 3.2). For the coarse
grid correction operator, there is no difference in the convergence behavior. Using
the coarse grid correction operator we need 75 iterations for the porous media flow
problem and 70 iterations for the Poisson problem.

We also have investigated the convergence behavior of deflation if a perturbed
Cholesky decomposition of E is used. For this experiment we compute the Cholesky
factor L of E and use in the deflation method the matrix L̃ which is such that
L̃ij = Lij(1 + εij) and |εij | < ε. In Figure 3.3 the results are given. We observe again
that the convergence stagnates if ε is too large.

Estimate of smallest eigenvalue. In this paragraph we restrict ourselves to the case
that the deflation vectors approximate the eigenvectors corresponding to the smallest
eigenvalues. In practice it is very important to have a reliable stopping criterion,
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Fig. 3.1. Convergence behavior of DICCG for
the straight layers problem.
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the Poisson problem.
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Fig. 3.3. DICCG for the straight layers problem with a perturbed Cholesky decomposition.

especially for a porous media flow problem, because for such a problem the linear
system is ill conditioned. The following stopping criterion

‖rk‖2 ≤ λ1‖xk‖2ε(3.1)

gives that

‖x− xk‖2

‖xk‖2
≤ ε,

which implies that the relative error is small. To use this criterion, an estimate of the
smallest eigenvalue should be available. From the CG method an approximation of
the extreme eigenvalues can be obtained from the Ritz values (see [11]). However, for
the deflated operator PDA this leads to an estimate of λr+1 instead of λ1. The same
holds for the preconditioned system. In order to estimate λ1 we note that

λ1(M
− 1

2AM− 1
2 ) ≤ min

y∈Rr

yTGTM− 1
2AM− 1

2Gy

yTGTGy
= min

y∈Rr

yTZTAZy

yTZTMZy
.

This means that the smallest eigenvalue µmin of the generalized eigenvalue problem

Ey = µZTMZy
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is an upper bound for the smallest eigenvalue of M− 1
2AM− 1

2 , whereas the smallest
eigenvalue µmin of the generalized eigenvalue problem

Ey = µZTZy

is an upper bound for the smallest eigenvalue of A. From experiments for the porous
media flow problem, it appears that the estimates are reasonably sharp (see Table 3.1),
so they can be used in stopping criterion (3.1).

Table 3.1

The estimated smallest eigenvalue using matrix E.

Matrix λ1 λ1(estimated)

M− 1
2 AM− 1

2 0.7 · 10−8 3.1 · 10−8

A 3.3 · 10−9 9.9 · 10−9

4. Numerical experiments. All numerical experiments are done by using the
SEPRAN FEM package developed at Delft University of Technology. The multipli-
cation y = E−1b is always done by solving y from Ey = b, where E is decomposed in
its Cholesky factor. The choice of the boundary conditions is such that all problems
have as exact solution the vector with components equal to 1. In order to make the
convergence behavior representative for general problems, we chose a random vector
as starting solution, instead of the zero start vector.

4.1. Porous media flows. In this section we consider problems motivated by
porous media flow (see [27]). Our first problem is a simple two-dimensional model
problem, whereas our second problem mimics the flow of oil in a reservoir. In both
problems physical projection vectors are used (see [28, Def. 2]), which approximate
the eigenvectors corresponding to the small eigenvalues.

Seven-layer problem. We solve the equation

div (σ∇p) = 0

with p the fluid pressure and σ the permeability. At the earth’s surface the fluid
pressure is prescribed. At the other boundaries we use homogeneous Neumann con-
ditions. In this two-dimensional problem we consider seven horizontal layers. We use
linear triangular elements, and the number of grid points is equal to 22,680. The top
layer is sandstone, then a shale layer, etc. We assume that σ in sandstone is equal
to 1 and σ in shale is equal to 10−7. From [26] it follows that the IC preconditioned
matrix has three eigenvalues of order 10−7, whereas the remaining eigenvalues are of
order 1. Computing the solution with three projection vectors, we observe that in
every iteration the norm of the residual using deflation or coarse grid correction is
comparable. In Figure 4.1 the norm of the error for both methods is given. Note that
the error using deflation stagnates at a lower level than that of coarse grid correction.
This surprises us because the results presented in section 3 suggested that deflation
can be more sensitive to rounding errors than coarse grid correction.

An oil flow problem. In this paragraph we simulate a porous media flow in a
three-dimensional layered geometry, where the layers vary in thickness and orientation
(see Figures 4.2 and 4.3 for a four-layer problem). Figure 4.2 shows a part of the
earth’s crust. The depth of this part varies between three and six kilometers, whereas
horizontally its dimensions are 40 x 60 kilometers. The upper layer is a mixture of
sandstone and shale and has a permeability of 10−4. Below this layer, shale and
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Fig. 4.2. The geometry of an oil flow problem.

sandstone layers are present with permeabilities of 10−7 and 10, respectively. We
consider a problem with nine layers. Five sandstone layers are separated by four shale
layers. At the top of the first sandstone/shale layer a Dirichlet boundary condition
is posed, so the IC preconditioned matrix has four small eigenvalues. We use four
physical projection vectors and stop if ‖rk‖2 ≤ 10−5. Trilinear hexahedral elements
are used, and the total number of gridpoints is equal to 148,185. The results are given
in Table 4.1 and correspond well with our theoretical results.

4.2. Parallel problems. In this section we consider a Poisson equation on a
two-dimensional rectangular domain. On top a Dirichlet boundary condition is posed,
whereas at the other boundaries a homogeneous Neumann condition is used. We use
linear triangular elements. We stop the iteration if ‖rk‖2 ≤ 10−8.

As a first test we solve a problem, in which the grid is decomposed into seven
layers with various gridsizes per layer. The results are given in Table 4.2. In this table
the symbol “No” means that there is no projection method used. Note that in the
parallel case we use a block IC preconditioner. Deflation again needs fewer iterations
than coarse grid correction. However, both projection methods lead to a considerable
gain in the number of iterations. Note that the number of iterations increases if the
gridsize per layer increases.

Second, we consider the parallel performance for an increasing number of layers
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Table 4.1

The results for the oil flow problem.

Method Deflation CGC
Iterations 36 47
CPU time 5.9 8.2

Table 4.2

The effect of the gridsize per layer.

Sequential Parallel
Grid points Deflation CGC No Deflation CGC No

10 × 10 21 29 35 25 38 50
20 × 20 36 48 65 42 61 90
40 × 40 62 82 125 80 103 168
80 × 80 106 131 244 128 161 321

1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

number of layers

nu
m

be
r 

of
 it

er
at

io
ns

no projection
Coarse Grid Correction
Deflation

Fig. 4.4. The number of iterations for a layered
domain decomposition.
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Fig. 4.5. The number of iterations for a block
domain decomposition.

or blocks. The gridsize per layer is 80 × 80 and per block is 100 × 100. This im-
plies that the total number of grid points increases proportionally to the number of
layers/blocks. In Figures 4.4 and 4.5 the results are given. Note that initially both
projection methods show a small increase in the number of iterations if the number of
layers/blocks increases but thereafter the number of iterations is constant (scalable).
If no projection method is used, the number of iterations keep increasing.
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5. Conclusions. We have compared various preconditioners used in the numer-
ical solution of partial differential equations. On one hand we considered a coarse grid
correction preconditioner. On the other hand a so-called deflation preconditioner was
studied. It turned out that the effective condition number of the deflated precondi-
tioned system is always, for all deflation vectors and all restrictions and prolongations,
below the condition number of the system preconditioned by the coarse grid correc-
tion. This implies that the CG method applied to the deflated preconditioned system
converges always faster than the CG method applied to the system preconditioned
by the coarse grid correction. Numerical results for porous media flows and parallel
preconditioners emphasized the theoretical results.
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