
SIAM J. SCI. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1742–1759

A COMPARISON OF DEFLATION AND THE BALANCING
PRECONDITIONER∗

R. NABBEN† AND C. VUIK‡

Abstract. In this paper we compare various preconditioners for the numerical solution of partial
differential equations. We compare the well-known balancing preconditioner used in domain decom-
position methods with a so-called deflation preconditioner. We prove that the effective condition
number of the deflated preconditioned system is always, i.e., for all deflation vectors and all restric-
tions and prolongations, below the condition number of the system preconditioned by the balancing
preconditioner. Even more, we establish that both preconditioners lead to almost the same spectra.
The zero eigenvalues of the deflation preconditioned system are replaced by eigenvalues which are
one if the balancing preconditioner is used. Moreover, we prove that the A-norm of the errors of
the iterates built by the deflation preconditioner is always below the A-norm of the errors of the
iterates built by the balancing preconditioner. Depending on the implementation of the balancing
preconditioner the amount of work of one iteration of the deflation preconditioned system is less
than or equal to the amount of work of one iteration of the balancing preconditioned system. If the
amount of work is equal, both preconditioners are sensitive with respect to inexact computations.
Finally, we establish that the deflation preconditioner and the balancing preconditioner produce the
same iterates if one uses certain starting vectors. Numerical results for porous media flows emphasize
the theoretical results.
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1. Introduction. The conjugate gradient method is the most-used method to
solve large linear systems of equations

Ax = b

whose coefficient matrices A are sparse and symmetric positive definite. Such systems
are encountered, for example, when a finite volume/difference/element method is used
to discretize an elliptic partial differential equation.

The convergence rate of the conjugate gradient method (CG-method) is bounded
as a function of the condition number of the system matrix to which it is applied. If
the condition number of A is large, it is advisable to solve, instead, a preconditioned
system M−1Ax = M−1b, where the symmetric positive definite preconditioner M
is chosen such that M−1A has a more clustered spectrum or a smaller condition
number than that of A. Furthermore, system Mz = r must be cheap to solve relative
to the improvement it provides in convergence rate. A final desirable property in
a preconditioner is that it should parallelize well, especially on distributed memory
computers.
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In [16] two different preconditioners are compared, namely a deflation precondi-
tioner and an additive coarse grid correction preconditioner. It is shown that the defla-
tion preconditioner leads to a smaller condition number than a coarse grid correction
preconditioner like the BPS preconditioner by Bramble, Pasciak, and Schatz [1]. Here
we compare the deflation preconditioner with the balancing preconditioner proposed
by Mandel [11]. In the following we give a brief introduction into both preconditioning
techniques.

To describe the deflation method we define the projection PD by

PD = I −AZ(ZTAZ)−1ZT , Z ∈ R
n×r,(1.1)

where the column space of Z is the deflation subspace, i.e., the space to be projected
out of the residual, and I is the identity matrix of appropriate size. We assume
that r � n and that Z has rank r. Under this assumption E ≡ ZTAZ may be easily
computed and factored and is symmetric positive definite. Since x = (I−PT

D)x+PT
Dx

and because

(I − PT
D)x = Z(ZTAZ)−1ZTAx = ZE−1ZT b(1.2)

can be immediately computed, we need only to compute PT
Dx. In light of the identity

APT
D = PDA, we can solve the deflated system

PDAx̃ = PDb(1.3)

for x̃ using the CG-method, premultiply this by PT
D , and add it to (1.2).

Obviously (1.3) is singular. But a positive semidefinite system can be solved by
the CG-method as long as the right-hand side is consistent (i.e., as long as b = Ax for
some x) [9]. This is certainly true for (1.3), where the same projection is applied to
both sides of the nonsingular system. Since the null space never enters the iteration,
the corresponding zero eigenvalues do not influence the convergence [9, 22]. Motivated
by this fact, we define the effective condition number of a positive semidefinite matrix
C ∈ R

n×n with r zero eigenvalues to be the ratio of its largest to smallest positive
eigenvalues:

κeff (C) =
λn

λr+1
.

It is possible to combine both a standard preconditioning and preconditioning
by deflation (for details see [7]). The convergence is then described by the effective
condition number of M−1PDA. For more details about the deflation preconditioner
see [17, 15, 4, 13, 10, 25, 2, 24, 26, 7, 23, 16].

We compare the preconditioned deflation operator with the balancing precondi-
tioner proposed by Mandel [11] and Mandel and Brezina [12] and analyzed by Dryja
and Widlund [3], Pavarino and Widlund [18], and Toselli and Widlund [21]. As
the FETI algorithm [5, 6] the balancing Neumann-Neumann preconditioner is one of
the domain decomposition methods that have been most carefully implemented and
severely tested on the very largest existing parallel computer systems.

Applied to some specific symmetric positive definite problems the balancing
Neumann-Neumann preconditioner leads to moderately growing condition numbers if
the size of the systems increases [20]. Moreover, if an appropriate scaling is used, the
condition numbers are independent of jumps in the coefficients in the matrices [20].



1744 R. NABBEN AND C. VUIK

In our notation the balancing preconditioner is given by

PB = (I − ZE−1ZTA)M−1(I −AZE−1ZT ) + ZE−1ZT ,(1.4)

where Z ∈ R
n×r, E = ZTAZ, and M is a symmetric positive definite matrix. Note

that PB is symmetric and positive definite. For more details we refer the reader to
[11] and the books [20, 19, 21].

As a first comparison of both preconditioners we observe that the balancing pre-
conditioner needs per iteration 3 matrix vector products and the coarse grid operator
is used 2 times. This makes the balancing preconditioner per iteration more expensive
than the deflation approach. However, if an optimal implementation of the balancing
preconditioner is used (see, e.g., [21]), the amount of work per iteration is the same.

In this article we give a detailed comparison of these two preconditioners. We
prove that the effective condition number of the deflated preconditioned system
M−1PDA is always below the condition number of the system preconditioned by the
balancing preconditioner PBA. Even more, we establish that the spectrum of PBA
is the same as M−1PDA, except the r zero eigenvalues are replaced by eigenvalues
which are one.

This implies that for all matrices Z ∈ R
n×r and all positive definite precondi-

tioners M−1 the effective condition number of the deflated preconditioned system is
below or equal to the condition number of the system preconditioned by the balanc-
ing preconditioner! However, the condition number is not the only parameter which
influences the convergence behavior of the CG-method. The convergence may be sig-
nificantly faster if the eigenvalues of A are clustered [22]. But we obtain from the
above-mentioned result that the clustering of the eigenvalues of the two different pre-
conditioned systems is the same. However, we have a cluster at zero in one case and
at one in the other case. These results are stated in section 2.

There are other properties which influence the convergence behavior of the CG-
method, e.g., the starting vector, the right-hand side, and the location of the clusters
of eigenvalues. Therefore, a more detailed comparison is given in section 3. There we
prove that the A-norm of the errors of the iterates built by the deflation precondi-
tioner is always below the A-norm of the errors of the iterates built by the balancing
preconditioner. Moreover, we establish that the deflation preconditioner and the bal-
ancing preconditioner produce the same iterates if one uses certain starting vectors.
More precisely we show which terms in the preconditioned CG-method are the same
for both methods and which terms are different. At the end of section 3 we prove that
the condition of the balancing preconditioned system decreases if one takes a finer
grid as a coarse grid.

In section 4 numerical results emphasize our theoretical results.

2. Spectral properties. In this section we compare the effective condition num-
ber for the deflation and balancing preconditioned matrices. In section 2.1 we give
some definitions and preliminary results. Thereafter a comparison is made if the pro-
jection vectors are equal to eigenvectors (in section 2.2) and for general projection
vectors (in section 2.3).

2.1. Notations and preliminary results. In the following we denote by λi(M)
the eigenvalues of a matrix M . If the eigenvalues are real, the λi(M)’s are ordered
increasingly.

For two Hermitian n× n matrices A and B we write A � B, if A−B is positive
semidefinite.
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Next we mention well-known properties of the eigenvalues of Hermitian matrices.
Lemma 2.1. Let A,B ∈ C

n×n be Hermitian. For each k = 1, 2, . . . , n we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B).

From the above lemma we easily obtain the next lemma.
Lemma 2.2. If A,B ∈ C

n×n are positive semidefinite with A � B, then λi(A) ≥
λi(B).

Moreover, we will use the following lemma.
Lemma 2.3. Let A,B ∈ C

n×n be Hermitian and suppose that B has rank at
most r. Then

• λk(A + B) ≤ λk+r(A), k = 1, 2, . . . , n− r,
• λk(A) ≤ λk+r(A + B), k = 1, 2, . . . , n− r.

Lemma 2.1, Lemma 2.2, and Lemma 2.3 can be found, e.g., as Theorem 4.3.1,
Corollary 7.7.4, and Theorem 4.3.6, respectively, in [8].

2.2. Projection vectors chosen as eigenvectors. In this section we compare
the effective condition number of PDA and PBA if the projection vectors are equal to
the eigenvectors of A.

Definition 2.4. Let λi be the eigenvalues of A. Choose the eigenvectors vk of A
such that vTk vj = δkj, and define Z = [v1 . . . vr].

Theorem 2.5. Using Z as given in Definition 2.4 and preconditioner M equal
to the identity, the spectrum of PBA is

spectrum(PBA) = {1, . . . , 1, λr+1, . . . , λn}.
Proof. For this choice of Z it appears that

E = ZTAZ = diag(λ1, . . . , λr).(2.1)

We consider PBAvk. For k = 1, . . . , n we obtain

PBAvk =

(
I − Zdiag

(
1

λ1
, . . . ,

1

λr

)
ZTA

)(
I −AZdiag

(
1

λ1
, . . . ,

1

λr

)
ZT

)
λkvk

+ Zdiag

(
1

λ1
, . . . ,

1

λr

)
ZTλkvk.

Using the orthogonality properties of the eigenvectors one obtains

PBAvk = vk, for k = 1, . . . , r.

For k = r + 1, . . . , n the same orthogonality properties lead to

PBAvk = λkvk, for k = r + 1, . . . , n.

In order to compare both approaches we note that

κeff (PDA) =
λn

λr+1
(2.2)

and

κ(PBA) =
max{1, λn}

min{1, λr+1}
.(2.3)

From (2.2) and (2.3) it follows that κ(PBA) ≥ κeff (PDA), so the convergence
bound based on the effective condition number implies that deflated CG never con-
verges slower than CG combined with the balancing preconditioner if both methods
use the eigenvectors corresponding to the r smallest eigenvalues as projection vectors.



1746 R. NABBEN AND C. VUIK

2.3. Projection vectors chosen as general vectors. In the previous section
we showed that the deflation technique leads to a smaller effective condition number
than the balancing preconditioner, if eigenvectors are used. However, computing
the r smallest eigenvalues is mostly very expensive. Moreover, in multigrid methods
and domain decomposition methods special interpolation and prolongation matrices
are used to obtain grid independent convergence rates. So a comparison only for
eigenvectors is not enough. But in this section we generalize the results of the last
section. We prove that the effective condition number of the deflated preconditioned
system is always, i.e., for all matrices Z ∈ R

n×r and all preconditioners M−1, below
the condition number of the system preconditioned by the balancing preconditioner.
To do this we repeat some properties of the projection operator PD used in the
deflation method (see [7]). The operator PD is defined as

PD = I −AZE−1ZT , where E = ZTAZ.(2.4)

Furthermore, the following identities hold:

P 2
D = PD, PDAZ = 0, ZTPD = PT

DZ = 0, and APT
D = PDA.

We start with a result for the deflation preconditioner which helps to compare
the deflation and the balancing preconditioner.

Proposition 2.6. Let A ∈ R
n×n be symmetric positive definite. Let Z ∈ R

n×r

with rankZ = r. Then

σ(PT
DM−1PDA) = σ(M−1PDA).

Proof. Since APT
D = PDA the following identities hold:

σ(PT
DM−1PDA) = σ(M−1PDAPT

D) = σ(M−1P 2
DA) = σ(M−1PDA).

Using Proposition 2.6 we obtain the following theorem.
Theorem 2.7. Let A ∈ R

n×n be symmetric positive definite. Let Z ∈ R
n×r with

rankZ = r. Then the preconditioner defined in (1.1) and (1.4) satisfies

λn(M−1PDA) ≤ λn(PBA),(2.5)

λr+1(M
−1PDA) ≥ λ1(PBA).(2.6)

Proof. We can write PB as

PB = PT
DM−1PD + ZE−1ZT .

Thus

A
1
2PBA

1
2 = A

1
2PT

DM−1PDA
1
2 + A

1
2ZE−1ZTA

1
2 .

Since A
1
2ZE−1ZTA

1
2 is a symmetric positive semidefinite matrix of rank r, we

obtain with Lemma 2.2

λi(PBA) = λi(A
1
2PBA

1
2 ) ≥ λi(A

1
2PT

DM−1PDA
1
2 ) = λi(P

T
DM−1PDA).

Using Lemma 2.3 we get

λr+1(P
T
DM−1PDA) ≥ λ1(PBA).

Using Proposition 2.6 we get the desired result.
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It follows from Theorem 2.7 that

κ(PBA) ≥ κeff (M−1PDA),

so the convergence bound based on the effective condition number implies that precon-
ditioned deflated CG never converges slower than CG preconditioned by the balancing
preconditioner.

It appears that the results given in Theorem 2.5 can be generalized to general
projection vectors.

Theorem 2.8. Suppose that the spectrum of M−1PDA is given by

spectrum(M−1PDA) = {0, . . . , 0, μr+1, . . . , μn}.

Then

spectrum(PBA) = {1, . . . , 1, μr+1, . . . , μn}.

Proof. We know that M−1PDAZ = 0, so the eigenvectors corresponding to the
zero eigenvalues of M−1PDA are equal to {z1, . . . , zr}. On the other hand, it is easy
to check that

PBAZ = (PT
DM−1PD + ZE−1ZT )AZ = PT

DM−1PDAZ + ZE−1ZTAZ = Z.

This implies that {z1, . . . , zr} are the eigenvectors corresponding to the eigenvalues
of PBA, which are equal to 1.

Now we consider the eigenvalue μi, with r + 1 ≤ i ≤ n. Suppose vi is the
corresponding eigenvector of M−1PDA, and thus M−1PDAvi = μivi. Since

M−1PDAvi = M−1P 2
DAvi = M−1PDAPT

Dvi = μivi �= 0,

the vector PT
Dvi is nonzero. Using this vector, it follows that

PBA(PT
Dvi) = (PT

DM−1PD + ZE−1ZT )APT
Dvi(2.7)

= PT
DM−1PDAPT

Dvi + ZE−1ZTAPT
Dvi(2.8)

= PT
DM−1P 2

DAvi = PT
DM−1PDAvi = μiP

T
Dvi.(2.9)

So the vectors PT
Dvi are eigenvectors of PBA corresponding to the eigenvalues μi.

Thus both preconditioners lead to almost the same spectra with the same clus-
tering. The zero eigenvalues of the deflation preconditioned system are replaced by
eigenvalues which are one if the balancing preconditioner is used.

3. Comparing the norm of the residuals. In order to make a more detailed
comparison of the deflation operator and the balancing preconditioner for general
projection vectors we start to compare the vector spaces which contain the approx-
imations of both methods. Using CG with PB as preconditioner and start vector
x0,B = 0, it is well known that

xk,B ∈ Kk{PBA,PBb},

where the Krylov subspace Kk{PBA,PBb} = span{PBb, PBAPBb, . . . , (PBA)k−1PBb}.
Theorem 3.1. The Krylov space used in the CG method with PB as precondi-

tioner and start vector x0,B = 0 has the following property:

Kk{PBA,PBb} ⊂ span{ZE−1ZT b, PT
DM−1PDb, . . . , PT

D(M−1PDA)k−1M−1PDb}.
(3.1)
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Proof. To start the proof we first note that

PBb = PT
DM−1PDb + ZE−1ZT b.

Therefore, the property holds for k = 1. For k = 2 we note that

PBAPBb = (PT
DM−1PD + ZE−1ZT )A(PT

DM−1PD + ZE−1ZT )b.

Writing out the various terms on the right-hand side one obtains

ZE−1ZTAZE−1ZT b = ZE−1ZT b,

PT
DM−1PDAPT

DM−1PDb = PT
DM−1PDPDAM−1PDb = PT

DM−1PDAM−1PDb,

where we have used that APT
D = PDA and P 2

D = PD. Finally, the terms

PT
DM−1PDAZE−1ZT and ZE−1ZTAPT

DM−1PD

are both zero because they contain the combination PDAZ = 0 or ZTAPT
D =

(PDAZ)T = 0. Repeating this argument for (PBA)iPBb for i = 3, . . . , k − 1 proves
the theorem.

With respect to the approximation using preconditioned CG combined with de-
flation, we note that x = (I − PT

D)x + PT
Dx = ZE−1ZT b + PT

Dx. So after k iter-
ations of preconditioned CG applied to APT

Dx = PDAx = PDb we get the approx-
imation x̃k,D. The approximation xk,D of the solution vector x is then given by
xk,D = ZE−1ZT b + PT

D x̃k,D. The vector xk,D is contained in the following space:

xk,D ∈ ZE−1ZT b + span{PT
DM−1PDb, . . . , PT

D(M−1PDA)k−1M−1PDb}.

This implies that both approximations are elements of the same space. So the differ-
ence in quality of the approximation only depends on which norm is minimized.

Lemma 3.2. For the deflation iterates xk,D and x̃k,D with start vector x̃0,D = 0
the following optimality property holds:

‖x− xk,D‖A = ‖PT
D(x− x̃k,D)‖A = min

ξ∈Kk{M−1PDA,M−1PDb}
‖PT

D(x− ξ)‖A.(3.2)

Proof. The first equality follows from the fact that x = (I − PT
D)x + PT

Dx. If CG
is applied to the preconditioned system

L−1PDAL−T y = L−1PDb,(3.3)

the following expression holds:

‖ỹ − yk‖L−1PDAL−T = min
η∈Kk{L−1PDAL−T ,L−1PDb}

‖ỹ − η‖L−1PDAL−T ,(3.4)

where ỹ is a solution of (3.3). Note that x̃ = L−T ỹ is a solution of PDAx = PDb.
Rewriting (3.4) with ξ = L−T η leads to

‖LT (x̃− x̃k,D)‖L−1PDAL−T = min
ξ∈Kk{M−1PDA,M−1PDb}

‖LT (x̃− ξ)‖L−1PDAL−T .

Using the equalities

‖LT (x̃− x̃k,D)‖2
L−1PDAL−T = (x̃− x̃k,D)TPDA(x̃− x̃k,D)

= (x̃− x̃k,D)TP 2
DA(x̃− x̃k,D) = ‖PT

D(x̃− x̃k,D)‖2
A = ‖PT

D(x− x̃k,D)‖2
A

leads to the proof of the lemma.
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Theorem 3.3. Let xk,D and x̃k,D be the deflation iterates with start vector x̃0,D =
0. For every xk ∈ span{ZE−1ZT b, PT

DM−1PDb, . . . , PT
D(M−1PDA)k−1M−1PDb} the

following inequality holds:

‖x− xk,D‖A ≤ ‖x− xk‖A.

Proof. We decompose xk as follows:

xk = αZE−1ZT b + PT
Dξ, where ξ ∈ Kk{M−1PDA,M−1PDb}.

Substituting this into ‖x− xk‖2
A shows that

‖x− xk‖2
A = ‖x− αZE−1ZT b− PT

Dξ‖2
A.

Using the equation x = (I − PT
D)x + PT

Dx = ZE−1ZT b + PT
Dx we obtain

‖x− xk‖2
A = ‖(1 − α)ZE−1ZT b− PT

D(x− ξ)‖2
A

= (1 − α)2‖ZE−1ZT b‖2
A + ‖PT

D(x− ξ)‖2
A

+ (1 − α)bTZE−1ZTAPT
D(x− ξ)

+ (1 − α)(x− ξ)TPDAZE−1ZT b.

The last two terms are equal to zero, because ZTAPT
D = (PDAZ)T = 0. For xk,D we

know that α = 1. This together with Lemma 3.2 implies

‖x− xk,D‖2
A ≤ (1 − α)2‖ZE−1ZT b‖2

A + ‖PT
D(x− ξ)‖2

A = ‖x− xk‖2
A,

where ξ ∈ Kk{M−1PDA,M−1PDb}.
Theorems 3.1 and 3.3 imply the following theorem.
Theorem 3.4. The iterates xk,D and xk,B of the CG-method with start vector

zero and preconditioned by the deflation preconditioner and the balancing precondi-
tioner, respectively, satisfy

‖x− xk,D‖A ≤ ‖x− xk,B‖A.

Next we are able to prove that using a certain start vector the iterates xk,D are
equal to the xk,B .

Theorem 3.5. Using x0,B = ZE−1ZT b and x̃0,D = 0 it follows that xk,D =
xk,B.

Proof. Using the start vector x0,B = ZE−1ZT b it appears that

r0,B = b−Ax0,B = (I −AZE−1ZT )b = PDb.

This implies that the Krylov subspace is given by Kk{PBA,PBPDb}. For k = 1 it
follows from P 2

D = PD and ZTPD = ZT (I −AZE−1ZT ) = 0 that

(PT
DM−1PD + ZE−1ZT )PDb = PT

DM−1PDb.

For k = 2 we know from the proof of Theorem 3.1 that

PBAPBPDb = ZE−1ZTPDb + PT
DM−1PDAM−1P 2

Db.

Note that ZTPD = ZT (I −AZE−1ZT ) = 0, and thus

PBAPBPDb = PT
DM−1PDAM−1PDb.
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Repeating this argument shows that

Kk{PBA,PBPDb} = span{PT
DM−1PDb, . . . , PT

D(M−1PDA)k−1M−1PDb}
= PT

DKk{M−1PDA,M−1PDb}.

We again use the fact that CG combined with the balancing preconditioner minimizes

(x− xk,B)TA(x− xk,B),

where

xk,B = ZE−1ZT b + PT
Dξ, and ξ ∈ Kk{M−1PDA,M−1PDb}

due to the choice of the start vector x0,B = ZE−1ZT b. We have that

x− xk,B = x− ZE−1ZT b− PT
Dξ = PT

D(x− ξ).

But by Lemma 3.2 the optimal ξ is nothing other than x̃k,D. Thus we obtain

x− xk,B = PT
D(x− x̃k,D).

Since x = ZE−1ZT b + PT
Dx we get

xk,D = ZE−1ZT b + PT
D x̃k,D = xk,B .

Using the identity xk,D = xk,B it is easy to see that Theorem 2.11 of [16] implies
that the balancing preconditioner with x0,B = ZE−1ZT b never converges slower than
the additive coarse grid preconditioner.

In the following we give a more detailed analysis of the preconditioned CG-method
for both preconditioners if the above start vectors are used. We prove which quantities
in the preconditioned CG-algorithm (PCG) are the same for both preconditioners and
which are different. To make this paper self-contained we repeat the PCG-algorithm.

PCG-algorithm for Ax = b with preconditioner M−1.
r0 := b−Ax0, z0 = M−1r0, p0 := z0

For j = 0, 1, . . . until convergence, do
αj := (rj , zj)/(Apj , pj)
xj+1 := xj + αjpj
rj+1 := rj − αjApj
zj+1 := M−1rj+1

βj := (rj+1, zj+1)/(rj , zj)
pj+1 := zj+1 + βjpj

end
Moreover, we need the next proposition.
Proposition 3.6. Let PD, PB, and M−1 be defined as above. Then

PT
DPBPD = PT

DM−1PD = PT
DPB = PBPD.(3.5)

Proof. Since PD = I −AZE−1ZT we have PT
DZ = Z −ZE−1ZTAZ = 0. Hence,

PT
DPBPD = PT 2

D M−1P 2
D + PT

DZE−1ZPD = PT
DM−1PD.

Similarly,

PT
DPB = PT 2

D M−1PD + PDZE−1ZPD = PT
DM−1PD.

Since PT
DM−1PD is symmetric we also have PT

DM−1PD = PBPD.
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Now we can prove the following theorem.
Theorem 3.7. Using the PCG-algorithm with the balancing preconditioner PB

and x0,B = ZE−1ZT b on one side and with the deflation preconditioner M−1PD and
x̃0,D = 0 on the other side we have, for all j,

(rj,D, zj,D) = (rj,B , zj,B),

(PDApj,D, pj,D) = (Apj,B , pj,B),

rj+1,D = rj+1,B ,

zj+1,B = PT
Dzj+1,D,

pj+1,B = PT
Dpj+1,D,

βj,B = βj,D,

xj+1,B = xj+1,D = ZE−1ZT + PT
D x̃j+1,D.

Proof. If we use PCG for

PDAx = PDb

with preconditioner M−1 and start vector x0 = 0, we obtain

x0,D = 0, r0,D = PDb, z0,D = M−1PDb,

p0,D = z0,D = M−1PDb, α0,D =
(r0,D, z0,D)

(PDAp0,D, p0,D)
,

x̃1,D = 0 + α0,DM−1PDb,

x1,D = ZE−1ZT b + α0,DPT
DM−1PDb.

If we use PCG for

Ax = b

with preconditioner PB and start vector x0 = ZE−1ZT b, we obtain

x0,B = ZE−1ZT b, r0,B = PDb, z0,B = PBPDb,

p0,B = z0,B = PBPDb, α0,B =
(r0,B , z0,B)

(Ap0,B , p0,B)
,

x1,B = ZE−1ZT b + α0,BPBPDb.

Obviously, we have for all iterates

PDrj+1,D = PD(PDb− PDAxj+1,D) = rj+1,D.(3.6)

The identity

PBPD = PT
DM−1P 2

D + ZE−1ZTPD = PT
DM−1PD

is frequently used in the following analysis.
Next, we prove the following identities by induction:

(rj,D, zj,D) = (rj,B , zj,B), (rj+1,D, zj+1,D) = (rj+1,B , zj+1,B),

(PDApj,D, pj,D) = (Apj,B , pj,B),
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rj+1,D = rj+1,B ,

zj+1,B = PT
Dzj+1,D,

pj+1,B = PT
Dpj+1,D,

βj,B = βj,D,

xj+1,B = xj+1,D = ZE−1ZT + PT
D x̃j+1,D.

In the following we use Proposition 3.6 and (3.6). For j = 0 we have

(r0,D, z0,D) = bTPT
DM−1PDb = bTPT

DPBPDb = (r0,B , z0,B).

(PDAp0,D, p0,D) = bTPT
DM−1PDAM−1PDb

= bTPT
DM−1PDAPT

DM−1PDb

= bTPT
DPBAPBPDb

= (Ap0,B , p0,B).

Hence, α0,D = α0,B .

r1,D = PDb− α0,DPDAM−1PDb = PDb− α0,DAPT
DM−1PDb

= PDb− α0,BAPBPDb

= r1,B .

x1,D = ZE−1ZT b + α0,DPT
DM−1PDb

= ZE−1ZT b + α0,BPBPDb = x1,B .

PT
Dz1,D = PT

DM−1r1,D = PT
DM−1PDr1,D

= PBPDr1,D = PBr1,B = z1,B .

Thus

(r1,B , z1,B) = (r1,D, PT
Dz1,D)

= (PDr1,D, z1,D) = (r1,D, z1,D).

Hence β0,D = β0,B . Next,

p1,B = z1,B + β0,Bp0,B

= PT
Dz1,D + β0,BPBPDb

= PT
Dz1,D + β0,BP

T
DM−1PDb

= PT
D(z1,D + β0,Dp0,D)

= PT
Dp1,D.

Now assume that the above identities hold for j − 1 and that (rj,B , zj,B) =
(rj,D, zj,D) holds. We then have

(Apj,B , pj,B) = (APT
Dpj,D, PT

Dpj,D)

= pTj,DPDAPT
Dpj,D

= (PDApj,D, pj,D).
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Hence, αj,D = αj,B . Since

xj+1,B = xj,B + αj,Bpj,B ,

x̃j+1,D = x̃j,D + αj,Dpj,D,

we obtain

xj+1,D = ZE−1ZT + PDx̃j,D + αj,DPT
Dpj,D

= xj,B + αj,Bpj,B

= xj+1,B .

rj+1,B = rj,B − αj,BApj,B

= PDrj,D − αj,DAPT
Dpj,D

= PDrj,D − αj,DPDApj,D

= PDrj+1,D

= rj+1,D.

Moreover,

zj+1,B = PBrj+1,B = PBPDrj+1,D

= PT
DM−1PDrj+1,D = PT

DM−1rj+1,D

= PT
Dzj+1,D.

(rj+1,B , zj+1,B) = (PDrj+1,D, PT
Dzj+1,D)

= rTj+1,DPT
Dzj+1,D

= (rj+1,D, zj+1,D).

Hence, βj,B = βj,D. Next we have

pj+1,B = zj+1,B + βj,Bpj,B

= PT
Dzj+1,D + βj,DPT

Dpj,D

= PT
Dpj+1,D,

which completes the proof.
In the following we show how the eigenvalues and the condition number of the

system preconditioned by balancing behave if we choose a finer coarse grid. Therefore,
let Z1 ∈ R

n×r and Z2 ∈ R
n×s with rankZ1 = r and rankZ2 = s. Define

E1 := ZT
1 AZ1 and E2 := ZT

2 AZ2,

PD1 = I −AZ1E
−1
1 ZT

1 and PD2 = I −AZ2E
−1
2 ZT

2 .

Moreover, let

PB1 = PT
D1

M−1PD1 + Z1E
−1
1 ZT

1 and PB2 = PT
D2

M−1PD2 + Z2E
−1
2 ZT

2 .(3.7)

We then have the following theorem.
Theorem 3.8. Let A and M ∈ R

n×n be symmetric positive definite. Let PB1

and PB2 be defined as in (3.7). If ImZ1 ⊆ ImZ2, then

λn(PB1
A) ≥ λn(PB2

A),(3.8)

λr+1(PB1
A) ≤ λs+1(PB2

A).(3.9)
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Moreover,

cond(PB1A) ≥ cond(PB2A).

Proof. Theorem 2.12 in [16] states that

λn(M−1PD1A) ≥ λn(M−1PD2A),

λr+1(M
−1PD1A) ≤ λs+1(M

−1PD2A).

Thus, with Theorem 2.8 we get

cond(PB1A) =
max(1, λn(M−1PD1A))

min(1, λr+1(M−1PD1
A))

≥ max(1, λn(M−1PD2A))

min(1, λs+1(M−1PD2A))

= cond(PB2A).

If a finer grid is used as a coarse grid in the balancing preconditioner, the amount
of work to solve the coarse grid system is increased. But then Theorem 3.8 states that
the condition number of the system preconditioned by the balancing preconditioner
decreases. In general this leads to fewer iterations, although more work is needed on
the coarse grid problem.

4. Numerical experiments. In all our numerical experiments, the multipli-
cation y = E−1b is done by solving y from Ey = b, where E is decomposed in its
Cholesky factor. The choice of the boundary conditions is such that all problems
have as exact solution the vector with components equal to 1. In order to make the
convergence behavior representative for general problems, we chose a random vector
as the starting solution instead of the zero start vector.

4.1. Artificial test problems. We apply both methods (deflation and balanc-
ing) to the Poisson equation. It appears that in the numerical experiments ‖x −
xk,D‖A ≤ ‖x − xk,B‖A, but for well-scaled problems the differences are very small.
From Theorem 2.8 it follows that the spectrum of the balancing preconditioner con-
sists of two parts: in one part the eigenvalues are equal to 1, and in the other part the
eigenvalues are equal to the nonzero eigenvalues of the deflated matrix. This suggests
that if the eigenvalues equal to 1 are interior eigenvalues, the convergence is close to
the convergence of the preconditioned deflation method; otherwise these eigenvalues
may influence the convergence.

Scaling properties. Note that PDA is scaling invariant, whereas PBA is not
scaling invariant. This means that if deflation is applied to a system γAx = γb the
effective condition number of PDγAγA = (I−γAZ(ZT γAZ)−1ZT )γA is independent
of the scalar γ; i.e.,

κeff (PDγAγA) =
γλn(PDAA)

γλr+1(PDAA)
= κeff (PDAA),

whereas the condition number of PBγA depends on the choice of γ,

κ(PBγAγA) �= κ(PBAA).

To check this in practice, we do experiments with balancing using various values
of γ. From Figure 4.1 it appears that the convergence of the balancing preconditioner
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Fig. 4.1. Comparison of the balancing preconditioner for various values of γ. The convergence
of deflation is identical to the convergence of the balancing preconditioner with γ = 1.

is worse if γ �= 1. We note that the deflation method (for all values of γ) has the same
convergence as the balancing method with γ = 1. In most preconditioning techniques
an automatic scaling is used, which makes the combination scaling invariant. However,
the resulting spectrum is not always clustered around 1. We used this example to
illustrate what happens if the spectrum is far away from 1.

Inaccurate solution. If the dimensions of matrix E become large (i.e., many
projection vectors are used), it seems to be a good idea to compute E−1 approximately
(by an iterative method or a recursive procedure). It appears that the balancing pre-
conditioner is insensitive to the accuracy of the approximation of E−1, while deflation
is sensitive to it.

To illustrate this we consider the same Poisson problem. In both examples seven
projection vectors are used. We replace E−1 by Ẽ−1 = (I + εR)E−1(I + εR), where
R is a symmetric r×r matrix with random elements chosen from the interval [− 1

2 ,
1
2 ].

From Figure 4.2 it follows that the convergence of the deflation preconditioner is good
as long as |ε| < 10−6.

Starting solution for the balancing preconditioner. In Theorem 3.5 we
have proven that xk,B = xk,D if x0,B = ZE−1ZT b and x̃0,D = 0. In this paragraph
we illustrate this by numerical examples. In Figure 4.3 we plot the convergence of
the balancing preconditioner with start vector x0,B = ZE−1ZT b. It appears that the
choice γ = 500 leads to the same results as γ = 1 (and deflation). Furthermore, the
convergence for the choice γ = 0.002 is initially also the same, but later on the con-
vergence becomes worse. This can be explained by rounding errors. Using the choice
γ = 0.002 the eigenvalues equal to 1 are large with respect to the other eigenvalues.
Initially, due to the start vector the components of the corresponding eigenvectors are
zero or small. During the iterations, the perturbations in large eigencomponents in-
crease, which leads to the same convergence as if the method is started with x0,B = 0.
To enlarge the rounding error effect we have also done experiments where the ma-
trix E−1 is replaced by Ẽ−1 with ε = 10−2. The results are given in Figure 4.4. Note
that the same effect now appears for both values of γ �= 1.
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Fig. 4.2. Convergence behavior of the deflated ICCG including perturbations.
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Fig. 4.3. Convergence of the balancing preconditioner with x0,B = ZE−1ZT b and ε = 0. The
convergence of deflation is identical to the convergence of the balancing preconditioner with γ = 1.

4.2. Porous media flows. In this section we simulate a porous media oil flow in
a 3-dimensional layered geometry, where the layers vary in thickness and orientation
(see Figures 4.5 and 4.6 for a 4-layer problem). The fluid pressure and permeability
are denoted by p and σ, respectively. The pressure p satisfies the equation

−div(σ∇p) = 0 on Ω,(4.1)

with boundary conditions

p = 1 on ∂ΩD (Dirichlet) and
∂p

∂n
= 0 on ∂ΩN (Neumann),

where ∂Ω = ∂ΩD ∪ ∂ΩN . In this problem ∂ΩD is the top boundary of the domain.
Figure 4.5 shows a part of the earth’s crust. The depth of this part varies between
3 and 6 kilometers, whereas horizontally its dimensions are 40 × 60 kilometers. The
upper layer is a mixture of sandstone and shale and has a permeability of 10−4. Below
this layer, shale and sandstone layers are present with permeabilities of 10−7 and 10,
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Fig. 4.4. Convergence of the balancing preconditioner with x0,B = ZE−1ZT b and ε = 10−2.
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Table 4.1

The results for the oil flow problem.

Method Deflation Balancing
Iterations 36 36

CPU time in seconds 6.3 9.8

respectively. An incomplete Cholesky factorization with no fill in is used as precon-
ditioner [14]. We consider a problem with nine layers. Five sandstone layers are
separated by four shale layers. Due to the Dirichlet boundary condition at the top,
the preconditioned matrix has four small eigenvalues. We use four physical projection
vectors [26] and stop if ‖rk‖2 ≤ 10−5. Trilinear hexahedral elements are used and the
total number of gridpoints is equal to 148185. The results are given in Table 4.1. It
appears that the norms of the residuals for both preconditioners are the same. Due
to extra work per iteration the balancing preconditioner costs more CPU time. We
note that it is possible to implement the balancing preconditioner such that the costs
are the same as those of deflation [11]. However, this implementation also leads to
the same difficulties as deflation if the matrix E−1 is perturbed. The computations
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are performed on an AMD Athlon, 1.4 GHz processor with 256 Mb of RAM. The
code is compiled with FORTRAN g77 on LINUX.

5. Conclusions. In this paper we compared various preconditioners for the nu-
merical solution of partial differential equations.

We have given a detailed comparison of the well-known balancing preconditioner
used in domain decomposition methods and the deflation preconditioner.

We proved that both preconditioners lead to almost the same spectra. The zero
eigenvalues of the deflation preconditioned system are replaced by eigenvalues which
are one if the balancing preconditioner is used. Thus the effective condition number
of the deflated preconditioned system is always, i.e., for all deflation vectors and
all restrictions and prolongations, below or equal to the condition number of the
system preconditioned by the balancing preconditioner. Moreover, we proved that
the A-norm of the errors of the iterates built by the deflation preconditioner is always
below the A-norm of the errors of the iterates built by the balancing preconditioner.
Hence, the CG-method applied to the deflated preconditioned system never converges
slower than the CG-method applied to the system preconditioned by the balancing
preconditioner. Additionally, the amount of work of one iteration of the deflation
preconditioned system is less than the amount of work of one iteration of the balancing
preconditioned system. Hence the deflation preconditioner leads to fewer iterations
and each iteration having less work.

Moreover, we established that the deflation preconditioner and the balancing
preconditioner produce the same iterates if one uses certain starting vectors. More
precisely, we showed which terms in the PCG-method are the same for both methods
and which terms are different. Numerical results for porous media flows emphasized
the theoretical results.
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