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SUMMARY

In this paper we consider various preconditioners for the conjugate gradient (CG) method to solve large
linear systems of equations with symmetric positive definite system matrix. We continue the compar-
ison between abstract versions of the deflation, balancing and additive coarse grid correction precondi-
tioning techniques started in (SIAM J. Numer. Anal. 2004; 42:1631–1647; SIAM J. Sci. Comput. 2006;
27:1742–1759). There the deflation method is compared with the abstract additive coarse grid correction
preconditioner and the abstract balancing preconditioner. Here, we close the triangle between these three
methods. First of all, we show that a theoretical comparison of the condition numbers of the abstract
additive coarse grid correction and the condition number of the system preconditioned by the abstract
balancing preconditioner is not possible. We present a counter example, for which the condition number
of the abstract additive coarse grid correction preconditioned system is below the condition number of
the system preconditioned with the abstract balancing preconditioner. However, if the CG method is
preconditioned by the abstract balancing preconditioner and is started with a special starting vector, the
asymptotic convergence behavior of the CG method can be described by the so-called effective condition
number with respect to the starting vector. We prove that this effective condition number of the system
preconditioned by the abstract balancing preconditioner is less than or equal to the condition number of
the system preconditioned by the abstract additive coarse grid correction method. We also provide a short
proof of the relationship between the effective condition number and the convergence of CG. Moreover,
we compare the A-norm of the errors of the iterates given by the different preconditioners and establish
the orthogonal invariants of all three types of preconditioners. Copyright q 2008 John Wiley & Sons,
Ltd.

Received 29 January 2006; Revised 14 November 2007; Accepted 14 November 2007

KEY WORDS: preconditioning; deflated Krylov method; balancing preconditioners; coarse grid correction

∗Correspondence to: R. Nabben, TU Berlin, Institut für Mathematik, MA 3-3 Strasse des 17. Juni 136, D-10623
Berlin, Germany.

†E-mail: nabben@math.tu-berlin.de

Contract/grant sponsor: Deutsche Forschungsgemeinschaft (DFG); contract/grant number: NA 248/2-2

Copyright q 2008 John Wiley & Sons, Ltd.



356 R. NABBEN AND C. VUIK

1. INTRODUCTION

In 1952, Hestenes and Stiefel [1] introduced the conjugate gradient (CG) method to solve large
linear systems of equations

Ax=b

whose coefficient matrices A are sparse and symmetric positive definite. The convergence rate
of the CG method is bounded as a function of the condition number of the system matrix to
which it is applied. If the condition number of A is large, it is advisable to solve, instead, a
preconditioned system M−1Ax=M−1b, where the symmetric positive definite preconditioner M
is chosen such that M−1A has a more clustered spectrum or a smaller condition number than that
of A. Furthermore, systems Mz=r must be cheap to solve relative to the improvement it provides
in convergence rate.

Today, the design and analysis of preconditioners for the CG method are in the main focus
whenever a linear system with symmetric positive definite coefficient matrix needs to be solved.
Even fast solvers, such as multigrid or domain decomposition method, are used as preconditioners.
However, there are just a few theoretical comparisons of different preconditioners.

Here, we consider three different preconditioning techniques: the additive coarse grid correction,
the balancing and the deflation preconditioner. These preconditioners differ a lot in practice.
However, we consider these techniques from an abstract point of view. This abstract point of view
allows us to derive comparisons between these preconditioners.

In [2, 3] the authors theoretically compared the abstract deflation method with the abstract
additive coarse grid correction preconditioner and the abstract balancing preconditioner. It is proved
in [2, 3] that the condition number of the system matrix preconditioned by the deflation method is
always below the condition number of the system matrix preconditioned by the additive coarse grid
correction. Moreover, the authors showed that the spectrum of the system matrix preconditioned by
the deflation method and the spectrum of the system matrix preconditioned by the abstract balancing
preconditioner are similar. The only difference is that in the spectrum of the deflated system matrix
some eigenvalues of the original matrix have been shifted to zero, while the abstract balancing
preconditioner shifts the same eigenvalues to one. This implies that the condition number of the
deflated system is always below or equal to the condition number of the system preconditioned
by the abstract balancing preconditioner.

Here we close the triangle between these three methods. We compare the abstract additive coarse
grid correction preconditioner with the abstract balancing preconditioner.

It is suggested, e.g. in [4, 5] that the balancing preconditioner always yields a smaller condition
number than the additive coarse grid correction preconditioner. However, it is worth to have a
closer look at the abstract versions of these preconditioners. First of all, we show that a theoretical
comparison of the condition numbers of the abstract additive coarse grid correction and the
condition number of the system preconditioned by the abstract balancing preconditioner is in
general not possible. We present a 2×2 counter example, for which the condition number of the
abstract additive coarse grid correction preconditioned system is below the condition number of
the system preconditioned with the abstract balancing preconditioner.

However, if the CG method is preconditioned by the abstract balancing preconditioner and is
started with a special starting vector, a theoretical comparison can be established. In this case, the
asymptotic convergence behavior of the CG method can be described by the so-called effective
condition number with respect to the starting vector. We provide a short proof of the relationship
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between the effective condition number with respect to the starting vector and the convergence
of CG.

We then prove that this effective condition number of the system preconditioned by the abstract
balancing preconditioner is less than or equal to the condition number of the system preconditioned
by the abstract additive coarse grid correction method.

Moreover, we compare the A-norm of the errors of the iterates given by the different precon-
ditioners. It was shown in [3] that the A-norm of the error of the iterates given by the deflation
preconditioner is below the error of the iterates given by the abstract balancing preconditioner.
Such general results do not hold between the other preconditioners. However, we prove here that
the error of the iterates given by the deflation method is below the error of the iterates given by
the additive coarse grid correction if eigenvectors are used as projection vectors.

Finally, we established the orthogonal invariance of all the preconditioners mentioned above.
We should mention that the convergence of Krylov subspace methods depends not only on

the condition number of the system matrix. The clustering of the spectrum, the right-hand side,
and also implementation issues have a major influence on the practical speed of convergence. A
numerical comparison of the above-mentioned methods is given in [6]. Here we try to complete
the collection of theoretical comparisons of the abstract versions of these preconditioners.

This paper is organized as follows. Section 2 describes the preconditioners. In Section 3 the
comparison of balancing and the coarse grid correction is given. In Section 4 we compare the
A-norm of the deflation and coarse grid correction errors. In Section 5 it is shown that the precondi-
tioners are invariant under orthogonal transformations. Section 6 contains some numerical results.

2. THE PRECONDITIONER

The balancing and additive coarse grid correction preconditioners are used mainly in domain
decomposition methods [5]. The additive coarse grid correction is introduced by Bramble et al. [7],
Dryja and Widlund [8] and Dryja [9]. An abstract analysis of this preconditioner is given by
Padiy et al. [10]. The balancing preconditioner is proposed by Mandel [4, 11] and Mandel and
Brezina [12] and further analyzed by Dryja and Widlund [13], Pavarino and Widlund [14] and
Toselli and Widlund [5].

Here, we consider these preconditioners from an abstract point of view. We use an alge-
braic formulation to describe these preconditioners. This approach leads to abstract versions of
these methods. Hence, we call these methods abstract additive coarse grid correction and abstract
balancing preconditioners.

In our notation, the abstract balancing, the abstract additive coarse grid and the deflation precon-
ditioners are given in the following form.

Let A∈Rn×n be a symmetric positive definite matrix. With a rectangular but full rank matrix
Z ∈Rn×r , the matrix E= ZTAZ and an arbitrary symmetric positive definite matrix M , the abstract
balancing preconditioner is given by

PB =(I −ZE−1ZTA)M−1(I −AZE−1ZT)+ZE−1ZT (1)

Note that PB is symmetric and positive definite.
In the original balancing preconditioner, M−1 contains the additive Schwarz preconditioner and

some scaling.
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358 R. NABBEN AND C. VUIK

The abstract additive coarse grid correction can be expressed as

PCM =M−1+�ZE−1ZT (2)

where in most applications �=1.
As for the balancing method, the additive Schwarz preconditioner is used as M−1 in the original

version of the additive coarse grid correction.
From our algebraic point of view, Z is an arbitrary rectangular matrix with full rank. Moreover,

M is an arbitrary symmetric positive definite matrix. In practice, the particular choices of Z and M
in the coarse grid correction preconditioner and the balancing preconditioner can be different.
More details about the balancing and the additive coarse grid correction preconditioners are given
in [5, 15, 16].

The deflation technique has been exploited by several authors. Among them are Nicolaides [17],
Morgan [18], Kolotilina [19] and Saad et al. [20]. There are also many different ways to describe
the deflation technique. We prefer the following one.

We define the projection PD by

PD = I −AZ(ZTAZ)−1ZT, Z ∈Rn×r (3)

where the column space of Z is the deflation subspace, i.e. the space to be projected out of the
residual, and I is the identity matrix of appropriate size.

We assume that r �n and that Z has rank r . Under this assumption, E≡ ZTAZ may be easily
computed and factored and is symmetric positive definite. Since x=(I −PT

D)x+PT
Dx and

(I −PT
D)x= Z(ZTAZ)−1ZTAx= ZE−1ZTb (4)

can be immediately computed, we need to compute only PT
Dx . In light of the identity APT

D = PD A,
we can solve the deflated system

PD Ax̃= PDb (5)

for x̃ using the CG method, premultiply this by PT
D and add it to (4).

Obviously (5) is singular. However, a positive semidefinite system can be solved by the CG
method as long as the right-hand side is consistent (i.e. as long as b= Ax for some x) [21]. This
is certainly true for (5), where the same projection is applied to both sides of the nonsingular
system.

The deflated system can also be solved by using a symmetric positive definite precondi-
tioner M−1:

M−1PD Ax̃=M−1PDb (6)

3. COMPARISON OF ABSTRACT BALANCING AND THE ABSTRACT COARSE
GRID CORRECTION

There are some results known in the literature which compare the balancing preconditioner with
the additive coarse grid correction preconditioner. However, it is worth to have a closer look at
these comparisons and to derive a comparison of the abstract versions.
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It is suggested in [4, 5] that the balancing preconditioner always yields a better condition number
than the additive coarse grid correction preconditioner. In Mandel [4], the original versions of the
balancing or hybrid preconditioner and the additive coarse grid preconditioner are compared, i.e.
the additive Schwarz preconditioner is used as M−1 such that M−1A is a sum of projections. In
the comparison of [5], the additive Schwarz preconditioner is also used. Moreover, not the full
balancing operator is used as a preconditioner in the CG run. We discuss in detail the result stated
in [5] at the end of this section.

However, a comparison of the abstract versions of these preconditioners is not possible.
Example 3.1 shows that the additive coarse grid correction preconditioner can lead to a smaller
condition number.

Example 3.1
We take the following matrix A:

A=
(
100 0

0 101

)
(7)

Further we choose matrix M= I and matrix Z as

Z =
(
1

0

)
(8)

It appears that ZTAZ =100 and

PD =
(
0 0

0 1

)
, PB =

(
0.01 0

0 1

)
and PCM =

(
1.01 0

0 1

)
(9)

Computing the condition numbers give

�(A) = 1.01

�(PCM A) = 1

�(PB A) = 101

which clearly shows that �(PB A) can be larger than �(PCM A).

Of course, the eigenvalue 1 in the spectrum of PB A is responsible for the large condition number
of PB A. Note that the corresponding eigenvalue of PD A is 0. Example 3.1 shows that Lemma 3.2
in [4] is not valid for the abstract preconditioner. Even if the additive Schwarz preconditioner is
used as M−1, this lemma has to be modified [22] by accounting for the possibility of an eigenvalue
equal to 1.

Nevertheless, one can prove a comparison if the CG method, preconditioned by the abstract
balancing preconditioner, is started with a specific starting vector. The asymptotic convergence
behavior of the CG method can then be described by the so-called effective condition number with
respect to the starting vector. We will describe this concept in the following.

Copyright q 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:355–372
DOI: 10.1002/nla



360 R. NABBEN AND C. VUIK

In [23–25], the convergence of the CG method is related to the condition number �(A) of A.
In [26], these papers are cited to relate the convergence of the CG method to the effective condition
number with respect to a specific starting vector; however, as far as we know the theorem is
neither explicitly stated nor proved. For this reason we give this theorem here, together with a short
proof.

Definition 3.2
Let A be symmetric positive definite and (�i , yi ) be the eigenpairs of A, i.e. Ayi =�i yi and
yTi y j =�i j . For x0∈Rn let

x−x0=
n∑
j=1

� j y j

Define

� :=min{� j |� j �=0}

� :=max{� j |� j �=0}

�(A, x−x0) := �

�

where �(A, x−x0) is called the effective condition number of A with respect to x and x0.

Theorem 3.3
If the CG method is applied to solve Ax=b with starting vector x0, the i th iterate satisfies

‖x−xi‖A�2

{√
�(A, x−x0)−1√
�(A, x−x0)+1

}i
‖x−x0‖A

Proof
To prove this result, we define j� and j� such that �=� j� and �=� j� . For the CG errors, it is

well known [27, p. 586] that there exists a polynomial pi ∈�1
i , which is of degree i and pi (0)=1,

such that

‖x−xi‖2A=
n∑
j=1

� j (pi (� j ))
2�2j�

n∑
j=1

� j (qi (� j ))
2�2j =

j�∑
j= j�

� j (qi (� j ))
2�2j (10)

for all qi ∈�1
i . Take qi equal to the following shifted and scaled Chebyshev polynomial of

degree i :

T̂i (t)=
Ti

(
�+�

�−�
− 2t

�−�

)

Ti

(
�+�

�−�

) (11)
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It now follows that

‖x−xi‖2A �
j�∑

j= j�

� j (T̂i (� j ))
2�2j�4

⎧⎪⎪⎨
⎪⎪⎩

√
�

�
−1√

�

�
+1

⎫⎪⎪⎬
⎪⎪⎭

2i

j�∑
j= j�

� j�
2
j

= 4

{√
�(A, x−x0)−1√
�(A, x−x0)+1

}2i
‖x−x0‖2A

where we have used that �2j and � j are positive, together with the inequality:

|T̂i (� j )|�2

⎧⎪⎪⎨
⎪⎪⎩

√
�

�
−1√

�

�
+1

⎫⎪⎪⎬
⎪⎪⎭

i

for j�� j� j� �

In the following we wish to apply the above theorem to the preconditioned CG (PCG) method
with a symmetric positive definite preconditioner M and a special starting vector x0. Therefore,
we point out that PCG for Ax=b with starting vector x0 is equivalent to the CG method applied to
M1/2AM1/2 x̃=M1/2b and starting vector x̃0=M−1/2x0. The CGmethod will return x̃ that satisfies
x̃=M−1/2x or M1/2 x̃= x . Hence, the next corollary follows from Theorem 3.3 immediately.

Corollary 3.4
Let A and M be symmetric positive definite. Let (�̃i , ỹi ) be the eigenpairs of M1/2AM1/2. For
x0∈Rn let

M−1/2x−M−1/2x0=
n∑
j=1

�̃ j ỹ j

Define

�̃ :=min{�̃ j |�̃ j �=0}
�̃ :=max{�̃ j |�̃ j �=0}

�(MA, x−x0) := �̃

�̃

If the PCG method is applied to solve Ax=b with starting vector x0 and preconditioner M , the
i th iterate satisfies

‖x−xi‖A�2

{√
�(MA, x−x0)−1√
�(MA, x−x0)+1

}i
‖x−x0‖A

As shown in Example 3.1, for general starting vectors there is no ordering possible between
�(PB A) and �(PCM A). Starting with the starting vector x0,B = ZE−1ZTb, it is possible to compare
the effective condition number of PB A and the condition number of PCM A.
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Theorem 3.5
Let A be symmetric positive definite. Let the preconditioners PB and PCM be defined as in (1)
and (2). With x0,B = ZE−1ZTb, we obtain

�(PB A, x−x0,B)��(PCM A)

Proof
First of all, we consider the deflation operator PD defined in (3) and M−1PD A.

Suppose that the spectrum of M−1PD A is given by

spectrum(M−1PD A)={0, . . . ,0,�r+1, . . . ,�n}
with the corresponding eigenvectors {z1, . . . , zr } and {vr+1, . . . ,vn} satisfying

M−1PD Azi =0 and M−1PD Av j =� jv j

Note that � j �=0, for j =r+1, . . . ,n, because A and M are non-singular and PD has rank n−r .
From the proof of Theorem 2.8 in [3], we know that

PB Azi = zi and PB A(PT
Dv j )=� j P

T
Dv j

Now we consider the eigenpairs of P1/2
B AP1/2

B . Obviously

P1/2
B AP1/2

B (P−1/2
B zi ) = (P−1/2

B zi )

P1/2
B AP1/2

B (P−1/2
B PT

Dv j ) = � j (P
−1/2
B PT

Dv j )

Moreover, we obtain for r̃ := P1/2
B AP1/2

B (P−1/2
B (x−x0,B))

r̃ = P1/2
B AP1/2

B (P−1/2
B (x−x0,B)) = P1/2

B b−P1/2
B AP1/2

B P−1/2
B Z E−1ZTb

= P1/2
B b−P1/2

B AZE−1ZTb

We can decompose r̃ as

r̃ =
r∑

i=1
�i (P

−1/2
B zi )+

n∑
i=r+1

�i (P
−1/2
B PT

Dvi )

Next we establish that �i =0 for i=1, . . . ,r . Since

P−1/2
B z1, . . . , P

−1/2
B zr , P−1/2

B PT
Dvr+1, . . . , P

−1/2
B PT

Dvn

are the eigenvectors of P1/2
B AP1/2

B , which can be chosen as an orthonormal set, it suffices to prove

that (P−1/2
B Z)Tr̃ =0.

We obtain

(P−1/2
B Z)Tr̃ = ZTP−1/2

B (P1/2
B b−P1/2

B AZE−1ZTb)

= ZTb−ZTAZE−1ZTb

= ZTb−ZTb

= 0
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Hence,

P1/2
B AP1/2

B (P−1/2
B (x−x0,B))= r̃ =

n∑
i=r+1

�i (P
−1/2
B PT

Dvi )

Thus,

P−1/2
B x−P−1/2

B x0,B =
n∑

i=r+1

�i
�i

(P−1/2
B PT

Dvi )

With Corollary 3.4, we obtain

�(PB A, x−x0,B)=�(PD A, x−x0,D)� �n
�r+1

Using Theorem 2.11 of [2] together with �n/�r+1=�eff(M−1PD A), we finally obtain

�(PB A, x−x0,B)� �n
�r+1

��(PCM A) �

From Theorem 3.5, we conclude that the abstract balancing preconditioner with starting vector
x0,B = ZE−1ZTb is asymptotically a better preconditioner than the coarse grid correction precon-
ditioner. Hence, we expect a faster convergence of the PCG method if the abstract balancing
preconditioner is used.

As shown in Example 3.1, for general starting vectors there is no ordering possible between
�(PB A) and �(PCM A).

In [5, Lemma 2.15] it is proved that

�(PT
DM

−1PD A)��(PCM A) (12)

However, note that

PB = PT
DM

−1PD+ZE−1ZT (13)

From (12) it is deduced that the balancing preconditioner with starting vector x0,B = ZE−1ZTb
is asymptotically a better preconditioner than the coarse grid correction preconditioner. However,
to derive this statement, some properties of the balancing preconditioner have to be proved in detail
earlier, namely, that starting with x0,B = ZE−1ZTb implies that the balancing approximations stay
in the range(PD), and that starting with x0,B = ZE−1ZTb implies that the term ZE−1ZT in (13)
can be neglected. Thus, the balancing preconditioner can be implemented only with the use of
PT
D APD .
Moreover, the systems PT

DM
−1PD A and PT

DM
−1A are singular and it is not clear at all which

condition number describes the convergence behavior of the CG method started with x0,B =
ZE−1ZTb. Note that �(PB A) can be larger than �(PCM A).
The effective condition number with respect to a starting vector, however, gives a complete

description of the convergence behavior of the CG method. Thus, Theorem 3.5 provides a complete
comparison of the abstract balancing method with the abstract additive coarse grid correction
method. Furthermore, the proof is self-contained.
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4. COMPARING THE A-NORM OF THE DEFLATION AND COARSE GRID
CORRECTION ERRORS

It appears that the effective condition number of a preconditioned matrix combined with a deflation
operator is always less than the condition number of the matrix preconditioned with a coarse grid
correction operator [2, Theorem 2.11]. However, instead of comparing condition numbers, it is
more valuable to compare the errors of different preconditioners measured in some norm. However,
such a kind of comparison results is hard to find. In [3] such a comparison of the norm of the
errors is given for the deflation and the balancing preconditioners. Of course, the similar spectrum
of both preconditioned systems influenced such a comparison.

Definition 4.1
The eigenvalues of A are denoted by �k , and the eigenvectors yk of A are chosen such that
yTk y j =�k j . Define Z =[y1 . . . yr ].
In this section we assume that the eigenvalues are arbitrarily ordered.
From [2, Theorem 2.5], we know for this choice of projection vectors that the spectra of PD A

and PC A are

spectrum(PD A)={0, . . . ,0,�r+1, . . . ,�n}

and

spectrum(PC A)={�+�1, . . . ,�+�r ,�r+1, . . . ,�n}

As in Section 3 of [3] we note that

xk,D = x0+ZE−1ZTr0+PT
Dx̃k,D (14)

where x̃k,D is the kth iterate of CG applied to the singular deflated system PD Ax= PDr0.
We take x̃0,D =0 as the starting solution. The coarse grid correction method is started with
x0,C = x0.

Definition 4.2
The initial error vector can be expressed as a linear combination of the eigenvectors:

x−x0=
n∑
j=1

� j y j

We first investigate x−x0,D .

Lemma 4.3
Using (14) and Definition 4.2, it appears that

x−x0,D =
n∑

j=r+1
� j y j (15)
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Proof
It is easy to show that E= ZTAZ =diag(�1, . . . ,�r ). This together with (14) is used to derive the
following expressions:

x−x0,D = x−x0−ZE−1ZT(b−Ax0)

= x−x0−[y1 . . . yr ]diag
(

1

�1
, . . . ,

1

�r

)
[y1 . . . yr ]T

n∑
j=1

� j� j y j

=
n∑
j=1

� j y j −
r∑
j=1

� j y j =
n∑

j=r+1
� j y j

Now we are able to prove the following comparison result. �

Theorem 4.4
Using Z as in Definition 4.1, x̃0,D =0 and x0,C = x0, it appears that

‖x−xk,D‖A�‖x−xk,C‖A (16)

Proof
The exact solution x can be expressed as

x= x0+(I −PT
D)(x−x0)+PT

D(x−x0)= x0+ZE−1ZTr0+PT
D(x−x0)

Combination with (14) shows that

x−xk,D = PT
D(x−x0− x̃k,D) (17)

Note that

x̃k,D =sk(PD A)PDr0=sk(PD A)PD A(x−x0)

where sk is a polynomial of degree k−1. Substituting this into (17) yields

PT
D(x−x0− x̃k,D)= PT

D pk,D(PD A)(x−x0) with pk,D ∈�1
k (18)

Since Z consists of eigenvectors, we know that PD = I −Z ZT= PT
D . Together with PD A= APD

this implies that

PT
D pk,D(PD A)= pk,D(PD A)PD

With Definition 4.2 and (18), we obtain

PT
D(x−x0− x̃k,D) = pk,D(PD A)PD(x−x0)= pk,D(PD A)(I −Z ZT)

n∑
j=1

� j y j

= pk,D(PD A)
n∑

j=r+1
� j y j =

n∑
j=r+1

pk,D(� j )� j y j
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Using the optimality property of the CG method, we observe that

‖x−xk,D‖2A =
∥∥∥∥∥

n∑
j=r+1

pk,D(� j )� j y j

∥∥∥∥∥
2

A

=
n∑

j=r+1
� j (pk,D(� j ))

2�2j

�
n∑

j=r+1
� j (qk(� j ))

2�2j (19)

where qk is an arbitrary polynomial in the set �1
k . Using the polynomial property of the CG method

again, we note that there is a pk,C ∈�1
k such that

‖x−xk,C‖2A=
r∑
j=1

� j (pk,C (�+� j ))
2�2j +

n∑
j=r+1

� j (pk,C (� j ))
2�2j (20)

Combination of (19) and (20) leads to

‖x−xk,D‖2A �
n∑

j=r+1
� j (pk,C (� j ))

2�2j

�
r∑
j=1

� j (pk,C (�+� j ))
2�2j +

n∑
j=r+1

� j (pk,C (� j ))
2�2j

= ‖x−xk,C‖2A
which proves the theorem. �

The A-norm inequality as given in Theorem 4.4 is not valid if the projection vectors are general
vectors. This is illustrated by the example given below.

Example 4.5
Applying deflation and coarse grid correction to problem with

A=
⎛
⎜⎝
1 0 0

0 2 0

0 0 3

⎞
⎟⎠ , b=

⎛
⎜⎝
1

2

3

⎞
⎟⎠ with Z =

⎛
⎜⎝

1

−10

0

⎞
⎟⎠ and x0=

⎛
⎜⎝
0

0

0

⎞
⎟⎠ (21)

one obtains the results as given in Table I. Note that the A-norm of the deflation error is larger
than the A-norm of the coarse grid correction error in the first iterate.

Table I. The error for deflation and coarse grid correction.

Iteration ‖x−xk,D‖A ‖x−xk,C‖A
0 2.4495 2.4495
1 0.7138 0.6899
2 0 0.0018
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Table II. The error for deflation, coarse grid correction and balancing.

Iteration ‖x−xk,D‖A ‖x−xk,C‖A ‖x−xk,B‖A
0 2.4495 2.4495 2.4495
1 0.414 0.4804 0.7454
2 0 0 0.2689

We end and conclude this section with some remarks concerning error norm comparisons.

Remark 4.6

• It is possible to prove an equivalent comparison result as in Theorem 4.4 if an additional
symmetric positive definite preconditioner M is used.

• Using Theorem 3.7 of [3], it appears that for the balancing iterate xk,B the inequality

‖x−xk,B‖A�‖x−xk,C‖A

also holds if the CG method is started with x0,B = ZE−1ZTr0 and Z is chosen as in
Definition 4.1.

• If x0,B �= ZE−1ZTr0, but Z is chosen as in Definition 4.1, the inequality is not valid. To show
this we again use Example 4.5, but now the projection vector is chosen to be equal to the
first eigenvector; hence,

Z =
⎛
⎜⎝
1

0

0

⎞
⎟⎠

The results are given in Table II. Note that the A-norm of the balancing error is larger than
the A-norm of the coarse grid correction error in the first iterate.

• Repeating Theorem 3.4 of [3], we know that

‖x−xk,D‖A�‖x−xk,B‖A

for all choices of Z and x0.

5. ORTHOGONAL TRANSFORMATIONS

It is well known that Krylov subspace methods are invariant to orthogonal transformations. Suppose
that Q is an orthogonal matrix (QTQ=QQT= I ). Consider a change of basis from e1, . . .en to
q1, . . .qn , the columns of Q. The linear system Ax=b in the Euclidean basis is equivalent to the
transformed system

Âx̂= b̂ (22)

in the new basis, where x̂=QTx , b̂=QTb and Â=QTAQ. The fact that the CG method applied to
Ax=b is equivalent to the CG method applied to Âx̂= b̂ can be proved by expressing the formulas
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of the CG method algorithm or by analyzing the optimization properties of the CG method.
Note that if the columns of Q are equal to the normalized and orthogonal eigenvectors of A,
the transformed matrix Â is a diagonal matrix. This implies that theorems proved for a diagonal
matrix can be generalized to the same results for an arbitrary symmetric matrix, and numerical
experiments can also be restricted to diagonal matrices (except the rounding error behavior, which
can be different).

In this section we show that the deflation, coarse grid correction and balancing Neumann–
Neumann operators are all invariant with respect to orthogonal coordinate transformations.

Theorem 5.1
It appears that

P̂D = QTPDQ (23)

P̂CM = QTPCMQ provided that �̂=� (24)

P̂B = QTPBQ (25)

Proof
We start to prove (23). Since we have a change of basis, the projection vectors are changed as
follows: Ẑ =QTZ . From the definition of P̂D it follows that

P̂D = I − Â Ẑ(ẐT Â Ẑ)−1 ẐT

= I −QTAQQTZ(ZTQQTAQQTZ)−1ZTQ

= QT(I −AZ(ZTAZ)−1ZT)Q=QTPDQ

In the same way, we can prove (24) where we use �̂=�:

P̂CM = M̂−1+ �̂Ẑ(ẐT Â Ẑ)−1 ẐT

= QTM−1Q+�QTZ(ZTAZ)−1ZTQ

= QT(M−1+�Z(ZTAZ)−1ZT)Q=QTPCMQ

Finally to prove (25), we note that

P̂B = P̂T
D M̂

−1 P̂D+ Ẑ(ẐT Â Ẑ)−1 ẐT

= QTPT
DQQTM−1QQTPDQ+QTZ(ZTAZ)−1ZTQ

= QT(PT
DM

−1PD+Z(ZTAZ)−1ZT)Q=QTPBQ �

This theorem implies that if one is able to compare the various methods for a diagonal matrix, the
comparison is also valid for a general symmetric matrix.
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6. NUMERICAL EXPERIMENTS

In all our numerical experiments, the multiplication y=E−1b is done by solving y from Ey=b,
where E is decomposed into a product of its Cholesky factors. The choice of the boundary
conditions is such that all problems have the vector with components equal to 1 as the exact solution.
To make the convergence behavior representative for general problems, we chose a random vector
as starting solution, instead of the zero start vector.

We apply both methods (balancing and additive coarse grid correction) to the Poisson equation.
To investigate the scaling properties of the methods, we use the scaled linear system:

�Ax=�b

In all our examples, the balancing preconditioner performs better than the additive coarse
grid preconditioner as indicated by the theoretical results if x0= ZE−1ZTr0. We observe from
Figures 1 and 2 that both methods are not scaling invariant. In exact arithmetic, the balancing
preconditioner with x0= ZE−1ZTr0 is scaling invariant. This implies that the rounding errors
spoil the invariance properties in practice. It is clear that the additive coarse grid preconditioner
is more sensitive to scaling. This can be explained as follows: for the balancing preconditioner r
eigenvalues of the original matrix are changed into 1 by the preconditioner. Hence, if the scaling is
bad, there is only one outlier in the spectrum. Owing to the superlinear convergence, this has only
a limited effect on the convergence. Using the additive coarse grid preconditioner r eigenvalues
are shifted. For a bad scaling, the spectrum has r outliers, which are worse than one outlier for
the convergence of the method.

Finally, from Figure 3, we conclude that in general the balancing preconditioner converges
faster than the additive coarse grid preconditioner, also for arbitrary starting vectors. However, the
A-norm inequality is not always valid. Initially, the additive coarse grid preconditioner converges
faster than the balancing preconditioner.
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Figure 1. Convergence of the balancing and additive coarse grid correction
preconditioners with �=1 and x0= ZE−1ZTr0.

Copyright q 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:355–372
DOI: 10.1002/nla



370 R. NABBEN AND C. VUIK

0 20 40 60 80 100
10

–8

10
–6

10
–4

10
–2

10
0

10
2

iterate

||x
 –

 x
i ||

A

balancing
coarse grid correction

Figure 2. Convergence of the balancing and additive coarse grid correction
preconditioners with �=500 and x0= ZE−1ZTr0.
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Figure 3. Convergence of the balancing and additive coarse grid correction preconditioners with
�=500. In this example a random starting vector is used.

7. CONCLUSIONS

We considered various preconditioners for the CG method, namely the deflation, the abstract
balancing and the abstract additive coarse grid correction preconditioners. In [2, 3] the deflation
method is compared with the abstract additive coarse grid correction preconditioner and the abstract
balancing preconditioner. Here we established a direct comparison between the condition numbers
of the abstract coarse grid correction preconditioner and the abstract balancing preconditioner.
We showed that the effective condition number with respect to a specific starting vector of
the system preconditioned by the abstract balancing preconditioner is less than or equal to the
condition number of the system preconditioned by the additive coarse grid correction method.
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Moreover, we compared the A-norm of the errors of the iterates given by the different precondi-
tioners and established the orthogonal invariance of all three types of preconditioners.
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