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Abstract This study focusses on the growth of small precipitates within a matrix
phase (see also den Ouden et al., Comput Mater Sci 50:2397–2410, 2011). The growth
of a precipitate is assumed to be affected by the concentration gradients of a single
chemical element within the matrix phase at the precipitate/matrix boundary and by an
interface reaction, resulting into a mixed-mode formulation of the boundary condition
on the precipitate/matrix interface. Within the matrix phase we assume that the standard
diffusion equation applies to the concentration of the considered chemical element.
The formulated Stefan problem is solved using a level-set method (J Comput Phys
79:12–49, 1988) by introducing a time-dependent signed-distance function for which
the zero level-set describes the precipitate/matrix interface. All appearing hyperbolic
partial differential equations are discretised by the use of Streamline-Upwind Petrov–
Galerkin finite-element techniques (Comput Vis Sci 3:93–101, 2000). All level-set
related equations are solved on a background mesh, which is enriched with interface
nodes located on the zero-level of the signed-distance function. The diffusion equation
is solved in the diffusive phase. Simulations with the implemented methods for the
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growth of various precipitate shapes show that the methods employed in this study
correctly capture the evolution of the precipitate/matrix interface including topological
changes. At the final stage of growth/dissolution physical equilibrium is attained. We
also observe that our solutions show mass conservation as the time-step and element-
size tend to zero.

Keywords Level-set · Finite-element · Stefan problem · Diffusion ·
Precipitate growth

Mathematics Subject Classification (2000) 35K57 · 65M60 · 74A50 · 74N25 ·
80A22 · 82C24

1 Introduction

Metalworking of alloys is a widely used and complex process that involves several
physical phenomena, such as dislocation movement, grain recrystallisation and sec-
ondary phase precipitation [14], that influence the workability and applicability of the
object. These phenomena and their influences have been studied and documented using
mainly “trial and error”-based experiments and by experience. These experimentally
obtained results could be verified by an analytical investigation of the studied aspects
and hence they improve the understanding of the physical behaviour of alloys during
metalworking.

Several models that describe the nucleation and growth of precipitates in alloys have
been proposed in the last decades, see for example [5,8,12,15,19,23]. A drawback of
the majority of these models is the assumption of a predefined, such as spherical, shape
for the precipitates. These precipitate geometries include cuboids, needles, plates and
other shapes. Modelling the growth and dissolution of arbitrarily-shaped precipitates is
the subject of our study. We also focus on the effect of various physical properties on the
growth/dissolution process, such as interfacial tension and reaction and diffusion rates.

Various models exist in literature for the description of the growth of precipitates
within a diffusive domain. The phase field method (See for example [6]) considers
the interface between the two phases as a smooth interface, where the evolution of the
interface is governed by the minimization of the free energy of the entire system.
The Kampmann–Wagner-Numerical method, introduced in [8], models a complete
statistical distribution of precipitates, in which the precipitates are assumed spher-
ical and growth is modelled using a Zener approximation [24]. The Monte Carlo
method has also been used to model the nucleation and growth of precipitates [19], in
which the behaviour of the precipitates follows from the behaviour of single atoms.
In [23] the moving mesh method is used to model the topological changes associated
with the growth and dissolution of precipitates using an explicit representation of the
interface. Finally the level-set method [10] has been applied, which uses a sharp inter-
face representation and which can handle topological changes of the precipitate with
ease.

In this paper we will first give a short overview of the moving boundary model
used for the description of growth and dissolution in a binary alloy. Subsequently,
we discuss some numerical aspects of our approach and finally we discuss the results
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obtained with our method with regard to convergence and the dependence of the model
on the studied physical properties.

2 The Stefan problem

In this section, we describe the models used to simulate the dissolution and growth
of a precipitate in a diffusive phase driven by a single chemical element. The level-
set method introduced in [10] is used for the description of the boundary, whereas
diffusive and reactional fluxes physically determine the movement of the interface.

2.1 Evolution of the concentration

Our model is based on the original Stefan problem described by Stefan in 1890 (see [4]).
Consider a diffusive phase �D(t) in which a precipitate �P (t) has nucleated at some
point. Here �D(t) and �P (t) are open domains. Let �(t) denote the interface between
the two phases, which represents the moving boundary in our model. Let the concen-
tration cp within the precipitate �P (t) be fixed and assume the concentration c(x, t)
within the diffusive phase �D(t) to be described by the standard diffusion equation

∂c

∂t
(x, t) = ∇ · (D(x, t)∇c(x, t)) , for x ∈ �D(t), t > 0, (1)

where D is the diffusivity of the diffusing chemical element. At the outer boundary of
�D , i.e. ∂�D(t) \ �(t), we assume a no-flux condition, which results into an homo-
geneous Neumann boundary condition. Furthermore, let �(t) be the open domain
defined by

�(t) = (�D(t) ∪ �P (t)) \ �(t). (2)

At the precipitate/matrix interface �(t) three physical phenomena occur in sequence
during dissolution:

1. Detachment of atoms from the lattice structure of the precipitate phase;
2. Crossing of atoms from within the precipitate into the matrix;
3. Long-range diffusion of atoms into the matrix.

These phenomena occur during growth in the reverse order. In both cases all phe-
nomena put restrictions on the speed at which the interface can move. Many models
assume that the diffusive phenomenon is rate-limiting and hence neglect the possible
influence of the reaction at the interface given by the first two phenomena. In [22]
it has been shown for a plate-like precipitate that the interface reaction can have a
significant impact on the dissolution kinetics. Similar to the model in [22] we model
the flux of atoms Jr (x, t) across the interface by a first-order reaction:

Jr (x, t) = K (x, t) (cs(x, t) − c(x, t)) , for x ∈ �(t), t > 0. (3)

The flux at the interface within the diffusive phase �D(t) consists of two parts, the
flux Jm(x, t) due to movement of the interface itself
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Jm(x, t) = c(x, t)vn(x, t), for x ∈ �(t), t > 0, (4)

and the diffusive flux Jd(x, t)

Jd(x, t) = D(x, t)
∂c

∂n
(x, t), for x ∈ �(t), t > 0. (5)

In these definitions K (x, t) is the interface-reaction speed, cs(x, t) the local equi-
librium concentration and vn(x, t) denotes the speed of the interface in the outward
normal direction n(x, t) from the domain �D(t) at �(t). Combining Eqs. (3), (4) and
(5), we arrive at the flux boundary condition

K (x, t) (cs(x, t) − c(x, t)) = D(x, t)
∂c

∂n
(x, t) + c(x, t)vn(x, t), (6)

for x ∈ �(t), t > 0.

As we have introduced a new unknown, the interface velocity vn(x, t), we must
complete our definition by another boundary condition on �(t). Using a mass balance
on a growing/dissolving precipitate, we arrive at the familiar Stefan condition

cpvn(x, t) = D
∂c

∂n
(x, t) + c(x, t)vn(x, t), for x ∈ �(t), t > 0. (7)

By substracting Eq. (7) from Eq. (6) we see that the interface velocity vn(x, t) is
given by

vn(x, t) = K (x, t)

cp
(cs(x, t) − c(x, t)) , for x ∈ �(t), t > 0, (8)

Substituting the above result in either Eq. (6) or Eq. (7), yields that the normal
diffusive flux at the interface is given by

D(x, t)
∂c

∂n
(x, t) = K (x, t)

cp
(cs(x, t) − c(x, t))

(
cp − c(x, t)

)
, (9)

for x ∈ �(t), t > 0.

From Eq. (8) we see that the determination of the interface velocity does not involve
computing the normal diffusive fluxes at the interface, as opposed to the model used
in for example [7]. A drawback is the introduction of a nonlinear boundary condition
on �(t) for the diffusion problem, in contrast to the simpler Dirichlet condition

c(x, t) = cs(x, t), for x ∈ �(t), t > 0, (10)

used in for example [7]. Inspection of Eq. (8) shows that if the value of K is large,
we will have fast dissolution/growth of the precipitate, indicating diffusion controlled
kinetics, whereas a lower value of K leads to slow dissolution/growth, indicating
reaction-controlled kinetics.
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In this paper we assume that the solubility of the considered element at the precipi-
tate/matrix interface inside the diffusive phase, cs(x, t), is known and modelled using
the Gibbs–Thomson effect [13,14]

cs(x, t) = c∞
s (t)exp (ζκ(x, t)) , (11)

where c∞
s (t) is the solubility of the considered element, ζ a positive physical factor

and κ(x, t) the sum of the principle curvatures of the interface �(t). The solubility
c∞

s (t) can be derived from thermodynamic databases such as ThermoCalc [1]. The
parameter ζ is defined as

ζ = γ Vm

RgT
, (12)

with γ the interface energy, Vm the molar volume of the precipitate, Rg the gas con-
stant and T the temperature. For a sphere the derivation of Eq. (11) can be found in
[13], leading to κ = 2/R where R is the radius of the sphere. By Eq. (11) the equi-
librium concentration c∞

s increases for locally convex interfaces, which have positive
curvature, and decreases for locally concave interfaces, which have negative curva-
ture. This amplification/dampening will cause the precipitate to grow/dissolve to the
configuration with the lowest overall surface tension, i.e. the total energy of the system
will be minimised.

2.2 The level-set method

In [10] the level-set method was introduced, which captures the motion of an arbitrary
interface using a signed-distance function. As we are interested in the movement of the
precipitate/matrix interface �(t) we will employ this method to describe the interface.
Define the signed-distance function φ(x, t) by

φ(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

+ min
y∈�(t)

‖y − x‖2 if x ∈ �P (t) \ �(t),

0 if x ∈ �(t),
− min

y∈�(t)
‖y − x‖2 if x ∈ �D(t) \ �(t).

(13)

Using this definition of φ(x, t), the normal n(x, t) of the interface �(t) can be calcu-
lated directly from φ(x, t) by

n(x, t) = ∇φ(x, t)

‖∇φ(x, t)‖2
, (14)

which will point into �P (t) and out of �D(t) due to our chosen orientation of φ(x, t).
Equation (11) uses the sum of the principal curvatures κ(x, t), which can be derived
from φ(x, t), similar to the normal n(x, t), using
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κ(x, t) = −∇ · ∇φ(x, t)

‖∇φ(x, t)‖2
. (15)

Note that we introduced a minus sign in the definition of κ(x, t) as opposed to the
definition introduced in [10] due to the orientation of our signed-distance function
φ(x, t). The movement of the interface is captured by evolving the signed-distance
function φ(x, t) using the convection equation [11]

∂φ

∂t
(x, t) + vex

n (x, t)‖∇φ(x, t)‖2 = 0, for x ∈ �, t > 0. (16)

The velocity vex
n (x, t) in Eq. (16) is an extension of the normal interface velocity

vn(x, t) given by Eq. (8). Various approaches exist for this extension routine, see for
example [2,11], which are based on the evolution of convection equation in pseudo-
time and a Dirichlet condition on the interface. We however choose to use a simpler
approach to reduce the computational effort needed for this extension. We solve the
Laplace equation

	vex
n (x, t) = 0, for x ∈ �(t), t > 0, (17)

with a homogeneous Neumann boundary condition on ∂�D(t)\�(t) and the Dirichlet
condition

vex
n (x, t) = vn(x, t), for x ∈ �(t), t > 0, (18)

where vn(x, t) is given by Eq. (8).
In [20] it has been shown that advancing fronts are only captured correctly if the

function φ(x, t) remains a signed-distance function throughout the simulations. To
enforce this constraint, we employ the technique of reinitialisation. Various reinitiali-
sation techniques have been developed which either use a partial differential equation
or a front marching technique (see for an overview [18,20]). In this article we will use
another approach, which will be explained in the next section.

3 Numerical methodology

Both Eqs. (1) and (16) are solved using finite-element techniques. For Eq. (1) we
will employ the standard Galerkin finite-element technique, whereas for Eq. (16) we
will use a SUPG finite-element technique, which is in detail discussed in [21]. We have
chosen this SUPG stabilization, as the stabilization parameter is dependent on the time-
step and the current convection speed and direction of φ. No extra artificial parameters
need to be chosen in this SUPG technique. We combine this discretisation scheme
with the Explicit-Euler time-integration for the signed-distance function φ(x, t) and
the Implicit-Euler time-integration for the concentration c(x, t). The extension of
the normal velocity with Eq. (17) is done using the standard Galerkin finite-element
technique. All finite-element techniques are applied on meshes with linear elements, of
which the generation will be discussed next. After this we will discuss the discretisation
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of Eq. (1) and the reinitialisation of the level-set function φ in more detail. Finally an
overview of the entire algorithm will be presented.

3.1 Mesh generation

To solve the problem formulated above, we will generate several meshes in order to
deal with the moving interface. The approach taken to construct these meshes in 2D
is given here, but is readily extended to 3D (see for example [7]). First we define
a background mesh T on which we assume a finite-element approximation φ(tn) at
the discrete time tn is known. Figure 1a shows such a 2D mesh including the zero-
level of φ(tn) and the classification of the domains. Let X denote all points from the
background mesh T and E the set of edges from T .

Upon inspection of Eqs. (17) and (18), we see that in order to determine the velocity
vex

n (tn), a Dirichlet boundary condition must be applied on the interface �(tn), which
is embedded in the domain �(t). Analysis of Eqs. (1)–(9) gives that a restriction of
T to �D(tn) and boundary elements that represent the interface �(tn) are needed.
To introduce these, we will introduce two new meshes, T n

E and T n
D . The background

mesh T is enriched with nodes on the interface �(tn) and contains explicitly edges
on the interface �(tn), giving the enriched mesh T n

E . The mesh T n
D is based on the

enriched mesh T n
E , and only contains those triangles that are located within �D(tn).

Let E± ⊂ E represent the edges of the background mesh T over which φ(tn)

changes sign, as the zero-level of φ(tn), and consequently �(tn), must be located
along such an edge. Using our linear approximation of the level-set function φ(x, tn)

on each edge, we can define the local variable τ e for each edge e ∈ E± as

τ e = −φe
1(t

n)

φe
2(t

n) − φe
1(t

n)
, (19)

where φe
i (t

n), i = 1, 2 represent the values of the first and second point of the edge e
over which φ(tn) changes sign at tn . Note that φ1(tn)φ2(tn) < 0. Using this variable
we approximate the location xe of �(tn) along the edge e as

xe = (1 − τ e)xe
1 + τ exe

2, (20)

with xe
i , i = 1, 2 the global locations of the first and second point of the edge e. If

τ e ∈ (δ, 1 − δ), where δ is some value between 0 and 1
2 , we add xe to the set X ±,

which represents the set1 of points to be added to the mesh T . If however τ e ≤ δ we
do not add xe to X ± but set

1 The ± symbol represents the fact that the points in the set X± come from an edge over which φ(tn)

changes sign.
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(a) (b) (c)

Fig. 1 2D examples of the generated meshes in our approach. The dashed curve corresponds to a the
given/prescribed interface �(tn), b, c the set of interface edges E0. The value δ = 0.3 has been used. a
Background mesh T . b Enriched mesh T n

E . c Diffusive phase mesh T n
D

xe
1 = xe and φe

1 = 0, (21)

i.e. we shift an original mesh point of the background mesh to the interface �(tn), and
if τ e ≥ 1 − δ, we apply the same principle by setting

xe
2 = xe and φe

2 = 0. (22)

If an original mesh point x can be shifted to several locations, we choose the interface
location xe closest to the mesh point x. The next step in construction of the enriched
mesh T n

E is the construction of the boundary elements. To this end define X 0 as the
union of all (possibly shifted) background points X where φ(tn) = 0 and all points
from X ±. Next we construct a set of edges E0 through X 0, to approximate the interface
�(tn). Finally we construct the enriched mesh T n

E on the union XE of the (possibly
shifted) background points X and the interface points X ±, such that the set of edges
E0 is present within the mesh. Figure 1b shows the enriched mesh T n

E with the edges
E0 that results from applying this approach to the background mesh T and interface
�(tn) of Fig. 1a.

Construction of the mesh T n
D can easily be accomplished by noting that �D(tn)

can only contain those points where φ(tn) is non-positive due to Eq. (13). So after
determination of those points in XE where φ(tn) is positive, we delete any simplex
from T n

E that uses at least one of those points. This leads to the diffusive phase mesh
T n

D , which due to the derivation of the enriched mesh T n
E will contain boundary

elements along �(tn). Figure 1c shows the diffusive phase mesh T n
D with the edges E0

that results from restricting the enriched mesh T n
E to �D(tn). In this article we have

chosen for the parameter δ the value 0.3.

3.2 Discretisation of Eq. (1)

As mentioned above, we discretise Eq. (1) combined with the boundary condi-
tions in Eqs. (6) and (7) using the standard Galerkin finite-element technique and
Implicit-Euler time-integration. The finite-element technique will transform Eq. (1)
to a system of nonlinear ordinary differential equations
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M(t)
dc(t)

dt
= S(t, c(t))c(t) + f(t, c(t)), (23)

where c(t) represents the finite-element approximation at time t . The mass matrix
M(t), the stiffness matrix S(t, c(t)) and vector f(t, c(t)) contain integrals over the
domain �D(t) and the interface �(t). Due to the nonlinearity of Eq. (9), which is used
in the derivation of the weak formulation, we have a stiffness matrix S(t, c(t)) and
vector f(t, c(t)) that dependent on the solution vector c(t). The term

K (x, t)

cp

(
cp − c(x, t)

)
, (24)

of Eq. (9) is incorporated in the matrix S(t, c(t)) and the remaining term

− K (x, t)

cp

(
cp − c(x, t)

)
cs(x, t), (25)

is incorporated in the vector f(t, c(t)).
Application of Implicit-Euler time-integration on Eq. (23) leads to the matrix-vector

equation

(
M(tn+1) − 	t S(tn+1, cn+1)

)
cn+1 = M(tn+1)cn + 	t f(tn+1, cn+1), (26)

where the superscript n refers to the evaluation of the variable at the discrete time tn

and 	t is the chosen time step. Under the assumption that the diffusive phase mesh T n
D

contains N n points and since the time-consecutive meshes T n
D and T n+1

D can contain
different numbers of points, i.e. N n+1 
= N n , we see a possible dimensional mismatch
in the matrix-vector product between M(tn+1) and cn .

To overcome this possible dimensional mismatch, we extend the solution cn from
the mesh T n

D to the mesh T n+1
D . For any point xi ∈ T n+1

D , i ∈ {
1, . . . , Cn+1

}
we first

find the point y j ∈ T n
D , j ∈ {1, . . . , Cn} such that

∥∥xi − y j
∥∥

2 is minimal and define
the index-to-index function I : i → j . We then define the extended solution vector
cn

ex of length Cn+1 by setting

cn
ex,i = cn

I (i). (27)

Note that if a point xi originates from the background mesh T and has not been shifted
in both diffusive phase meshes T n

D and T n+1
D , we will have xi = yI (i). Furthermore

if T n+1
D = T n

D , we will have consistency as xi = yI (i). Using the index-to-index
function I (i) we can also assign a mesh velocity vmesh

i (tn+1) to each point xi ∈ T n+1
D ,

i = 1, . . . , N n+1, which is given by the function
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vmesh
i (tn+1) = yI (i) − xi

	t
, i = 1, . . . , N n+1, (28)

where yI (i) ∈ T n
D for all i .

Using the above extension, we must replace the partial derivative with respect to
time in Eq. (1) with a material derivative. The material derivative is defined as

Dc

Dt
(x, t) = ∂c

∂t
(x, t) + dx

dt
(t) · ∇c(x, t), (29)

which transforms Eq. (1) to

Dc

Dt
(x, t) = ∇ · (D(x, t)∇c(x, t)) + dx

dt
(t) · ∇c(x, t), (30)

for x ∈ �D(t), t > 0.

We approximate the velocity of a point dx
dt (t

n+1) with our derived mesh velocity of

Eq. (28) based on T n
D and T n+1

D . We note that this approach is similar to the approach
used in [16].

After application of the standard Galerkin finite-element technique and Implicit-
Euler time-integration, we arrive at the natural fixed-point problem

cn+1 = A(cn+1)−1g
(
cn+1

)
, (31)

where the matrix A and vector g are defined by

A(q) = M(tn+1) − 	t S(tn+1, q), (32)

g(q) = M(tn+1)cn
ex + 	t f(tn+1, q), (33)

and the matrix S(tn+1, q) now also contains the mesh velocity vmesh(tn+1). We solve
this fixed-point problem using the fixed-point iteration

{
cn+1

0 = cn
ex,

cn+1
p+1 = A(cn+1

p )−1g
(

cn+1
p

)
, p = 1, 2, 3, . . .

(34)

We iterate until the error ε has dropped below some predefined tolerance FPT, where
the error ε is given by

ε =
∥∥∥cn+1

p+1 − cn+1
p

∥∥∥∞∥∥∥cn+1
p+1

∥∥∥∞
. (35)

In this article we have chosen FPT = 10−6. Using the fixed-point iterations we have
observed a linear rate of convergence.
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Instead of the fixed-point problem in Eq. (31) we could also have chosen to solve
the equivalent root-finding problem

A(cn+1)cn+1 − g
(

cn+1
)

= 0, (36)

with the same matrices and vectors. This problem can be solved by using for example
a Newton–Raphson solver. We have not chosen for this approach, as it requires the
determination of (an approximation of) the Jacobian, which for our model is complex
or leads to multiple function evaluations per iteration.

3.3 Reinitialisation

As shown in [20], it is necessary to maintain the signed-distance property of the
level-set function φ(x, t) during the computations. To this extent, the technique of
reinitialisation has been introduced, which can be done in several ways [18,20]. We
compared several methods and we have chosen to use an efficient direct approach in
this research, which will be described next.

After obtaining the numerical solution φ̃n+1 on the enriched mesh T n
E by solving

Eq. (16), we map this solution back onto the background mesh T . From this numerical
solution we generate the enriched mesh T n+1

E , which will contain an explicit linear
representation of the interface �(tn+1) consisting of vertices and edges in 2D and
vertices and triangles in 3D. This representation can easily be used to recompute the
distance between any point in the enriched mesh T n+1

E and the interface �(tn+1). In
the following paragraphs we assume that we are working in 3D.

Denote by T 0 the set of triangles describing the interface �(tn) through the interface
points X 0 and by E0 the edges defined by the triangulation T 0. For any point x ∈ �,
the orthogonal projection on the plane defined by the triangle �ABC ∈ T 0 is given by

xp
�ABC (x) = x − (

(x − xA) · n�ABC
)

n�ABC , (37)

with n�ABC a unit normal of the plane and xA the coordinates of point A. For the
same point x, the projection to the line defined by the edge AB ∈ E0 is given by

xp
AB

(x) = xA + (dAB · x)dAB , (38)

with dAB the unit direction vector of the line. The trivial projection of x onto the point
A is given by

xp
A(x) = xA. (39)

To find the minimal distance between the point xi ∈ T n+1
E and the triangulated

surface �(tn+1), we project xi onto all triangles in T 0, all edges in E0 and all points
X 0. We then obtain a set of projection points, of which we keep all projections that
fall on the defining triangle, edge or point. We then set |φn+1

i | to the minimum of all
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absolute distances and let the sign of φn+1
i be determined by the previous value. This

procedure can be described by the following set of equations:

T 0
p =

{
t ∈ T 0 | xp

t (xi ) ∈ t
}

, E0
p =

{
e ∈ E0 | xp

e (xi ) ∈ e
}

, (40)

d� = min
t∈T 0

p

∥
∥xi − xp

t (xi )
∥
∥

2, d/ = min
e∈E0

p

∥
∥xi − xp

e (xi )
∥
∥

2, (41)

d• = min
y∈X 0

‖xi − y‖2, φn+1
i = sgn(φ̃n+1

i ) min
{
d�, d/, d•

}
. (42)

The values d�, d/ and d• are the optima over respectively the triangles, the edges and
the points within T 0. If T 0

p is equal to the empty set ∅, we set d� = ∞. Similar, if
E0

p = ∅, we set d/ = ∞.
To reduce the computational effort of this approach, we only apply Eqs. (40)–

(42) to all mesh points xi ∈ X upto the 2-th neighbor of X 0 within T n+1
E . Further,

we only apply the above algorithm on those triangles, edges and points of which
the points lie at maximum a distance of 2.5h from xi , with h the average mesh
coarseness. For 2D problems, the approach is similarly obtained by projection on
all edges and points representing �(tn+1), acceptance of all projections that fall on
the defining edges and points and taking again the minimum over all the accepted
distances.

The approach given by Eqs. (40)–(42) gives an exact value for φn+1 if the interface
�(tn+1) is exactly described by a polyhedron in 3D or a polygon in 2D. If however the
surface is not captured exactly by a polyhedron/polygon, we obtain an experimental
order of convergence with respect to h close to quadratic over the entire domain
�. This approach is applicable since no reinitialisation over all of � is needed. A
benefit is that no termination criterion based on the gradient of φn+1 is introduced. A
drawback of this approach is the computational effort needed to update φn+1, if one
would incorporate mesh points further away from the interface. This can be avoided by
exploiting the fact that an update for a grid point is independent of all other grid points,
which allows parallelisation of the approach. The computational cost per updated
point is of O(1) in R

d due to the restriction of the used triangles, edges and points
in the update. Due to our limitation of the reinitialisation on a narrow band around
the interface O(h1−d) points are updated, leading to an overall computational cost
of O(h1−d), which is of lower order than the computational cost associated with the
method in [20], which is based on the pseudo-time evolution of a partial differential
equation.

3.4 The algorithm

In the previous sections we discussed three major aspects of our numerical solution
technique. In Algorithm 1 the approach to solve the problem is given in pseudo-code.
One can see at line 10 of Algorithm 1 that we have used the Courant–Friedrichs–Lewy
condition (CFL) [3] to limit the time-step 	t . This limitation arises from the discretisa-
tion of Eq. (16) with the SUPG finite-element and the application of the Explicit-Euler
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time-integration. In this article we have used CFL = 0.25. This algorithm is imple-
mented into the commercial software package SEPRAN [17].

4 Computer simulations

4.1 The experimental accuracy: dissolution of planar and circular precipitates

To investigate the experimental accuracy of our method, we simulate the dissolution
of a planar precipitate with initial width 0.615 in the computational domain [0, 1]n for
n = 2, 3. Within the precipitate the concentration is given by cp = 0.45, whereas the
initial concentration in �D is given by c0 = 0.3 and the equilibrium concentration
by c∞

s = 0.33. We take ζ = 0 to exclude curvature effects and assume D = 1 and
K = 103, leading to diffusion-controlled dissolution. We take a regular background
mesh T with point spacing h = 1/N for several values of N . A simple mass balance
gives that under the current settings the equilibrium width of the precipitate is given
by 0.51875. We simulate until tend = 3.

We also simulate the dissolution of a circular precipitate with initial radius 0.615
on the unit circle in 2D. We take the same values for the physical and numerical con-
stants as for the planar dissolution. We discretize the computation domain using linear
triangles with coarseness h = 1/N for several values of N . Under the assumption that
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Table 1 Experimental accuracy of dissolving a planar and circular precipitate in 2D

N Planar Circular

Mass error Width error Deviation Mass error Radius error Deviation

16 2.5187 × 10−2 1.5869 × 10−1 1.3010 × 10−4 2.9987 × 10−2 2.2515 × 10−1 1.9309 × 10−3

32 1.4130 × 10−2 8.9000 × 10−2 8.1082 × 10−5 1.7354 × 10−2 1.2327 × 10−1 5.4712 × 10−4

64 7.6502 × 10−3 4.8202 × 10−2 5.3468 × 10−5 9.4015 × 10−3 6.4816 × 10−2 1.9345 × 10−4

128 4.2333 × 10−3 2.6672 × 10−2 1.8035 × 10−5 5.1214 × 10−3 3.4774 × 10−2 7.8181 × 10−5

256 2.3582 × 10−3 1.4856 × 10−2 7.8939 × 10−6 2.8028 × 10−3 1.8861 × 10−2 1.3807 × 10−5

512 1.2236 × 10−3 7.7096 × 10−3 3.5917 × 10−6

Table 2 Experimental accuracy
of dissolving a planar precipitate
in 3D

N Mass error Width error Deviation

8 4.3963 × 10−2 2.7683 × 10−1 1.3539 × 10−3

16 2.4420 × 10−2 1.5385 × 10−1 2.6967 × 10−4

32 1.4304 × 10−2 9.0121 × 10−2 6.2047 × 10−5

64 7.6492 × 10−3 4.8194 × 10−2 3.1252 × 10−5

the precipitate stays circular, a mass balance gives that the equilibrium radius equals
0.47200. We again simulate until tend = 3.

Tables 1 and 2 show the results obtained for the dissolution of the planar and circular
precipitates. The mass error is defined as the error in the total mass at t = tend relative
to the initial total mass. The width/radius error is defined as the error in the mean
width/radius at t = tend relative to the equilibrium width/radius. The columns labelled
“deviation” represent the standard deviation of the width/radius at t = tend.

The errors in Tables 1 and 2 indicate that Algorithm 1 is first-order accurate in h.
This is supported by the notion that we have used first-order accurate time-integration
techniques and that h and 	t are linearly coupled by the CFL condition. We further-
more see from the deviations given in Tables 1 and 2 that for the planar precipitate there
is good convergence in the spread of the points around the mean width, indicating that
the shape of the precipitate is correctly preserved. The last column of Table 1 gives
the deviation of the radius of the circular precipitate. Here we see that we also have
conservation of the circular shape, although we do not obtain the same convergence
as for the planar precipitates. We think that this originates from the use of an irregular
mesh for the simulation of the circular particle, which decreases the control over the
element size in the vicinity of the interface.

4.2 Mixed-mode dissolution

To investigate the balance between the reactive and diffusive fluxes, we simulate the
dissolution of a square precipitate with initial diagonal 0.42 in the computational
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(a) (b) (c)

(f)(e)(d)

Fig. 2 2D mixed-mode dissolution results for the values of K = 10k , k ∈ {0, 1, 2, 3} at 6 simulation
times, where ζ = 0 and D = 1

domain [− 1
2 , 1

2 ]2. The center of the precipitate is located at the origin (0, 0) and is
rotated over 45◦. Within the precipitate the concentration is given by cp = 0.45,
whereas the initial concentration in �D is given by c0 = 0.3 and the equilibrium
concentration by c∞

s = 0.35. We take ζ = 0 to exclude curvature effects and take
D = 1. We take an irregular background mesh T with element size h = 1/64. We
simulate until tend = 0.25. For the value of the interface-reaction speed K we take
K = 10k, k ∈ {0, 1, 2, 3}.

Figure 2 shows the results obtained with Algorithm 1 for the various values of
K at t ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25}. These results show two effects of the value
of K on the dissolution kinetics of the precipitate. First we clearly see that if K
decreases in magnitude, the overall dissolution rate of the precipitate slows down,
resulting in larger precipitates at t = 0.25 for lower values of K . This indicates that
for lower values of K the reaction at the interface becomes limiting for the dissolution
kinetics, which agrees with what have already shown in the analysis of the model.
Secondly, the shape of the precipitate during dissolution is influenced by the mag-
nitude of K , where a smaller K preserves the initial shape and a larger K causes
rounding of the corners of the precipitate. This is a direct consequence of the fact
that diffusion is the rate-determining step if K is large. Diffusion processes generally
smoothen solutions and thereby make the interface smooth. This means that if pre-
cipitates observed in physical experiments maintain sharp corners during dissolution,
these precipitates could be described best by a mixed-mode model with a low value
of K .
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(d) (e) (f)

(c)(b)(a)

Fig. 3 2D mixed-mode growth results for the values of K = 10k , k = 0, 1, 2, 3 at six simulation times,
where ζ = 0 and D = 1

4.3 Mixed-mode growth

Mullins and Sekerka [9] have shown that the growth of precipitate is an unstable
process if perturbations of the interface are present. It was furthermore assumed that
Eq. (10) holds instead of Eq. (7). To investigate these instabilities in our mixed-mode
model, we simulate the growth of a square precipitate with initial diagonal 0.1 in
the computational domain [− 1

2 , 1
2 ]2. The center of the precipitate is located at the

origin (0, 0) and is rotated over 45◦. Within the precipitate the concentration is given
by cp = 0.45, whereas the initial concentration in �D is given by c0 = 0.3 and
the equilibrium concentration by c∞

s = 0.2. We take ζ = 0 to exclude curvature
effects and assume D = 1. We take an irregular background mesh T with coarseness
h = 1/64. We simulate until tend = 0.1. For the value of the interface-reaction speed
K we take K = 10k, k = 0, 1, 2, 3.

Figure 3 shows the results obtained with Algorithm 1 for the various values of K
at t ∈ {0, 0.02, 0.04, 0.06, 0.08, 0.1}. Similar to the results shown in Fig. 2 for the
dissolution of the square particle, the value of K has two influences on the growth
kinetics. First the precipitate grows slower for smaller values of K , as expected from
Eq. (8). Secondly higher values of K cause instabilities to occur in the shape of
the interface. As a high value of K corresponds with a diffusion-controlled process,
Eq. (7) could be replaced by Eq. (10). This indicates that our model reproduces the
analytical instabilities shown in [9] correctly. We believe that the initial instabilities
that are amplified during the simulation are caused by small numerical fluctuations in
the concentrations at the interface which are related to the topology of the mesh.
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(d) (e) (f)

(c)(b)(a)

Fig. 4 2D mixed-mode growth results for the values of ζ = 10−z , z = ∞, −4.5,−4,−3.5 at 6 simulation
times, where K = 103 and D = 1

4.4 Curvature-influenced growth

In [9], it has also been shown that if the curvature of a precipitate is taken into account
during growth, the perturbations should cancel out. To investigate this effect in the
mixed-mode model, we again simulate the precipitate from Sect. 4.3, but now take
K = 1, 000 and take ζ = 0, 10−4.5, 10−4, 10−3.5. All other settings are kept the same.

Figure 4 shows the results obtained with Algorithm 1 for the various values of ζ

at t ∈ {0, 0.02, 0.04, 0.06, 0.08, 0.1}. Similar to the results shown in Figs. 2 and 3,
the value of ζ has a significant influence on the growth kinetics. One can see that the
amplification of the perturbations reduces significantly for higher values of ζ , thereby
suppressing the creation of concave interface parts. If however concave interface parts
occur, these grow faster for higher values of ζ , thereby reducing the concavity. Further-
more, we see that for larger values of ζ , there is no shape preservation, but rounding
of the precipitate. This indicates that a minimal value of ζ could exist such that the
shape of the precipitate stays convex. This minimal value may depend on the physical
and geometrical application.

4.5 Precipitate breakup

During dissolution of precipitates might break into several pieces due to the geometry
of the initial precipitate. To test the numerical scheme on handling with these topolog-
ical changes, we have modelled the dissolution of a dumbbell-shaped precipitate,
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Fig. 5 3D dissolution of a dumbbell-shaped precipitate at six simulation times, where K = 103, ζ = 0
and D = √

2

consisting of a sphere with radius 0.15 and center (−0.275, 0, 0), a sphere with
radius 0.2 and center (0.21, 0, 0) and a connecting cylinder with radius 0.05 with
the axis aligned with the x-axis. The computational domain is [− 1

2 , 1
2 ]3, the diffusiv-

ity D = √
2, the initial concentration c0 = 0, the precipitate concentration cp, the

solubility c∞
s = 1, the interface reaction speed K = 103 and the interfacial parame-

ter ζ = 0. We take a regular mesh with point spacing 1/64. We simulate until full
dissolution is obtained. Figure 5 shows the results of these simulations at 6 discrete
times.

The dissolution process as shown in Fig. 5 clearly shows the ability of the level-
set method to handle topology changes, as it does not discriminate between one,
two or more precipitates, but only considers a sharp interface between two phases.
The breakup of the particle is handled without any trouble. Further our algorithm, as
presented in Algorithm 1, has no problems with the cusps created along the x-axis at
the moment of dissolution of the connecting cylinder.

5 Discussion and conclusion

We described a physical model for the mixed-mode dissolution and growth of pre-
cipitates within a diffusive phase. The kinetics governing growth and dissolution are
influenced by the concentration gradient of a single chemical element near the precipi-
tate interface and an interface reaction. The model also incorporates the local curvature
of the interface and the influence of this curvature on the equilibrium between the pre-
cipitate and the diffusive phase. The shape and topology of the precipitate are modelled
using the level-set method [10], where the moving interface is treated as sharp.

Using the current level-set function a background triangulation is transformed to
two new meshes, which contains an explicit representation of the interface between
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the precipitate and the diffusive phase. On these meshes the appearing hyperbolic
partial differential equations have been discretised using Streamline-Upwind Petrov–
Galerkin finite-element techniques [21] and a first-order time integration. The needed
reinitialisation of the level-set function [18,20] has been done using an efficient direct
approach based on the explicit representation of the interface.

It has been shown that our model and accompanying discretisation achieves first
order accuracy with respect to the mesh coarseness for the dissolution of planar and
circular precipitates, which agrees with the theory due to the coupling of the mesh
coarseness and the time step by the CFL condition [3].

The introduced interface reaction speed K has been shown to influence the mixed-
mode dissolution of precipitates, where higher values of K causes diffusion-limited
dissolution and loss of the topological shape, whereas lower values of K cause reaction-
limited dissolution and topological shape preservation.

Our model is able to reproduce the analytical instability which was studied by
Mullins and Sekerka in [9], where the onset of the initial instabilities of the interface
result from local fluctuations of the numerical error from the finite-element discretisa-
tion. These instabilities can be suppressed by two different parameters, the interface
reaction speed K and the interfacial parameter ζ . The first parameter causes dampening
of the instabilities using the interface reaction and has, similar to mixed-mode disso-
lution, a shape preserving effect. The parameter ζ introduces indirectly via Eq. (11)
a curvature-driven growth, where concave regions grow faster than convex regions.
This curvature driven growth causes rounding of the precipitate.

It has also been shown that the topological changes associated with the dissolution
of a dumbbell-shaped precipitate are captured accurately with ease by using the level-
set method. The cusps appearing on the interface during the breakup of the precipitate
in two smaller precipitate are handled correctly, as is the full dissolution of one of the
two remaining precipitates after breakup.
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