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Abstract A method is described to compute three-
dimensional two-phase flow, allowing large density ratios
and coalescence and break-up of bubbles. The level set
method is used to describe interfaces, and the volume-of-
fluid method is used to ensure mass conservation. Efficiency
in computing the interface dynamics is achieved by using a
functional relation between the level set and volume-of-fluid
functions. Difficulties and remedies in re-initialization of the
level set function and inaccurate compution of surface ten-
sion are discussed. Test cases for validation are described,
and demanding two-bubble computations to show the gener-
ality and the versatility of the method are presented.
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1 Introduction

Computation of multiphase flows from first principles is
intractable, because of the occurrence of very many inter-
faces; think for example of a mixture of air bubbles and water
(or better still beer). Hence, for industrial applications heu-
ristic models are used. To validate and refine these models,
information from physical experiment and computation from
basic principles is required. However, even for flows with a
small or moderate number of bubbles some heuristic mod-
elling is required to make computation feasible, even with
efficient parallel solvers. The challenge is to keep the model
as accurate as possible without sacrificing too much comput-
ing time. Here we present a contribution to computation of
two-phase flows.

Capturing of interfaces between phases is easily and effi-
ciently done with the level set (LS) method [14,16,22]. It
does not conserve mass, however, which is the strong point
of the volume-of-fluid (VOF) method [29,9,18,19], which
is another prominent method to track fluid interfaces. Mass
errors of the level set method can be reduced by increasing the
order of discretization and/or utilizing adaptive mesh refine-
ment near the interface, see e.g. [6,7,13]. Olsson et al. [15]
choose a VOF-like level set function and base their method
directly on conservation laws. To make the LS method mass-
conserving, some methods couple LS and VOF, such as the
CLSVOF method [21,24], its adaptive variant (ACLSVOF)
[32] and our MCLS method [27,28]. The special feature of
MCLS is, that an explicit relation between the LS and VOF
functions is exploited to find small mass-conserving correc-
tions to the LS function with small computing cost. Here
we present the extension of MCLS to three dimensions and
surface tension.

Surface tension depends on the curvature of the inter-
face. The small corrections to the LS function that were just
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222 S. P. van der Pijl et al.

mentioned make the interface wrinkly and inhibit accurate
determination of interface curvature. Parasitic currents result;
these are also generated by the re-initializations required to
let the LS function remain a distance function. A curvature
smoothing and a re-initialization method are devised that
make parasitic currents convergence to zero with the mesh
size. Another issue is occurrence of under- and overshoots in
the VOF function. We counter this with a mass-redistribution
approach. These measures and the extension to 3D flows with
surface tension constitute the novelty of this paper compared
to [27,28]. Applications to rising bubbles and falling droplets
will be presented.

2 Time-stepping with the pressure-correction method

Consider flow of two phases with constant density and vis-
cosity, separated by an interface S, possibly consisting of
disjoint parts. It is described by a level set function Φ, as fol-
lows: S(t) = {

x ∈ R
3|Φ(x, t) = 0

}
. The interface boundary

conditions express continuity of mass and momentum at the
interface (which can be found in any relevant textbook, but
see e.g. Tryggvason et al. [26] for a recent reference):

[u] = 0 (1)
[

pn + µ(∇u + ∇ut ) · n
] = σκn (2)

where the brackets denote jumps across the interface, u is
the velocity vector, p the pressure, n is a normal vector at
the interface, σ is the surface tension coefficient and κ is the
curvature of the interface. The interface conditions (2) show
that the jump conditions for pressure and velocity are cou-
pled. Furthermore, Li and Lai [12] show that although the
velocity is continuous at the interface, the velocity gradients
are not. If s is a vector parallel to the interface, un = n · u
is the interface normal velocity component and us = s · u a
velocity component parallel to the interface, then

[
∂un

∂n

]
= 0,

[
∂un

∂s

]
= 0,

[
∂us

∂n

]
= −[µ]∂un

∂s
,

[
∂us

∂s

]
= 0.

(3)

But note that if the viscosity µ is continuous at the interface,
Eq. (3) shows that the derivatives of the velocity components
are continuous too. In that case Eq. (2) reduces to

[∇u] = 0, (4)

[p] = σκ. (5)

This means that, besides that the velocity gradients are con-
tinuous at the interface, the jump conditions for pressure and
velocity are decoupled, which are two major advantages for
the numerical treatment of the moving boundary problem.

The jump in viscosity µ over S is smeared out over three
mesh widths, as in [10,12], to make µ continuous, thereby
simplifying the jump conditions across S resulting from con-
servation of mass and momentum:

[u] = 0 and [p] = σκ. (6)

The jump condition for p is implemented by means of
the continuous surface force method [2]. This means that the
jump condition for the normal stresses are replaced by a body
force given by

f = − 1

ρ̄
σκδα(Φ)∇Φ, (7)

where ρ̄ is the average density and δα is a smeared-out delta
function; for more details, see [28].

With these approximations, each phase is governed by
the incompressible Navier–Stokes equations with the above
body force:

∂u
∂t

+ u · ∇u = − 1

ρ
∇ p + 1

ρ
∇ · µ

(∇u + ∇ut) + f + g,

∇ · u = 0, (8)

where g is the acceleration of gravity.
Discretization takes place on a three-dimensional

Cartesian staggered grid in the usual way, as described in
[28,31]. For brevity we use the same symbols for spatial dif-
ference and differential operators. Time stepping takes place
with the pressure-correction method [30]. First, a tentative
velocity vector u∗ is computed by:

u∗ − un

∆t
= −∇ · unun + 1

ρ
∇ · µ

(∇u∗ + (∇un)t) , (9)

where superscript n denotes time-level n. The stress tensor
is split in an implicit part (superscript ∗) and an explicit part
(superscript n) to uncouple the velocity components and to
obtain symmetric systems that are conveniently solved with
the ICCG method. The pressure correction is given by

un+1 − u∗ = ∆t

(
− 1

ρ
Gp + g + f

)
, (10)

where G is the discretization of the gradient operator. Dis-
cretization of the divergence constraint gives Dun+1 = fb

where fb arises from the boundary conditions. Application
to Eq. (10) gives the following equation for the pressure:

D
1

ρ
Gp = D

(
1

∆t
u∗ + g + f

)
− fb. (11)

Discretization of 1
ρ
∇ p at the interface S requires special care,

because ρ is discontinuous at S. Use is made of [ 1
ρ
∇ p] = 0,
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Computing three-dimensional two-phase flows with a mass-conserving level set method 223

which results from the use of the CSF approximation for the
surface tension. A typical example is:

(
β

∂p

∂x

)

i+1, j+ 1
2 ,k+ 1

2

≈

β̂i+1, j+ 1
2 ,k+ 1

2

p
i+ 3

2 , j+ 1
2 ,k+ 1

2
−p

i+ 1
2 , j+ 1

2 ,k+ 1
2

∆x ,

(12)

where β̂ is the harmonic average of β ≡ 1/ρ. Equation 11 is
solved by the ICCG method.

Generalization of the stability restrictions on the time step
given in [28] from two to three dimensions is straightforward.
Following [10,23], time step bounds related to convection
∆tc and to surface tension ∆ts separately are derived, and
the following heuristic stability condition is applied:

∆t ≤ CFL min(∆tc,∆ts), (13)

where we use CFL = 1/2, following [10,23]. We have

∆tc = 1
|u|max
∆x + |v|max

∆y + |w|max
∆z

. (14)

For ∆ts , [10] gives, in two dimensions,

∆ts =
(

min(ρ0, ρ1) min(∆x,∆y)2

σ |κ|max

)1/2

, (15)

where subscripts 0 and 1 refer to the two phases. Because
we regularize the surface tension, we replace σκ/ρ by 2σκδ

(Φ)h/(ρ0 +ρ1) and replace Eq. (15) by, in three dimensions:

∆ts =
(

(ρ0 + ρ1) min(∆x,∆y,∆z)

2|σκδ(Φ)|max

)1/2

. (16)

3 Interface dynamics

The dynamics of the interface S(t) are primarily handled
with the level set method, details of which may be found in
[3,14,16,28,22,25]. We have

S(t) =
{

x ∈ R
3|Φ(x, t) = 0

}
, (17)

where the level set function Φ satisfies

∂Φ

∂t
+ u · ∇Φ = 0. (18)

While stepping forward in time, u and Φ are updated in alter-
nating order. To conserve mass, corrections are applied to
Φ using the volume-of-fluid method. The VOF function Ψ

measures the volume fraction of one of the phases in each
cell. Call the result of a time step with Eq. (18) Φ∗, starting

from time level n + 1/2. A correction to Φ∗ is determined in
three steps:

1. Determine Ψ n+1/2 = f (Φn+1/2,∇Φn+1/2);
2. Use the VOF method to find Ψ n+3/2;
3. Find a correction δΦ such that Φn+3/2 = Φ∗ + δΦ

satifies f (Φn+3/2,∇Φn+3/2) = Ψ n+3/2,

where f is explained hereafter and computes the volume of
fluid function Ψ based on a linearization of Φ. The steps are
now described in more detail.

3.1 Relation between level set and volume-of-fluid
functions

The VOF function is the volume fraction of one the phases in
each cell, and hence is a number assigned to each cell. Given
Φ, it can be defined as

Ψk = 1

vol(Ωk)

∫

Ωk

H(Φ) dΩ, (19)

where Ωk is a cell in the grid and H is the Heaviside step
function. We wish to determine a function f such that Ψk ≈
f (Φk,∇Φk). Let ϕ be the linearization of Φ at the cell center
xk :

ϕ(x;Φ,∇Φ, xk) = Φk + ∇Φ · (x − xk), (20)

where we approximate ∇Φ by central differences, using
neighboring cells. The volume fraction Ψk cut from cell Ωk

by the plane defined byϕ = 0 is computed as follows. MapΩk

onto the unit cube with coordinates (ξ, η, ζ ) ∈ (−1/2, 1/2)3,
and rewrite Eq. (20) as

ϕ = Φk + Dξ ξ + Dηη + Dζ ζ, (21)

and choose the axes such that

Dξ ≥ Dη ≥ Dζ ≥ 0. (22)

Hence,

Dξ = max
(∣
∣∆x

(
∂Φ
∂x

)
k

∣
∣ ,

∣
∣
∣∆y

(
∂Φ
∂y

)

k

∣
∣
∣ ,

∣
∣
∣∆z

(
∂Φ
∂z

)

k

∣
∣
∣
)

,

Dζ = min
( ∣

∣∆x
(

∂Φ
∂x

)
k

∣
∣
∣ ,

∣
∣
∣∆y

(
∂Φ
∂y

)

k

∣
∣
∣ ,

∣
∣
∣∆z

(
∂Φ
∂z

)

k

∣
∣
∣
)

,

Dη = ∣
∣∆x

(
∂Φ
∂x

)
k

∣
∣ +

∣
∣
∣∆y

(
∂Φ
∂y

)

k

∣
∣
∣

+
∣
∣
∣∆z

(
∂Φ
∂z

)

k

∣
∣
∣ − Dξ − Dζ . (23)
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Because of symmetry, it suffices to consider the case Φ ≤ 0.
Distinguish the following two cases:

case I : Dξ ≤ Dη + Dζ ,

case II : Dξ > Dη + Dζ .
(24)

These two cases are illustrated in Fig. 1. The volume cut out
from the cube can be found by subtracting the volumes of
the shaded tetraeders from the large tetraeder. Length, width
and height of these tetraeders are ΦA/Dξ , ΦA/Dη,ΦA/Dζ ,
and similarly for the other vertices. We have

ΦA = Φk + (Dξ + Dη + Dζ )/2,

ΦB = Φk + (Dξ + Dη − Dζ )/2,

ΦC = Φk + (Dξ − Dη + Dζ )/2,

ΦD = Φk + (−Dξ + Dη + Dζ )/2,

ΦE = Φk + (Dξ − Dη − Dζ )/2.

(25)

We find:

f =
{ A

6Dξ Dη Dζ
, Φ ≤ 0,

1 − f (−Φ,∇Φ), Φ > 0,
(26)

where

A = max(ΦA, 0)3 − max(ΦB, 0)3 − max(ΦC , 0)3

− max(ΦD, 0)3 + max(ΦE , 0)3.
(27)

3.2 Time advancement of volume-of-fluid function

The flux-splitting of [24] is adopted:

Ψ
(x)
i, j,k =

Ψ
n+1/2
i, j,k − 1

∆x∆y∆z

(
Fx

n+1/2
i+ 1

2 , j,k
− Fx

n+1/2
i− 1

2 , j,k

)

1 − ∆t
∆x (ui+ 1

2 , j,k − ui− 1
2 , j,k)

,

Ψ
(y)
i, j,k =

Ψ
(x)
i, j,k − 1

∆x∆y∆z

(
Fy

(x)

i, j+ 1
2 ,k

− Fy
(x)

i, j− 1
2 ,k

)

1 − ∆t
∆y (vi, j+ 1

2 ,k − vi, j− 1
2 ,k)

,

Ψ
(z)
i, j,k =

Ψ
(y)
i, j,k − 1

∆x∆y∆z

(
Fz

(y)

i, j,k+ 1
2

− Fz
(y)

i, j,k− 1
2

)

1 − ∆t
∆z (wi, j,k+ 1

2
− wi, j,k− 1

2
)

, (28)

Ψ
n+3/2
i, j,k = Ψ

(z)
i, j,k − ∆t

(
Ψ

(x)
i, j,k

ui+ 1
2 , j,k − ui− 1

2 , j,k

∆x

+Ψ
(y)
i, j,k

vi, j+ 1
2 ,k − vi, j− 1

2 ,k

∆y

+Ψ
(z)
i, j,k

wi, j,k+ 1
2

− wi, j,k− 1
2

∆z

)
,

where the fluxes F represent the fractional volumes that flow
into or out of a cell through the face under consideration.

BΦ
Dζ

Dξ
BΦ

Dζ
AΦ

Dη
BΦ

Dζ
CΦ

Dη
CΦ

Dη
AΦ

DΦ
Dη

DΦ
Dζ

Dξ
AΦ

DΦ
Dξ

Dξ
CΦ

(a) case I

Dζ
AΦ

Dη
AΦ

Dζ
CΦ

Dξ
CΦ

Dη
CΦ

Dη
BΦ

Dξ
BΦ

BΦ
Dζ

Dξ
AΦ

Dη
EΦ

Dζ
EΦ

Dξ
EΦ

(b) case II

Fig. 1 Volumes for Φ ≤ 0

The fluxes are determined from the level set function Φ by
Eq. (26). For example, Fz = F+

z + F−
z , with

F+
z i, j,k+ 1

2
= ∆V ν+ f

(
Φ̂L ,

(
∂xΦL , ∂yΦL , ν+∂zΦL

)t
)
,

F−
z i, j,k+ 1

2
= ∆V ν− f

(
Φ̂R,

(
∂xΦR, ∂yΦR,−ν−∂zΦR

)t
)
,

(29)
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Computing three-dimensional two-phase flows with a mass-conserving level set method 225

where ∆V = ∆x∆y∆z, ΦL = Φi, j,k , ΦR = Φi, j,k+1,

ν+ = max(u,0)∆t
∆x , ν− = min(u,0)∆t

∆x , (30)

and

Φ̂L = ΦL + 1
2 (1 − ν+)∆z∂zΦL ,

Φ̂R = ΦR − 1
2 (1 + ν−)∆z∂zΦR .

(31)

The flux F (x)
y is computed with a corrected level set function

Φ(x) satisfying f (Φ(x),∇Φ(x)) = Ψ (x) and similarly for
F (y)

z . Correction of Φ is discussed below.

3.3 Mass redistribution

Due to numerical errors, values Ψ > 1 and Ψ < 0 may
occur. We describe our method to correct these overshoots
and undershoots without violating mass conservation. Such
correction is also used in cells where 0 < Ψ < 1 but where
no interface is present; such a cell is said to contain numerical
vapor. No interface is present in a cell when Φ in it and in
its six surrounding neighbors is of the same sign. We use the
following conservative mass redistribution procedure.

1. Determine Ψ̂ by replacing values Ψ > 1 by 1, Ψ < 0
by 0 and Ψ �= 0 or 1 in cells without an interface by 0
or 1, whichever is closer.

2. ε = Ψ̂ − Ψ .

3. Determine ε̂ by transport of ε in the direction of the inter-
face in the manner described below.

4. Ψ = Ψ + ε̂

5. Determine Φ from Ψ in the manner described in the next
Section.

6. If ‖ε̂‖ too large, go back to step 1.

In practice we observe that Ψ needs to be corrected in only
a small number of cells (typically < 10 on a 643 grid) and
that one iteration of the above procedure suffices.

Transport of ε takes place by solving the following artifi-
cial transport equation

∂ε

∂τ
+ ∇ · (qε) = 0, (32)

until steady state is reached in artificial time τ . Time-stepping
is terminated if
∥
∥
∥
∥

∂ε

∂τ

∥
∥
∥
∥∞

≤ tol ∨ nε = 0 ∨ n > nmax, (33)

where nε is the number of cells with |ε| > tol and n is the
number of time steps. Usually termination occurs for n < 5.
The first order upwind scheme is used. The artificial velocity
field q = (u, v, w) is directed towards the interface, and is
chosen as follows:

ui+ 1
2

= −sign(|Φi+1| − |Φi |), (34)

and similarly for v and w.

3.4 Time advancement of level set function

First, a time step is performed with Eq. (18). Let the resulting
approximation to Φn+3/2 be denoted by Φ0. This needs to
be re-initialized to a distance function, in order to facilitate
restriction of regularization of interface forces and smooth-
ing of viscosity to a thin layer around the interface. The
re-initialization method of [25] works as follows: we solve
numerically until steady state

∂Φ

∂τ
= N (Φ,Φ0) ≡ sign(Φ0)(1 − ‖∇Φ‖),

Φ(x, 0) = Φ0(x),

(35)

where τ is an artificial time. Unfortunately, this re-
initialization can make small bubbles disappear, and can
cause the mass-correction to Φ (to be described hereafter)
be large. This is illustrated by the following example.

Consider the domain Ω = (−1/2, 1/2)2, with interfaces
the straight line x = 1/4 and a circle at the origin with
radius 2 mesh widths. The initial Φ0 is the distance function
represented in Fig. 2c. Numerical re-initialization results in
Φ represented in Fig. 2. The difference between Φ and Φ0

is significant, and the small circle has disappeared. Correc-
tion for mass-conservation results in the level set function
presented in Fig. 2a. Comparison with Fig. 2c shows large
corrections and a very nonsmooth Φ, which are undesirable
features, undermining our mass-conservation strategy.

We therefore propose to change the re-initialization
method. The idea is to leave Φ largely untouched near the
interface, exploiting the fact that there Φ0 is already almost
a distance function. To make this possible, slight changes in
interface position are allowed, keeping in mind that the mass
correction that is to follow will move the interface slightly
anyway. Let the discretization of Eq. (35) be

Φk+1 − Φk = ∆τ Nh(Φk, Φ0). (36)

We change this to

Φk+1 − Φk

=∆τ Nh(Φk, Φ0)(1 − q(Φ0))+(Φ0 − Φk)q(Φ0), (37)
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Fig. 3 Effect of modified re-initialization on small bubble

where

q(Φ0) = exp(−(Φ0/α)2) (38)

and

α =
(

2

3
(∆x2 + ∆y2 + ∆z2)

)1/2

(39)

Results for the preceding example are shown in Fig. 3.
Both the re-initialized and the corrected level set function

Φ resemble the initial Φ0 of Fig. 2a, which was our goal.The
need for modified re-initialization will be demonstrated in
Sect. 5.

3.5 Correction of level set function for mass conservation

Having obtained an acceptable VOF function Ψ n+3/2, we
compute a level set function Φn+3/2 satisfying

f (Φ
n+3/2
k ,∇Φ

n+3/2
k ) = Ψ n+3/2 (40)

(with f given by Eq. (26)) in the following way. Compute an
approximation Φ∗ to Φn+3/2 by executing a time step with
Eq. (18). Next, Φ∗ is corrected iteratively by solving in each
cell k:

f (Φ
(l+1)
k ,∇Φ

(l)
k ) = Ψ n+3/2, ∇Φ

(1)
k = Φ∗

k . (41)

When converged sufficiently, we put (Φ
n+3/2)
k = Φ

(l+1)
k .

Equation (41) is solved by Newton iteration. This procedure
makes the level set method mass conserving.

4 Surface tension

To model surface tension, the continuous surface force/stress
(CSF) method [2] is adopted. The interface forces are approx-
imated by a body force f given by Eq. (7). The curvature κ is
defined by

κ = ∇ · ∇Φ

|∇Φ|
= ∇·∇Φ

|∇Φ| − 1
|∇Φ|3

∑

i

∑

j

∂Φ

∂xi

∂Φ

∂x j

∂2Φ

∂xi∂x j
.

(42)

The second order derivatives are approximated by central
differences. To avoid difficulties when |∇Φ| vanishes, first
order derivatives are approximated by central of one-sided
forward or backward differences, whichever has the largest
modulus. Because second derivatives are required, Φ needs
to be smooth. When this is not the case for numerical rea-
sons, parasitic currents can occur; these have been studied
in [5,11,17,26]. With the pure level set method κ is usually
accurately obtained, but the local mass corrections of the
present (MCLS) method makes Φ nonsmooth, causing local
O(ε/h2) errors in κ , where ε is the magnitude of the correc-
tions. We may have ε = O(h), so that parasitic currents may
grow with mesh refinement.

This undesirable situation is illustrated with the so-called
Laplace test case, frequently used to study parasitic currents
[11,20,26]. A spherical bubble with radius 1

4 m is placed in
the center of a cubic domain with dimensions 1 × 1 × 1m.
The parameters are g = 0, σ = 0.01 kg/s2, and the two
fluids have the same density ρ = 1 kg/m3 and viscosity
µ = 0.1 kg/ms. The exact solution is flow at rest, so a non-
zero velocity is parasitic. In Fig. 4 the time evolution of par-
asitic currents are shown for three different grid sizes: 323,
643 and 963. We see that ‖u‖∞ = O(1/h), and that parasitic
currents grow in time.

To suppress parasitic currents, we will re-initialize the
level set function only when the interface has travelled some
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Fig. 4 Parasitic currents for the Laplace test case with three different
grids

distance, and we will smooth the curvature κ . An estimate of
the time required for the interface to travel some distance is

∆treinit = σ

||u||∞
∆x + ||v||∞

∆y + ||w||∞
∆z

, (43)

where we choose σ = 0.1. Re-initialization is only per-
formed at time intervals ∆treinit. For curvature smoothing
(common in VOF [17,20] and front-tracking methods [4]) we
proceed as follows. The following properties are desirable:

1. The curvature is smooth,

2. The curvature is the divergence of
∇Φ

|∇Φ| ,

3. When little smoothing is required, the curvature has to
correspond to the interface Φ = 0.

To meet these demands, we let κ satisfy

∂κ

∂τ
= ∇ · d∇κ, (44)

where τ ∈ (0, h2/6) is a pseudo-time variable. The first two
requirements are satisfied if d is smooth. We choose d as
follows:

d = 1 − exp

( −Φ2

∆x2 + ∆y2 + ∆z2

)
. (45)

With this choice of d, the last demand is also met, because
near the interface d ≈ 0, unless κ is nonsmooth. Explicit
Euler time stepping with ∆τ = N/16 is used. The need for
curvature smoothing and, in particular, the diffusion coef-
ficient as prescribed by Eq. (45), will be demonstrated in
Sect. 5.

Results for the Laplace test-case are shown in Fig. 5.
The circle symbols in Fig. 5b show that the parasitic cur-

rents converge with O(h).

5 Applications

The three-dimensional mass-conserving level set (MCLS)
method described above is used to compute the flow induced
by a rising air bubble in water.

The parameters are

g = 9.8
m

s2 , σ = 0.0728
kg

s2 ,

ρw = 103 kg

m3 , ρa = 1.226
kg

m3 ,

µw = 1.137 × 10−3 kg

ms
, µa = 1.78 × 10−5 kg

ms
.

The domain is a cube with edge length 0.01m. Initially, the
flow is at rest, with a flat free surface at height z1 = 0.0075 m
and a spherical bubble with radius 0.00125 m and center at
z0 = 0.0025 m on the vertical axis of the cube. Results with
zero surface tension on a 96 × 96 × 96 grid are shown in
Fig. 6. The snapshots are taken at time intervals of 0.005 s.
The bubble deforms and breaks up to form a bell- and ring-
like structure, just before it breaks through the free surface.
In [22] similar computations are presented with low surface
tension. There is good agreement between these results and
the snapshots presented in Fig. 7. Note that we have chosen
different viewpoints for each snapshot to mach the ones in
[22].

In Fig. 12 the rise speed wc of the droplet before collision
with the free surface is plotted as function of time t .

The rise speed is in good agreement for both grids. The
rise speed reaches a maximum just after the bubble starts
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parasitic currents decrease further due to smoothing of the curva�
ture

Fig. 5 Parasitic currents for the Laplace test case with three different
grids; time-step criterion in re-initialization and smoothed curvature

moving. A local maximum is reached again before impact
with the free surface in top of the domain.

The shape of the bubble just before it breaks through the
free surface is shown in Fig. 8.

The bubble has become a spherical cap with radius Rs =
0.0018 m. In [1] the following expression for the rise velocity
of a spherical cap without surface tension, based on potential
flow, is derived:

ws = 2

3

√
gRs = 0.0885 m/s. (46)

This speed is indicated in Fig. 12. Before reaching the surface
and after more or less getting spherical cap shape, the bub-
ble’s rise velocity shows satisfactory agreement with spher-
ical cap theory.

Fig. 6 Rising bubble without surface tension; 963 grid

(a) t = 0.009 s (b) t = 0.01 s

(c) t = 0.013 s (d) t = 0.015 s

Fig. 7 Rising bubble without surface tension; 963 grid; zoomed in.
Note that we have chosen different viewpoints for each snapshot to
mach the ones in [22]

The effect of grid resolution can be seen from Fig. 9, where
results for the coarser 643 grid are shown. Good agreement
for the two grids utilized is observed.
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Fig. 8 Bubble without surface tension just before it breaks through
the free surface; symmetry plane cross-section; Rs is the radius of the
spherical cap

Fig. 9 Bubble when it breaks through the free surface; 643 grid

In Fig. 10 results with surface tension are presented. The
deformation of the bubble is significantly reduced.

The shape of the jet that appears after the bubble broke
through the free surface is shown in Fig. 11 for the coarser
643 grid.

There is good agreement with the finer mesh.
In Fig. 12 the rise speed wc of the bubble with surface

tension is plotted for both grids. The agreement between
both grids is good. When the bubble is just released, the
acceleration of the bubble with surface tension is lower than
the bubble without surface tension. But instead of reaching
a maximum rise velocity, the bubble with surface tension
continues to accelerate, reaching higher speeds than with-
out surface tension. A peak is observed just before collision
with the free surface in top of the domain. This suggests that
the bubble is sucked towards the free-surface before merging
with it.

Next, a falling water droplet in air is considered. The
parameters and the geometry are the same as for the rising
bubble. But the droplet is released at half the height of the
domain, i.e. z0 = 0.005 m; and the free surface is initially
located at z1 = 0.0025 m. The initial shape of the droplet is
spherical with radius 0.00125 m.

Fig. 10 Rising bubble with surface tension; 963 grid

Fig. 11 Just before and right after the bubble breaks through the free
surface; 643 grid

Results are shown in Fig. 13. The snapshots are taken
at intervals of 0.01 sec. The droplet accelerates after it is
released and hits the free surface. A jet appears after collision
that reaches up to the ceiling of the domain.

The jet after collision of the droplet with the free surface
for the 643 grid is presented in Fig. 14.

The jet shows similar behavior for the two grids utilized.
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Fig. 12 Rise speed of the bubble with surface tension; marks are at
equally spaced time intervals of 0.005 s

In Fig. 15 the fall velocity wc of the droplet until impact
with the free surface is plotted as function of time. Good
agreement of the fall velocity with the free-fall velocity–gt
is observed. Next, surface tension is included. This restricts
deformation of the droplet so that a greater release height
(now chosen as z0 = 0.0075 m) is possible. Without surface
tension break-up before impact encumbers computation. In
Fig. 16 results are presented. Although the release height of
the droplet is larger than without surface tension, the jet after
collision is considerably smaller. This is the effect of surface
tension that tries to minimize the interfacial area.

The effect of grid resolution just after collision with the
free surface is shown in Fig. 17. Similar results for the two
grids are observed.

In Fig. 18 the fall velocities are compared with the free
fall. Both grids give the same fall velocity, which is larger
than free-fall, which is unphysical. This is believed to be
caused by the CSF approach, because the computation with-
out surface tension gives a correct result. The total force
acting on a bubble or droplet due to surface tension should
vanish, since the surface tension forces are internal forces
and the interface is closed. However; with the CSF approach
a non-conservative expression is obtained. This means that
numerically the forces do not necessarily add up to zero.
Inspection of the numerical data shows that

∑

k

1

ρ
fs ≈ −10−8. (47)

The acceleration of the droplet will therefore be

g + 1
4
3π R3

∑

k

1

ρ
fs ≈ −11m/s2, (48)

Fig. 13 Falling droplet without surface tension; 963 grid

Fig. 14 The jet just after the droplet collided with the free surface; 643

grid

This is in agreement with Fig. 18. Note that a conserva-
tive formulation of the surface tension forces prevents such
difficulties rigorously and would be preferred.

Let us now have a detailed look into the effects of the
various components of the MCLS method that have been
described in this paper. Firstly, the effects of mass conserva-
tion are illustrated by consider the following cases:
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Fig. 15 Fall velocity of droplet without surface tension compared with
free-fall

Fig. 16 Falling droplet with surface tension; 963 grid

Fig. 17 The droplet just after collision; 643 grid
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Fig. 18 Fall speed of the droplet with surface tension compared with
the free-fall velocity

– pure level set method, with the standard re-initialization,
i.e. Eqs. (18), (35),

– pure level set method, with the modified re-initialization
as described in Sect. 3.4, i.e. Eq. (37),

– MCLS, without the mass redistribution procedure of
Sect. 3.3,

– MCLS, with mass redistribution,

where we choose a tolerance of 10−4 for the error in the
volume-of-fluid function. The relative mass errors of the ris-
ing bubble are plotted in Fig. 19. For pure level set advec-
tion with standard re-initialization, the bubble looses its mass
until it has completely disappeared at t ≈ 0.009 s. An
improvement is observed by the modified re-initialization.
Still, mass errors are about 10 percent at t = 0.025s. This
error is reduced by an order of magnitude by the MCLS
approach and even further when the mass errors are redis-
tributed according to Sect. 3.3.

Next, the effect of curvature smoothing is illustrated by
considering:

– no curvature smoothing,
– standard curvature smoothing, i.e. d = 1 in Eq. (44),
– curvature smoothing with d prescribed by Eq. (45).
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Fig. 19 Relative mass errors for the rising bubble case with surface
tension; 963 grid

(a) No curvature smoothing (b) Standard curvature smoothing

(c) Proper curvature smoothing (d) Pure level set; unmodified re�
initialization

Fig. 20 Effects of curvature smoothing on the rising bubble;
t = 0.007 s; 963 grid

The shape of the bubble at t = 0.008 sec is depicted in
Fig. 20. Without curvature smoothing, the interface gets
distorted locally, as can be seen from Fig. 20a. In fact, the
computations will break down just after this moment due to
the high (parasitic) currents. When the curvature is smoothed
in a straightforward fashion, by taking d = 1 in Eq. (44), no
such difficulties are encountered. However, the interface is
highly distorted, or wrinkled, as can be seen from Fig. 20b.
This clearly demonstrates the drawback of straightforward
curvature smoothing: although parasitic currents are suppres-
sed, small perturbations, or wrinkles, on the interface are no
longer dampened by surface tension, since the corresponding
perturbed curvatures are now smoothed. Or, to put it the other

way around, for a given curvature distribution, there exists
more than one possible interface position due to curvature
smoothing.

Finally, no wrinkles are observed once the diffusion coef-
ficient d in Eq. (44) is as in Eq. (45). This is shown in Fig. 20.
Since d vanishes for Φ = 0, small perturbations of the inter-
face will still induce stabilizing surface tension forces. Since
d is smooth and non-zero away from the interface, para-
sitic currents are suppressed as was demonstrated in Sect. 4.
The interface is equally smooth compared to pure level set
advection, see Fig. 20d. However, note the significant differ-
ence in mass conservation.

We now turn to comparison with experimental data for the
rising bubble case. In [8] computations are made with a front
tracking and a volume-of-fluid method, and comparison with
experiment is made. The flow is characterized by the Eötvos
and Morton numbers:

Eö = g(ρ1 − ρ0)(2R)2

σ
, Mo = gµ4

1(ρ1 − ρ0)

ρ2
1σ 3

. (49)

where subscripts 1 and 2 refer to the heavier fluid outside and
the lighter fluid inside the bubble, respectively. The Reynolds
number based on the final rise velocity wc is defined as

Re = ρlwc2R

µ1
. (50)

When the flow is fully developed, the drag force Fd is
balanced by the buoyancy force, so that

Fd = 4

3
π R3g(ρ1 − ρ0). (51)

The drag coefficient is defined by

cd = Fd
1
2ρ1w2

cπ R2
. (52)

In [8] the following three relations to represent experimental
results are given:

(I) cd = 14.9Re−0.78, (53)

(II) cd = 3.05(783γ 2 + 2142γ + 1080)

(60 + 29γ )(4 + 3γ )
Re−0.74, (54)

(III) cd = max

(

min

(
A

Reb(1 + 0.15Re0.6882
b )

,
3A

Reb

)

,

8

3

Eö

Eö + 4

)
, (55)

where γ = ρ0/ρ1. The resulting Reynolds numbers are
shown in Table 1. Compared to experiment, the computations
of [8] are about 40% too high for the VOF method and 10%
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Table 1 Reynolds numbers of the rising bubble compared with the
numerical results from Gunsing [8] and experimental data; Eö = 1.0;
log(M) = −3.8

Re

Gunsing [8] VOF 8.2
Gunsing [8] front tracking 6.4
Experimental (I) Eq. (53) 5.2

Experimental (II) Eq. (54) 5.3

Experimental (III) Eq. (55) 5.8
This work 4.6

for the front tracking method. Our work under-predicts the
rise velocity with about 10%.

Next, we turn to multi-bubble computations. The coales-
cence of two rising bubbles is studied in [4]. Two bubbles
are initially at rest and aligned on the center line of the
computational domain with dimensions Lx = L y = 0.01 m,
Lz = 0.02 m. The radii of the bubbles are R = 0.0013 m. The
distance from the bottom bubble to the floor of the domain
is z0 = 0.0025 m. The distance between the bubbles is

∆z = 0.0055 m. This makes the gap between the bubbles
∆z − 2R = 0.0004 m. The parameters are:

g = 9.8 m/s2, σ = 5.8 × 10−4 kg/s2,

ρ0 = 440 kg/m3, ρ1 = 880 kg/m3,

µ0 = 0.00625 kg/ms, µ1 = 0.00125 kg/ms,

where subscripts 0 and 1 indicate the lighter and heavier
fluid respectively.The coalescence of two rising bubbles is
illustrated in Fig. 21. Snapshots are taken at time intervals of
0.02 s, starting from the initial condition. Good qualitative
agreement is found with the results presented in [4]. But our
rise velocity is about 35% larger. Note that rise velocities
predicted by our model have been validated in the previous
sections.

Next, let the bubbles be misaligned initially by a horizontal
distance equal to the radius. Results are plotted in Fig. 22.
The bottom bubble is sucked into the top bubble. A thin
tail remains after merging, that never completely disappears.
These simulations have also been performed in [4]. Again,
qualitative agreement is good, but as before the rise velocity
is different. Furthermore, the tail after merging of the two

t = 0 s t = 0.02 s t = 0.04 s t = 0.06 s t = 0.08 s t = 0.1 s

Fig. 21 Coalescence of two aligned rising bubbles; 96 × 96 × 192 grid

t = 0 s t = 0.02 s t = 0.04 s t = 0.06 s t = 0.08 s t = 0.1 s

Fig. 22 Coalescence of two misaligned rising bubbles; 96 × 96 × 192 grid

123



234 S. P. van der Pijl et al.

Table 2 Computational costs measured in CPU seconds per time step
for the rising bubble test case on a 96 × 96 × 192 mesh

MCLS

Level-Set advection 0.4

re-initialization 2.3

VOF advection

flux x 0.7

correct 3.9

flux y 0.8

correct 3.9

flux z 0.8

correct 3.9

redist 6.1

total 20.1

Total advection 23

curv. smooth. 25

Poisson solver 126

Total time-step 180

bubbles suddenly disappears in [4], whereas according to
Fig. 22 the tail does not disappear; it just becomes becomes
thinner as time passes. The interface does also seem to be
more irregular in [4], notwithstanding application of a so-
called “undulation removal” to smooth the interface. Note
that in the present work the interface is not smoothed. Nev-
ertheless, a smooth interface is obtained.

To conclude, we give a breakdown of computing time for
the last example in Table 2. The numbers correspond to CPU
seconds spent per time-step for the misaligned rising bubble
test case on a 96 × 96 × 192 mesh. The interface advection
takes approximately 13% of the total time. About 70% of the
time-step is spent on solving the Poisson equation (Eq. 11).
This is also generally the case for single phase Navier–Stokes
computations, so until the Poisson equation is solved more
efficiently, there seems to be no pressing need to make the
interface treatment more efficient.

6 Conclusion

A mass-conserving level set (MCLS) method for three-
dimensional two-phase flows, allowing coalescence and
break-up of bubbles, has been presented. Difficulties in
re-initializing the level set function and in computation of
surface tension have been investigated, and remedies were
proposed. The method was validated by some suitable test
cases, and finally computations involving interaction of two
bubbles were described. It was shown that the method can
handle very large density ratios, and that the handling of
interfaces requires not more than a reasonable part of total
computing time.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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