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SUMMARY

The mass-conserving level-set (MCLS) method is a hybrid level-set (LS)/volume of fluid (VoF) based, inter-
face capturing algorithm that combines the mass conserving properties of the VoF, with the benefits of
having an explicit description of the interface of the LS method. The efficiency of the method is a result of
the fact that the LS formulation allows evaluation of the VoF-field and VoF-fluxes without reconstruction
of the interface in each cell. We present the extension of the MCLS method from its original formulation
for Cartesian quadrilateral control volumes to triangular control volumes for optimal geometrical flexibil-
ity. The LS field is discretized using a second order discontinuous Galerkin method. After each time-step,
a mass-conserving correction is imposed based on the simultaneously convected VoF field. This convection
step is performed with a second-order Eulerian—Lagrangian approach, combined with a ‘clipping’ algorithm
to project the advected field from the Lagrangian to the Eulerian grid. The MCLS method is shown to be
accurately mass conserving and shows second order convergence for three different test cases. Copyright ©
2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many industries, for example, oil and gas recovery, (nuclear) power generation, production of
foods, and chemicals rely on stable and predictable liquid—gas multiphase flows for safe transport
and processing. Nowadays, cost-effective system design and operation rely indispensably on (flow)
simulation technology. Computational methods for analysis of immiscible two-phase flow in sim-
ple domains have reached a high level of maturity and technology readiness. However, many of
these are not readily extended to be applied for more geometrically intricate domains, because they
rely on interface reconstruction techniques that are only applicable for a discretization based on
Cartesian control volumes. Algorithms that are applicable for triangular control volumes suffer
from poor mass conservation and/or robustness because of their extreme complexity. Modeling the
dynamics of two incompressible immiscible fluids is far more challenging than modeling single-
phase flow because of the conflicting demands imposed by very strict mass conservation and
accurately predicting the position of the interface between the phases, for which the smoothness
and sharpness is preserved. The latter is especially important if the interface curvature and normal
vector are required to model surface tension. Many different approaches have been proposed to miti-
gate the problems associated with modeling two-phase flow. Canonical examples are the marker and
particle method [1], the volume of fluid (VoF) method of Hirt et al. [2], the level-set (LS) method
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of Osher and Sethian LS [3] and the front-tracking method [4]. Nearly all methods proposed in lit-
erature are directly based on one or a combination of these methods. Each has his advantages and
disadvantages. Some methods are straightforward to implement because of their relative simplicity,
but do not conserve mass while others are mass conserving but have high computational complexity,
and can only be applied for the Cartesian control volumes they have been designed for. To handle
interface movement without any geometrical restrictions, only two methods can be used: the VoF
and the LS methods.

In the VoF method, a color function is used to identify the presence of either fluid. This color
function has a value 1 in one fluid and O in the other fluid in order to distinguish between the two
fluids. In the VoF method, the cell averaged value of the color function is used to compute the
quantity of the fluid present in a cell. The interface location is only approximately defined: it will
intersect those cells that have intermediate values of the VOF fraction between O and 1, but its exact
location is unknown. In each time step, the position of the interface is reconstructed within the
control volumes that are intersected by the interface, under the assumption that it is either aligned
with one of the Cartesian coordinate directions [5] or simply planar [6], before it is advanced in
time in a Lagrangian manner. Computation of the fluxes across the cell faces is performed using the
concept of donor regions, leading to an algorithm that is mass conserving to machine precision.

In the LS method, the interface position is indicated by a zero LS of a function that is often chosen
as a signed distance function. The LS is advected in time to get the position of the interface, using
high-order discretization schemes for scalar advection equations. As the LS function is smoothly
differentiable in the vicinity of the interface, geometric characteristics, like gradient and curvature
are easy to obtain.

To keep the LS function a signed distance function, re-initialization needs to be performed. The
VoF method is very accurately mass-conserving, but the interface reconstruction and the approxi-
mation of the local curvature of the interface to define surface tension effects are computationally
intensive and involved, requiring filtering [2] or the construction of a height function. On the other
hand, the LS approach provides an exact (up to discretization order) representation of the interface
and straightforward evaluation of the local properties of the interface but is by definition not mass
conserving: exact conservation of the LS function does not imply conservation of mass. In both
cases, the curvature and normal vector can be computed with second order accuracy [7].

In recent years, an interest has developed in hybrid VoF/LS methods that combine the accurate
mass conservation properties of the VoF method with the advantage of an exact representation of
the interface by the LS method. The combined level-set volume of fluid method of Sussman et al.
[8-10] and the mass-conserving level-set (MCLS) method of Van der Pijl ez al. [11] are examples
of this hybrid approach. Although both seem to be very similar on the surface, the major difference
is that the combined level-set volume of fluid method basically combines the work involved in both
the VoF and LS methods, while the MCLS method avoids the computationally intensive interface
reconstruction step required for advection of the VoF field. This is accomplished by the use of the
VoF function that directly relates the local value of the VoF field to the LS field and its gradient,
without the need for an explicit reconstruction step.

The original MCLS method [11] was defined only for a discretization with (Cartesian) hexahe-
dral (3D) and quadrilateral (2D) control volumes. Automatic tessellation of geometrically complex
domains is generally accomplished using either triangular (2D) or tetrahedral (3D) control volumes.
In this paper, the extension of MCLS to a discretization using unstructured (2D) triangular control
volumes is presented. However, the ultimate aim is to extend MCLS method to general polygonal
and polyhedral control volumes.

In this paper, we have presented the extension of the MCLS method toward unstructured 2D
triangular grids. However, the proposed algorithm is in principle equally capable for the solution
of 3D multiphase flow problems. We couple the LS field with the VoF field by means of analytic
relations. Similar approaches can be found in [12, 13], but we believe our analytic relations are
computationally more efficient and elegant. Furthermore, the efficiency of the algorithm is enhanced
by using a discontinuous Galerkin discretization for the LS field. This is because the derived analytic
relations are perfectly inline with the local nature of this type of discretization.
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The outline of this paper is as follows. First, we will briefly discuss the LS, the VoF, and the
hybrid LS/VoF approach of the MCLS to modeling the interface between two immiscible incom-
pressible fluids. Next the concept of the original MCLS is reviewed. We discuss all the constituents
of the adaptation of the MCLS for triangular control volumes, followed by the derivation of the VoF
function. After that, the algorithms for VoF and LS advection are discussed. The definition of the
inverse of the VOF function to impose mass-conserving corrections on the LS field completes the
description of the algorithm. The paper concludes with the results of a number of test cases obtained
with the new algorithm.

2. MODELING THE EVOLUTION OF THE INTERFACE

The MCLS algorithm is used to model the dynamics of two-phase immiscible incompressible flow.
It uses a ‘hybrid’ description of the distribution of the two-phases, Phasey and Phase, using both
an LS and a VoF field.

2.1. Level-set field

The interface between the two phases X (¢) is defined as an isoline of a C? function /(x, ) : @ — R,
where Q@ C R?2, and simply connected. Choosing /(x, ) as the signed distance to the interface is
one of the common choices. Consequently, this choice defines the interface as the zero-level con-
tour of the signed distance function ®(x,7). A signed distance function is a natural choice because
it allows for accurate computation of the interface curvature and normal vector. However, Olssson
et al. propose a LS function that resembles a mollified Heaviside function to improve the mass con-
servation properties [14—16]. In the MCLS, the LS function is chosen as a signed distance function
®(x,1). If P(x,7) < 0, Phasey is present, while Phase; is present when ®(x,¢) > 0. Because of
this implicit definition of the interface, complex topology changes, for example, merging of multiple
or breaking up of a single interface are accommodated for. The smoothness of the LS function in the
vicinity of the zero contour-line allows for a straightforward computation of geometrical quantities
of the interface by evaluating derivatives of ®(x,?) at the interface:

D y(x,1)
VO (x,0)® 4 (x,1)

where 714 is the unit normal vector and « the curvature of a contour line of ®(x,¢) = 0.

e(x,1) =

xeX(@), «(x,t)=ngalx,t),x cX(), 1)

2.2. Volume of fluid field

The distribution of the fluids is represented by a C~! color function c(x,t) : R — {0,1}: If
c(x,t) = 0, Phaseg is present, while Phasey is present when c(x,#) = 1. Based on the color
function c(x,t), we can define the Volume of Fluid grid function ¥y : G — [0, 1] as

Wi (t) = L/ c(x,t)dS2, 2)
12| Jo,

where G is the set of all centers of the control volumes 2 and |2y | their area. The fact that ¢ (x, 1) is
C~! continuous and Wy (¢) only discretely defined makes the computation of the interface curvature
challenging and computationally intensive.

2.3. Hybrid formulation of the mass-conserving level-set method

In the hybrid formulation, the flow is described by both an LS and a VoF field that are in agreement
in each cell in the following way:

1

V(1) = 2%

/ H(®(x,1))dR, (3)
Qi
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where H(g) is the Heaviside function. This means that the LS field has the mass-conserving
properties of the VoF field, while at the same time the interface location is exactly defined by the

LS field.

3. OVERVIEW OF THE MASS-CONSERVING LEVEL-SET ALGORITHM

In this section, an overview of the MCLS method is presented. The proposed algorithm relies on
the key idea that a mass-conserving correction can be imposed on the LS field that is based on a
simultaneously advected VoF field. The algorithm is visualized in Figure 1. Advancing the interface
with the MCLS over a single time step consists of the following substeps, assuming the LS " and

VOF field W" are known:

e The LS field and the VoF field are advected simultaneously. After this advection step, the two
fields do not correspond to each other, that is, the fields do not comply with (3).
e The advected LS field ®* is used to compute a corresponding VoF field ¥* by means of the

VoF function.

e The difference between the advected VoF field W”*! and the VoF field U* is determined.

e In an element, for which the difference is smaller than the prescribed tolerance, no correction
to the LS field is required. If the difference exceeds the prescribed tolerance, a correction is
imposed to the LS field by means of the inverse VoF function to make the LS field mass
conserving up to a user specified tolerance.

e At time t"*!, a mass-conserving LS field ®"*! has been obtained along with the VoF field

\I,n-f-l

In the following sections, each of the components that are required for the proposed extension of
the MCLS algorithm for an unstructured triangular grid are presented. These are the LS field and

Level-Set "

‘ Level-Set advection ’

Fluid function

‘ Volume of
U = (5, VO5)

Check error
| o —

Volume fraction ¥

VoF advection ’

VoF fraction U™ +!

\I/"+1|

Level-Set <I>”‘H —{

Corrected Level-Set
\II"Jrl V<I>*)

¢n+1

No
correction

Figure 1. The mass-conserving level-set algorithm is presented in a flow chart to show the transfer of
information between the different components involved in advancing a single time step.
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VOF field advection algorithms described in Sections 5 and 6, respectively, and the VoF function
(Section 4) and its inverse (Section 7).

4. EFFICIENT COMPUTATION OF THE VOLUME OF FLUID FIELD FROM THE
LEVEL-SET FIELD AND VICE VERSA

Consider the LS field ®(x,7) : @ — R and the VoF field ¥ : G — [0, 1]. Consider element 2,
with vertices X ,’él X };2 and X ;23, ordered in counter clock wise direction (Figure 2(a)). The centroid
of the element is X . If we choose c(x,1) = H(®(x,t)), the VOF function in this element is given
by (3). However, in a mixed cell, that is, a cell intersected by the interface, the VoF representation
based on (3) is not computationally efficient. Therefore, (3) is approximated by a VoF function f:

1
U (1) = —— H 2)dQ
k(?) T /QA (¢ (x.1) + C1h*)d

_ 1
(2|

“4)
/ H(pr(x,1)dQ + Coh? = f(Pr, VO;) + C3h%, C; € R,
Qe

where ¢ (x,¢) is the linearization of the LS function (®(x,?), x € ), around the cell centroid
X, defined as

dr(x,1) = Op(t) + Do (xg — (X)) » Q)

and where X is the coordinate vector of the cell centroid, i = /|Qk|, Px(t) = P(X,1) and
® , is the gradient of LS at cell centroid ® , = V®(X). Now, the goal is to find the function
U(X) = f(Dg, VPyr), such that it provides the VOF field in terms of the LS field.

4.1. Converting the level-set field to the volume of fluid field
In order to express the VOF field in the LS field, the triangular control volumes are first mapped from

Cartesian space to logical space using a barycentric coordinate transformation.

4.1.1. Barycentric transformation. Consider a triangular element 2, as shown in Figure 2(b). This

element can be divided into three triangles by assuming an arbitrary point X’ € €. This subdivision

provides three triangles with areas AX}' X' X} AXY' X 22X’ and AX}>X 7 X', respectively.
Barycentric coordinates £g based on these areas, can be defined as

[ = AXV'X'XP? [ = AXV XX - AXPPXPX ©
o7 o7 1%l

These barycentric coordinates define the following coordinate transformation on Q:

v3
X )
3
Xk

V2
Xk

’ Xy Xy
x X'

(a) Control volume (£2). (b) Barycentric coordinates.

Figure 2. Control volume (€2 ), cell centroid (X ), and arbitrary point (X’).
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()5

Naturally, for x € Q, the barycentric coordinates &, € [0, 1].

Using the fact that & + &, + &3 = 1, the dependency on one of the barycentric coordinates can
be eliminated. For the moment, we will not decide on which of the coordinates is selected to be
eliminated. Above transformation for the possible choices for the elimination of the dependency of
either of the barycentric coordinates can be written as x = T'C;, Where T € R?*3 defined as

T=[x; X2 X7,

and vector C; represents the i’ column of C € R3*3, defined as

1-6—-§& &1 €1
C = £ 1—-§ —& 133 ,
&3 &3 1-§6 -6

where i is the index of the vertex of the triangular element. This information is necessary for the
mapping of a specific vertex to the origin in logical space.

4.2. The volume of fluid function

Our aim is to use a geometric construction to find the function ¥, = f(®y, VO;). Contour lines
of the linearized LS function ¢y (x) are straight line segments. The contour line ¢ (x) = 0 divides
Q in two pieces. From (3) and (4), it follows that f(¢y, V) is the relative area of the polygon P
bounded by the edges of the triangle and the line segment ¢y = O:

P = {x € Qi|p(x) <0} ®)

The polygon can be triangular, quadrilateral, or even reduced to a single point, depending on the
intersection of the interface with . Efficient evaluation of the function f(®g, V®;) requires a
formulation that considers all possible situations as conveniently as possible.

For nonzero |P|, only two configurations are possible for the intersection of the interface with
Q. These possibilities are defined as follows:

e Case-1: CI>(XZ3) < 0 for a single vertex. In this case, P is a triangular as shown in Figure 3.
e Case-2: In this case, P is quadrilateral, which means two vertices are in the fluid of interest,
that is, ®(X}*) < 0 and ®(X;?) < 0. This is shown in Figure 5.

However, it is sufficient to only consider Case-1, because in Case-2, we can use that W =
f(®r,VOr) = 1 — f(—Dr,—V D). This means the relative area of the quadrilateral can be

xp 2
€r
xp .
X
X! &, O ¢

T
51

Figure 3. Case-1: Triangular domain of interest, where the vertex X }? is mapped to the origin.
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obtained by subtracting the relative area of the complementary part of the triangle. It is important
to point out that this is not the only option to handle Case-2. It is indeed possible to define a single
VoF function that can handle both cases.

4.2.1. Case-1: triangular domain of interest. Firstly, we consider Case-1. The vertex X Z* is
selected to be mapped to the origin, as is shown in Figure 3. The linear transformation x (£) is bijec-
tive for a non degenerate triangle 2%: a triangle for which no vert1ces coincide and/or edges are
aligned. Define the (nonsingular) Jacobian of this mapping as J = 35 The linearized LS function

$ (&) can now be formulated in logical space as:

. 9D 9D
P(E.1) = D(x(§;).1) + m (& —é&x). T = JV, 9)
€ le.n=(.0) £

where &;, = £(X). Consider Figure 3 that shows the interface is intersecting the edges X ,'?X ,'él

and X sz }? at the points X Z‘“ and X 232, respectively. The vertex X }?, which is common to the
two edges intersected by the interface, is mapped to the origin while the other two Vertices are
mapped to points on the axes in logical space. It is important to note that vertices X and X V2 % can
be mapped to any of the vertices in logical space, except for the origin. The other two vertices in
logical space are located at (1, O)T and (0, 1)T. Furthermore, the interface is represented by a line
segment X ;' X 32, Our target is to compute the area of the sub triangle AX;*' X BX 22 with the
help of the linearized LS field derived in Equation (9).

Let us assume that the vertices X}él and X,'éz are mapped to & = (1,0)7 and &€ = (0, )T
respectively, in logical space. Therefore, points X ;*' and X are mapped to £f = (¢E,0)7 and
& £ = (0, 52 )T, respectively. This is shown in Figure 3. In order to compute the area of the region
X, 1 X, v3 X, 32, the i 1mages of the points E and F are needed. In the next subsection expressions are
derlved for S and §

4.2.2. Coordinates of the point §E . The logical space coordinates of the cell centroid &; are by

11\’
virtue of the barycentric coordinate transformation always given by &; = (g, 5) . This means

(9) can be written as (dropping the explicit dependence on ¢)

~ 1
bo =t g (a-7)+ 55 (8- 3): (10)
3 9%
Substitution of SE in (10) leads to
1 0 (1
— 0 ) -2 (2) =o. 11

ety =0+ 22 (e 1) - 22 (1) a

The right-hand side of (11) is zero, because the interface passes through the point §E . Evaluation of

(10)in (X }°) = 0 gives

F0) = o g;’ ( ) - %‘: (%) , (12)

where ¢(0) is the value of the linearized LS field at the origin in logical space. Solving (11) and
(12) to find £ leads to

& = '—@ : (13)

;=
Dg,
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P
where Dg, = f Therefore, the logical space coordinates of the point E are given by
1

r_ (9O
¢ _(DEI’O)'

Using a similar procedure in the &, direction, the coordinates of the point i,-'F in logical space can

b ®
9(0) and D, = a_'

be found as EF =10,
Déz 0&>

4.2.3. Evaluation of the VoF from the LS function. Now, we can compute the area enclosed by the
points 0, g€ and &F in logical space. The area of the enclosed region is denoted by Ag and is
given by

_ (9(0)°

Ag = .
¢ 2D$1D52

(14)
Equation (14) represents the area of the region enclosed by line segments that connect 0, §E , and
£¥ in logical space. The product of Ag and the Jacobian of the transformation J is equal to the area
enclosed by the points X *' X} X /32 in physical space.

The area of the image of €2 in logical space, Ag’ml, is % The VoF in both physical and logical
space can be defined as

4 _ @)
AT~ D Dy,

W(xg) = (15)
This is the VoF function that returns the VoF value in each triangular element when the value of
the linearized LS field is known at the cell center. However, (15) is only valid when the domain of
interest is triangular. This means that it is not valid when the interface intersects or passes above & 4,
The domain of (15) can be derived by considering the limit case of the interface intersecting SA.
The linearized LS at the origin is given by

_ Dy Dy

$(0) = Dy 3 3 (16)

This can be written as

- D 2D
$O0) = @ — =1+ =2

$(0) = p(EF) — Ds,.

Under the assumption that the interface is passing through the vertex ’;‘A (& F ) = 0 by definition
and

_Déz <

$(0) = —Dg,. (17)

This means that for all the values of $(0) = — D¢, (15) holds. Furthermore, the assumptions on the
mapping to logical space require ¢(0) = 0 and

($(0))>
D¢, De, ’

W(xg) = —Dg, < ¢(0) <0. (18)

The range of the VoF function can now be defined and the complete definition of the VoF function
for Case-1 is given as

D . 5(0))2
W [-Dg,.0] x R2 - [o, 2} W($(0), Dg) = 6O)" (19)
Dg, D¢, De,
Note that the definition of the mapping implies Dg, D¢, = 0.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 81:399-425
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If the interface passes through one of the vertices, (15) is valid. This is illustrated in Figure 4
where the interface is passing through vertex X }21. In this case, vertex X ,'? is selected to be mapped
to the origin and vertex X }21 is mapped to the &, axis, as it has the lower magnitude of the LS field
of the two other vertices, that is, ®(X Z‘) =0.

If the interface is exactly aligned with one of the edges of the triangular element, Wy is either O
or 1, depending on the fluid of interest. In this case, there is no need to use (19). The definition of
the mapping excludes the possibility that the interface is aligned with one of the coordinate axes in
logical space for Case-1. However, for Case-2, it is possible that the interface ends up aligned with
one of the axes in the logical space.

4.2.4. Case-2: quadrilateral domain of interest. An example of Case-2 is presented in Figure 5,
where vertices ®(X ,’23) < 0 and (X ,’éz) < 0 are now both located in the domain of interest.
We assume vertex X ZZ has a lower magnitude of the LS as compared with vertex X 23 . Therefore,
vertex X ,’;2 is mapped to the &, axis and X }23 to the origin in logical space. The fluid of interest is
enclosed by the quadrilateral 0, £ £7 & 4 (Figure 5). The vertex £ is located outside the mapped
region and intersects the &, axis, provided that the interface is not parallel to one of the edges of the
triangle. This will only occur when the interface is exactly equidistant from the vertices X ,'23 and
X }22. This case will be discussed separately in Section 4.2.5.

X" €4

X;

y X;;l 52 O gE SB
L. .
&

Figure 4. Interface passing through vertex (X;').

§F

X]:;]S SA

Xy
y X;C}l 52 ok gE SB
L i L
&

Figure 5. Case-2: mapping of two nodes a side.
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We can now use (14) to compute the area of the triangular region enclosed by vertices
0, ,SE, EI , EF and §A. Let us call this area A ;.. To find the area of the quadrilateral region A, the
area of the triangular region defined by the vertices & £ & I EA that we will refer to as A, ., needs
to be subtracted from the area A;,;.:

($(0))*>

Ag =
2D¢, Dg,

—Aex.. (20)

In order to compute A, ., the coordinates of the point & I are required. This point is the intersection
of the interface and the edge of the triangle opposing the origin of the reference triangle. At §I , we
have ®(&7) = 0. The linearized LS at this point is defined as

P (&T) = O + Dg, (gl ) + Ds, (gz — %) =0. (1)

At the edge £4£ 2, we have gl = 1 — £l using this relation in (21) leads to

1 __@0)+ D)
Dy —Dg

[ _ @O+ Dy)

. & , (22)
Dg¢, — D¢

2 2

- D
where ¢(0) = o — ok 1008 % The coordinates of the other two points that define the quadrilateral

3 ~
area are ’;‘F = EF (O, _ld))(o)
3

— —_—
and £4 = £4(0, 1). Define the following vectors: £F &4 and ¥ 7

2

. \T
Fed _ $(0)
£ ¢ —(0,1+D§2) .

~ ~ 3 T (23)
§—>F§1 _(_©@O) + Dg,) (¢(0) + Dg,) . $(0)
D¢, — Dg, D¢, — Dg, De,
Then the excess area A, x. is defined as
‘[s”s*‘xs%’] ; 2
o 2 2D, (DSI _D$2).
Substitution of (24) in (20) leads to
_ ($(0))> B ($(0) + Dg,)? (25)
2Dg Dg, 2D, (Dél _D§2)
The VoF function for Case-2 is now given by
7 2 7 0 D 2
v, = (¢0)*  (¢0) + D) 26)

D¢, Dg, Déz(Dél _Déz).

Note that (D¢, — D¢, ) cannot be zero, because this will only occur when the interface is parallel to
the edge ’;‘A & B The domain of the VOF function (26) needs to be defined such that the range of the
function is a subset of the unit interval. In order to derive an upper bound, consider Figure 5. Because
of the definition of the mapping | (£4)| < |¢(§B )|. Therefore, the interface will pass outside the
element when ¢(0) > —Dyg, . The value of $(0) = —Dyg, corresponds to Wi = 1. Therefore, the
domain of the VoF function (26) is equal to the interval [~ D¢, , —Deg,] and
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@072 (60 + Dg,)’ .
= - V. —Dg <¢(0) < —Dy,. 27
D¢ Dg,  Dg, (Dg, — Dg,) o <o ¢ @n

Wi

Given the domain of the VoF function, its range can be derived. The complete definition of the VoF
function for a quadrilateral domain of interest is given as

W [—Dg ., —Dg | xR* — [%, 1} ,

&1
@) ($(0) + D)
Dg, De, DEZ(DSI_D%-Z).

(28)

U(p(0), Dg) =

4.2.5. When the interface is parallel to one of the edges. Equation (28) is derived for the case when

the interface is not parallel to the edge O& 4 The latter occurs when the interface is equidistant from
both vertices O and §A. In this case, the extra area would become unbounded, so Equation (26) can
not be used. In this situation the domain of interest is a trapezoid as shown in Figure 6 and its area
can be computed easily as

—(0)(¢(0) + 2D
A, = POGO +2De) 09)
2
and the VoF for this case is given as
Wi = —¢(0)($(0) +2D¢,) (30)
xpe =
1
X
X ° o ¢ 5
Y { k 52 [ 0 £E 5
T
&1
Figure 6. Mapping of the interface parallel to one of its edge.
v A
Xy’ §
gF
X
X B
Yy [ k 52 { 0 gE 6
T
&1
Figure 7. Combination of two cases.
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4.3. Combining the volume of fluid functions for Case-1 and Case-2

The union of the domains of the two VoF functions for Case-1 and Case-2 together covers the set
[_Dfl , O] of possible values of ¢(0), under the assumption that the control volume of interest is
intersected by the interface, see Figure 7. Both VoF functions have a quadratic dependence on qE(O)
and are C ! continuous at the common point $(0) = —Dyg,. This is shown in Figure 8. The range of
the VoF function should be [0, 1].

In order to select correct branch of the two VoF functions, we define a switching parameter

Sp((0)) as

0 : QS(O) = —Dg,

S,($(0)) = . : (€2)
PO { 11 (0) < —Dg
Using (31), (19), and (28) can be combined to a single VoF function as
W : [—Dg,, 0] x R > [0,1],
; ($(0)) o ($(0) + D)’ (32)
U(@(0). Dg) = [~ — S, (3(0) 2.
§176 De, (Dél _DEz)
Let us further define two coefficients:
1 A
= o = p(¢0) (33)
Dy, Dy, Dy, (D¢, — Dg,)
Using (33) and (32) a uniformly valid expression for W can be formulated as
Wi = (1 + €2)($(0))* + 262D, ($(0)) + 2D, ¥ — Dg; < $(0) < 0. (34)

It is important to note that (34) also holds for the case when the interface is aligned with or parallel
to the edge O&4, that is, D¢, = 0. In Case-1, that is, S, (¢(0)) = 0, the interface can be aligned
with edge O£ and in this situation the VOF is either 0 or 1. In Case-2, that is, S » (¢(0)) = 1, the

interface can be parallel to the edge O& A, but the behavior of the coefficients ¢1 + ¢ and Deg,¢; in
the polynomial is not singular when Dg, = 0.

VoF function for Case-1 and Case-2.

2
— Case-1
1.5 —Case-2
\ — VoF fuction
1

Volume of fluid fraction.
o
()]

-0.04 -0.03 -0.02 -0.01 0
Linearized level-set for the entire element.

Figure 8. VoF function for both Case-1 and Case-2.
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The VoF function (34) is expressed in the value of the linearized LS field at the origin in logical
space and the partial derivatives of the LS function with respect to the logical space coordinates.
However, we have defined the VoF function (4) in terms of the cell centroid value and gradient of
the LS. To formulate the VoF function explicitly in the latter form, (16) is used in (34) to find the
following expression for f(®y, VOy):

-2D De, D D
W = (D, V) =[ 5‘; &, ‘flg 52] —[0.1],
(c1 +c2)D2 + (2¢; —4¢2)Dg, Dg, + (cy + 4co) D2

2 ((c1 + c2) D, + (c1 —2¢2) Dg,)
3

. [Dg, Dg,)" = IV
(35)

5. ADVECTION OF THE LEVEL-SET FIELD

Because the interface is by definition a contour line of the LS function, the following equation holds
at the interface:

0d(x,1)
ot

In the MCLS method, Equation (36) is postulated to hold for all x € €2, but other choices are
possible, as long as they are consistent with (36) and lead to a function that is at least C? continuous
in the vicinity of the interface to allow computation of the curvature. For a solenodial velocity field
uqy(x,1), the extension of (36) is given by (omitting the explicit dependence of x ant ¢ of uy(x,1))

d
E@(x,t) =0= F+ug(x,)®P(x,t) g =0, x € X(¢), t > 0. (36)

90(x, 1
%+(ua<b(x,t)),a —0,xeQ, >0 37)

This equation shows that the LS function is conserved. However, a conservative redistribution of
the LS function can lead to a change in the area enclosed by the interface. This is one of the draw-
backs associated with the LS method. To some extent, this can be remedied by using higher order
approximations of the convection operator, for example, using ENO or WENO schemes in the con-
text of a finite volume discretization [17, 18], combined with higher order time-integration methods
or by applying adaptive grid refinement near the interface. However, all the remedies are not com-
putationally efficient when (37) is discretized on an unstructured set of triangular control volumes.
In the current paper, a higher-order discontinuous Galerkin (DG) finite element method is used for
the discretization of (37). This approach leads to a high order of accuracy boundary conforming dis-
cretization for domains with arbitrary geometrical complexity. For integration in time, a low storage
Runge—Kutta method is used. A brief description of the spatial and temporal discretization of (37) is
presented, based on [19-22]. The computational domain €2 is discretized into K non-overlapping,
straight-sided triangular elements Q2. Lagrange polynomials L;(x) of degree N are used as basis
functions to expand the solution in element 2 as

D (x,1) = 2 pF(O)Li(x), x € Q. t > 0, (38)

where m is the total number of nodal points in an element. In the DG frame work, the residual is
made orthogonal to the polynomial space in 2, by requiring (omitting the explicit dependence of
x ant ¢ of CIDI}é(x, t))

Il B .
/Qk (74—(”(1‘1);() a) Li(x)dQ=0,i=1...m. (39)

B
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The weak form of Equation (37) can be obtained by applying integration by parts:

8@2 h ~ hy* -
/ —KLi(x) = Lig(x)ug®pdQ = —55 (que®)*Li(x)dQ, i =1...m,  (40)
Qe ot ’ QR

where 7, is the outward pointing unit normal and (1, ®*)* is the numerical flux, used to impose
boundary conditions on each element. Integrating by parts once again leads to the strong formulation
of the DG method:

Ioh A B I n\* L
/Qk (7 + (ug® ),az) Li(x)d2 = ﬁ)ﬂk Ny (UacD - (uacD ) )Li(x)dSZ, i=1...m.
(4D

In the MCLS, (41) is combined with the Lax—Friedrichs approximation of the numerical flux [20].
The system ( (41)) is formulated for all control volumes 2, k = 1... K. All equations are coupled
through the numerical flux function and advanced simultaneously.

6. ADVECTION OF THE VOLUME OF FLUID FIELD

The MCLS algorithm uses a simultaneously advanced VOF field to impose a correction on the LS
field, to make the latter mass conserving. An evolution equation for the VOF field is derived by taken
the derivative of (3), with respect to time:

AW (1) . d 1
dt dt |Qk]

/ H(®(x,1))d 2, 42)
Qp

Because H(®(x,t)) is a material property and assuming a solenoidal velocity field uy(x,?), the
right-hand side of (42) can be formulated as (dropping the explicit dependences on x and ¢)

1 H(® 1
dH( )dQZ__
Qx| Jo, dt [R2%] Jo,

Ho(®ugdQ = — H(®)ugiodS,  (43)

12| Jag,

where 7, is the normal vector on the boundary of the element. Therefore, the evolution of the VoF
field is governed by
AWy 1

% — | H(®)ughedS (44)
Gt = ]y, T (Palta

The fact that H(®) is C~! continuous on 92 makes accurate discretization of (44) that is very
challenging. The application of ‘standard’ schemes developed for scalar hyperbolic equations leads
either to strong oscillations in the solution or unacceptable smearing of the interface, jeopardizing
mass conservation.

For Cartesian control volumes, accurate and efficient discretization schemes have been developed
that utilize directional splitting, for example, the scheme presented in [10] and its strictly mass con-
serving adaptation [23]. Apart from the latter scheme, strict mass conservation can only be achieved
with very intricate unsplit schemes.

In this paper, we propose to use a different approach for the advection of the VoF field. This
approach is also used in [24] and is known as Eulerian-Lagrangian VoF evolution. The algo-
rithm consists of three steps: Lagrangian advection of the color function, interface reconstruction,
and remapping.

In the first step, each mesh element is considered as a material element and advected in a
Lagrangian frame of reference. During this process the color function (a material property) is pas-
sively advected with the flow in each element. Because the velocity field is solenodial, each element
retains its VoF value while being deformed and rotated. Furthermore, if a divergence free linear
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velocity field is assumed, this ensures a straight-sided triangle remains a straight-sided triangle, irre-
spective of how the relative position of the vertices changes (excluding folding). The assumption of
a piecewise linear velocity distribution is consistent with the linear approximation of the interface.

The approach is based on using two grids. The first one is a (fixed) Eulerian grid and the second
one a Lagrangian grid that consists of the same elements whose vertices have been translated. As
the mesh elements are advected such that their area remains the same, this advection is consistent
with Equation (43), that is, the advection is mass conserving.

The coordinates of the vertices of the Lagrangian grid are obtained by using a second order
Runge—Kutta (RK) scheme, defined as

v+t At
X, =X}, + S (x1,.m). (45)
+1 1
XZ:” =X,';E+Atu(XZL2,t"+2), (46)
where kK = 1....., N, and N, is the total number of vertices. The X ZL"H represent the vertices of

the Lagrangian mesh, X }éE the vertices of the Eulerian mesh. Because of the assumptions on the
velocity field, the advection defines an element-wise linear map from the Eulerian to the Lagrangian
grid. The interface position in each element is defined by this mapping and does not need to be
reconstructed. Once the interface position at the Lagrangian mesh is known, the color function can
be mapped from the Lagrangian mesh back to the Eulerian mesh by means of a geometric process
known as polygon-polygon clipping as described in [24-26].

In order to explain the clipping procedure, the elements of the Eulerian mesh are divided into
two groups. We will refer to the cells that are completely filled with Phaseq as fully filled cells.
Those elements that contain both Phaseo and Phase, will be referred to as mixed cells. In Figure 9
and 10, both cases are presented. A fully filled element is advected, as shown in Figure 9, using

Lagrangian cell Clipped and re-mapped VoF at new time level

Figure 9. Advection, remapping, and distribution of the content of a control volume that is not intersected
by the interface.

Yo

Lagrangian mixed cell Clipped and re-mapped VoF at new time level

Figure 10. Advection, remapping and distribution of the content of a control volume that is intersected by
the interface.
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Equations (45) and (46). This determines the position of the Lagrangian element corresponding to
this Eulerian element. Now the fluid contained in this element needs to be distributed among the
elements of the Eulerian grid. We refer to this process by remapping. Remapping of a fully filled
cell on the Lagrangian grid is carried out by first locating the set of elements on the Eulerian grid
that have a non-empty intersection with the Lagrangian element. Each of these intersections are
polygonal regions defined by the coordinates of the intersections of the edges of the Lagrangian
element with the Eulerian mesh.

A similar procedure is adopted for a mixed cell, as shown in Figure 10. In this case, the inter-
section of that part of the Lagrangian cell that is occupied by Phasey with the elements of the
Eulerian mesh has to be determined. Each of these intersections are polygonal regions defined by
the coordinates of the intersections of the edges of the Lagrangian element and the interface with the
Eulerian mesh.

The area of the clipped region is computed by means of the following relation for the area of a
closed polygon in 2D [27, 28]:

1= o
Area = 3 D (gt =X)L (47)
i=0

where i is the index for all the nodes and the first and last node coincide. In the current research, use
is made of the MATLAB™ Mapping Toolbox to perform the polygon—polygon clipping. However,
many different polygon clipping algorithms are available from image processing, for example, the
Sutherland—Hodgeman algorithm and the Weiler—Atherton algorithm [29, 30].

6.1. Mass conserving advection of the volume of fluid field for nonlinear velocity field

The Eulerian—-Lagrangian VoF advection method is accurately mass conserving when the velocity
field is linear. In the case of a nonlinear velocity field, maintaining this accuracy presents a challenge.
This is the result of the assumption that the triangular elements remain straight-sided triangles after
advection. In reality, the nonlinear velocity field will deform the edges of the triangular element and
representing it as a straight-sided triangle causes a loss or gain of mass (area) at the Lagrangian
mesh. This deformation is shown in Figure 11. In the proposed algorithm, exact mass conservation
is re-established using a method similar to the one proposed in (37). To prevent mass loss or gain
due to the nonlinear velocity field, an intermediate step is introduced that is applied to the solution
on the Lagrangian mesh before applying the clipping and redistribution algorithm. In this step, the
total mass (area) at the Lagrangian mesh will be enforced to be equal to the total mass at the Eulerian
mesh at previous time level ¢”. This is performed by adjusting the volume fraction in all mixed

Deformation of an elememt, linear velocity. Deformation of an elememt, nonlinear velocity.
05 —— Eulerian element oo —— Eulerian element
— Langrangian element R p— Langrangian element
0.4 0.4
0.35¢
0.3 0.3
0.25¢
0.2 0.2f
0.15
0.1 0.1}
0.051
C'0 0.1 0.2 0.3 0.4 0.5 00 0.1 0.2 0.3 0.4 0.5

Figure 11. Straight-sided triangles remain straight-sided after being advected by a linear velocity field (left).
When advected by a nonlinear velocity field this property is lost (right).
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cells such that the total mass error is compensated for. The complete procedure is explained in the
following sections.

6.1.1. Mass error adjustment: Fully filled cells. Consider the fully filled k* h element of the Eulerian
grid at time ¢". It has a volume fraction \I',f = 1 and area | Q ,f |. Where superscript E refers to the
Eulerian grid. The mass (M kE ) enclosed by this element is equal to

ME =wE | QF . (48)

Now, this element is advected with a nonlinear velocity field which results in a deformed triangle
so the area enclosed by the element is not the same as on the Eulerian grid, that is, a mass error has
incurred. However, during advection, the fully filled cell should remain fully filled, so it has volume
fraction \IJ,I; = 1 and the area | Q2 ]Ig |. Where superscript L represents the Lagrangian grid. The mass
(M kL) enclosed by the Lagrangian element is

ME =W | QF|. (49)

The mass lost or gained by the element due to the deformation caused by the nonlinear velocity
field is

M = ME — MF, (50)

where M"" is the mass error of the k" fully filled cell. If there are N # fully filled elements that
are advected, using a nonlinear velocity field, then the total mass error (TM ") caused by the fully
filled cells can be defined as

Ny
TM" =" (MF —MF). (51)

i=1

The total mass error computed in Equation (51) is distributed evenly among the mixed cells. If there
are N, mixed cells then the average mass error (Mavg) can be defined as

Ny E L
M= — M:
Mavg. = (N—> : (52)
m

i=1
This average mass error is added to each of the mixed cells to ensure global mass conservation.

6.1.2. Mass error adjustment: partially filled cells. In case of a partially filled or mixed cell, a dif-
ferent procedure is adopted. The interface position is adjusted in each mixed control volume in the
Lagrangian grid such that the mass contained within is equal to the mass contained within the cor-
responding control volume on the Eulerian grid plus the average mass error that follows from (52).
Both the position and the orientation of the interface have to be determined. The orientation of the
interface can be determined from the LS field, but this approach would require the interpolation of
the LS field from the Eulerian to the Lagrangian grid at time #”*!. This idea is not computationally
efficient; for details, see [24]. To mitigate this problem, a different procedure is used, which is based
on the assumption that the interface can be reconstructed on the Lagrangian element by advecting
the two points that represent the interface in the corresponding Eulerian element. Naturally, this
puts a threshold on the size of the time step that can be taken. However, the idea is computationally
efficient and also in line with the idea of distributing the average mass error to the mixed cells. The
details of the interface adjustment for the control volumes in the Lagrangian mesh are presented in
the following subsection.
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6.1.3. Interface adjustment for partially filled cells. Consider a partially filled cell at the Eulerian
grid at time ", as shown in Figure 12(a). The vertices of the element are X ”El, X sz, and X vE3 The
interface is represented by a linear polynomial, that is, a line segment defined by its end points
X" and X 2. Also, the area of the triangle formed by X >, X ', and X 2 represents the exact
amount of fluid of interest in this element. The location of the points X 231 and X "E32 is obtained by
using the LS information of the element. Assume vertex X "E3 is in the negative LS region, then X vE‘
and X sz are in the positive region and the interface normal points toward the positive LS region.
Using the linear interpolation parameters 8; for i = 1,2, the intersection of the interface with the

edges X”I,‘?X"El and X"E3X"E2 can be found in the following way:

o (x%)
o (X5) - o (XF)

Bi = (53)

where @ (X7'), @ (X}?) and @ (X7}) are the LS values at the vertices X 7', X7, and X,
respectively. Using the parameters B;, the interface end points X 3 and X 2% can be computed as

XUO 2 XD L (1- )XY i=12. (54)

Once the extremities of the interface are known, they are advected along with the vertices of the ele-
ment, using Equations (45) and (46). This defines the corresponding Lagrangian element as shown
in Figure 12(b). The corresponding vertices on the Lagrangian elements are X "Ll, X 22, and X vL3,
and the interface extremities are X ;' and X ;*2, respectively.

The end points of the interface are not necessarily located on the edges. This is because the
triangle has deformed. In order to avoid overlapping with neighboring elements, the interface end
points are projected on the edges of the element. This is performed by computing the intersection of
the edges X ;*X ;' and X ;* X ;* with the interface. This defines points X "le’ and X vL32/, as shown
in Figure 13(a). The interface orientation is still the same, the only difference is that it is mapped to
the edges of the Lagrangian element. Clearly, the interface can be reconstructed in a straightforward
way on the Lagrangian mesh without the need for information of the LS field.

After the interface reconstruction step, the goal is to achieve exact mass conservation, that is, the
interface has to be shifted from its current position to make sure the mass within the Lagrangian
control volume corresponds to the mass in the corresponding Eulerian control volume plus the
average mass error defined by (52).

Assume the area of the Eulerian element is Ag = AX vE3X vE31 X "E32, and the area of the

Lagrangian element is A, = AX*X 23‘/X 232/. Now the goal is to find the points on the edges

X7
E X
Xpe
X%Sl v V32
XE32
X7 X

v v

X5 X!
(a) Eulerian element. (b) Lagrangian element.

Figure 12. The position of the interface in a mixed cell in the Lagrangian mesh is based on the advection of
the extremities of the interface in the corresponding mixed cell in the Eulerian mesh.
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v, v
X X
V31 17
X L , X Vst
V32 L 1
L 232
(% v
Xy L
v v
X Xy
(a) Interface projection. (b) Mass adjustment.

Figure 13. For a nonlinear velocity field, the advected extremities of the interface are first projected on the
edges of the Lagrangian control volume, before the appropriate interface position can be determined.

X7?X7" and X 72X 72, such that the area enclosed by these points and the vertex X ;* is equal to
AE plus My, .. This is achieved by computing the following ratio:

0 — AE + Mavg.. (55)
V AL

Using, the value 6 points on the edges can be computed as follows

X790 =X+ (1-6)X P, (56)

where the points X 23(")”, fori = 1,2, correspond to the edges X ;* X ;' and X ;> X }?, respectively,
as shown in Figure 13(b). This makes sure that the area is identical to the area of the Eulerian cell.
This holds for the case where the fluid of interest is within a triangular region X ;* X 231/ X ;32'. For
the region enclosed by the points X ;' X ;> X 232/X 231/, a slightly different procedure is adopted.
Here, it is important to note that as the triangles are allowed to deform during advection, the total
area of the Lagrangian element is not equal to the total area of the corresponding Eulerian ele-
ment. Therefore, using Equation (55), to conserve the area of the region by subtractin]g the area
enclosed in X ' X 72X 232/ X 231/ from Ag will not conserve the region X ;' X 72X DL”/X ¥ onthe
Lagrangian mesh. In order to circumvent this problem, Equation (55) is modified. Figure 13 is used
again to explain the procedure, as all other steps except the use of Equation (55) are the same. Con-
sider a fluid of interest enclosed in the region Az = BX J' X 2 X 22X 3" at the Eulerian mesh.
After advection and projecting the interface points at the edges of the Lagrangian cell, the corre-
sponding Lagrangian element is 4; = WX 21 XX UL”/X ;3‘/ and the total area of the Lagrangian
elementis A7 = AX 21 X szX 23. Using this information, the modified form of Equation (55) is
obtained as

90— \/ALT —(Ag + Mavg.). 57)

Arr — AL

Similarly, points X 23(")” for i = 1,2, on the edges are computed, using (56) . This will ensure
the mass (area) of the cell corresponds to the mass of the Eulerian cell. Once mass conservation is
achieved at the Lagrangian mesh, the clipping procedure is applied to map the VoF to the Eulerian
mesh for time 1.
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7. INVERSE FUNCTION FOR THE LEVEL-SET CORRECTION

To make the LS mass-conserving, a correction is applied based on the advected VoF field. In this
approach, the advected LS field ®; is used to compute a tentative VoF field W* = f(®f, V)
in every mixed cell, using the VoF function (32). The tentative VOF field is compared locally with
the Eulerian—Lagrangian advected VoF field \IJZH. If the difference is within a given tolerance then
there is no need to correct the LS in that particular cell, as it is already mass-conserving, that is,
the LS field complies with (3), and CIDZ+1 = ®;. However, if this difference exceeds the prescribed
tolerance, a correction is required. In order to perform the correction, the inverse of f (P, V®y)
is required. This function is referred to as the inverse VoF function g(Vy, V®y). This function is
derived from (32).
Assume the value of the VOF field for €2 is given by

vt = f (@t vortt), (58)

for yet unknown @ZH. Because the mass conserving corrections that need to be imposed in the
MCLS are very small, the orientation of the interface is assumed to remain unchanged. Therefore,
we can replace (58) by

Wt = f (o Vey). (59)

This means that in the conversion, the height of the interface is adjusted without changing its orien-
tation. For a triangular (or more generally a convex) element, there is a unique value of CDZH that
fulfills (59) for Wy € [0, 1]. Therefore, the inverse of f(®y, VP ) with respect to its first argument
can be defined as

O = g(Wi, VPy). (60)

In order to obtain a uniformly valid inverse function, a switching parameter similar to (31) can be
defined as

D
Lz 2

Sy (W) = Ds. (61)
0 U < —=2
De,

D
A critical value of the VoF is W = ﬁ, because for this value the interface is passing through the
&1
vertex ’;‘A; see Figure 7. Using (61), (27) can be written as

($(0))> (#(0) + Dg,)?
k= — S (W) (62)
Dg, Dg, Dg, (D¢, — Dg,)
Define the coefficients ¢} , as
1 S (¥
¢l = . o= _ 5% (63)
D¢, Dy, Dg, (D, — Dg,)
Now (];(0) is the unique root of the following quadratic equation:
(c1 +¢5) (@"F1(0))* + 2¢5 D, ("1 (0)) + ¢, D, — Wi = 0, .
vV ¥, €[0,1].
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within the interval [_Dél , O]. This unique root is given by

JeiDe) — (el + ) (507, - )

5(0) = — (2¢4 Dg,) — s
The inverse function g(®g, V®;) can now be defined as
—2D¢, + Dg, Dg, + D
O = g(Vg, V&) : [0, 1] — [ 513 et i . sz]

! 2 / / 12 2 (66)

! (2e3Dg)" —4 e +e2) (czDéz B \pk) D¢, + Dg,

U, V&) = — (2¢;Dg, ) — N |

(Wi, V&) = — (265 D, ) T ) !

where [Dg, Dg,]T = JV®;. The conversion of LS to VoF depends on the value and gradient
of the LS at the center of the control volume. The key difference between the original MCLS and
the proposed algorithm is that in the latter, the discretization of the LS field with a discontinuous
Galerkin method leads to a local, element-wise definition of the LS field. This means that the LS
field can be corrected locally, contrary to the original MCLS algorithm where an iterative procedure
is used to have both CIDZ+1 and VCIDZ+1 comply with (58). This is a major improvement with respect
to efficiency and robustness in comparison with the original MCLS algorithm.

8. COMPUTATIONAL COST OF THE MASS-CONSERVING CORRECTION

Accurately, mass-conserving advection of the VoF field on a discretization of general unstructured
control volumes is very challenging but necessary in many but certainly not all applications. Incor-
porating this correction makes the algorithm significantly more costly than a ‘pure’ LS approach,
but comparable in cost to algorithms that are based on an explicit reconstruction of the inter-
face. The Eulerian—Lagrangian approach of advection and the required ‘clipping’ algorithm are
computationally intensive. However, these ‘clipping’ type of algorithms are used extensively in
computer graphics and under continuous development. Furthermore, they are highly paralleliz-
able and readily portable to GPU architectures. Alternative algorithms, for example, based on the
use of compressive schemes used for modified LS formulations are currently investigated. The
use of a discontinuous Galerkin discretization and the resulting locality of the mass conserving
correction lead to a significant gain in efficiency with respect to the original formulation of the
MCLS method.

9. TEST CASES

The key characteristics of the method that need to be validated are the mass conservation property
and the accuracy of the LS field. Therefore, three test cases are selected based on different velocity
fields: constant, linear, and nonlinear. The test cases chosen are the translation of a circular inter-
face with a constant velocity, the rotation of a circular interface around the center of the domain
with linear velocity and the very popular single reverse vortex test case [10, 24]. These test cases
are sufficient to demonstrate both the mass conservation properties and accuracy of the method.
Apart from these test cases, the accuracy of the conversion between the LS field and the VoF field
is considered separately using the VoF function and its inverse. Also the initial mass error that is
incurred due to the piecewise linear representation of the interface is analyzed. This test case is
referred to as interface back and forth reconstruction. We define the mass error £}, and the discrete
L, error in the LS field Ey(t") as
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K
E;[IJ =M" - Mexact(tn)s M" = Z \I/Z|Qk|’
k=l (67)

E ny __ \/Zf=l (q)rll{ -9 (Xk’ tn)exact)z
o(1") = ,

K
where Meyaei (t") and @ (X, t").,,c are the exact area contained within the interface and the exact
LS field, respectively. The order of E¢(t") is estimated through Richardson extrapolation, on a
sequence of unstructured meshes. We expect to find second order convergence of both E¢ (") and
E’, because of the use of linear basis functions for the LS field and the use of the linearized LS
field in the conversion to VoF. The VoF advection scheme is mass conserving to machine precision,
so apart from an initialization error, the mass loss should be virtually negligible over the duration of
the simulations. We will only focus on the spatial accuracy of the discretization. In each test case,
all quantities are made dimensionless by introducing reference length and time scales equal to 1 m
and 1 s, respectively.

9.1. Conversion between level-set and volume of fluid representation

This test case is considered to demonstrate the accuracy of the conversion of the LS field to the VoF
field and vice versa using (35) and its inverse (66): the VoF field is converted to the LS field using
Equation (64), without involving any advection of the interface. Naturally, interconversion of the LS
field and the VoF field without loss of mass is a prerequisite for the algorithm to achieve (nearly)
exact mass conservation. This test shows that the error induced by the interconversion is negligible.
A circular fluid region is considered with radius 0.2 in a domain of size Qp = [0, 1] x [0, 1]. The
initial condition for the LS field is given as

2 2
P(x,0) =5 —(x1i—3) —(x2—3)". xeQp. (68)
The corresponding VoF field is given by

Lo (=) (- )7 - 4 <0

, e Qp. (69)
0, (-1 +(n-iY-Ls0 TP

Y(x,0) ={

Furthermore, if we consider Phase; to be the fluid of interest, the total area of the domain of interest
1S Mexact = 215 The interface is represented by the zero-contour of the LS field and the interface
normal points outwards from the negative LS region. Firstly, the LS field is converted into the VoF
field using (32). Secondly, the obtained VoF field is converted back to the LS field using (66). After
that the difference between the LS field before and after the conversion is evaluated for all mixed
cells. We found that the LS field remains unchanged up to machine precision.

In the MCLS, the interface is approximated by a set of line segments, because of the fact that the
conversion between LS and VoF is based on the linearized LS field. Depending on the procedure
for the initialization, this approximation will incur an error in the mass(area) when the LS field is
initialized exactly, or an error in the LS field when the VOF field is initialized exactly. We consider
(68) as initial condition for the LS field. In Table I, E is presented for four different characteristic

Table I. Accuracy analysis of the interface back-and-forth conver-
sion test case. Initialization with the exact level-set field introduces
a mass error that converges with second order accuracy.

Characteristic meshwidth / M" |Ep| Order
3.64e-02 1.2456e-01  1.10008e-03 —
2.43e-02 1.2515e-01  5.0951e-04 2.16
1.67e-02 1.2540e-01  2.5679e-04 1.98
1.02e-02 1.2556e-01  9.4813e-05 271
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mesh widths & = /X|Q|/N. Clearly, Epy = O(h?), and the initial error strongly dominates
the error incurred by the back-and-forth conversion. Alternatively, the LS field can be initialized by
conversion of the exact VoF field (69). This approach will incur an error in the LS field as shown in
Figure 14, where the zero level countour of the LS field initialized with (68) is compared with the LS
field converted from (69). Because the conversion between the two fields is based on the linearized
LS field, the conversion induces a small movement of the interface, which can be shown to decrease
with second order upon grid refinement. Clearly, to achieve nearly exact mass conservation, it is
essential to initialize the LS field by converting the initial condition for the VoF field.

9.2. Translation of circular region

In this test case, the translation of a circular interface of radius 0.15 is considered in a domain of
size 2p = [0, 1] x [0, 1]. Initially, the interface ¢(x,0) = 0 is centered at (0.5, 0.2)T. The LS and
VOF fields are advected with a constant velocity field u(x) = (0,0.1)7 for 0 < ¢t < T = 5. The
exact LS field at the final time is a circular region with unchanged radius but centered at (0.5,0.7)7 .
In Table II, the average mass error £, and the error of the LS field E¢(T') are presented for three
different mesh sizes. The results indicate that the solution of the LS field converges with second
order accuracy.

9.3. Rotation of circular region around the center of the domain

The third test case concerns the rotation of an initially circular interface. Consider a circular region
of radius 0.15 in a domain of size Q2 p = [0, 1]x [0, 1]. Initially, the interface ¢ (x, 0) = 0 is centered
around (0.5,0.75)T . The LS and VoF fields are advected with a divergence free linear velocity field
u(x) defined as

u(x) = (x1 —0.5,—x + 057, x € Qp. (70)
Initial Level-Set and VoF initialized Level-Set contour. Initial Level-Set and VoF initialized Level-Set contour.
1 : : : : . .
0.9 ——Level-Set 0.3057 —Level-Set ]
—VoF Intialized Level-Set —VoF Intialized Level-Set
0.8 0.3056 1
0.7 0.3055
0.6 0.3054
0.5 0.3053
0.4 0.3052
0.3t 0.3051
0.2 0.305
0.1 0.3049
0 . . . . . .
0 0.2 0.4 0.6 0.8 1 0.456 0.457 0.458 0.459 0.46 0.461

Figure 14. Initialization with the exact volume-of-fluid field leads to a slightly different initial position of
the interface but eliminates the mass error incurred by initialization with the exact level-set field.

Table II. Average mass error E’}, and error in the level-set field Eq(7T') for
the translation of a circular interface.

Characteristic meshwidth & EYy Ee(T) Order of Ey(T)
3.64e-02 2.6835E-15 8.0531E-04 —
2.43e-02 2.2830E-15 5.1876E-04 1.55
1.67e-02 8.2976E-16  2.3053E-04 2.25
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forO <t < T = 2. Att = T the LS field is compared with the initial LS field as the interface
should return to its initial position after one complete revolution.

Figure 15 shows the time history of the mass error during one full rotation for three different mesh
sizes. In Table III, the average mass error E’, and the error of the LS field E¢(T) are presented.
The solution of the LS field converges with second order accuracy.

9.4. The reverse vortex test case

The reverse vortex or single reverse vortex test case is one of the more challenging tests for mod-
els for immiscible two-phase flow. The reason for this is the severe stretching and deformation of
the convected interface caused by the nonlinear velocity field during the advection which makes
accurate mass conservation challenging.

Consider an initially circular fluid region of radius 0.15 in a domain of size Qp = [0, 1] x [0, 1].
Initially, the center of the fluid is at (0.5, 0.75). This circular region is advected with a divergence
free nonlinear velocity field u(x, ¢) defined as

Mass ratio, Circular fluid rotation, K=754. Mass ratio, Circular fluid rotation, K=1700.
1.01 1.003
1.008 —— Without correction —— Without correction
' — With correction 1.002 — With correction
1.008 1.001
o 1.004 g 1 ,
o o v
o 1.002 @ "V
g ] 'v ‘E“ 0.999
0.998 0.998
0.996 0.997
994 .
0.99 100 200 300 400 500 600 0-996 200 400 600 800 1000 1200
Number of time steps. Number of time steps.
Mass ratio, Circular fluid rotation, K=3572.
1.002
—— Without correction
1.0015 — With correction
~1.001
o
E
o 1.0005
3
> !
1
0.9995
0.999 500 1000 1500 2000 2500
Number of time steps.
Figure 15. Time history of mass error for the circular fluid rotation case.
Table III. Average mass error £, and error in the level-set field Eq(T) for
the rotation of a circular interface.
Characteristic mesh width & E Xl Eg(T) Order of Ey(T)
3.64e-02 1.6199E-14  6.6142E-03 —
2.43e-02 4.2944E-16  2.2104E-03 2.99
1.67e-02 1.7417E-15  1.2526E-03 1.77
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u(x,t) = (sin®(7x1) sin(2wx2), — sin? (7w x7) sin(27x1)) " cos (%), an
xeQp, 0t <T.
This definition of the velocity field implies that the interface should return to its original position at
time ¢t = T, which is also the final time. The value of T is set to 2.
The evolution of the interface is shown in Figure 16 for three different mesh widths, together with
the exact initial and final position of the interface.

Reverse vortex test case, time=0.
1 . . .

—K=754
09| — K=1700
0.8 ——K=3572
0.7f
0.6f
0.5¢
0.4+
0.3t
0.2
0.1
0
0 0.2 0.4 0.6 0.8 1
Reverse vortex test case, time=(1/4)T. Reverse vortex test case, time=(1/2)T.
1 ‘ 1 :
0ol| —K=754 0.9l | ——K=754
—K=1700 —K=1700
08| —k=3572 08| —k=3572
0.7} 0.7
0.6 0.6
0.5 0.5
0.4} 0.4
0.3} 0.3
0.2} 1 0.2
0.1} 1 0.1
0 : : 0 : ‘ :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Reverse vortex test case, time=(3/4)T. Reverse vortex test case, time=T.
1 1
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0.6f 0.6
0.5¢ 0.5
0.41 1 0.4
0.3f ] 0.3
0.2r 1 0.2
0.1f 1 0.1
0 : : : 0 : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 16. The evolution of the interface position for the reverse vortex test case.
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Mass ratio, Reverse vortex test case.
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Figure 17. Time history of mass error for the reverse vortex test case.

Table IV. Average mass error E7, and error in the level-set field Eq(T) for
the reverse vortex test case.

Characteristic mesh width & E 1"’4 Ey(T) Order of Eg(T)
3.64e-02 1.48167E-14  5.6716E-3 —
2.43e-02 3.3508E-16  1.8284E-3 3.101
1.67e-02 4.7809E-16  1.0951E-3 1.669

Figure 17 shows the time history of the mass error during one full rotation for three different mesh
sizes. In Table IV, the average mass error £, and the error of the LS field E¢(T') are presented.
The solution of the LS field converges with second order accuracy, while even for this nonlinear,
velocity field mass is conserved (nearly) exactly.

10. CONCLUSIONS

We have developed a (nearly) exactly mass-conserving method for the simulation of immiscible
incompressible two phase flow in geometrically intricate two-dimensional domains. The method
developed is the extension of the MCLS method toward unstructured triangular grids. The VoF
function and the inverse function derived for a triangular mesh are very simple, robust, and effi-
cient to evaluate. Due to the use of a discontinuous Galerkin discretization method for the LS
field, the mass-conserving correction can be applied locally in each element. This approach is sig-
nificantly more efficient and robust than the original MCLS formulation. Numerical experiments
indicate the LS field converges with second order accuracy in space and mass is conserved up to
machine precision.
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