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SUMMARY

In this paper, the steady incompressible Navier–Stokes equations are discretized by the finite element
method. The resulting systems of equations are solved by preconditioned Krylov subspace methods. Some
new preconditioning strategies, both algebraic and problem dependent are discussed. We emphasize on the
approximation of the Schur complement as used in semi implicit method for pressure-linked equations-type
preconditioners. In the usual formulation, the Schur complement matrix and updates use scaling with the
diagonal of the convection–diffusion matrix. We propose a variant of the SIMPLER preconditioner. Instead
of using the diagonal of the convection–diffusion matrix, we scale the Schur complement and updates with
the diagonal of the velocity mass matrix. This variant is called modified SIMPLER (MSIMPLER). With
the new approximation, we observe a drastic improvement in convergence for large problems. MSIMPLER
shows better convergence than the well-known least-squares commutator preconditioner which is also
based on the diagonal of the velocity mass matrix. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical solution of the incompressible Navier–Stokes equations is an active area of scien-
tific research nowadays. Solving the resulting linear system efficiently is of primary interest,
because most of the CPU time and memory is consumed in solving the linear systems. The steady

∗Correspondence to: M. ur Rehman, Delft University of Technology, Faculty EEMCS, Delft Institute of Applied
Mathematics, 07.050, Mekelweg 4, 2628 CD, Delft, The Netherlands.

†E-mail: M.urRehman@tudelft.nl

Copyright q 2008 John Wiley & Sons, Ltd.



SIMPLE-TYPE PRECONDITIONERS FOR THE OSEEN PROBLEM 433

incompressible Navier–Stokes equations are given as

−�∇2u+u·∇u+∇ p= f in � (1)

∇ ·u=0 in � (2)

Equations (1) and (2) are known as the momentum equations and the continuity equation, respec-
tively. u is the velocity vector, p is the pressure and � is the viscosity that is inversely proportional
to the Reynolds number. � is a 2 or 3D domain with a piecewise smooth boundary �� with
boundary conditions on ��=��E ∪��N given by

u=w on ��E , �
�u
�n

−np=0 on ��N

Discretization of (1) and (2) by the finite element method (FEM) leads to a nonlinear system.
After linearization by Picard, or Newton, the linear system can be written as[

F BT

B 0

][
u

p

]
=
[
f

g

]
(3)

where F ∈Rn×n is a convection–diffusion operator, B∈Rm×n is a divergence operator and m�n.
n is the number of velocity unknowns and m is the number of pressure unknowns. The system
is sparse, symmetric indefinite in the case of the Stokes problem and unsymmetric indefinite in
the Navier–Stokes problem. The system (3) is obtained from a finite element discretization that
satisfies the LBB condition. In case where the LBB condition is not satisfied, we need some
stabilization scheme in the continuity equation. In that case the right-under block in the matrix is
no longer zero.

To solve the linear system (3), Krylov subspace methods with some suitable preconditioning
techniques are used. For most applications, convergence of Krylov subspace methods depends on
the spectrum of the coefficient matrix. A preconditioner P transforms the linear system Ax=b to
a preconditioned system P−1Ax= P−1b, such that P−1y should be cheap to compute, and P−1A
must have a favorable spectrum for convergence. In general, preconditioning techniques based on
algebraic and physics-based approaches are widely used. Algebraic type preconditioners are based
on an ILU factorization or an approximate inverse of the coefficient matrix, where some pivoting
or a priori reordering strategies are used that makes the preconditioner stable and effective [1–9].
The main properties of these type of preconditioners are:

• extra knowledge about the system is not needed,
• cheap and simple implementation.

Algebraic preconditioners applied to the complete system (3) may breakdown due to zero pivots.
This problem can be solved by pivoting, which is in general very expensive. An alternative is to
apply a suitable a priori renumbering. In Section 2, we will shortly discuss the saddle point ILU
(SILU) preconditioner, which is based on this strategy.

An alternative approach is the use of block preconditioners based on block factorization of the
coefficient matrix. Separate subsystems for velocity and pressure are solved during each iteration.
An important aspect of this approach is a good approximation of the Schur complement. Examples
of such preconditioners can be found in [10–19]. The final goal is to develop preconditioners
that give convergence independent of the Reynolds number. Dependence of the number of nodal

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:432–452
DOI: 10.1002/fld



434 M. UR REHMAN, C. VUIK AND G. SEGAL

points should only be visible in the inner solves. In Section 3, we treat some block triangular
preconditioners based on an approximation of the Schur complement by least-squares commutator
(LSC). An overview of preconditioners for saddle point problems is given in [20, 21].

In Section 3, we will also discuss the semi implicit method for pressure-linked equations-type
preconditioners. SIMPLE [22, 23] is a classical algorithm for solving the Navier–Stokes equations,
discretized by a finite volume technique. SIMPLE and variants of SIMPLE (SIMPLER, SIMPLEC)
are also used as preconditioners [17] or smoother in multigrid. These preconditioners also belong to
the block preconditioners category. The convergence of the SIMPLER preconditioner is considered
to be independent of the Reynolds number. However, an increase in the number of grid elements
effects the convergence of SIMPLER.

In this paper, we will discuss the effect of scaling on SIMPLER and LSC. We will also discuss
the relationship between LSC and SIMPLE pointed out by Elman et al. [12, 24]. In the SIMPLER
preconditioner, we use some modification in the approximation of the Schur complement that makes
it more efficient to use for a wide range of grids; we call it as modified SIMPLER (MSIMPLER).
The comparison with the LSC and SILU shows that the MSIMPLER convergence is better than
LSC and SILU. Moreover, the preconditioner is cheaper than SIMPLER and LSC. In Section 4,
some numerical experiments are presented for two benchmark problems; the backward facing step
and the lid-driven cavity flow. In Section 5 we end with our conclusions.

2. THE SADDLE POINT ILU PRECONDITIONER (SILU)

The saddle point ILU preconditioner is based on an incomplete factorization of the complete
coefficient matrix with an a priori renumbering that makes the preconditioner applicable to saddle
point problems [9]. Two kinds of reordering are introduced for this preconditioner:

1. Renumbering of grid points, which can be accomplished by any renumbering method that
gives an optimal profile. Examples are the techniques described by Sloan [25] and Cuthill
McKee [26].

2. Since we are dealing with saddle point problems, zero pivots may arise during ILU decompo-
sition. An obvious way to avoid this problem is to renumber the unknowns in the sequence:
first all the velocity unknowns and then the pressure unknowns. We call this p-last ordering.
A more sophisticated reordering of unknowns is the so-called p-last per level reordering.
The grid is subdivided into levels, where each level is a connected set of nodes. Thereafter
unknowns are reordered per level, first the velocity unknowns and then the pressures.

After renumbering, ILU decomposition is applied to the reordered coefficient matrix A. The
sparseness structure is defined as follows:

(LD−1U )i, j �=0 for (i, j)∈S (4)

where S consists of those entries of A that are filled by the standard finite element assembly
procedure. Thus, some elements in the pressure zero block are still part of S although their
corresponding matrix coefficients are zero.

Both p-last and p-last per level avoid breakdown of the ILU preconditioner. The profile with
the p-last ordering is relatively large compared with that of the p-last per level. Owing to the local
block reordering, zero pivots become non-zero, during factorization, and no a posteriori pivoting
is required.
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In the p-last per level reordering, one has to be careful at the start of this process. If, for
example, the velocities in the first node are prescribed, we start with a pressure unknown that
gives rise to a zero pivot. Therefore, we always combine the first few levels into a new level. If the
number of free velocity unknowns in this new level is less than the number of pressure unknowns,
we also add the next level to level one, and if necessary this process is repeated. In practice, a
combination of two or three levels is sufficient. Note that the starting level has always a small
contribution to the global profile [9]. In our experiments, p-last per level in combination with
a suitable renumbering of grid points is used. We have observed that p-last per level improves
the convergence of the preconditioned iterative method and avoids the breakdown of ILU. The
convergence of the SILU preconditioner, however, depends on the size of the grid and depends
mildly on the Reynolds number.

3. BLOCK PRECONDITIONERS FOR THE INCOMPRESSIBLE
NAVIER–STOKES PROBLEM

Block preconditioners are based on a block factorization of the incompressible Navier–Stokes
matrix (3). They are either based on a block LDU factorization of (3)[

F BT

B 0

]
=LDU=

[
I 0

BF−1 I

][
F 0

0 S

][
I F−1BT

0 I

]
(5)

where S=−BF−1BT is known as the Schur complement matrix, or on the block DU formulation:

DU =
[
F 0

0 S

][
I F−1BT

0 I

]
=
[
F BT

0 S

]
(6)

Preconditioners based on formulation (6) are known as block triangular preconditioners (Pt ). The
most expensive part of the block preconditioner is the inverse of F and S. The most important part
of block preconditioners consists of cheap but suitable approximations of F−1 and S−1. F−1x= y
is computed by solving Fy= x approximately, and in the same way S−1x= y by approximating
Sy= x .

In general, block preconditioners consist of some good and cheap approximations to F−1 and
S−1 along with matrix vectors multiplications and updates. F−1 is solved approximately, whereas
S−1 is first approximated and then solved.

In order to investigate the spectral properties of the preconditioned matrix, one can consider the
following generalized eigenvalue problem:[

F BT

B 0

][
u

p

]
=�

[
F BT

0 S

][
u

p

]
(7)

This eigenvalue problem has eigenvalues �=1 of multiplicity n, and the remaining eigenvalues
depend on approximation to the Schur complement

BF−1BT p=�i Sp

where �i are the eigenvalues corresponding to the Schur complement matrix [24]. From the
eigenvalues, it is evident that the convergence with the preconditioners Pt strongly depends on
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the approximation to the Schur complement matrix. The better the approximation to the Schur
complement the faster the convergence with Pt . Some preconditioners with nice convergence
properties are published in [11, 12, 14].

Based on the experiments published in [9], we decided to restrict ourselves to the LSC precondi-
tioner because that appeared to be the best converging one of the block preconditioners investigated
in this paper. This preconditioner is shortly recapitulated in the next section.

3.1. Block preconditioners based on approximate commutators

Based on the idea that the commutator of the convection–diffusion operator on the velocity space,
multiplied by the gradient operator, with the gradient operator acting on the convection–diffusion
operator on pressure space is small, Kay et al. [14] introduced an approximation to the Schur
complement

εh =(Q−1
u F)(Q−1

u BT)−(Q−1
u BT)(Q−1

p Fp) (8)

where Qu , the velocity mass matrix, and Qp, the pressure mass matrix, are scaling matrices.
Fp is a discrete convection–diffusion operator on pressure space. The multiplication by Q−1

u and
Q−1

p transforms quantities from integrated values to the nodal values. Pre-multiplication of (8) by

BF−1Qu , post-multiplication by F−1
p Q p and assuming that the commutator is small, leads to the

Schur approximation

BF−1BT≈ BQ−1BTF−1
p Q p (9)

The approximation given in (9) is named as pressure convection–diffusion (PCD) preconditioner,
in which the expensive part BQ−1

u BT in (9) is also replaced by its spectral equivalent matrix Ap
known as the pressure Laplacian matrix. The updated form of PCD is given by

S=−BF−1BT≈−ApF
−1
p Q p (10)

Instead of building two extra operators Fp and Ap in (10), Elman et al. derived a relation for
Fp that makes the commutator small [10, 12]. This can be achieved by solving a least-squares
problem of the form

min‖[Q−1
u FQ−1

u BT] j −Q−1
u BTQ−1

p [Fp] j‖Qu (11)

where ‖.‖Qu is the
√
xTQux norm and [Fp] j represents the j th column of matrix Fp. Solving

this problem leads to

Fp =Qp(BQ
−1
u BT)−1(BQ−1

u FQ−1
u BT)

Substituting this expression into (9) gives an approximation of the Schur complement matrix:

BF−1BT≈(BQ−1
u BT)(BQ−1

u FQ−1
u BT)−1(BQ−1

u BT) (12)

The preconditioner based on this approximation is known as LSC preconditioner. The precon-
ditioner is expensive if the full velocity mass matrix is used in the preconditioner. Therefore, Qu

is replaced with Q̂u , the diagonal of the velocity mass matrix.
In the LSC preconditioner, the first three steps are used to solve the approximate Schur comple-

ment (12). Let the residual during GCR iteration step be given by r =
[
ru
rp

]
, where ru and rp

refer to the velocity and pressure part, respectively. Then the preconditioning steps with the LSC
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preconditioner are given by:
LSC preconditioner:

1. Solve (BBT)p=rp, where (BBT)= BQ̂−1
u BT.

2. Update rp = BQ̂−1
u F Q̂−1

u BT p.
3. Solve (BBT)p=−rp.
4. Update ru =ru−BT p.
5. Solve Fu=ru .

In general the convergence of LSC depends both on the mesh size and on the Reynolds number.
According to [24] sometimes there is no h-dependency. Furthermore, the sensitivity to the Reynolds
number is only mild. In [27] it is shown that for recirculating flows the convergence clearly depends
on both issues. In our experiments we have observed that the Reynolds dependency decreases for
finer grids. Results for stabilized elements are reported in [28].

Per iteration LSC is more expensive than PCD since it requires two Poisson solves instead of
one, whereas PCD requires two extra operators Fp and Ap on the pressure space including some
boundary conditions. Nevertheless, its convergence is better and in the literature it is concluded
that LSC is faster than PCD.

3.2. SIMPLE(R) preconditioner

SIMPLE-type methods are frequently used to solve the incompressible Navier–Stokes equations.
Originally, SIMPLE has been developed for finite volume and finite difference discretizations
[22, 23]. The algorithm is based on the following steps. First the pressure is assumed to be known
from the prior iteration. Then the velocity is solved from the momentum equations. The newly
obtained velocities do not satisfy the continuity equation since the pressure is only a guess. In the
next substeps the velocities and pressures are corrected in order to satisfy the discrete continuity
equation.

In this paper we apply SIMPLE-type preconditioners for the Navier–Stokes equations discretized
by the finite element method.

The algorithm is derived from the block LU decomposition of the coefficient matrix (3)[
F BT

B 0

][
u

p

]
=
[
F 0

B −BF−1BT

][
I F−1BT

0 I

][
u

p

]
=
[
f

g

]
(13)

The approximation F−1=D−1=diag(F)−1 in the (2,2) and (1,2) block of the L and U block
matrices, respectively, leads to the SIMPLE algorithm. Solve[

F 0

B −BD−1BT

][
u∗

�p

]
=
[
f

g

]
(14)

and [
I D−1BT

0 I

][
u

p

]
=
[
u∗

�p

]
(15)

In the SIMPLE algorithm form, the above two steps are performed recursively.
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SIMPLE algorithm:

1. Solve Fu∗ =ru−BT p∗.
2. Solve Ŝ�p=rp−Bu∗.
3. Update u=u∗−D−1BT�p.
4. Update p= p∗+�p,

where pressure p∗ is estimated from the prior iterations. D is the diagonal of the convection–
diffusion matrix and Ŝ=−BD−1BT is an approximation of the Schur complement.

Vuik et al. [17] used SIMPLE and its variants as a preconditioner to solve the incompressible
Navier–Stokes problem. One iteration of the SIMPLE algorithm with assumption p∗ =0 is used
as a preconditioner. The preconditioner converges nicely if used in combination with the GCR
method. However, the convergence rate suffers from an increase in the number of grid elements
and Reynolds number.

A variant of SIMPLE, SIMPLER gives Reynolds-independent convergence. Instead of estimating
the pressure p∗ in the SIMPLE algorithm, p∗ is obtained from solving a subsystem

Ŝ p∗ =rp−BD−1((D−F)uk+ru) (16)

where uk is obtained from the prior iteration. In case SIMPLER is used as preconditioner, uk

is taken equal to zero. The classical SIMPLER algorithm proposed by Patanker consists of two
pressure solves and one velocity solve. In the literature, the SIMPLER algorithm is formulated
such that the steps of the algorithm are closely related to the symmetric block Gauss–Seidal
method [29]. This form of the SIMPLER preconditioner can be written as(

u∗

p∗

)
=
(
uk

pk

)
+M−1

L BL

((
ru

rp

)
−A

(
uk

pk

))
(17)

(
uk+1

pk+1

)
=
(
u∗

p∗

)
+BRM

−1
R

((
ru

rp

)
−A

(
u∗

p∗

))
(18)

where A represents the complete matrix given in (3), uk and pk in (17) are obtained from the
previous step (both zero in our case) and

BR =
(
I −D−1BT

0 I

)
, MR =

(
F 0

B Ŝ

)
(19)

and

BL =
(

I 0

−BD−1 I

)
, ML =

(
F BT

0 Ŝ

)
(20)

The steps given in (17) and (18) contain two Poisson solves, two velocity subproblems
solves—opposed to one velocity solve in the classical algorithm—and matrix vector updates.
However, the extra velocity solve in formulation (17) and (18) has no significant effect on the
convergence with the SIMPLER preconditioner.
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Lemma
In the SIMPLER preconditioner/algorithm, both variants (one or two velocity solves) are identical.

Proof
We first start with the choice uk and pk which are zero vectors. To solve the system Pz=r , (17)
reduces to (

u∗

p∗
)

=M−1
L BL

(
ru
rp

)
(21)

Rewriting (21) leads to

p∗ = Ŝ−1(rp−BD−1ru) (22)

and

u∗ =F−1(ru−BT p∗) (23)

Next we consider (18). First compute the residual part(
run
rpn

)
=
(
ru
rp

)
−A

(
u∗

p∗
)

(24)

The velocity part becomes

run =ru−Fu∗−BT p∗

If we substitute u∗ from (23) into run we get

run =ru−FF−1(ru−BT p∗)−BT p∗ =0

and the pressure part

rpn =rp−BTu∗

therefore, (18) reduces to (
uk+1

pk+1

)
=
(
u∗

p∗
)

+BRM
−1
R

(
0

rpn

)
(25)

The formulation (21) and (25) gives rise to three steps in the SIMPLER preconditioner because
there is no need to perform an extra velocity solve in (25) when the right-hand side is zero.

�p= Ŝ−1(rp−Bu∗) (26)

uk+1=u∗+BD−1�p (27)

and

pk+1= p∗+�p (28)

This also holds in the SIMPLER algorithm with non-zero uk and pk , which proves the theorem.
�
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We observe in our numerical experiments that both variants are different if inexact solves are
used, but the convergence of both variants is nearly the same. SIMPLER is more expensive than
SIMPLE. One iteration of the SIMPLER algorithm is approximately 1.3 times more expensive
than the SIMPLE iteration [17]. SIMPLER convergence is also faster than that of the SIMPLE
preconditioner. However, convergence of both preconditioners is h-dependent.

3.3. Improvements in the SIMPLER preconditioner

Since we use different preconditioners, this can only be combined with a flexible Krylov method.
Next we suggest two changes in the SIMPLER preconditioner to improve the convergence for

Stokes and Navier–Stokes. Two new changes are suggested in the SIMPLER preconditioner that
makes the preconditioner more attractive to use in solving the Navier–Stokes problem.

3.3.1. hSIMPLER. We have observed that in the Stokes problem, the SIMPLER preconditioner
shows stagnation at the start of the iterative method. This behavior is not seen in the SIMPLE
preconditioner. A better convergence can be achieved if the first iteration is carried out with the
SIMPLE preconditioner and after that SIMPLER is employed. We call this combination as hybrid
SIMPLER (hSIMPLER). This implementation gives a fair reduction in the number of iterations if
the Stokes problem is solved. However, in the Navier–Stokes problem, SIMPLER performs better
than hSIMPLER. More details are given in the part with numerical experiments.

3.3.2. MSIMPLER. Elman et al. [12, 24] discussed relations between SIMPLE and commutator
preconditioners. The more general form of (12) is given by

(BF−1BT)−1≈Fp(BM
−1
1 BT)−1 (29)

where

Fp =(BM−1
2 BT)−1(BM−1

2 FM−1
1 BT)

where M1 and M2 are scaling matrices. Consider a new block factorization preconditioner in
which the Schur complement is based on a commutator approximation but built on SIMPLE’s
approximate block factorization written as:

P=
[
F 0

B −BM−1
1 BT

][
I D−1BT

0 I

][
I 0

0 F−1
p

]
(30)

When M1=D and Fp is the identity matrix, then the preconditioner formulation (30) corresponds
to SIMPLE. The formulation given in (30) is equivalent to the SIMPLE algorithm if the subsystem
for the pressure part in step 2 in the SIMPLE algorithm is solved with the approximation given
in (29)

Ŝ�p=rp−Bu∗

where

Ŝ=−(BM−1
1 BT)F−1

p
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When FD−1 is close to identity, Fp will also be close to identity. This is true in a time-dependent
problem with small time steps where the diagonal of F has larger entries than the off-diagonal
entries [12].

Here, we utilize the observation of Elman regarding the time-dependent problem. We know that
in time-dependent problems

Ft = 1

�t
Qu+F (31)

where Ft represents the velocity matrix for the time-dependent problem and �t represents the time
step. For small time step Ft ≈(1/�t)Qu . This kind of approximation has been used in fractional
step methods for solving the unsteady Navier–Stokes problem [30–32]. We use this idea in solving
the steady Navier–Stokes problem. Therefore, we choose M1=M2= Q̂u in (29) resulting in:

Fp =(BQ̂−1
u BT)−1(BQ̂−1

u F Q̂−1
u BT)

If we assume that the factor F Q̂−1
u in Fp is close to identity, then

Fp =(BQ̂−1
u BT)−1(BQ̂−1

u BT)≈ I

and the approximation (29) becomes

BF−1BT≈(BQ̂−1
u BT) (32)

Based on this result, we replace D−1 in the SIMPLER algorithm by Q̂−1
u . We refer to this method

as MSIMPLER. MSIMPLER is described by the following step:
MSIMPLER preconditioner:

1. Solve Ŝ p∗ =rp−BQ̂−1
u ru .

2. Solve Fu∗ =ru−BT p∗.
3. Solve Ŝ�p=rp−Bu∗.
4. Update u=u∗− Q̂−1

u BT�p.
5. Update p= p∗+�p.

In case of quadrilaterals and hexahedrons, Q̂−1
u is the lumped velocity mass matrix, which can also

be constructed by using a Newton–Cotes integration rule. In case of quadratic triangles this matrix
is singular and we replace it by the diagonal of the consistent mass matrix. For quadratic tetrahedra
the situation is somewhat surprising. The lumped velocity mass matrix contains negative entries
for the elements corresponding to vertices. Nevertheless, the diagonal elements of BQ̂−1

u BT are
all positive. The convergence of MSIMPLER appears to be comparable to that of hexahedra. If
we replace Q̂−1

u by the diagonal of the consistent mass matrix, with positive elements only, the
convergence of MSIMPLER becomes much slower.

3.4. Cost comparison of the preconditioners

From a construction point of view, the LSC and MSIMPLER preconditioner are built from available
matrices. Another advantage is that the Schur complement is constructed once—at the start of the
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linearization—because Q̂−1
u remains the same during the linearization steps. The preconditioning

steps with both preconditioners involve two Poisson solves and one velocity subproblem solve as
the major steps.

Computationally, per iteration, the MSIMPLER preconditioner is less expensive than the LSC
preconditioner. Both preconditioners have to solve three subsystems (2 for the pressure and 1 for
the velocity) per iteration. We assume that solving the subsystem corresponding to the pressure
takes sp flops and the subsystem corresponding to the velocity part takes f u flops. nnzB are the
number of non-zero entries in B and nnzF are the number of non-zero entries in F . Then the cost
of the MSIMPLER preconditioner per step is

costmsimpler=8nnzB +5n+2m+2sp+ f u

and the cost of the LSC preconditioner is

costlsc=6nnzB +2nnzF +3n+2sp+ f u

We assume that the cost of solving the subsystem in both preconditioners is the same. Then the
difference in cost of both preconditioners consists of matrix vector multiplications and updates.
Per iteration, the difference in cost is:

diff=(2nnzF )−(2m+2n+2nnzB)

If diff>0, MSIMPLER is cheaper than LSC and this appears to be true in finite elements that
satisfy the LBB conditions.

4. NUMERICAL EXPERIMENTS

Numerical experiments are performed for the following benchmark problems in 2D and 3D:

1. The 2D L-shaped domain known as the backward facing step is shown in Figure 1. A
Poisseuille flow profile is imposed on the inflow (x=−1; 0�y�1) and zero velocity condi-
tions are imposed on the walls. Neumann conditions are applied at the outflow, which
automatically sets the mean outflow pressure to zero.

2. 2D-driven cavity problem; flow in a square cavity with enclosed boundary conditions and a
lid moving from left to right given as

ux =1−x4 at y=1, −1�x�1

known as regularized cavity problem.

The above two problems are also solved in 3D. Preconditioned Krylov subspace methods are
used to solve the Stokes and the Navier–Stokes problem. We divide the experiments into two
sections; Section 4.1 which deals only with SIMPLE-type preconditioners and Section 4.2 which
consists of a comparison of SIMPLE-type preconditioners with the LSC and SILU preconditioner
for various problems. To solve the subsystems iteratively, MG and ILU preconditioned Krylov
subspace methods are used. The iteration is stopped if the linear systems satisfy ‖rk‖2/‖b‖2�tol,
where rk is the residual at the kth step of Krylov subspace method, b is the right-hand side and tol
is the desired tolerance value. Some abbreviations used are: ts for time in seconds, iter. for outer
iterations, NC for no convergence, in-it-u and in-it-p for the number of iterations taken by the
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Figure 1. Backward facing step domain.

Table I. Stokes backward facing step solved with preconditioned GCR(20) with accuracy of 10−6, PCG
used as an inner solver (SEPRAN).

SIMPLE SIMPLER hSIMPLER MSIMPLER

Grid iter. (ts) in-it-u
in-it-p iter. (ts) in-it-u

in-it-p iter. (ts) in-it-u
in-it-p iter. (ts) in-it-u

in-it-p

8×24 39 (0.06) 64
299 26 (0.05) 60

416 19 (0.03) 43
300 11 (0.02) 18

164
37 (0.14) 19 (0.07) 17 (0.06) 12 (0.05)

16×46 72 (0.6) 205
1032 42 (0.5) 177

1233 31 (0.34) 124
907 12 (0.1) 24

346
68 (1.94) 30 (0.86) 24 (0.68) 15 (0.44)

32×96 144 (8.2) 692
4084 NC 44 (5.97) 692

2824 16 (0.9) 54
864

117 (34) 114 (32) 37 (10.6) 20 (5.75)

64×192 256 (93) 2054
13075 NC 89 (141) 4362

12033 23 (8.5) 145
2307

230 (547) NC 68 (161) 25 (60)

solver to solve subsystems in the preconditioners corresponding to the velocity and pressure part,
respectively. SEPRAN‡ (written in FORTRAN) and IFISS package§ (written in MATLAB) are
used to solve the problems. Numerical experiments are performed on a Intel 2.66GHz processor
with 8GB RAM.

4.1. SIMPLE-type preconditioners

To test the SIMPLE-type preconditioners for Stokes, we used the first (Stokes) step in the 2D
backward facing step problem. All SIMPLE preconditioners are combined with the GCR method
[33], since this method allows variable preconditioners. Table I shows the computation time and
number of iterations for a series of grids. For each grid, experiments are performed twice, first
with low inner accuracy (upper row) and then with high inner accuracy (lower row).

‡http://ta.twi.tudelft.nl/sepran/sepran.html.
§http://www.maths.manchester.ac.uk.
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Figure 2. Convergence plot of SIMPLE-type peconditioners for the Stokes problem.

In case of SIMPLE and MSIMPLER, a low inner accuracy implies that the subsystems for
the velocities are solved with a relative accuracy of 10−1, and the systems for the pressure with
an accuracy of 10−2. In case of high accuracy we used 10−6 both for the velocity and pressure.
For SIMPLER and hSIMPLER it was necessary to increase the accuracy for the inner solves for
increasing grid size. Otherwise, no convergence could be reached. The reason to compare low and
high inner accuracies is to investigate the dependence of the SIMPLE-type preconditioners on the
inner accuracy. From Table I it is clear that MSIMPLER is the best choice both with respect to
the number of iterations as to the CPU time. Increasing the inner accuracy has only a small effect
on the number of GCR iterations but a considerable negative effect on the CPU time.

Figure 2 shows that SIMPLER stagnates at the start of iterations. This behavior has been erased
by using hSIMPLER. The necessary increase of inner accuracies for finer grids for SIMPLER and
hSIMPLER is visible in the smaller difference between upper and lower row in Table I. We also
see that SIMPLER does not converge at all for the fine grids.

The behavior of these preconditioners for a Navier–Stokes flow (driven cavity) is shown in
Figure 3. A fixed 64×64 grid is used and Q2−Q1 elements. The Reynolds number is varied from
100 to 1000 and no upwinding is applied. In all cases the low inner accuracy of the upper row
in Table I is used. The left-hand figure shows the average number of inner iterations per Picard
step and the right-hand figure shows the overall CPU time, which increases due to the increase of
Picard iterations when Reynolds increases. We see that the average number of inner iterations per
Picard step depends mildly on the Reynolds number. Again MSIMPLER proves to be superior to
the other SIMPLE-type preconditioners.

Based on this conclusion we shall only use MSIMPLER in the next sections to compare it with
other types of preconditioners.

4.2. Preconditioners comparison

In this section, we compare MSIMPLER with LSC and SILU. First we consider the 2D lid-driven
cavity and the 2D backward facing step with Q2–Q1 rectangular elements. Next we investigate
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Figure 3. The Navier–Stokes problem solved in Q2–Q1 discretized 64×64 driven cavity
problem with varying Reynolds number, number of average inner iterations (left), CPU

time in seconds (right)-(SEPRAN).

Table II. Backward facing step Navier–Stokes problem with preconditioned Bi-CGSTAB with
accuracy 10−6 (MG solver is used to solve subsystems (IFISS)).

Re=100 Re=200 Re=400

LSC MSIMPLER LSC MSIMPLER LSC MSIMPLER

Grid iter. (ts )

16×48 17 (8) 9 (4.5) 27 (13) 15 (7) 73 (39) 29 (16)
32×96 16 (17) 11 (13.7) 15 (22) 10 (17) 24 (28.5) 15 (21)
64×192 24 (119) 20 (99) 23 (118) 15 (84) 22 (112) 18 (102)

the behavior for 3D problems using both hexahedra and tetrahedra. Finally, we test the methods
for 2D stretched grids.

4.2.1. Comparison in 2D. The first test we apply is the solution of the 2D backward facing step
for various grid sizes and Reynolds numbers. Table II shows the number of iterations and CPU
time in the second Picard step both for LSC and MSIMPLER. The system of equations for pressure
and velocity is solved by one MG cycle. Although we see that the convergence depends on the
Reynolds number for coarse grids, this is no longer the case for the finest grid. Furthermore, it is
clear that the number of iterations decreases for fixed Reynolds number for finer grids. Presumably
this is due to the decrease in cell Reynolds number (element size/�). In all cases MSIMPLER
requires less iterations than LSC, but the difference becomes small for increasing mesh size. The
relative good result of the last number in the MSIMPLER column must be because of the better
cell Reynolds number.

Table III shows the convergence of MSIMPLER, LSC and SILU in case we replace MG by
an ILU preconditioned BI-CGSTAB solver. The accuracy for the inner solves is 10−2, which is
sufficient to reach the final accuracy of the Navier–Stokes problem without increasing the number
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Table III. Backward facing step: preconditioned GCR is used to solve the Navier–Stokes
problem with accuracy 10−2, using Bi-CGSTAB as inner solver, the number of iterations is

the accumulated iterations consumed by the outer and inner solvers (SEPRAN).

LSC MSIMPLER SILU(Bi-CGSTAB)

Grid iter. (ts)
in-it-u
in-it-p iter. (ts )

Re=100 (11 Picard iterations)
16×48 114 (1.7) 464

2609 73 (1) 213
1308 246 (0.8)

32×96 193 (22) 1928
8598 106 (10.5) 859

3238 731 (8.7)

64×192 328 (545) 9703
26884 182 (162) 4088

11266 2071 (95)

128×384 695 (8863) 55000
154000 296 (2806) 16000

54000 6352 (1155)

Re=200 (17 Picard iterations)
16×48 179 (2.3) 549

3320 137 (1.7) 332
2546 436 (1.3)

32×96 302 (31) 2518
12611 161 (14) 1052

4619 1100 (13)

64×192 598 (983) 13947
44840 232 (191) 4718

12761 3114 (141)

128×384 946 (10405) 62000
203000 541 (6301) 35000

63000 2668 (9038)

Re=400 (31 Picard iterations)
16×48 441 (4.93) 1004

7600 356 (3.9) 734
6445 716 (2.13)

32×96 528 (51) 3000
29000 328 (25) 1593

9764 1706 (20.7)

64×192 NC 405 (408) 5130
19299 5366 (246)

128×384 NC 663 (7025) 29600
66480 NC

of Picard iterations. In this table we report the sum of the iterations in all Picard steps, which
gives a complete picture of the whole problem. In this case the difference between MSIMPLER
and LSC is much more pronounced. The reason must be the change of inner solver. Furthermore,
we see that SILU is faster than MSIMPLER except for the finest grid in combination with the
larger Reynolds numbers.

In order to see if the block preconditioners are sensitive to the inner accuracies, we compare
one MG cycle for the inner solver with an exact inner solver in Table IV. From this table it is
clear that MSIMPLER is hardly affected by the inner accuracy, whereas LSC is more sensitive in
case of coarse grids in combination with a high Reynolds number.

4.2.2. Comparisons in 3D. Iterative solvers for the Navier–Stokes are especially important for 3D
problems. In our experiments, we used both hexahedra and tetrahedra. Only Taylor–Hood elements
have been applied.

Table V gives the results of the various preconditioners for the Stokes problem solved on a
3D backward facing step with hexahedral elements. An IC preconditioned CG solver is used as
inner solver for the block preconditioners. MSIMPLER requires the least number of iterations and
shows almost grid independent convergence behavior. The computation time of SILU is also good,
but for finer grids it becomes more expensive than MSIMPLER.
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Table IV. Driven cavity flow problem: The Navier–Stokes problem is solved with preconditioned
Bi-CGSTAB with accuracy 10−6 (MG and direct solver are used to solve subsystems (IFISS)).

Re=100 Re=500 Re=1000

LSC MSIMPLER LSC MSIMPLER LSC MSIMPLER

Grid MG/Exact MG/Exact MG/Exact MG/Exact MG/Exact MG/Exact

No. of iterations per Picard step
16×16 14

10
10
9

53
29

28
25

102
55

50
53

32×32 19
15

13
12

35
26

26
20

82
55

45
43

64×64 22
22

19
19

34
29

25
25

63
55

34
32

128×128 27
27

25
28

47
44

42
44

62
59

43
43

Table V. 3D backward facing step (hexahedra): The Stokes problem is solved with accuracy
10−6 (PCG is used as inner solver in the block preconditioners (SEPRAN)).

SIMPLE LSC MSIMPLER SILU (Bi-CGSTAB)

Grid iter. (ts ) in-it-uin-it-p iter. (ts )

8×8×16 44 (4) 97
342 16 (1.9) 41

216 14 (1.4) 28
168 26 (0.7)

16×16×32 84 (107) 315
1982 29 (51) 161

1263 17 (21) 52
766 65 (16.7)

24×24×48 99 (447) 339
3392 26 (233) 193

2297 17 (77) 46
1116 117 (118)

32×32×40 132 (972) 574
5559 37 (379) 233

2887 20 (143) 66
1604 189 (235)

In the Navier–Stokes problem it is sufficient to use an accuracy of 10−2 per Picard step. In this
case SILU performs slightly better than MSIMPLER (see Table VI).

To investigate the behavior of the preconditioners for tetrahedral elements, we solved the 3D
lid-driven cavity problem (Table VII). For the Stokes problem the result is comparable to the
hexahedral case. MSIMPLER requires less CPU time than LSC and SILU. The number of GCR
iterations is almost mesh independent.

The situation for Navier–Stokes is different from that of hexahedra. Table VIII gives the CPU
time and the number of iterations. Now MSIMPLER proves to be the best choice. The increase
in iterations for increasing Reynolds number is caused by an increase in the number of Picard
iterations. The Reynolds dependency of all methods per Picard iteration is only mild.

4.2.3. Grid stretching. One of the unsolved issues in the iterative solution of the Navier–Stokes
equations is the case of stretched grids. In practical applications it is very common to have
stretched grids; hence, it is important that an iterative solver is capable of dealing with such
meshes. Therefore, we consider a 2D lid-driven cavity with a grid refined in the region where we
have strong gradients. The subdivision is symmetric with respect to midpoints of the square, see
Figure 4. The stretch factor SF is defined as the ratio of the largest and smallest edge in the grid.
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Table VI. 3D backward facing step (hexahedra): The Navier–Stokes problem is solved with the accuracy
10−4, a linear system at each Picard step is solved with accuracy 10−2 using preconditioned Krylov

subspace methods (Bi-CGSTAB is used as inner solver in block preconditioners (SEPRAN)).

LSC MSIMPLER SILU

Re GCR iter. (ts ) GCR iter. (ts ) Bi-CGSTAB iter. (ts )

8×8×16
100 117 (17.6) 74 (9.6) 140 (8.9)
200 176 (25) 112 (14.8) 255 (13.8)
400 280 (36) 168 (21) 1688 (49)

16×16×32
100 173 (462) 96 (162) 321 (114)
200 256 (565) 145 (223) 461 (173)
400 399 (745) 235 (312) 768 (267)

32×32×40
100 240 (5490) 130 (1637) 1039 (1516)
200 NC 193 (2251) 1378 (2000)
400 675 (11000) 295 (2800) 1680 (2450)

Table VII. 3D Lid-driven cavity problem (tetrahedra): The Stokes problem is solved with accuracy 10−6

(PCG is used as inner solver in block preconditioners (SEPRAN)).

LSC MSIMPLER SILU (Bi-CGSTAB)

Grid iter. (ts)
in-it-u
in-it-p iter. (ts )

8×8×8 9 (0.24) 17
52 8 (0.23) 16

53 32 (0.25)

16×16×16 12 (4.8) 49
152 11 (3.4) 31

150 73 (5.6)

32×32×32 17 (89) 129
426 14 (54) 68

380 237 (162)

Table VIII. 3D lid-driven cavity problem (tetrahedra): The Navier–Stokes problem is solved with accuracy
10−4, a linear system at each Picard step is solved with accuracy 10−2 using preconditioned Krylov

subspace methods (Bi-CGSTAB is used as inner solver in block preconditioners (SEPRAN)).

LSC MSIMPLER SILU

Re GCR iter. (ts ) GCR iter. (ts ) Bi-CGSTAB iter. (ts )

16×16×16
20 30 (20) 20 (16) 144 (22)
50 57 (37) 37 (24) 234 (35)
100 120 (81) 68 (44) 427 (62)

32×32×32
20 38 (234) 29 (144) 463 (353)
50 87 (544) 53 (300) 764 (585)
100 210 (1440) 104 (654) 1449 (1116)
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Figure 4. A 32×32 grid with stretch factor=8 (left), Streamlines plot on
the stretched grid (right)-(SEPRAN).

Table IX. 2D Lid-driven cavity problem on 64×64 stretched grid: The Stokes problem is
solved with accuracy 10−6 (PCG is used as inner solver in block preconditioners (SEPRAN)).

LSC MSIMPLER SILU

Stretch factor GCR iter. GCR iter. Bi-CGSTAB iter.

1 20 17 96
8 49 28 189
16 71 34 317
32 97 45 414
64 145 56 NC
128 NC 81 NC

Results for solving the Stokes problem are shown in Table IX. The convergence of MSIMPLER,
LSC and SILU detoriates with an increase in the stretching factor. All three preconditioners show
an increase in the number of iterations with increase in stretching. For a large stretch factor, the
preconditioners even fail to converge.

Compared with the performance of these preconditioners in the Stokes problem, the situation
is even worse in the Navier–Stokes problem. Until now, as far as we know no results for LSC in
stretched grids are published. In Table X, we see that MSIMPLER and LSC perform poorly in
stretched grids for the Navier–Stokes problem. With the increase in stretching factor, all precondi-
tioners mentioned show bad convergence. The inner and outer iterations in the block preconditioners
stagnate after some reduction in the residual. For a certain stretch factor, the performance of these
preconditioners becomes worse with the increase in the Reynolds number and the grid size.

5. CONCLUSIONS

In this paper we have studied the convergence behavior of some block preconditioners for Stokes
and Navier–Stokes problems both in 2D and 3D. Results for various grid sizes and Reynolds
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Table X. 2D lid-driven cavity problem on stretched grid: The Navier–Stokes problem is solved with
accuracy 10−4. A linear system in each Picard step is solved with accuracy 10−2 using preconditioned
Krylov subspace methods (Bi-CGSTAB is used as inner solver in the block preconditioners (SEPRAN)).

LSC MSIMPLER SILU

Stretch factor Re GCR iter. GCR iter. Bi-CGSTAB iter.

32×32
4 100 148 86 181

200 214 149 247
400 NC 261 268

8 100 171 104 242
200 228 155 234
400 NC 307 311

64×64
4 100 NC 114 526

200 NC 179 591
400 NC 407 630

8 100 NC 141 1131
200 NC 233 754
400 NC NC 814

numbers have been investigated. In some cases we also compared the convergence with an algebraic
preconditioner (SILU). We come to the following conditions:

• The performance of SIMPLER in solving the Stokes problem can be enhanced by employing
the first iteration with SIMPLE and then use SIMPLER (hSIMPLER).

• MSIMPLER is at present the fastest of all SIMPLE-type preconditioners.
• In contrast with SIMPLER, MSIMPLER is not sensitive to the accuracies that are used for

the inner solvers.
• MSIMPLER is the cheapest to construct of all SIMPLE-type methods since the Schur comple-

ment matrix is constant during the nonlinear steps and can therefore be made at the start of
the process. This is because the scaling is independent of the velocity.

• In all our experiments MSIMPLER proved to be cheaper than LSC. This concerns both the
number of outer iterations, inner iterations and CPU time.

• The number of outer iterations in MSIMPLER hardly increases if a direct solver for the
subsystems is replaced by an iterative solver. This is in contrast with LSC where large
differences are observed. It appears that the combination of LSC with MG is almost optimal,
but the combination of LSC with a PCG inner solver can take many iterations and much CPU
time.

• In our experiments, MSIMPLER proved to be cheaper than SILU, especially when the problem
is solved with high accuracy.

• The performance of all these preconditioners is affected by grid stretching. The number of
iterations increases with an increase in stretching or even diverges in some cases.

We observed that MSIMPLER is able to deal with grids having small aspect ratio, both in 2D
and 3D. However, in case of high aspect ratio, MSIMPLER fails to converge. Unfortunately, all
other preconditioners discussed in this paper have the same behavior. Thus, further research to
solve this problem is needed.
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