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1 Optimal Oil Wells Placement

The optimal oil wells placement problem, a crucial problem in reservoir engineer-
ing, consists in determining the optimum number, type, design, and location of oil
wells to optimize the hydrocarbon production and the drilling costs.
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In industry, the decision to drill a well or not and its location is taken by reservoir
engineers trusting their professional expertise. These decisions strongly relate to
the understanding of the impact of different influencing engineering and geological
parameters. However, such influence is very complex (nonlinear) and changing over
time, thus a deep understanding of such phenomena requires more than human
experience. Satisfying solutions could be provided by practitioners, but optimization
methods can lead to improved configurations.

From a mathematical modeling viewpoint, the number of water injector and
producer wells and the number of branches could be represented by integer
variables. In addition, continuous variables as wells and branches design in the
reservoir, the length of the branches, etc can be considered. The functions to
optimize are generally computed from the outputs of a reservoir fluid flow simulator,
costly in computational time: the outputs to optimize are the quantities of produced
oil and water, and the quantities of injected water, needed for the production).

The two most widely considered objective functions are:

• maximize the quantity of produced oil;
• maximize the revenue of a wells configuration with Net Present Value (NPV)

function. This function combines oil revenue, water management (water injection
and separation), and drilling costs.

In both cases, given a wells location, the objective function value is provided by a
numerical simulator. As we do not have access an analytic formula of the objective
function, the problem is modeled as a Black-Box optimization problem. Hence,
we have no information about the continuity, differentiability, or convexity of the
objective function.

Constraints are generally physical ones, ensuring the practical realizability of
the solution and the correct behavior of the simulator. A useful constraint is also the
water cut constraint that consists in applying some reactive control on each producer
to avoid producing much water which impacts negatively on the NPV. Such reactive
control shuts off producers when the water cut, i.e., the ratio between the water
rate produced and the sum of water and oil rates produced, is higher than a given
threshold. It is also possible to add constraints during the production, e.g., produce
a minimal quantity of oil for instance.

Thus, the oil well placement problem can be modeled as a Black-Box MINLP
problem, a very challenging problem both from a theoretical and a computational
viewpoint. Note also that, as no convexity assumption holds, one should perform
some kind of global search to avoid being trapped in local minima.

In practice, nowadays well placement optimization is an iterative procedure that
can be divided into the following procedures:

• Using engineering judgment, guess initial well(s) location.
• Use an optimization algorithm based on user-defined decision variables to

suggest possible improved well location(s).
• Apply a reservoir response model to report to the optimization algorithm the

performance of the proposed well locations.
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• Include the effect of uncertainty in reservoir properties, economic factors, etc,
which can be an optional step.

• Calculate the objective function (e.g. quantity of produced oil or NPV).
• Repeat steps 2–5 until stopping criteria (set by user) are met.

The approaches to problems 1–5, may differ in the optimization algorithm, reser-
voir response modeling technique, and available decision variables and constraints.

2 Optimization of the Gas-Lift Process

In the gas industry the key problem is the optimal gaslift with minimum energy
consumption. The mathematical complexity of this optimization problem is con-
nected with the matter that the corresponding control problem is of non-regular
structure, boundary conditions of this problem include the control parameters. The
gaslift method is of special importance at the initial period after the flowing of the
oil fields [13, 14, 303]. The motion in the gaslift process is known to obey the
hyperbolic nonlinear partial differential equations. Therefore, at gaslift operation of
the borehole cavity the problem of optimization with boundary control is of special
interest. However, with the original formulation of the problem of optimal control
one encounters certain difficulties. The averagings of the hyperbolic equation
describing the time profile of motion by the gaslift method are given here [13, 303].
It rearranges a partial derivative equation in the nonlinear ordinary differential
equations. The strategy of constructing the objective quadratic functional with the
use of the weight coefficients lies in minimizing the volume of the gas injected in
the annular space and maximizing the desired volume of the Gas-Liquid Mixture
(GLM) at the end of the lifter. In this case, the aim lies in solving the corresponding
optimization problem where the volume of the injected gas which is used as the
initial data and plays the role of the control action. The impossibility of using the
standard methods to construct the corresponding controllers is a disadvantage of
this approach. Yet, since at certain time intervals the boundary control is constant,
the numerical data obtained can be readily compared with the production data.
Using the method of time averaging, the partial derivative equations of motion of
gas and GLM motion proposed in [13] are rearranged in the ordinary differential
equations. The problem of optimal boundary control with the quadratic functional
is formulated on the basis of the above considerations. The results obtained can
be used to control the gaslift borehole cavity at oil extraction. For solution of the
considered problem of boundary controls, the gradient method [303] is modified by
describing the corresponding Euler-Lagrange equations [61].
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3 Total Gas Recovery Maximization

In the short term operation, the most important problem is related to the total gas
recovery maximization. In order to withdraw as much natural gas from a reservoir as
possible, one option is to use waterflooding. This leads to the problem of finding an
optimal water injection rate with respect to different objectives, such as the maximal
ultimate recovery, or the total revenues. Indeed there are several objective functions
due to different aspects of the problem.

Modeling and algorithmic considerations:
Consider two wells drilled on the surface of the gas reservoir, one for gas

recovery and one for water injection. Therefore, let r(t) denote the withdrawal rate
of gas which is bounded by the maximum rate of gas extraction rm(t). Through the
water injection, well water is injected into the reservoir at the nonnegative rate s(t).
This model assumes a constant g which is the ratio of gas entrapped behind the
injected water to the volume of water at any time. The model aims at maximizing
the ultimate gas recovery and can be posed in a nonlinear form. Some researchers
discuss several other objective functions. For example, the objective function to
maximize the present worth value of the net revenues for internal rate of return.

The application of concepts from systems and control theory to oil and gas
production is the unifying idea behind the current research theme Production
Systems and Subsurface Characterisation and Flow.

Past In the previous years, research and development was focused on three main
areas:

1. The innovation of concepts for the hydrocarbons production process. This
includes the application of smart wells, advanced, geophysical monitoring
techniques, downhole treatment, the separation and conversion of substances
and the injection of residuals (waste) [318, 432]. Closed-loop ’measurement and
control’ concepts from system theory will play an important role;

2. The development of an integrated ’real-time’ dynamic simulation, inversion and
validation environment for reservoir, well and processing facilities [233]. This
environment will be used to test and evaluate newly developed technology from
our groups and other sources. This environment is used as a learning environment
and for work process analysis and optimisation;

3. Laboratory of innovation. The analysis and testing of methods, techniques
and work processes to accelerate the process of innovation in the energy and
production sector.

Present Currently, the application of concepts from systems and control theory to
oil and gas production is the unifying idea behind the research themes production
systems and subsurface characterisation and flow. By means of modelling, moni-
toring and control, the production systems theme aims at stabilising and optimising
production in order to achieve production targets, which are being expected from an
operator through long term contracts [145, 227].
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Future: Smart Wells and Smart Fields Smart well technology involves down-
hole measurement and control of well bore and reservoir flow. Drilling and
completion techniques have advanced significantly over the last years and allow for
the drilling of complex multi-lateral and extended reach wells, and the installation
of down-hole inflow control valves, measurement devices for flow, pressure and
temperature, and processing facilities such as hydro-cyclones in the well bore.
Smart fields technology, also referred to as ’e-field’ or ’digital oilfield’ technology
involves the use of reservoir and production system models in a closed-loop fashion
[146]. The measurements may originate from sensors in smart wells, but could also
involve simple surface measurements from conventional wells, or originate from
other sources such as time-lapse seismics. Research in smart fields is now focused
on the development of concepts and algorithms to improve hydrocarbon production
though the use of systems and control theory. Future research will address the
reservoir management aspects on time scales from months to many years, and in
particular the development of techniques for closed-loop reservoir management. We
are also developing methods to speed up the modelling and simulation part an order
of magnitude [206]. For this reason we combine fast and robust iterative methods
for large linear systems with Model Order Reduction insights originating from
Optimal Control research. This combination has already led to very good results
[102]. Various groups from the Delft University of Technology, Padua University
and EPFL Lausanne collaborate in order to develop a new generation of simulators.

4 Optimal Scheduling of Energy Hubs and CCHP Systems

The future development of electric and thermal energy generation, transport and
distribution relies on the exploitation of both conventional and renewable energy
sources via a wide variety of energy conversion technologies; on the top of
that electric and thermal energy storage could be utilized in order to match the
demand with response exploiting more effectively the possible synergies between
the installed units.

In this context Combined Heat and Power (hereafter CHP) power plants and
engines are particularly attractive due to the higher efficiency when compared
to conventional units generating only one energy commodity. CHP units can be
classified into two main categories:

• one-degree-of-freedom units feature a single independent operating variable, the
load (defined as the current fuel input rate divided by the maximum one), which
controls the two energy outputs (e.g., electric and thermal power). As a result,
for a certain power plant or engine load, it is not possible to vary the share of the
two energy outputs according to customer needs. Examples of one-degree-of-
freedom CHP units are internal combustion engines and gas turbines with waste
heat boiler, backpressure steam cycles, and combined cycles with back-pressure
steam turbine.
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• Two-degree-of-freedom units feature two independent operating variables, the
load and another one (such as a steam extraction valve) adjusting the share of
the two energy outputs. Although these systems are more complex and typically
more costly, the second control variable increase the operational flexibility of
the unit. Examples are steam cycles with extraction condensing steam turbine
(a steam extraction valve controls the steam bled from the turbine and used to
provide heat to the customer).

It is worth noting that also more sophisticated units featuring three independent
variables exist (e.g. CHP natural gas combined cycle with post firing and extraction-
condensing steam turbine). Moreover, looking at the energy outputs, some units can
be configured so as to cogenerate cooling power in addition to electricity and heat.
Such units are called Combined, Cooling, Heat and Power (CCHP). Examples are
units made by an internal combustion engine, a waste heat boiler and an absorption
chiller (converting heat into chilling power).

Systems featuring several CCHP or CHP units may be integrated with other units
such as boilers, heat pumps, and energy storage systems within so-called Energy
Hubs. The sizes may range from few hundreds of kW for buildings to hundreds of
MW for industrial users and or district heating networks.

Three main types of challenging optimization problems arise when dealing with
such integrated systems:

• short-term scheduling, also called unit commitment,
• long-term operation planning,
• design or retrofit of the energy hub.

The short-term unit commitment problem can be stated as follows:
Given:

• the considered time horizon (e.g., 1 day, 2 days, 1 week) and an appropriate
discretization into time periods (e.g., 1 h, 15 min),

• forecast of electricity demand profile,
• forecast of heating and cooling demand profile,
• forecast of ambient temperature,
• forecast of time-dependent price of electricity (sold and purchased),
• performance maps of the installed units,
• operational limitations (start-up rate, ramp-up, etc.) of units,
• efficiency and Maximum capacity of storage systems;

optimize the following independent variables:

• on/off of units,
• load of units,
• share among heat and power (only for two-degree-of-freedom units),
• energy storage level (hence charge/discharge rate) in each time period (for each

energy storage system);
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so as to minimize the operating costs (fuel + operation and maintenance +
electricity purchase) minus the revenues from electricity sale for the given time
horizon while fulfilling the following constraints:

• energy balance constraints for each time interval, e.g. electric energy, thermal
energy, etc.,

• start-up constraints for each time unit, for each unit,
• ramp-up constraints for each time unit, for each unit,
• performance maps relating the independent control variables of the units with

their energy outputs (e.g. output thermal power as a function of the load),
• a number of case-specific side constraints, e.g. maximum number of daily turns-

on/off, for each unit; precedence constraints between units; minimum time unit
permanence in on/off states, for each unit etc.

All constraints, except the performance maps of the units, can be easily formu-
lated as linear equalities or inequalities. Performance maps of units are generally
nonlinear and often not convex functions yielding to a nonconvex Mixed Integer
NonLinear Program.

Due to the large number of variables, both integer and continuous, commercially
available global MINLP solvers are not capable of finding the global optimum
within reasonable time limits [404]. Besides genetic algorithms [236] or Tabu search
[291] from late nineties or other solutions going from Lagrangian relaxation [57] to
heuristic algorithms based on engineering practice for simple problems [46], the
most effective approaches are based on the linearization of performance maps so
as to obtain a Mixed Integer Linear Program (MILP) [307]. This allows to use
efficient MILP solvers, such as Cplex [214] and Gurobi [184], and have better
guarantees on the quality of the returned solution [404]. The performance maps of
the machines can be linearized using either the convex hull representation [254] or
classic piecewise linear approximations [89] of 1D [456] and 2D functions [46]; the
latter kept into account also daily storage facing an large increase of computational
effort, ranging from two to three orders of magnitude.

The so described problem assumes that forecasts of energy demands and prices
are accurate and their uncertainty is limited. If data uncertainty needs to be
considered, the short-term scheduling problem can be extended and reformulated
either as a two-stage stochastic program [15, 66] or a robust optimization problem
with recourse [313, 467].

As an additional challenge, when determining the optimal scheduling of CHP
units, it is necessary to take into account of the European Union regulation for high
efficiency CHP units [104]. If a CHP unit achieves throughout the whole year a
primary energy saving index above a threshold value, incentives are granted. Being
a yearly-basis constraint, it poses the need of considering the whole operating year
as time horizon when determining the optimal scheduling of CHP units. The same
requirement concerns energy hubs featuring seasonal storage systems [161] capable
of efficiently storing energy for several months. Since tackling the scheduling
problem for the whole year as a single MILP is impracticable, metaheuristics based
on time decomposition to reach near optimal solutions in a reasonable amount of
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time have been proposed. Bischi et al. [47] proposed a rolling horizon algorithm in
which the time horizon is partitioned into weeks. The extension of the MILP model
from 1 day to 7 days may imply an increase of computational time from few sec
for a single day to tens of minutes for the week (with MILP gap below 0.1%) but
it allows to better manage the thermal storage system accounting for the weekly
periodicity of the users’ demand. Within the rolling-horizon algorithm, the weekly
MILP subproblems are solved in sequence from the current week till the end of the
year. The yearly-basis constraints related to the CHP incentives are included in each
weekly MILP subproblem by estimating the energy consumption and production
of the future weeks of the year with the corresponding typical operating weeks
(previously determined and optimized). If the yearly basis CHP incentive constraints
are not met, the rolling horizon algorithm is repeated considering a higher (less
optimistic) energy consumption for the future weeks. Thanks to the decomposition
of the operating year into weekly subproblems, the computational time required to
optimize the whole year of operation with a tight relative MILP gap (0.1%) ranges
from 1 day to 3 days, making the algorithm an effective scheduling and control tool
for energy hubs featuring CHP units.

Finally it is worth pointing out that, due to growing industrial interest in the
optimal operation of complex energy systems for providing cooling, heating and
power (e.g., energy service companies, multi-utilities managing district heating
networks as well as power plant operators), several tools are already available on
the market [42].

5 The Pooling problem

The pooling problem arises in the chemical process and petroleum industries. It is a
generalization of a minimum cost network flow problem where products possess
different specifications (e.g. sulphur concentration). In a pooling problem, flow
streams from different sources are mixed in intermediate tanks (pools) and blended
again in the terminal points. At the pools and terminals, the quality of a mixture is
given as the volume (weight) average of the qualities of the flow streams that go into
them.

There are three types of tanks: inputs or sources, which are the tanks to store the
raw materials, pools, to blend incoming flow streams and make new compositions,
and outputs or terminals, to store the final products. According to the links among
different tanks, pooling problems can be classified into three classes:

• Standard pooling problem: in this class there is no flow stream among the pools.
It means that the flow streams are in the form of input-output, input-pool and
pool-output.

• Generalized pooling problem: here, flow streams between the pools are allowed.
• Extended pooling problem: here, the problem is to maximize the profit (minimize

the cost) on a standard pooling problem network while complying with con-
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straints on nonlinearly blending fuel qualities such as those in the Environmental
Protection Agency (EPA) Title 40 Code of Federal Regulations Part 80.45.

There are many equivalent mathematical formulations for the pooling problem,
such as P-, Q-, PQ- and HYB- formulations, and all of them may be formulated
as nonconvex (bilinear) problems, and consequently the problem can possibly have
many local optima. More information about different formulations may be found in
[183].

Despite the strong NP-hardness of a pooling problem in general, proved in [11],
and even for problems with a unique pool, proved in [12], or with single-flow restric-
tion, proved in [190], there are classes of pooling problems for which algorithms
with polynomial running time exist; see e.g. [28, 53, 189, 191]. Furthermore, much
progress in solving small to moderate size instances to global optimality has been
made since 1978, when Haverly in [193] described the P-formulation and solved
small standard pooling problems using recursive linear programming. A common
approach is to construct good lower and upper bounds for use in a branch-and-
bound framework; see e.g. [147]. To have tighter lower bounds, different methods
have been proposed in the literature including Lagrangian approaches [4], (piece-
wise) linear relaxations [100, 101, 305], modification of polynomial optimization
hierarchies [292], and convex nonlinear relaxations [274]. The first software that is
developed specifically to solve pooling problems is called APOGEE [305], where
the authors make use of an iterative piecewise linear relaxation, of which it is proved
in [100] that the first iteration may result in a lower bound far from the optimal value.

Due to the high-complexity, different pooling problem instances have been
collected in libraries such as [158], which are used as the test bed to assess the
performance of newly developed solvers and algorithms for nonlinear optimization
problems; see, e.g., [293, 304, 306].

Two interesting generalizations of the pooling problem are:

• more general networks where other types of units than pools are also present, e.g.
units that extract pollutants. Mathematically, this generalisation falls within the
framework of so-called wastewater management networks; see e.g. [235].

• treating the network topology as a decision variable, as done in [305].
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1 Gas Pipeline Design

Natural gas is considered by many to be the most important energy source for the
future. The objectives of energy commodities strategic problems can be mainly
related to natural gas and deal with the definition of the “optimal” gas pipelines
design which includes a number of related sub problems such as: Gas stations
(compression) location and Gas storage locations, as well as compression station

R. Schwarz · R. Lenz · I. Yüksel-Ergün · J. Zittel
Zuse Institute Berlin (ZIB), Berlin, Germany

F. Lacalandra
QuanTek, Bologna, Italy

L. Schewe
University of Edinburgh, Edinburgh, UK

A. Bettinelli · T. Parriani
Optit, Bologna, Italy

D. Vigo
University of Bologna/Optit, Bologna, Italy

A. Bischi
Skolkovo Institute of Science and Technology, Moscow, Russia

E. Martelli
Politecnico di Milano, Milan, Italy

K. Vuik
Delft University of Technology, Delft, Netherlands

H. Madsen (�) · I. Blanco · D. Guericke
Technical University of Denmark, Lyngby, Denmark
e-mail: hmad@dtu.dk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
N. S. Hadjidimitriou et al. (eds.), Mathematical Optimization for Efficient

and Robust Energy Networks, AIRO Springer Series 4,
https://doi.org/10.1007/978-3-030-57442-0_6

89



90 R. Schwarz et al.

design and optimal operation such in [255]. Needless to say these problems involve
amount of money of the order of magnitude of the tens of billions EUR and often
these problems can be a multi-countries problem. From the economic side, the
natural gas consumption is expected to continue to grow linearly to approximately
153 trillion cubic feet in 2030, which is an average growth rate of about 1.6%
per year. Because of the properties of natural gas, pipelines were the only way to
transport it from the production sites to the demanding places, before the concept
of Liquefied Natural Gas (LNG). The transportation of natural gas via pipelines
remains still very economical.

From an optimization standpoint, the gas pipeline design problems can be divided
in the following main sub problems:

1. how to setup the pipeline network, i.e. its topology;
2. how to determine the optimal diameter of the pipelines;
3. how to allocate compressor stations in the pipeline network;

Typically, the mathematical programming formulations of these optimization
problems contain many nonlinear/nonconvex and even nonsmooth constraints and
objective functions because of the underlying physics of the gas flows that need
to be considered. The classic constraints are the so-called Weymouth panhandle
equations, which are a potential-type set of constraints and relate the pressure and
flow rate through a pipeline.

As in many other situations, problems 1–3 are a single problem but a divide
et impera principium is applied. Therefore the problems 1 and 2 are somehow
determined via simulations and normally there are—in the first but also in the
second problem—many economic drivers, and also political drivers when many
countries are involved. From a technical point of view, problem 3, the allocation of
the compressor stations, is probably the most challenging. Because of the high setup
cost and high maintenance cost, it is desirable to have the best network design with
the lowest cost. This problem concerns many variables: the number of compressor
stations which is an integer variable, the pipeline length between two compressor
stations, and the suction and discharge gas pressures at compressor stations. This
problem is computationally very challenging since it includes not only nonlinear
functions in both objective and constraints but, in addition, also integer variables.

In the case of transmission networks, existing infrastructure is already available,
but needs to be expanded to increase the capacity. To this end, new pipelines are
often built in parallel to existing ones, effectively increasing the diameter. On the
other hand, for the exploitation of new gas fields or off-shore transportation, pipeline
systems are designed from scratch with no predetermined topology. Capacity
planning and rollout has a time horizon of several years. Accordingly, some
optimization models consider multiple stages of network expansion. Many of the
planning problems are formulated as mixed-integer non-linear programs (MINLP)
with integer variables and nonconvex constraints. To solve these models directly,
solvers apply outer approximation and spatial branching. Alternatively, the problem
functions can be approximated piecewise linearly, yielding a mixed-integer linear
program (MILP) formulation. A survey paper concerned with water networks is
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also relevant here [90]. Specialized algorithms make use of the fact that certain
subproblems with fixed integer variables have a convex reformulation, which can be
solved efficiently and used for pruning [212, 356].

The design of pipeline topologies from scratch is solved with a decomposition,
where first a topology is fixed heuristically, and improved by local search. The
pipeline diameters are then solved separately [366].

In the case that the network has a tree topology, Dynamic Programming has been
applied, both for the choice of suitable pipe diameters [366] as well as compression
ratios [58].

Another important aspect is how to treat varying demand scenarios. A finite
number of different scenarios can be tackled using decomposition techniques [385].
When the network has a tree topology, also robust variants can be reduced to finitely
many scenarios [362].

2 District Heating Network Design

In the current energy market context, District Heating (DH) has an important role,
especially in countries with cold climate. DH often leverages on Combined Heat
and Power (CHP) units, capable to reduce the consumption of primary energy
to fulfill a given electric and thermal request, as well as on existing significant
sources of heat generated by industrial processes or waste-to-energy heat generation.
Additionally, heating networks will need to increase their flexibility in operation due
to an increasing mix of renewable sources, both heat sources or green electricity
utilized by heat pumps, distributed generation and smart consumers as well as DH
operational temperature reduction and heat storage integration [277, 426].

From a management standpoint, the design of the district heating network is
a strategic business issue, since it requires large investments due to the cost of
materials and civil works for the realization of the network. Proper strategic design
of the network (i.e. definition of the most convenient backbone pipelines to lay
down) and tactical targeting of most promising potential customers both aims at
maximizing the Net Present Value (NPV) of the investment.

Finding the extension plan for an existing (or eventually empty) DH network that
maximizes the NPV at a given time horizon is a challenging optimization problem
that can be stated as follows. Given:

• A time horizon (e.g., 15 years)
• A set of power plants, with specific operational limitations (maximum pressure,

maximum flow rate,. . . );
• An existing distribution network, with information on the physical properties of

the pipes (length, diameter,. . . );
• A set of customers already connected to the network with known heat demand;
• A set of potential new pipes that can be laid down;
• A set of potential new customers that can be reached;



92 R. Schwarz et al.

find:

1. The subset of potential new customers that should be reached;
2. Which new pipelines should be installed;
3. The diameter of the new pipes

that maximize the NPV.
Research on modelling approaches for representing the behavior of the thermo-

hydraulic network through sets of non-linear equations can be found in the literature
(see for example [52] and [343]). Solving systems of non-linear equations is difficult
and computationally expensive. For this reason, aggregation techniques of the
network elements are often used to model large district heating networks, at the
expense of some accuracy [258, 259, 272, 450, 452] and [272].

In [25], an integer-programming model is proposed for the optimal selection of
the type of heat exchangers to be installed at the users’ premises in order to optimize
the return temperature at the plant. The authors achieve good system efficiency at a
reasonable cost.

Bordin et al. [54] present a mathematical model to support DH system planning
by identifying the most advantageous subset of new users that should be connected
to an existing network, while satisfying steady state conditions of the thermo-
hydraulic system. Bettinelli et al. [42] extend the model proposed by Bordin et al.
[54] with the selection of the diameter for the new pipes and a richer economic
model that takes into account

• Production cost and selling revenues;
• Cost for installing and activating new network links;
• Cost for connecting new customers to the network;
• Amortization;
• Taxes;
• Budget constraints.

Moreover, while the investment on the backbone pipelines is done on the first
year, new customers are not connected immediately, but following an estimated
acquisition curve (e.g., 25% the first year, 15%, the second year, . . . ). Hence, the
corresponding costs and revenues have to be scaled accordingly.

The thermos-hydraulic model must ensure the proper operation of the extended
network. The following constraints are to be imposed:

• Flow conservation at the nodes of the network;
• Minimum and maximum pressures at the nodes;
• Plants operation limit: maximum pressure on the feed line, minimum pressure on

the return line, minimum and maximum flow rate;
• Pressure drop along the links;
• Maximum water speed and pressure drop per meter.


