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Abstract

A general framework is given for applying the Newton-Raphson method to solve power
flow problems, using power and current-mismatch functions in polar, Cartesian coordinates
and complex form. These two mismatch functions and three coordinates, result in six
versions of the Newton-Raphson method for the solution of power flow problems. We present
a theoretical framework to compare these variants for PQ-buses and PV-buses. Furthermore,
the convergence behavior is investigated by numerical experiments. This enables us to
compare new versions with existing versions of the Newton power flow methods. We conclude
that the polar current-mismatch and Cartesian current-mismatch versions that are developed
in this paper, performed the best result for both distribution and transmission networks.

1 Introduction

A power flow computation that determines the steady state behavior of the network is one of
the most important tools for grid operators. The solution of a power flow computation can be
used to assess whether the power system can function properly for the given generation and
consumption. Therefore, power flow computations are performed in power system operation,
control and planning.

The power flow or load flow problem is the problem of computing the voltage magnitude |V;|
and angle J; in each bus of a power system where the power generation and consumption are
given. Over the years, a lot of power flow solution techniques [1-15] have been developed on
transmission networks. Gauss-Seidel (G-S), Newton power flow (N-R) and Fast Decoupled Load
Flow (FDLF) based algorithms are the most widely used methods for the solution of transmis-
sion power flow problems. In practice, the Newton power flow method is preferred in terms of
quadratic convergence and improved robustness [16]. Furthermore, many new methods [17-28]
have been developed for distribution power flow problems and generally they are divided into
two main categories such as modification of conventional power flow solution methods (G-S, N-R,
FDLF) and Backward-Forward Sweep (BFS)-based algorithms. Several reviews on distribution
power flow solution methods can be found in [29-32].

In this paper, we focus on the Newton based power flow methods for balanced transmission
and distribution networks. Depending on problem formulations (power or current mismatch) and
coordinates (polar, Cartesian and complex form), the Newton-Raphson method can be applied
in six different ways as a solution method for power flow problems. These six versions of the
Newton power flow method are considered as the fundamental Newton power flow methods from
which the further modified versions [8-15] are derived. Table 1 shows the previously published
papers that considered each variation of the Newton power flow method.

The most widely used version is the Newton power flow method using the power-mismatch
and polar coordinates which is introduced in [2]. In this method, the reactive power mismatch
AQ and the voltage magnitude correction AV for each PV bus are eliminated from the Jacobian
matrix equations and therefore the order of the equation is (2N — N, — 2).



Coordinates
Polar | Cartesian | Complex form
Power 2] [33] [34]
Current [35] (35, 36]

Mismatch formulation

Table 1: Known versions of the Newton power flow method

In the version using the power-mismatch and Cartesian (rectangular) coordinates introduced
in [33], the reactive power mismatch AQ is not eliminated from the Jacobian matrix equations
for each PV bus but replaced by a voltage-magnitude-squared mismatch equation

AV = (V)2 = (V1) + (V™)2 (1)

Therefore, the order of the Jacobian matrix equation is (2N — 2) and it is concluded that the
method is slightly less reliable and less rapid in convergence than the polar version in [33].

Although it is mentioned in [2,16] that the complex power flow formulation does not math-
ematically lead to an analytic function of the complex voltage because of conjugate terms, the
paper [34] investigated the version of Newton power flow method using the power-mismatch in
complex form. In paper [34], the Jacobian matrix equations are developed in complex form for
a PQ bus whereas two separate equations are created for a PV bus. The correction values of
complex voltage for the PQ and PV buses are computed separately using different tolerances at
each iteration. However, it is preferred to calculate correction values for both the PQ and PV
buses using common Jacobian matrix equations and the same tolerance.

The version using the current-mismatch and a mix of Cartesian and polar coordinates is dis-
cussed in [35]. In this method, each PQ bus is represented by two equations that are constructed
from the real and imaginary parts of the complex current-mismatch function. A PV bus is rep-
resented by a single active power mismatch AP and the voltage-magnitude-squared mismatch
equation (1). The order of the Jacobian matrix equation is (2N — 2) and it is concluded in [16]
that these versions perform less satisfactorily than the power-mismatch versions.

The version using the current-mismatch and Cartesian coordinates is considered again in [36].
This method introduces a new dependent variable AQ for each PV bus and an additional equation
relating the corrections in polar and Cartesian coordinates:

V’I” Vm
AlV| = “ AV 4~ AY™ )
V] V]
V’F Vm
A = AV™ — —— AV,
vtV T wEtY )

Using equations (2) and (3), this method makes the Jacobian matrix equation square in order
to have a unique solution. In this method, the real AI" and imaginary AI™ current-mismatch
functions are expressed in terms of the real AP and reactive A@ power-mismatch functions.
Then the reactive power-mismatch AQ is considered as a dependent variable for each PV bus
and computed at each Newton iteration. Minor attempts were made to speed up the solution
method using a partly constant approximation of the Jacobian during the iterations, but the
results were not encouraging [36].

We did not find any discussion covering the Newton power flow method using the current-
mismatch in complex form.

All variations of Newton power flow method are developed by different researchers in differ-
ent ways. This paper aims to discuss all six versions of the Newton power flow method using a



common framework and to introduce new developments to improve the performance of other ver-
sions besides the most used version using the power-mismatch and polar coordinates [2]. Major
improvements were done by us in Cartesian power-mismatch, polar current-mismatch and Carte-
sian current-mismatch versions. In versions using Cartesian coordinates, equations (2) and (3)
are used for PV buses instead of the voltage-magnitude-squared mismatch equation (1). In case
of versions using the current-mismatch regardless of the choice of the coordinates, the reactive
power ( is considered as a dependent variable for each PV bus. Thus, we compute the correction
AQ at each iteration and update @ using the computed corrections. In case of the Cartesian
power-mismatch, the order of the system is decreased to (2N — N, —2) whereas [33] uses a system
with the order (2N — 2). The complex current-mismatch and complex power-mismatch versions
are developed only for PQ buses.

This paper is structured as follows. In section 2, a mathematical model of a power system
is introduced in general. Section 3 mathematically describes the power flow problem. The
Newton-Raphson method and its all six versions for the solution of power flow problems are
explained in section 4. The numerical result of the solution techniques on balanced distribution
and transmission networks, is presented in section 5. Finally, the conclusion is given in section
6.

2 Power system model

Power systems are modeled as a network of buses (nodes) and branches (transmission lines)
whereas a network bus represents a system component such as a generator, load and transmission
substation etc. There are three types of network buses such as a slack bus, a generator bus (PV-
bus) and a load bus (PQ-bus). Each bus in the power network is fully described by the following
four electrical quantities:

|[Vi| : the voltage magnitude

d; : the voltage phase angle
P;  : the active power
Q; : the reactive power

Depending on the type of the bus, two of the four electrical quantities are specified as shown
in Table 2:

Bus type Number of buses Known Unknown
slack node or swing bus 1 [Vil, d; P, Q;
generator node or PV-bus N, P, Vi Q;,0;
load node or PQ-bus N-N;,—-1 P;, Q; |Vil, 6i

Table 2: Network bus type

Here, 7 is the index of the bus, N, is the number of generator buses and N is the total number
of buses in the network. For more details on the power system model we refer to [37].



3 Power flow problem

The power flow, or load flow, problem is the problem of computing the voltage magnitude |V;|
and angle §; in each bus of a power system where the power generation and consumption are
given. According to Kirchoft’s Current Law (KCL), the relation between the current I injected
at the network buses and the bus voltages V, is described by the admittance matrix Y:

I, Yiiu Yi2 - - Yin Wi
Iy Yor Yo - - Yopn Va

I=YV & . = . . .. . . (4)
In Yvi Yn2 - - Yan]| |Wn

where I; is the injected current and V; is the voltage in phasor domain at bus 7 and Y;; is the
element of the admittance matrix. The injected current at bus ¢ can be computed from equation
(4) as follows:

N
Li=> YV (5)
k=1

The mathematical equations for the power flow problem are given by:

Sy = Vil} (6)
N

=V, Y ViV (7)
k=1

where S; is the injected complex power at bus 7 and I is the complex conjugate of the injected
current I;. Mathematically, the power flow problem comes down to solving a nonlinear system
of equations.

4 Newton power flow solution methods

The Newton based power flow methods use the Newton-Raphson (NR) method that is applied
to solve a nonlinear system of equations F(Z) = 0. In the NR method, the linearized problem is
constructed as the Jacobian matrix equation

—J(Z)AZ = F(Z) (8)
where J(Z) is the square Jacobian matrix and AZ is the correction vector. The Jacobian matrix
is obtained by J;; = 8%(;) and is highly sparse in power flow applications [2,16]. The iteration

process of the Newton based power flow method is shown in Algorithm 1. Traditionally, a direct
solver is used to solve the Jacobian matrix equation. Convergence of the method is mostly

measured in the residual norm ||F(Z")|| or relative residual norm ||%H of the mismatch

function F(#") at each iteration. The Newton power flow method has a quadratic convergence
when iterates are close enough to the solution. The Newton power flow methods formulate F'(&)
as power or current mismatch functions and designate the unknown bus voltages as the problem
variables & using three different coordinates such as polar, Cartesian and complex form. The list
of problem variables defined in different coordinates is shown in Table 3.



Algorithm 1 Newton’s power flow method

1: h:=0

2: given initial iterate 7°

3: while not converged do

4: solve the correction —J(7")Az" = F(zh)

5 update iterate 2"+ := z" + Azt

6 h:=h+1

7: end while
Coordinates Vector &

. T

Polar (V'i:‘vﬂezél) [513"' 75N3|V1‘,"' 3|VN‘]
Cartesian (Vi = V{ + ™) | [V Vi Voo VR
Complex form (V;) [Vl, S VN]T

Table 3: Variable Z in different coordinates

4.1 Power-mismatch formulation:

The power flow problem (7) is formulated as the power-mismatch function F (&) as follows:

Fi(&) = ASy(F) = S — Sy()

Z

=SP-Viy YaVy  Viel.N (9)
k=1

where S77 = P’ +1Q;" is the specified complex power injection at bus i. In general, specified
active power P;? and reactive power @Q:? injections at bus ¢ are given by following equations:

Pl'sp = PiG - PiL (10)
Q" =Qf —Qf (11)

where PiG and Qf are specified active and reactive power generation whereas PF and QF are
specified active and reactive power loads respectively. Here, PiL and Qf are modeled as a constant
power load.

The complex power-mismatch function (9) is separated into real equations and variables
using polar and Cartesian coordinates. Table 4 shows power-mismatch functions in different
coordinates. An application of first order Taylor approximation to the power-mismatch functions
results in a linear system of equations 8 that is solved by all Newton iteration. Table 5 displays
the equations that compute the elements of the Jacobian matrix in different coordinates which
are the partial derivatives of the power-mismatch function.



Coordinates Power-mismatch function: F;(Z) = AS;(Z)

AP(Z) = PP — S, [Vil Vil (Gik cos 6ip, + By, sin 6z,
Polar tsp N i
AQ’L( ) = Q;" — > e VillVil(Gik sin 05 — By, cos 0 )
— Sp _ . m m . r . m
Cartesian Pi(z) = Pi Zk 1 ( NGV = B Vi) + V(B Vi + G Vi ))
AQi(#) = Qf = XL, (V" GV = Ba") = Vi (B + GuVi"))

Complex form | AS;(Z) = S;? —V; Zivzl Yo Vi

Table 4: Power-mismatch function in different coordinates

Coordinates Jix = 31;;(5)
ag\lxg/lk(f) = _|‘/1‘(sz CcOoSs 6“6 + Bik sin 51;]6)
OAQ; (T .
i £k a|ka|q) = —|Vi|(Gix sin §; — Bix, cos ;)
aABI;i,C(I) = —|Vil|Vk|(Gix sin 6, — By, cos dix,)
Folar 28215 — —|V||Vi| (—Gik cos G — Buy sin oy
Y c (2\V;|Gii + 221 Vil (G cos 8ig, + By sin 5ik))

=~ (= 2MVilBii + Sy Vil (G sin b — Bk cos o))
‘92%&(5? = _Z#k |Vill Vi |(— Gk sin 65 + By cos dix)

a%{@ = — > i |VillVi|(Gik cos dix, + Big sin 6,

aAdI‘D;T(I) — _(VirGik + ‘/Z‘mBz’k)

i#k | 5D = — (VG — V7 Bax)
BAP{,(E) — —(VvimGik: — V?sz)

Cartesian 5 gvk B
e o s v,
OAP; (% T m N T m
S = _(Vi Gii + V" Bii + 31 (Gir Vi — Bin Vi)

N —

i=k aAa%T@) =— (VimGii — VB + Eévzl(Bikar + Gy Vi)
S50 = — (VimGia = VI B+ S (BaVi + GaVi™))
Ot = V7 Gy + Vi" By — 1L (GaVil = BaVir™)
7k | B = Vv

i=k | B0 = (Vv +17)

Complex form

Table 5: The partial derivatives of the power-mismatch function in different coordinates

4.1.1 Polar power-mismatch version (NR-p-pol [2])

The Jacobian matrix equation (8) derived from the power-mismatch function in polar coordinates
is given in the partitioned form for convenience of presentation:

[ | v ] - 6] az

: : 11 _ 9AP 12 _ 9AP 21 _ 9AQ 22 _ 9AQ
where sub-matrices are given as J*° = %5, J'© = VT J 55~ and J°° = V] The

Jacobian matrix equation (12) has to be modified for all PV buses since a voltage magnitude



|V;| is specified instead of reactive power @; in case of a PV bus j. Since Q;p is not given, the
reactive power mismatch AQ); is not formulated for all PV buses. All partial derivatives of it
with respect to voltage magnitude |V;| and angle ¢; cannot be taken. Similarly, A|V;| does need
to be computed for a PV bus j since |V;| is now known. Therefore, we eliminate all the ?‘9\AVI; L

0AQ; 9AQ; d 289,
v, > o, avil
and AQ; from the power mismatch vector F(&) for each PV bus j. The order of the resulting

Jacobian matrix equation is (2N — N, — 2).

from the Jacobian matrix J(&), A|V;| from the correction vector AZ

4.1.2 Cartesian power-mismatch version (NR-p-car)

The Jacobian matrix equation (8) derived from the power-mismatch function in Cartesian coor-
dinates is given as follows:
_ JU g2 AV™ | | AP (13)
J 1 J AVT | | AQ

where sub-matrices are given as J'! = gé—fi, Ji2 = 24P " j2l _ 23—2 and J?2 = %. The

Jacobian matrix equation (13) has to be modified for all PV buses for the same reason as the
polar power-mismatch version 4.1.1 had. In this versions, the reactive power-mismatch AQ);

cannot be formulated for a PV bus j and therefore all partial derivatives %@?j and aaAVQTj cannot
k k
be taken.
In paper [33], the reactive power mismatch AQ is replaced by a voltage-magnitude-squared

mismatch equation (1) for all PV buses and therefore all partial derivatives %@?j and %AV% are
k k

oAV;|? 2A[V;|?
also replaced by v and v

equation remains (2N — 2) and it is concluded that the method is slightly less reliable and less
rapid in convergence than the polar power-mismatch version 4.1.1 in [33].

In this paper, we develop a new approach that improves the performance of this version. In
our approach, the reactive power-mismatch AQ); is removed from the power-mismatch vector

F(z) for all PV buses and therefore all partial derivatives 88%/83 and %AVQ" are also eliminated
k k

respectively. Moreover, the order of the Jacobian matrix

from the Jacobian matrix J(Z). As a result of the elimination, the Jacobian matrix becomes a
rectangular matrix. In order to make the Jacobian matrix square, we use the equation (2) with
A|V;| = 0 since |Vj] is now specified for a PV bus j. This gives us the relation between the
corrections AV and AV/™ as:

AV = i AV 14
Jj - er J (14)
Using (14), the column of the Jacobian matrix with respect to the derivatives %AV? and aaAV?’i
are added to the column with respect the derivatives %‘A,_ff and %%,%‘ as follows:
J J
OAP; OAP, V™ OAP;

AV — ( _ ) AV™ 15
avjm J av}m er avjr J ( )
0AQ; 0AQ; V" OAQ;

AV = -4 AV™ 16
a‘/]m J ( aV]m ‘/jr 8‘/]7‘ ) J ( )

Then the correction AV]" can be eliminated from the correction vector AZ for each PV bus j
and therefore the order of the Jacobian matrix equation is (2N — N, — 2).



4.1.3 Complex power-mismatch version (NR-p-com)

The Jacobian matrix equation (8) derived from the power-mismatch function in complex form
is given as follows:
—[J][av]=[as] (17)

where the Jacobian matrix J = % is obtained by taking the partial derivatives of the complex

power-mismatch functions with respect to the complex voltage V. The Jacobian matrix equation
(17) holds for all PQ buses but not for all PV buses because the complex power mismatch AS
cannot be formulated for all PV buses. Therefore, this version can be applied to the power flow
problem on the network with only a slack bus and PQ buses.

4.2 Current-mismatch formulation:

The current equation (5) and the power flow problem (6) are used to formulate the current-
mismatch function F(Z) as follows:

Fi(#) = AL(#)

17— Ii(%)

SN
(V ) =D YaVi  Viel.N (18)
v k=1

sp o\ *
where ;¥ = (Sf' ) is the specified complex current injection at bus 1.

‘/’i
The current-mismatch function (18) can be also expressed in terms of the power-mismatch
function (9) as follows:

Al = (71) (complex) (19)
_ cosGiAP; +sin6;AQ; 4,0 0;AP; — cos 6; AQ; (polar) (20)

Vi Vi
_V AP%‘J/Z"Q/; AQi + ZV; APiWQVi AQ; (Cartesian). (21)

The complex current-mismatch function (18) is separated into real equations and variables
using polar and Cartesian coordinates. Table 6 shows the current-mismatch functions in differ-
ent coordinates. An application of a first order Taylor approximation to the current-mismatch
function results in a linear system of equations 8 that is solved in every Newton iteration. Table
7 displays the equations to compute the elements of the Jacobian matrix in different coordinates
which are the partial derivatives of the current-mismatch function.

10



Coordinates Current- mismatch function: F;(Z) = AL(Z)

P cos §; sin 9, :
Polar AL (@) = \$|Q - Ziv:1 |Vie|(Gik cos 8 — Biy sin dy,)
AIm (f) P sin 6|V|Q cosd; Ech:1 ‘Vk‘(le $in o), + Byp cos (5k)

ri _ PP Vi+QITV" N - ™

Cartesian Alj(z) = IR VmE T Zk (G z‘ka — B V™)

m(g) = BoVi—Qitvr m r
Complex form | AIL(Z) = ( ) Zk 1 Yie Vi

Table 6: Current-mismatch function in different coordinates

Coordinates Jix = 35;(5)
AT (7 -
62\1\2@([3) = —(Gjk cos O, — By sin dy,)
i #k ka = — (G sin 0y, + Bjy cos )
MBITLJJC) = |Vi|(Gir sin 0y, + Biy, cos 6y)
POIar %}c(ﬂ = _‘Vk|(Gik COS (Sk — Bik sin (Sk)
aAall{:(lf) = _(G” COS 6 Bii sin 6) L) 7 cos (‘57‘/+|?LP sin §;
mo = sp s il sp )
i =k % = (Gu Sln(s + le COS(S ) e Slné‘l‘/.g cos b
T . ip )
P8I0 = |Vi|(Gyssin§; + Bys cos §;) — Smﬂv‘f cos b
OAI™(Z 5t 5
P8LD) — _|Vi|(Gyicosd; — Bysind;) + L cnbr@isn
OAI] (&
aw(z) = —Gir
EYNG
7 }é :ZC avv(l) = sz
OAI
. avw(w o) = By
Cartesian aAﬁn( 2 o
—vr = Gk
SAIT(f) _ PPV =)D +2vvim Qi
vy — Gu— iR :
m (= sp ™2 _(ym _ Ty m pSP
i =k M%V.T(I) — B, + Q7" (V) (V‘IV7)|4) V"V P
R sp r 2_ . M psp
ag‘l/}(f) =B + QP (V)" —( \V)I‘*) V"V P,
AL (E) _ PIP((V)2 = (V™)) 42V Vim Q3P
dvi’n - 7Gii + AR
- IALE) v
Complex form i#k Vg lksp
i=k | 2ALE _ _(Sz‘ + Y..)
oV V[? [X3

Table 7: The partial derivatives of the current-mismatch function in different coordinates

4.2.1 Polar current-mismatch version (NR-c-pol)

The Jacobian matrix equation (8) derived from the current-mismatch function in polar coordi-

nates is given as follows:
JH | g2 Ad AI™
- [ J2T [ 22 } [ AlV| ] = [ AI™ ] (22)

dAI 12— BBTAJ g2 — 8% and J22 = dc,ﬁ{/‘ . Same

as the polar power-mismatch version 4.1.17 A|VJ| needs to be computed for a PV bus j since |V}|

where sub-matrices are given as J!! =

11



. o N AT . . -
is now known. Therefore, we eliminate all the % and %‘—V?‘ from the Jacobian matrix J(Z)
J J

and Al|V;| from the correction vector AZ for each PV bus j. As a result of the elimination, the
Jacobian matrix becomes a rectangular matrix.

In paper [35], each PQ bus is represented by the real AI" and imaginary AI™ current-
mismatch functions. A PV bus is represented by the active power-mismatch AP and the voltage-
magnitude-squared mismatch equation (1). Thus, the order of the Jacobian matrix equation is
(2N — 2) and it is concluded in [16] that these versions perform less satisfactorily than the
power-mismatch versions.

In our approach, the reactive power @), is chosen as a dependent variable as |V | and § for each
PV bus j because we use the current-mismatch formulation directly. Since @); is an unknown
variable, all the first order partial derivatives BBAQI;’T and %AQI’; has to be computed as shown in
Table 8:

OAIT(Z)

9aL® _
. 5
Lo_om | 1T eatte
i = By 0Q);
’ OAT (Z) _ sind,
1 J J
Tl oarl®) _ | coss;
0Q; — |Vjlr

Table 8: The partial derivatives of the current-mismatch function in polar coordinates with

respect to the reactive power @

aaAQI_: and aaAé;n into the Jacobian matrix J(Z) becoming a square
J J

matrix again and the correction AQ); into the correction vector A% for each PV bus j. The initial

reactive power Qg-) at a PV bus j is computed as follows:

Now we add the derivatives

N
QY =" |V;I[Vil(Gj sin ;5 — Bjy cos dj1,). (23)
k=1

In each Newton iteration, the correction AQ); is computed and the reactive power @); is updated
using the computed correction.
4.2.2 Cartesian current-mismatch version (NR-c-car)

The Jacobian matrix equation (8) derived from the current-mismatch function in Cartesian
coordinates is given as follows:

JH | g2 AV™ Al
I 2 AV” = AI™ (24)
where sub-matrices are given as J'' = %‘A/f,:, J12 = 86‘;‘/[:, J? = 88%/1,:2 and J?2 = %AVI;”.

In paper [36], the real AI" and imaginary AI™ current-mismatch functions are expressed
in terms of the real AP and reactive AQ power-mismatch functions. Then the reactive power-
mismatch AQ is considered as a dependent variable for each PV bus and computed at each
Newton iteration. Minor attempts were made to speed up the solution method using a partly
constant approximation of the Jacobian during the iterations, but the results were not encour-
aging [36].

In our approach, the reactive power ); is chosen as a dependent variable for each PV bus

J as polar current-mismatch version 4.2.1. Since ); is an unknown variable, all the first order

partial derivatives 68%1; and a(%g" has to be computed as shown in Table 9:
J J

12



OAIT(Z)

. =0
00 ;
op | 17 oAt () o
Jij = 5 0Q;
IAT (7] v
i=3j 9Q; (V)2 (V)2
oaI (m) | —vr
20, WPV

Table 9: The partial derivatives of the current-mismatch function in Cartesian coordinates with

respect to the reactive power @

Now we add the derivatives BBAQI; and %Aé;” into the Jacobian matrix .J(#) and the correction
J J

AQ); into the correction vector Az for each PV bus j. After the addition, the Jacobian matrix

become a rectangular matrix. In order to make the Jacobian matrix square, we add the column

of the Jacobian matrix with respect to the derivatives %%/I” and aaA‘ffn to the column with respect
J J
the derivatives g@j{; and 7%%/]{; using (14) as follows:
OAIT OAIT V™" OAIT
AV = (Som = S S ) AV 25
a‘/Jm J 8‘/Jm er avjr J ( )
OAI™ OAI™ V™ OAIM™
Cavn = (S - S Ay 2
8ij J 8V]m er 6er J ( )

Then the correction AVJ" can be eliminated from the correction vector AZ for each PV bus j.
The initial reactive power Q? at a PV bus j is computed as follows:

N
Q? = Z (ij(ijVkT = B V") = Vi (Bjr Vi + ijvkm)) (27)
k=1

In each Newton iteration, the correction AQ); is computed and the reactive power @); is updated
using the computed correction.

4.2.3 Complex current-mismatch version (NR-c-com)

The Jacobian matrix equation (8) derived from the current-mismatch function in complex form
is given as follows:
[ ]lav]=[ar] (28)

where the Jacobian matrix J = % is obtained by taking the partial derivatives of the complex

current-mismatch functions with respect to the complex voltage V. As the complex power-
mismatch version 4.1.3, this version is also applicable for the power flow problem on the network
with only a slack bus and PQ buses.

The bus voltage correction in different coordinates is given in Table 10

13



Coordinates | Type of Bus =7 + Az
V(h+1) ‘V|(h+1) 16<h+1>
Polar PQ and PV |V|(h+1) RETNIAR
5(h+1) 6(h + A5(h)
V(’H'l) (Vr)(thl) + (V™) (h+1)
PQ and PV (V7Y = (V[)<’1)}+ (AV[)(’U}
. (V7n)(h+1) _ (Vm)( 1) + (Av;m)( 1)
Cartesian V(h+1) \V|(h+1) 26T
PQ AlV;| = WAVJ?” + mAv.m
Adj = i AV — ‘K PEAV]
AV
PV Ad; = vi
e (h+1) ) )~ w
Complex PQ (NR-p-com) | V; =V 4+ (AV)*

PQ (NR-c-com)

VO 0T Ay

Table 10: Bus voltage correction in different coordinates

14



5 Numerical experiment

The newly developed/improved versions of the Newton power flow method (Cartesian power-
mismatch, polar current-mismatch, Cartesian current-mismatch and complex current-mismatch)
discussed in section 4, are compared to the existing versions of the Newton power flow method
(polar power-mismatch [2], Cartesian power-mismatch [33] and Cartesian current-mismatch [36]).
Two distribution networks (33-bus [38] and 69-bus [39]) and four transmission networks from
matpower [40] (casel354pegase, case2737sop, case9241pegase and casel3659pegase) are used to
test the convergence ability and scalability of all the versions of the Newton power flow solution
method. All methods are implemented in Matlab and the relative convergence tolerance is equal
to 107°. The maximum number of iteration is set to 10. All experiments are performed on an
Intel computer with four cores i5-4690 3.5GHz CPU and 64Gb memory, running a Debian 64-bit
Linux 8.7 distribution.

5.1 Distribution networks

The convergence result of solution methods for distribution networks (DCase33 and DCase 69)
is shown in Table 11.

Test cases

Methods DCase33 DCase69

iter  time  [|F(Z)||e | iter time  ||F(Z)||co
NR-p-pol [2] 3  0.0096 7.4675e-09 | 3  0.0089 1.0426e-08
NR-p-car 3  0.0061 1.0433e-09 | 3  0.0066 8.1777e-09
NR-p-car [33] 3 0.0066 1.0897¢-09 | 3  0.0069 8.0940e-09
NR-p-com 3 0.00560 3.1339¢-06 | 3  0.0050 2.8385e-06
NR-c-pol 2 0.0081 4.0671e-06 | 2  0.0090 7.6450e-06
NR-c-car 2 0.0070 4.0041e-06 | 3  0.0082 1.9483e-11
NR-c-car [36] 2 0.0101 4.0040e-06 | 3  0.0124 1.9483e-11
NR-c-com 3 0.0054 9.9385e-06 | 5  0.0068 9.7421e-06

Table 11: Distribution networks: DCase33 and DCase69

From Table 11, we see that the Newton power flow versions using the current-mismatch
functions have better convergence than versions using the power-mismatch functions regardless
of the choice of the coordinates. Thus, we can conclude that the Newton power flow versions
using current-mismatch are more suitable for solving distribution power flow problems than ver-
sions using power-mismatch functions. Although the complex power-mismatch and the complex
current-mismatch versions have the same number of iterations to converge, these versions have
linear convergence whereas other versions have quadratic convergence. Thus, the complex ver-
sions are the least preferable of the Newton power flow versions. The polar current-mismatch
version that is developed in this paper performed the best for both distribution network cases.

5.2 Transmission networks

Since the complex power-mismatch and complex current mismatch versions are developed for
only PQ buses, these versions are not applied for transmission networks. The convergence re-
sult of solution methods for transmission networks (TCasel354, TCase2737, TCase9241 and
TCasel3659) is shown in Tables 12 and Table 13.
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Test cases

Methods TCasel354 TCase2737

iter  time  [|[F(Z)||e | iter time  [|[F(Z)|]c
NR-p-pol [2] 3  0.0284 6.2678¢-06 | 4  0.0640 1.5353e-08

NR-p-car 3 0.0265 1.5795e-06 | 4  0.0634 2.3500e-06
NR-p-car [33] 3 0.0298 2.2486e-06 | 5  0.0777 2.8518e-06
NR-c-pol 3 0.0313 8.3005e-10 | 4  0.0700 6.1735e-07
NR-c-car 3 0.0306 6.1446e-10 | 4  0.0649 8.6780e-07
NR-c-car [36] 5 0.0507 9.9969e-06 | 5  0.0838 7.9842e-07

Table 12: Small transmission networks: T'Casel354 and TCase2737

For smaller transmission networks TCasel354 and TCase2737, all versions result in the same
behavior except the Cartesian current-mismatch version developed in [36] which required more
iterations than other versions.

Test cases

Methods TCase9241 TCasel3659

iter  time [|F(Z)||oo | iter  time [|EF'(Z)]]oo
NR-p-pol [2] 6  0.3555 2.1292e-09 5 0.3899  2.2891e-09

NR-p-car 5 0.2908 2.1026e-08 | 6  0.4689  7.9833e-12
NR-p-car [33] | 5 0.3180 2.0742¢-06 | 10 0.8899 1.40le+148
NR-c-pol 3 01973 6.4746e-07 | 4  0.3634  3.4366e-09
NR-c-car 3 0.1993 1.9438e-06 | 4  0.3619  8.6170e-09
NR-c-car [36] | 10  0.6595 0.0023 10 0.9036 1.1482

Table 13: Large transmission networks: TCase9241 and TCasel3659

For the large transmission network T'Case9241, the version developed in [36] did not converge
whereas other versions converged. For this case, the polar current-mismatch and the Cartesian
current-mismatch versions developed in this paper converged after only three iterations whereas
other versions [2] and [33] and Cartesian power-mismatch needed five to six iterations. For the
largest transmission network TCasel3659, versions [33] and [36] did not converge whereas other
versions developed in this paper and the version given in [2] converged. Moreover, the polar
current-mismatch and Cartesian current-mismatch versions converged after four iterations while
the most famous version [2] needed five iterations. Thus, we can conclude that the Newton power
flow versions using current-mismatch are more preferable for large transmission networks.

6 Conclusion

In this paper, we formulate and analyze the Newton based power flow method used for the
solution of non-linear power flow problems. For the various methods we consider two different
mismatch functions: the current and the power form and three different coordinate systems:
Cartesian, polar and complex formulations. This leads to six different versions of the Newton
power flow method. Studying these versions in a common framework enables us to analyse
and compare in a unified way. Furthermore, the existing versions of the Newton power flow
method [2,33,36] are implemented and compared with the newly developed/improved versions of
the Newton power flow method (Cartesian power-mismatch, polar current-mismatch, Cartesian
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current-mismatch and complex current-mismatch). In case of the polar and Cartesian current-
mismatch versions, the reactive power @ is chosen as a dependent variable for each PV bus. Thus,
we compute the correction AQ at each iteration and update @ using the computed corrections.
Equations (2) and (3) are used instead of the voltage-magnitude-squared mismatch equation (1)
in versions using Cartesian coordinates. The order of the equation is (2N —N,—2) for the versions
using the power-mismatch function whereas the order of equation is (2N — 2) for versions using
the current-mismatch function. For distribution networks, versions using the current-mismatch
function have better convergence than versions using the power-mismatch function regardless of
the choice of the coordinates. The polar current-mismatch version that is developed in this paper
delivered the best result for both distribution network cases. For smaller transmission networks,
all existing and new versions have the same convergence behavior. However, for large transmission
networks, versions [33] and [36] did not converge whereas other versions developed in this paper
and the version [2] converged. Moreover, the polar current-mismatch and Cartesian current-
mismatch versions developed in this paper performed the best results for larger transmission
networks.

Therefore, we conclude that the newly developed/improved versions have a better perfor-
mance than the existing versions of the Newton power flow method for both distribution and
transmission networks.

In addition, the Cartesian current-mismatch version has an advantage in the calculation of
the Jacobian matrix because its off-diagonal elements are constant and equal to the terms of the
nodal admittance matrix. Moreover, depending on the properties of given network, one version
can work better than the other versions. Therefore, it is crucial to study which version is more
suitable for what kind of power network. In the near future, these newly developed versions will
be applied for the solution of unbalanced three-phase distribution networks.
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A Notation

N : number of buses in the network

Ny : number of generator buses

h : iteration counter

Vie =V +V," : complex voltage at bus k

[Vil, O : voltage magnitude and angle at bus k

T : vector of unknown variables

AX : correction of unknown variables

Fi.(2) : complex power or current mismatch function at bus k
J(Z) : Jacobian matrix of the mismatch function
ASi = AP, +1AQ, : complex power mismatch at bus k

Al, = AI} +:AI*  : complex current mismatch at bus k

SiP = PP +.1Qp" : specified complex power at bus &

S¢ = PF +.Q¢ : generated complex power at bus k

S,f = PkL + fo : complex power load at bus k

Yir = Gir +1Byx : (i, k) the element of nodal admittance matrix
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