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Abstract

Accurate simulation of fluid pressures in layered reservoirs with strong permeability contrasts
is a challenging problem. For this purpose, the Discontinuous Galerkin (DG) method can
be particularly suitable. This discretization scheme uses discontinuous piecewise polynomials
to combine the best of both classical finite element methods and finite volume methods.
However, due to the relatively large number of unknowns per mesh elements, and the extreme
variations in the permeability in the layered structure, standard linear solvers usually yield
long computational times and/or low accuracy of the approximated fluid pressures.

To increase the efficiency of the Conjugate Gradient (CG) method for linear systems
resulting from Symmetric Interior Penalty (discontinuous) Galerkin (SIPG) discretizations,
we have cast an existing two-level preconditioner into the deflation framework. The main idea
is to use coarse corrections based on the DG solution with polynomial degree p=0. This report
provides a numerical comparison of the performance of both two-level methods in terms of
scalability and overall efficiency. Furthermore, it studies the influence of the SIPG penalty
parameter, the smoother, damping of the smoother, and the strategy for solving the coarse
systems.

We have found that the penalty parameter can best be chosen diffusion-dependent. In
that case, both two-level methods yield fast and scalable convergence. Coarse systems can
be solved efficiently by applying the CG method again in an inner loop with low accuracy.
Whether preconditioning or deflation is to be favored depends on the choice for the smoother
and on the damping of the smoother. Altogether, both two-level methods can contribute to
faster and more accurate fluid pressure simulations.

1 Introduction

Layered reservoirs often exhibit very strong permeability contrasts with typical values between
10−1 and 10−7. Solving for the pressure in such a system can be numerically challenging. The
governing equation is a mildly nonlinear diffusion equation with time-varying coefficients obtained
by combining mass conservation and Darcy’s law.

To discretize this equation in space, the Discontinuous Galerkin (DG) method can be partic-
ularly suitable (cf. Rivière et al. (2000), Sun and Wheeler (2007), Rivière (2008), Arnold et al.
(2002) and references therein). This discretization scheme can be interpreted as a finite volume
method that uses piecewise polynomials of degree p rather than piecewise constant functions.
As such, it combines the best of both classical finite element methods and finite volume meth-
ods, making it particularly suitable for handling non-matching grids and designing hp-refinement
strategies.

However, after linearization of the discretized equations, the resulting linear systems are usually
larger than those for the aforementioned classical discretization schemes. This is due to the larger
number of unknowns per mesh element. At the same time, the condition number typically increases
with the number of mesh elements, the polynomial degree, and the stabilization factor (Castillo
(2002); Sherwin et al. (2006)). The strong permeability contrasts in the problem sketched above
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pose an extra challenge. Altogether, standard linear solvers often result in long computational
times and/or low accuracy of the approximated fluid pressures.

In search of efficient and scalable algorithms (for which the number of iterations does not
increase with e.g. the number of mesh elements), much attention has been paid to subspace
correction methods (Xu (1992)). Examples include classical geometric (h-)multigrid (Brenner
and Zhao (2005); Gopalakrishnan and Kanschat (2003)), spectral (p-)multigrid (Fidkowski et al.
(2005); Persson and Peraire (2008)), algebraic multigrid (Prill et al. (2009); Saad and Suchomel
(2002)), and Schwarz domain decomposition (Antonietti and Ayuso (2007); Feng and Karakashian
(2001)). Usually, these methods can either be used as a standalone solver, or as a preconditioner
in an iterative Krylov method. The latter tends to be more robust for problems with a few isolated
‘bad’ eigenvalues, as is the case for the strongly varying problems of our interest.

An alternative for preconditioning is the method of deflation, originally proposed by Nicolaides
(1987). This method has been proved effective for layered problems with extreme contrasts in the
coefficients by Vuik et al. (1999). Deflation is related to multigrid in the sense that it also makes
use of a coarse space that is combined with a smoothing operator at the fine level. This relation
has been considered from an abstract point of view by Tang et al. (2009, 2010).

This research seeks to extend this comparison between preconditioning and deflation in the
context of DG schemes. In particular, it is focused on the Conjugate Gradient (CG) method
for linear systems resulting from Symmetric Interior Penalty (discontinuous) Galerkin (SIPG)
discretizations for stationary diffusion problems with extreme contrasts in the coefficients.

Starting point of this research is one of the two-level methods proposed by Dobrev et al. (2006).
This method uses coarse corrections based on the DG discretization with polynomial degree p = 0.
Using the analysis by Falgout et al. (2005), they have shown theoretically (for p = 1) that this
preconditioner yields scalable convergence of the CG method, independent of the mesh element
diameter. Another nice property is that the use of only two levels offers an appealing simplicity.
More importantly, the coefficient matrix that is used for the coarse correction is quite similar to a
matrix resulting from a central difference discretization, for which very efficient solution techniques
are readily available.

To extend the work of Dobrev et al. (2006), we have cast the two-level preconditioner into
the deflation framework, using the abstract analysis of Tang et al. (2009). Furthermore, we have
conducted several numerical experiments to compare the scalability and the overall efficiency of
both two-level methods. These results (including p > 1) complement the theoretical analysis for
the preconditioning variant for p = 1 by Dobrev et al. (2006). Additionally, we have investigated
how the efficiency of the CG method is influenced by the SIPG penalty parameter, the smoother,
damping of the smoother, and the strategy for solving the coarse systems.

The outline of this report is as follows. Section “Discretization” discusses the SIPG method
for diffusion problems with large jumps in the coefficients. To solve the resulting linear systems,
Section “Linear solver” discusses the existing two-level preconditioner and the resulting deflation
variant. The performance of both two-level methods is compared numerically in Section “Numer-
ical experiments”. Section “Conclusion” summarizes the main conclusions.

2 Discretization

We consider the linearized form of the spatially discretized pressure equation, which can be in-
terpreted as a stationary diffusion equation. This section summarizes the SIPG discretization
method for this model problem. Furthermore, it discusses the influence of the so-called penalty
parameter that characterizes this DG method.
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2.1 SIPG method

We study the following model problem on the spatial domain Ω (with Dirichlet boundary condi-
tions):

−∇ · (K∇u) = f. (1)

The diffusion (or permeability) coefficient K is a scalar that typically contains large jumps across
the domain. The function f is a source term.

The SIPG approximation for the model above can be constructed in the following manner.
First, choose a mesh with elements E1, ..., EN . The numerical experiments in this report are for
uniform Cartesian meshes on the domain Ω = [0, 1]2, although our solver can be applied for a
wider range of problems.

Next, define the test space V that contains each function that is a polynomial of degree p or
lower within each mesh element, and that may be discontinuous at the element boundaries. The
SIPG approximation uh is now defined as the unique element in this test space that satisfies the
relation

B(uh, v) = L(v), for all test functions v ∈ V, (2)

where B and L are (bi)linear forms that characterize the SIPG method (cf. details below). For a
large class of (sufficiently smooth) problems, the SIPG method converges with order p+1 (Rivière
(2008)).

Details ((Bi)linear forms B and L) For uniform Cartesian meshes on the domain Ω = [0, 1]2, the (bi)linear
forms B and L in (2) can be specified as follows. First, we require the following additional notation: the
Dirichlet boundary conditions are specified as u = gD on the domain boundary ∂Ω; the vector ni denotes the
outward normal of mesh element Ei; the set Γh denotes the collection of all interior edges e = ∂Ei ∩ ∂Ej

in the mesh shared by two adjacent elements; and the set ΓD denotes the collection of all boundary edges
e = ∂Ei ∩ ∂Ω.

Finally, to deal with the inter-element discontinuities in the test space V , we also need to introduce the
usual trace operators for jumps and averages at the mesh element boundaries: at each interior element boundary
∂Ei ∩ ∂Ej ∈ Γh, we define:

[v] := vini + vjnj , {v} :=
vi + vj

2
,

where vi denotes the trace of the function v along the side of Ei. Observe that [v] is a vector, while v is a
scalar. Analogously, we define for a vector-valued function τ :

[τ ] := τi · ni + τj · nj , {τ} :=
1

2
(τi + τj).

Observe that [τ ] is a scalar, while τ is a vector. Similarly, at the domain boundary, we define at each element
boundary ∂Ei ∩ ∂Ω ∈ ΓD:

[v] := vini, {v} := vi, [τ ] := τi · ni, {τ} := τi.

Now that the required notation has been introduced, the forms B and L in (2) can be defined as:

L(v) =

Z

Ω
fv −

X

e∈ΓD

Z

e

“
[K∇v] +

σ

h
v
”

gD,

B(uh, v) =
NX

i=1

Z

Ei

K∇uh · ∇v +
X

e∈Γh∪ΓD

Z

e

“
− {K∇uh} · [v]− [uh] · {K∇v}+

σ

h
[uh] · [v]

”
,

where σ is the so-called penalty parameter. This positive parameter penalizes the inter-element jumps to
enforce weak continuity and ensure convergence. Although it is presented as a constant here, its value may
vary throughout the domain. This is further discussed in Section “Penalty parameter” later on. y

2.2 Linear systems

In order to compute the SIPG approximation defined by (2), it needs to be rewritten as a linear
system. To this end, we choose basis functions for the test space V . More specifically, for each
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mesh element Ei, we define the basis function φ
(i)
1 which is zero in the entire domain, except in

Ei, where it is equal to one. Similarly, we define higher-order basis functions φ
(i)
2 , ..., φ

(i)
m , which

are higher-order polynomials in Ei and zero elsewhere. In this report, we use monomial basis
functions (cf. details below).

Details (Monomial basis functions) For uniform Cartesian meshes on the domain Ω = [0, 1]2, the monomial
basis functions are defined as follows. In the mesh element Ei with center (xi, yi) and size h× h, the function

φ
(i)
k reads:

φ
(i)
k (x, y) =

 
x− xi

1
2
h

!kx
 

y − yi
1
2
h

!ky

,

where kx and ky are selected as follows:

k 1 2 3 4 5 6 7 8 9 10 . . .
kx 0 1 0 2 1 0 3 2 1 0 . . .
ky 0 0 1 0 1 2 0 1 2 3 . . .

p = 0 p = 1 p = 2 p = 3 . . .

The dimension of the basis within one mesh element is equal to m =
(p+1)(p+2)

2
for two-dimensional problems

(for one-dimensional problems, we would have m = p + 1). y

Next, we express uh as a linear combination of the basis functions:

uh =
N∑

i=1

m∑

k=1

u
(i)
k φ

(i)
k . (3)

The new unknowns u
(i)
k in (3) can be determined by solving a linear system Au = b of the form:




A11 A12 . . . A1N

A21 A22

...
...

. . .
AN1 . . . ANN







u1

u2

...
uN


 =




b1

b2

...
bN


 ,

where the blocks all have dimension m:

Aji =




B(φ(i)
1 , φ

(j)
1 ) B(φ(i)

2 , φ
(j)
1 ) . . . B(φ(i)

m , φ
(j)
1 )

B(φ(i)
1 , φ

(j)
2 ) B(φ(i)

2 , φ
(j)
2 )

...
...

. . .
B(φ(i)

1 , φ
(j)
m ) . . . B(φ(i)

m , φ
(j)
m )




, ui =




u
(i)
1

u
(i)
2
...

u
(i)
m




, bj =




L(φ(j)
1 )

L(φ(j)
2 )
...

L(φ(j)
m )




,

for all i, j = 1, ..., N . This system is obtained by substituting the expression (3) for uh and the
basis functions φ

(j)
` for v into (2). Once the unknowns u

(i)
k are solved from the system Au = b,

the final SIPG approximation uh can be obtained from (3).
Example (SIPG matrix) For a Laplace problem on the domain [0, 1]2 with p = 1, a uniform Cartesian mesh
with 2× 2 elements, and penalty parameter σ = 10 we obtain the following SIPG matrix A:

A =

2
6666666666666666664

40 1 1 −10 9 0 −10 0 9 0 0 0
1 25 0 −9 8 0 0 −3 0 0 0 0
1 0 25 0 0 −3 −9 0 8 0 0 0

−10 −9 0 40 −1 1 0 0 0 −10 0 9
9 8 0 −1 25 0 0 0 0 0 −3 0
0 0 −3 1 0 25 0 0 0 −9 0 8

−10 0 −9 0 0 0 40 1 −1 −10 9 0
0 −3 0 0 0 0 1 25 0 −9 8 0
9 0 8 0 0 0 −1 0 25 0 0 −3
0 0 0 −10 0 −9 −10 −9 0 40 −1 −1
0 0 0 0 −3 0 9 8 0 −1 25 0
0 0 0 9 0 8 0 0 −3 −1 0 25

3
7777777777777777775

. (4)

Note that A has the same structure as a central difference matrix, except that it consists of small dense blocks
rather than scalars. y
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2.3 Penalty parameter

The SIPG method involves the penalty parameter σ which penalizes the inter-element jumps to
enforce weak continuity (cf. Section “SIPG method”). This parameter should be selected carefully:
on the one hand, it needs to be sufficiently large to ensure that the SIPG method converges and
the coefficient matrix A is Symmetric and Positive Definite (SPD) (Rivière (2008)). At the same
time, it needs to be chosen as small as possible, since the condition number of A increases rapidly
with the penalty parameter (Castillo (2002)).

Computable theoretical lower bounds have been derived for a large variety of problems by
Epshteyn and Rivière (2007). For one-dimensional diffusion problems, it suffices to choose σ ≥
2k2

1
k0

p2, where k0 and k1 are the global lower and upper bound respectively for the diffusion coeffi-
cient K. However, while this lower bound for σ is sufficient to ensure convergence (assuming the
exact solution is sufficiently smooth), it can be unpractical for problems with strong variations in
the coefficients. For instance, if the diffusion coefficient K takes values between 1 and 10−3, we
obtain σ ≥ 2000p2, which is inconveniently large. For this reason, it is common practice to choose
e.g. σ = 20 rather than σ = 20 000 for such problems (Dobrev et al. (2006); Proft and Rivière
(2009)).

An alternative strategy is to choose the penalty parameter based on local values of the diffusion-
coefficient K, e.g. choosing σ = 20K rather than σ = 20. Such a strategy has been analyzed
theoretically by Dryja (2003) for piecewise linear continuous basis functions in the context of
Schwarz domain decomposition. Furthermore, it has been demonstrated numerically by Dobrev
et al. (2008) that a diffusion-dependent penalty parameter can benefit the efficiency of a linear
solver. This will be discussed further in Section “Numerical experiments” later on.

In this report, we study the effects of both a constant and a diffusion-dependent penalty
parameter.

3 Linear solver

The SIPG discretization discussed in the previous section requires the solution of a linear system
of the form Au = b, where A is SPD. This section discusses preconditioning strategies for solving
this system by means of the CG method. The main idea is to make use of coarse corrections based
on the lower order SIPG method with polynomial degree p = 0. This concept can be incorporated
in a two-level preconditioner, as proposed by Dobrev et al. (2006), but also in a deflation variant,
using the abstract analysis of Tang et al. (2009). This section discusses both strategies.

3.1 Coarse correction operator Q

Both the two-level preconditioner and the corresponding deflation variant are defined in terms of
a coarse correction operator Q ≈ A−1 that switches from the original DG test space to a coarse
subspace, then performs a correction that is now simple in this coarse space, and finally switches
back to the original DG test space. In this report, we study the coarse subspace that consists of
all piecewise constant functions.

More specifically, the coarse correction operator Q is defined as follows: let A0 denote the
SIPG matrix for polynomial degree p = 0. This matrix is also referred to as the ‘coarse’ matrix.
Next, define the restriction operator R such that A0 := RART . More specifically, the matrix R is
defined as the following N ×N block matrix:

R =




R11 R12 . . . R1N

R21 R22

...
...

. . .
RN1 . . . RNN




,
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where the blocks all have size 1×m:

Rii =
[
1 0 . . . 0

]
, Rij =

[
0 . . . 0

]
,

for all i, j = 1, ..., N and i 6= j.
Example (Coarse matrix) For the matrix A in (4), we obtain the following coarse matrix A0 and restriction
operator R:

A0 =

2
664

40 −10 −10 0
−10 40 0 −10

−10 0 40 −10
0 −10 −10 40

3
775 , R =

2
664

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

3
775

Observe that A0 has the same structure as a central difference matrix (aside from a factor σ = 10). Furthermore,
every element in A0 is also present in the upper left corner of the corresponding block in the matrix A. This is
because the piecewise constant basis functions are assumed to be in any polynomial basis. As a consequence,
the matrix R contains elements equal to 0 and 1 only, and does not need to be stored explicitly: multiplications
with R can be implemented by simply extracting elements or inserting zeros. y

Using this notation, the coarse correction operator Q is defined as follows:

Q := RT︸︷︷︸
prolongation

A−1
0︸︷︷︸

coarse correction

R︸︷︷︸
restriction

.

This operator forms the basis of both the two-level preconditioner and the corresponding deflation
variant, as is discussed hereafter.

3.2 Two-level preconditioner

Now that the coarse correction operator Q has been defined, we can formulate the two-level
preconditioner. To this end, let ω ≤ 1 denote a damping parameter (damping will be discussed
further in Section “Damping” later on), and let M−1 ≈ A−1 denote an invertible smoother, such
as block Jacobi. Basically, the result y = Pprecr of applying this preconditioner to a vector r can
be computed in three steps:

y(1) = ωM−1r (pre-smoothing),

y(2) = y(1) + Q(r−Ay(1)) (coarse correction),

y = y(2) + ωM−T (r−Ay(2)) (post-smoothing). (5)

If the smoother is chosen such that

M + MT − ωA is SPD, (6)

then the operator Pprec is SPD (Vassilevski (2008)). As a consequence, the two-level preconditioner
can be implemented in a standard preconditioned CG algorithm (see details below). Requirement
(6) also implies that the two-level preconditioner yields scalable convergence of the CG method
(independent of the mesh element diameter) for a large class of problems. This has been shown
for polynomial degree p = 1 by Dobrev et al. (2006), using the analysis of Falgout et al. (2005).

Details (CG implementation) For a given preconditioning operator P and start vector x0, the CG method
can be implemented as follows:

1. r0 := b−Ax0

2. y0 := Pr0

3. p0 := y0

4. for j = 0, 1, ... until convergence do
5. wj := Apj

6. αj := (rj ,yj)/(pj ,wj)
7. xj+1 := xj + αjpj

8. rj+1 := rj − αjwj

9. yj+1 = Prj+1

10. βj := (rj+1,yj+1)/(rj ,yj)
11. pj+1 := yj+1 + βjpj

12. end y
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3.3 Two-level deflation

The two-level preconditioner can be reformulated as a deflation method. To this end, there are
several strategies, leading to different types of deflation (Tang et al. (2009)). In this report,
we study the so-called ‘ADEF2’ deflation scheme, as this type can be implemented relatively
efficiently, and allows for inexact solving of coarse systems. The latter will be discussed further in
Section “Numerical experiments” later on.

Basically, the ADEF2 deflation variant is obtained by skipping the last smoothing step in (5).
In other words, the result y = Pdeflr of applying the two-level deflation technique to a vector r
can be computed as:

y(1) := ωM−1r (pre-smoothing),

y := y(1) + Q(r−Ay(1)) (coarse correction). (7)

The operator Pdefl is not symmetric in general. As such, it seems unsuitable for the standard
preconditioned CG method. Interestingly, it can still be implemented successfully in its current
asymmetric form, as long as the smoother M−1 is SPD (requirement (6) is not needed), and the
start vector x0 is pre-processed according to:

x0 7→ Qb + (I −AQ)T x0. (8)

Other than that, the CG implementation remains as discussed in Section “Two-level precondi-
tioner”. Indeed, it has been shown by Tang et al. (2009) that, under the conditions above, Pprec

yields the same CG iterates as an alternative operator (called ‘BNN’) that actually is SPD.

3.4 Comparison of computational costs

Because the deflation variant skips one of the two smoothing steps, its costs per CG iteration are
lower than for the preconditioning variant. In this section, we compare the differences in terms of
FLoating point OPerationS (FLOPS).

Table 1 displays the costs for a two-dimensional diffusion problem with polynomial degree p,
a Cartesian mesh with N = n × n elements, and polynomial space dimension m := (p+1)(p+2)

2
(cf. Section “SIPG method”). Using the preconditioning variant, the CG method requires per
iteration (27m2 +14m)N flops, plus the costs for two smoothing steps and one coarse solve. Using
the two-level deflation method, the CG method requires per iteration (18m2 + 12m)N flops, plus
the costs for only one smoothing step and one coarse solve.

operation flops (rounded) # defl. # prec.
mat-vec (Au) 9m2N 2 3

inner product (uT v) 2mN 2 2
scalar multiplication (αu) mN 3 3

vector update (u± v) mN 5 7
smoothing (M−1u) variable 1 2

coarse solve (A−1
0 u0) variable 1 1

Table 1: Comparing the computational costs per CG iteration for A-DEF2 deflation and the
two-level preconditioner for our applications.

A block Jacobi smoothing step with blocks of size m requires (2m2−m)N flops, assuming that
an LU -decomposition is known. In this case, the smoothing costs are low compared to the costs
for a matrix-vector product, and the deflation variant is roughly 30% faster (per iteration). For
more expensive smoothers, this factor becomes larger. A block Gauss-Seidel sweep (either forward
or backward) requires the costs for one block Jacobi step, plus the costs for the updates based on
the off-diagonal elements, which are approximately 4m2N flops.
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3.5 Damping

Damping often benefits the convergence of multigrid methods (Yavneh (2006)). At the same time,
deflation may not be influenced by damping at all. The latter has been observed theoretically by
Tang et al. (2010) for the so-called ‘DEF’ variant (recall that we study the alternative ADEF2
variant).

For multigrid methods with smoother M = I, a “typical choice of [ω] is close to 1
||A||2 ”, although

a “better choice of [ω] is possible if we make further assumptions on how the eigenvectors of A
associated with small eigenvalues are treated by coarse-grid correction” —— Tang et al. (2010). In
that reference, the latter is established for a coarse space that is based on a set of orthonormal
eigenvectors of A. However, such a result does not seem available yet for the coarse space (and
smoothers) currently under consideration.

Altogether, it is an open question how the damping parameter can best be selected in practice.
For this reason, we use an emprical approach in this report, and study the effects for several values
of ω ≤ 1.

4 Numerical experiments

In this section, we compare the two-level preconditioner and the corresponding deflation variant
discussed in the previous section through numerical experiments. In particular, we study the
scalability of both methods, and the influence of the SIPG penalty parameter, the smoother,
damping of the smoother, and the strategy for solving the coarse systems.

4.1 Experimental setup

We consider four diffusion problems of the form (1) on the domain [0, 1]2: a Poisson problem
(K = 1) and the three test cases specified in Figure 1 (if we subdivide the domain into 10 × 10
equally sized squares, the diffusion coefficient is constant within each square). The test cases in
Figure 1 are largely inspired by Vuik et al. (2001), and mimic the presence of layers of sandstone
and shale, the occurrence of sand inclusions within a layer of shale, and ground water flow. In
all cases, the Dirichlet boundary conditions and the source term f are chosen such that the exact
solution reads u(x, y) = cos(10πx) cos(10πy). We stress that this choice does not impact the
matrix or the performance of the linear solver, as we use random start vectors (see below).

K = 1

K = 10−3

K = 1

K = 10−3

K = 1 K = 1

K = 10−5

K = 102

K = 104

K = 10−3

Five layers Sand inclusions Ground water

Figure 1: Illustration of the three test cases

All model problems are discretized by means of the SIPG method as discussed in Section
“Discretization”. We use a uniform Cartesian mesh with N = n × n elements, where n =
20, 40, 80, 160, 320. Furthermore, we use monomial basis functions with polynomial degree p = 2, 3
(results for p = 1 are similar though). Unless specified otherwise, the penalty parameter is chosen
diffusion-dependent, σ = 20K. The factor 20 has been chosen emperically. We have verified that
the matrix A is SPD and that the SIPG method converges for this particular choice. For p = 3
and n = 320, the number of degrees of freedom is a little over 106.
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The linear systems resulting from the SIPG discretizations are solved by means of the CG
method, combined with either the two-level preconditioner or the corresponding deflation variant,
as discussed in Section “Linear solver”. Unless specified otherwise, damping is not used. For the
smoother M−1, we use block Jacobi with small blocks of size m×m (recall that m = (p+1)(p+2)

2 ).
For the preconditioning variant, we also consider block Gauss-Seidel with the same block size
(deflation requires a symmetric smoother). It can be shown that the aforementioned smoothers
satisfy (6) for all ω ≤ 1 for the problems under consideration.

Diagonal scaling is applied as a pre-processing step in all cases, and the same random start
vector x0 is used for all problems of the same size. Pre-processing of the start vector according to
(8) is applied for deflation only, as it makes no difference for the preconditioning variant. For the
stopping criterion we use:

‖rk‖2
‖b‖2 ≤ TOL, (9)

where TOL = 10−6, and rk is the residual after the kth iteration.
Coarse systems, involving the SIPG matrix A0 with polynomial degree p = 0, are solved

directly. However, a more efficient strategy is also provided and tested in Section “Coarse systems”
later on. In any case, the coarse matrix A0 is quite similar to a central difference matrix, for which
very efficient solvers are readily available.

4.2 Diffusion-dependent penalty parameter

This section studies the influence of the SIPG penalty parameter on the convergence of the CG
and the SIPG method. We compare the differences between using a constant penalty parameter
(σ = 20), and a diffusion-dependent value (σ = 20K). Similar experiments have been considered by
Dobrev et al. (2008) for the two-level preconditioner for p = 1, a single mesh, and symmetric Gauss-
Seidel smoothing (solving the coarse systems using geometric multigrid). They found that “proper
weighting”, i.e. a diffusion-dependent penalty parameter, “is essential for the performance”. In
this section, we consider p = 2, 3, and both preconditioning and deflation (using block Jacobi
smoothing). Furthermore, we analyze the scalability of the methods by considering multiple
meshes. Our results are consistent with those of Dobrev et al. (2008).

Table 2 displays the number of CG iterations required for convergence for the Poisson problem
with σ = 20. Because the diffusion coefficient is constant (K = 1), a diffusion-dependent value
(σ = 20K) would yield the same results. We observe that both the two-level preconditioner (TL
prec.) and the deflation variant (TL defl.) yield fast and scalable convergence (independent of
the mesh element diameter). For comparison, the results for standard Jacobi and block Jacobi
preconditioning are also displayed (not scalable). Interestingly, the two-level deflation method
requires fewer iterations than the preconditioning variant, even though its costs per iteration are
lower (cf. Section “Comparison of computational costs”).

degree p=2 p=3
mesh N=202 N=402 N=802 N=1602 N=202 N=402 N=802 N=1602

Jacobi 301 581 1049 1644 325 576 1114 1903
Block Jacobi (BJ) 205 356 676 1190 206 357 696 1183

TL Prec., 2x BJ 36 38 39 40 49 52 53 54
TL Defl., 1x BJ 32 33 33 34 36 37 37 38

Table 2: Poisson: # CG iterations for a constant penalty σ = 20

Table 3 considers the same test, but now for the problem with five layers (using a constant
σ = 20). It can be seen that the convergence is no longer fast and scalable for this problem with
jumps in the coefficients. The deflation method is significantly faster than the preconditioning
variant, but neither produce satisfactory results.

Table 4 addresses this issue by switching to a diffusion-dependent penalty parameter (σ =
20K). Now, the results are similar to those for the Poisson problem, and both two-level methods
yield fast and scalable convergence.
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degree p=2 p=3
mesh N=202 N=402 N=802 N=1602 N=202 N=402 N=802 N=1602

Jacobi 1671 4311 9069 15924 2569 5070 9083 15656
Block Jacobi (BJ) 933 2253 4996 9656 1398 2960 5660 9783

TL Prec., 2x BJ 415 1215 2534 3571 1089 2352 4709 8781
TL Defl., 1x BJ 200 414 531 599 453 591 667 698

Table 3: Five layers: # CG iterations for a constant penalty σ = 20

degree p=2 p=3
mesh N=202 N=402 N=802 N=1602 N=202 N=402 N=802 N=1602

Jacobi 975 1264 1567 2314 1295 1490 1921 3110
Block Jacobi (BJ) 243 424 788 1285 244 425 697 1485

TL Prec., 2x BJ 46 43 43 44 55 56 56 57
TL Defl., 1x BJ 43 45 45 46 47 48 48 48

Table 4: Five layers: # CG iterations for a diffusion-dependent penalty σ = 20K

These results motivate the use of a diffusion-dependent penalty parameter, provided that that
this strategy does not worsen the accuracy of the SIPG discretization compared to a constant
penalty parameter. In Figure 2, it is verified that a diffusion-dependent penalty parameter actually
improves the accuracy of the SIPG approximation (for p = 3). Similar results have been observed
for other test cases and for p = 1, 2 (not displayed). The higher accuracy can be explained
by the fact that the discretization contains more information of the underlying physics for a
diffusion-dependent penalty parameter. Altogether, the penalty parameter can best be chosen
diffusion-dependent, and we will do so in the remaining of this report.
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Figure 2: Five layers (p=3): SIPG accuracy

4.3 Smoothers & Damping

This section discusses the influence of the smoother and damping on both two-level methods. In
particular, we consider multiple damping values ω = 0.5, 0.6, 0.7, 0.8, 0.9, 1, and both Jacobi and
(block) Gauss-Seidel smoothing. The latter is applied for the preconditioning variant only, as
deflation requires a symmetric smoother.

Table 5 displays the number of CG iterations required for convergence for the problem with
five layers. For the deflation variant (Defl.), we have found that damping makes no difference for
the CG convergence, so the outcomes for ω < 1 are not displayed. Such a result has also been
observed theoretically by Tang et al. (2010) for an alternative deflation variant (known as ‘DEF’).
For the preconditioning variant (Prec.), damping can both improve and worsen the efficiency:
for block Jacobi (BJ) smoothing, choosing e.g. ω = 0.7 can reduce the number of iterations by
37%; for block Gauss-Seidel (BGS) smoothing, choosing ω < 1 has either no influence or a small
negative impact in most cases. We have also performed the experiment for standard (non-block)
Gauss-Seidel (not displayed in the table). However, this did not lead to satisfactory results: over
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250 iterations in all cases. We speculate that this is due to the fact that the block structure is not
well-presented in that case.

degree p=2 p=3
mesh N=402 N=802 N=1602 N=3202 N=402 N=802 N=1602 N=3202

Prec., 2X BJ (ω = 1) 43 43 44 44 56 56 57 58
(ω = 0.9) 34 34 37 37 40 40 42 43
(ω = 0.8) 33 34 34 35 36 37 39 39
(ω = 0.7) 33 33 33 34 35 36 36 37
(ω = 0.6) 32 33 34 35 35 36 36 37
(ω = 0.5) 34 34 35 35 36 37 38 39

Prec., 2x BGS (ω = 1) 33 33 34 35 34 35 35 37
(ω = 0.9) 33 33 34 34 34 34 35 36
(ω = 0.8) 33 33 35 35 35 34 36 37
(ω = 0.7) 32 34 36 36 35 36 37 38
(ω = 0.6) 33 35 36 37 36 37 38 39
(ω = 0.5) 34 35 37 38 37 39 39 40

Defl., 1x BJ (ω = 1) 45 45 46 46 48 48 48 49

Table 5: Five layers: # CG Iterations

Based on the results in Table 5, it appears that that the preconditioning variant with either
block Jacobi (with optimal damping) or block Gauss-Seidel is the most efficient choice. However,
the costs per iteration also need to be taken into account. As expected, we have found that block
Gauss-Seidel yields lower overall efficiency than block Jacobi (when the number of iterations is
approximately the same).

Figure 3 compares the overall computational time in seconds for both two-level schemes with
block Jacobi smoothing (with and without damping for the preconditioner). Without damping,
the deflation variant turns out to be the fastest. This is due to the fact that it requires only one
smoothing step per iteration, instead of two. When an optimal damping parameter is known, the
preconditioning variant performs comparable to deflation. However, it is an open question how
the damping parameter can best be selected in practice (cf. Section “Damping”).
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Figure 3: Five layers: CPU time in seconds

In Table 6 and Table 8, the experiment is repeated for the problems ‘sand inclusions’ and
‘ground water’ respectively (cf. Figure 1). Only the best candidates are displayed (regarding
damping, the results are similar to those for ‘five layers’). The corresponding computational times
are displayed in Table 7 and Table 9. As before, both two-level methods yield fast and scalable
convergence. Without damping, deflation is the most efficient. When an optimal damping value
is known, the preconditioning variant performs comparable to deflation.
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4.4 Coarse systems

To obtain the results in the previous sections, a direct solver has been used for the coarse systems
with coefficient matrix A0. In practice, this is usually not feasible, since A0 has the same structure
and size (N ×N) as a central difference matrix. To improve on the efficiency of the coarse solver,
we have investigated the cheaper alternative of applying the CG method again in an inner loop.
This section discusses the results using the algebraic multigrid preconditioner MI 20 in the HSL
software package1. The inner loop uses a stopping criterion of the form (9).

Table 10 and Table 11 display the number of outer CG iterations required for convergence using
the two-level preconditioner and deflation variant respectively (for the problem with five layers).
Different values of the inner tolerance TOL are considered in these tables. For comparison, the
results for the direct solver are also displayed. We observe that low accuracy in the inner loop is
sufficient to reproduce the latter. In both tables, the inner tolerance can be 104 times as large
as the outer tolerance. For the highest acceptable inner tolerance TOL = 10−2, the number of
iterations in the inner loop is between 2 and 5 in all cases (not displayed in the tables).

We remark that, in terms of computational time, the difference between the direct solver and
the inexact AMG-CG solver is negligible for the problems under consideration. However, for large
three-dimensional problems, it can be expected that the inexact coarse solver is much faster, and
thus crucial for the overall efficiency of the linear solver.

5 Conclusion

This report compares the two-level preconditioner proposed by Dobrev et al. (2006) and the
resulting ADEF2-deflation variant for linear systems resulting from SIPG discretizations. We
have found that both two-level methods yield fast and scalable convergence for diffusion-problems
with large jumps in the coefficients. This result is obtained provided that the SIPG penalty
parameter is chosen diffusion-dependent. Coarse systems can be solved efficiently by applying the
CG method again in an inner loop with low accuracy.

Whether preconditioning or deflation is to be favored depends on the choice for the smoother
and on the damping of the smoother. Without damping, we have found that deflation (with
block Jacobi smoothing) yields faster convergence of the CG method at lower costs per iteration.
When an optimal damping factor is known, the preconditioner (with block Jacobi smoothing)
yields comparable computational times. However, it remains an open question how the damping
parameter can best be selected in practice.

Altogether, both two-level methods can contribute to faster and more accurate pressure sim-
ulations for layered systems with strong permeability contrasts. Future research could focus on
theoretical support for these findings and more advanced, larger-scale test cases.

References

Antonietti, P.F. and Ayuso, B. [2007] Schwarz domain decomposition preconditioners for dis-
continuous Galerkin approximations of elliptic problems: non-overlapping case. M2AN Math.
Model. Numer. Anal., 41(1), 21–54.

Arnold, D.N., Brezzi, F., Cockburn, B. and Marini, L.D. [2002] Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5), 1749–1779 (electronic).

Brenner, S.C. and Zhao, J. [2005] Convergence of multigrid algorithms for interior penalty meth-
ods. Appl. Numer. Anal. Comput. Math., 2(1), 3–18.

Castillo, P. [2002] Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci.
Comput., 24(2), 524–547.

1HSL, a collection of Fortran codes for large-scale scientific computation. See http://www.hsl.rl.ac.uk/

12



degree p=2 p=3
mesh N=402 N=802 N=1602 N=3202 N=402 N=802 N=1602 N=3202

Prec., 2x BJ 44 48 46 46 53 56 58 59
Prec., 2x BJ (ω = 0.7) 30 30 30 31 32 34 34 34

Defl., 1x BJ 42 42 42 43 46 47 48 48

Table 6: Sand Inclusions: # CG Iterations

degree p=2 p=3
mesh N=402 N=802 N=1602 N=3202 N=402 N=802 N=1602 N=3202

Prec., 2x BJ 0.10 0.69 3.35 16.85 0.37 1.77 8.22 38.06
Prec., 2x BJ (ω = 0.7) 0.07 0.44 2.19 11.47 0.22 1.08 4.86 22.16

Defl., 1x BJ 0.07 0.47 2.44 13.23 0.22 1.06 4.94 23.76

Table 7: Sand Inclusions: CPU time in seconds

degree p=2 p=3
mesh N=402 N=802 N=1602 N=3202 N=402 N=802 N=1602 N=3202

Prec., 2x BJ 54 52 52 52 67 68 68 69
Prec., 2x BJ (ω = 0.7) 38 38 38 40 41 42 42 42

Defl., 1x BJ 54 54 54 55 59 59 60 60

Table 8: Ground water: # CG Iterations

degree p=2 p=3
mesh N=402 N=802 N=1602 N=3202 N=402 N=802 N=1602 N=3202

Prec., 2x BJ 0.12 0.75 3.75 18.57 0.46 2.15 9.53 43.71
Prec., 2x BJ (ω = 0.7) 0.08 0.56 2.77 14.53 0.28 1.35 5.88 27.15

Defl., 1x BJ 0.08 0.61 3.19 16.57 0.28 1.32 6.09 29.01

Table 9: Ground water: CPU time in seconds

degree p=2 p=3
mesh N=402 N=802 N=1602 N=3202 N=402 N=802 N=1602 N=3202

direct 43 43 44 44 56 56 57 58
TOL = 10−4 43 43 44 44 56 56 57 58
TOL = 10−3 43 43 44 44 56 56 57 58
TOL = 10−2 43 43 44 44 56 57 58 58
TOL = 10−1 48 62 55 57 59 65 70 78

Table 10: Five layers: # outer iterations for the preconditioning variant

degree p=2 p=3
mesh N=402 N=802 N=1602 N=3202 N=402 N=802 N=1602 N=3202

direct 45 45 46 46 48 48 48 49
TOL = 10−4 45 45 46 46 48 48 48 49
TOL = 10−3 45 45 46 46 48 48 48 49
TOL = 10−2 45 45 46 46 48 48 48 49
TOL = 10−1 60 81 51 300 48 54 79 67

Table 11: Five layers: # outer iterations for the deflation variant

13



Dobrev, V.A., Lazarov, R.D., Vassilevski, P.S. and Zikatanov, L.T. [2006] Two-level precondition-
ing of discontinuous Galerkin approximations of second-order elliptic equations. Numer. Linear
Algebra Appl., 13(9), 753–770.

Dobrev, V.A., Lazarov, R.D. and Zikatanov, L.T. [2008] Preconditioning of symmetric interior
penalty discontinuous Galerkin FEM for elliptic problems. In: Domain decomposition methods
in science and engineering XVII. Springer, Berlin, vol. 60 of Lect. Notes Comput. Sci. Eng.,
33–44.

Dryja, M. [2003] On discontinuous Galerkin methods for elliptic problems with discontinuous coef-
ficients. Comput. Methods Appl. Math., 3(1), 76–85 (electronic), dedicated to Raytcho Lazarov.

Epshteyn, Y. and Rivière, B. [2007] Estimation of penalty parameters for symmetric interior
penalty Galerkin methods. J. Comput. Appl. Math., 206(2), 843–872.

Falgout, R.D., Vassilevski, P.S. and Zikatanov, L.T. [2005] On two-grid convergence estimates.
Numer. Linear Algebra Appl., 12(5-6), 471–494.

Feng, X. and Karakashian, O.A. [2001] Two-level additive Schwarz methods for a discontinuous
Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal., 39(4), 1343–
1365 (electronic).

Fidkowski, K.J., Oliver, T.A., Lu, J. and Darmofal, D.L. [2005] p-Multigrid solution of high-order
discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput.
Phys., 207(1), 92–113.

Gopalakrishnan, J. and Kanschat, G. [2003] A multilevel discontinuous Galerkin method. Numer.
Math., 95(3), 527–550.

Nicolaides, R.A. [1987] Deflation of conjugate gradients with applications to boundary value prob-
lems. SIAM J. Numer. Anal., 24(2), 355–365.

Persson, P.O. and Peraire, J. [2008] Newton-GMRES preconditioning for discontinuous Galerkin
discretizations of the Navier-Stokes equations. SIAM J. Sci. Comput., 30(6), 2709–2733.
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