
Comput Geosci (2014) 18:343–356
DOI 10.1007/s10596-014-9400-8

ORIGINAL PAPER

Fast linear solver for diffusion problems with applications
to pressure computation in layered domains

P. van Slingerland · C. Vuik

Received: 27 January 2013 / Accepted: 7 January 2014 / Published online: 1 April 2014
© Springer International Publishing Switzerland 2014

Abstract Accurate simulation of fluid pressures in layered
reservoirs with strong permeability contrasts is a challeng-
ing problem. For this purpose, the Discontinuous Galerkin
(DG) method has become increasingly popular. Unfortu-
nately, standard linear solvers are usually too inefficient for
the aforementioned application. To increase the efficiency
of the conjugate gradient (CG) method for linear systems
resulting from symmetric interior penalty (discontinuous)
Galerkin (SIPG) discretizations, we cast an existing two-
level preconditioner into the deflation framework. The main
idea is to use coarse corrections based on the DG solu-
tion with polynomial degree p = 0. This paper provides
a numerical comparison of the performance of the original
preconditioner and the resulting deflation variant in terms of
scalability and overall efficiency. Furthermore, it studies the
influence of the SIPG penalty parameter, weighted averages
in the SIPG formulation (SWIP), the smoother, damping of
the smoother, and the strategy for solving the coarse sys-
tems. We have found that the penalty parameter can best
be chosen diffusion-dependent. In that case, both two-level
methods yield fast and scalable convergence. Whether pre-
conditioning or deflation is to be favored depends on the
choice of the smoother and on the damping of the smoo-
ther. Altogether, both two-level methods can contribute to
cheaper and more accurate fluid pressure simulations.

P. van Slingerland (�) · C. Vuik
Delft University of Technology,
Mekelweg 4, 2628 CD Delft,
The Netherlands
e-mail: pvanslingerland@gmail.com

Keywords Deflation · Preconditioning · Two-level ·
Conjugate gradient · Discontinuous Galerkin

Mathematics Subject Classifications (2010) 65F10 ·
65N30 · 65N55

1 Introduction

Layered reservoirs often exhibit very strong permeability
contrasts with typical values between 10−1 and 10−7. Solv-
ing for the pressure in such a system can be numerically
challenging. The governing equation is a mildly nonlinear
diffusion equation with time-varying coefficients obtained
by combining mass conservation and Darcy’s law. To study
the linear systems resulting from discretizing this equa-
tion, this paper considers the stationary linearized equation
(although the ideas presented in this paper can be extended
to the original problem).

To discretize this equation in space, the Discontinuous
Galerkin (DG) method can be particularly suitable [2, 26,
27, 32]. This discretization scheme can be interpreted as
a finite volume method that uses piecewise polynomials
of degree p rather than piecewise constant functions. As
such, it combines the best of both classical finite element
methods and finite volume methods, making it particularly
suitable for handling non-matching grids and designing
hp-refinement strategies.

However, the resulting linear systems are usually larger
than those for the aforementioned classical discretization
schemes. This is due to the larger number of unknowns
per mesh element. At the same time, the condition number

mailto:pvanslingerland@gmail.com

344 Comput Geosci (2014) 18:343–356

typically increases with the number of mesh elements, the
polynomial degree, and the stabilization factor [7, 29]. The
strong permeability contrasts in the problem sketched above
pose an extra challenge. Altogether, standard linear solvers
often result in long computational times and/or low accuracy
of the approximated fluid pressures.

In search of efficient and scalable algorithms (for which
the number of iterations does not increase with, e.g., the
number of mesh elements), much attention has been paid to
subspace correction methods [39]. Examples include clas-
sical geometric (h-)multigrid [5, 16], spectral (p-)multigrid
[15, 23], algebraic multigrid [24, 28], and Schwarz domain
decomposition [1, 14]. Another interesting strategy can be
found in [4], where the authors present a multilevel solver
based on a splitting of the DG space into two components
that are orthogonal in the energy product.

Usually, these methods can either be used as a stand-
alone solver, or as a preconditioner in an iterative Krylov
method. The latter tends to be more robust for problems
with a few isolated “bad” eigenvalues, as is the case for the
strongly varying problems of our interest.

An alternative for preconditioning is the method of defla-
tion, originally proposed in [21]. This method has been
proved effective for layered problems with extreme con-
trasts in the coefficients in [37]. Deflation is related to
multigrid in the sense that it also makes use of a coarse space
that is combined with a smoothing operator at the fine level.
This relation has been considered from an abstract point of
view by Tang et al. [33, 34].

This research seeks to extend this comparison between
preconditioning and deflation in the context of DG schemes.
In particular, it is focused on the conjugate gradient (CG)
method for linear systems resulting from symmetric interior
penalty (discontinuous) Galerkin (SIPG) discretizations for
stationary diffusion problems with extreme contrasts in the
coefficients.

Starting point of this research is one of the two-level
methods proposed by [8]. This method uses coarse cor-
rections based on the DG discretization with polynomial
degree p = 0. Using the analysis in [13], they have shown
theoretically (for p = 1) that this preconditioner yields
scalable convergence of the CG method, independent of
the mesh element diameter. Another nice property is that
the use of only two levels offers an appealing simplicity.
More importantly, the coefficient matrix that is used for the
coarse correction is quite similar to a matrix resulting from
a central difference discretization, for which very efficient
solution techniques are readily available.

To extend the work in [8], we cast the two-level pre-
conditioner into the deflation framework, using the abstract
analysis in [34]. Furthermore, we have conducted several
numerical experiments to compare the scalability and the
overall efficiency of both two-level methods. These results

(including p > 1) complement the theoretical analysis for
the preconditioning variant for p = 1 in [8]. Addition-
ally, we have investigated how the efficiency of the CG
method is influenced by the SIPG penalty parameter, the use
of weighted versus standard averages, the smoother, damp-
ing of the smoother, and the strategy for solving the coarse
systems.

The outline of this paper is as follows. Section 2 dis-
cusses the SIPG method for diffusion problems with large
jumps in the coefficients. To solve the resulting systems,
Section 3 discusses the two-level preconditioner. Section 4
rewrites the latter as a deflation method. Section 5 compares
the performance of both two-level methods through vari-
ous numerical experiments. Section 6 summarizes the main
conclusions.

2 Discretization

We consider the linearized form of the spatially discretized
pressure equation, which can be interpreted as a stationary
diffusion equation. Section 2.1 discusses the SIPG method
for this model following [26]. Section 2.2 describes the
resulting linear systems. Section 2.3 motivates the use of a
diffusion-dependent penalty parameter following [10].

2.1 SIPG method

We study the following model problem on the spatial
domain Ω with boundary ∂Ω = ∂ΩD ∪ ∂ΩN and outward
normal n:

−∇ · (K∇u) = f, in Ω,

u = gD, on ∂ΩD,

K∇u · n = gN, on ∂ΩN. (1)

The diffusion (or permeability) coefficient K is a symmet-
ric and positive-definite tensor that typically contains large
jumps across the domain. The function f is a source term,
and gD and gN specify Dirichlet and Neumann boundary
conditions, respectively.

The SIPG approximation for the model above can be
constructed in the following manner. First, choose a mesh
with elements E1, ..., EN . The numerical experiments in
this paper are for uniform Cartesian meshes on the domain
Ω = [0, 1]2, although our solver can be applied for a wider
range of problems. Next, define the test space V that con-
tains each function that is a polynomial of degree p or lower
within each mesh element, and that may be discontinuous at
the element boundaries. The SIPG approximation uh is now
defined as the unique element in this test space that satisfies
the relation

B(uh, v) = L(v), for all test functions v ∈ V, (2)

Comput Geosci (2014) 18:343–356 345

where B and L are (bi)linear forms that are specified
hereafter.

To define these forms for mesh elements of size h × h,
we require the following additional notation: the vector ni

denotes the outward normal of mesh element Ei , the set Γh

is the collection of all interior edges e = ∂Ei ∩ ∂Ej , the
set ΓD is the collection of all Dirichlet boundary edges e =
∂Ei ∩ ∂ΩD , and the set ΓN is the collection of all Neumann
boundary edges e = ∂Ei ∩ ∂ΩN . Finally, we introduce the
usual trace operators for jumps and averages at the mesh
element boundaries: in the interior, we define at ∂Ei ∩ ∂Ej :
[v] = vini + vjnj (for scalars v) and {v} = 1

2 (vi + vj)
(for vectors v), where vi and vi denote the trace of v and v,
respectively, along the side of Ei with outward normal ni .
Similarly, at the domain boundary, we define at ∂Ei ∩ ∂Ω :
[v] = vini , and {v} = vi . Using this notation, the forms B
and L can be defined as follows:

L(v) =
∫
Ω

f v −
∑
e∈ΓD

∫
e

(
[K∇v] + σ

h
v
)
gD

+
∑
e∈ΓN

∫
e

vgN,

B(uh, v) =
N∑
i=1

∫
Ei

K∇uh · ∇v

+
∑

e∈Γh∪ΓD

∫
e

(σ
h
[uh] · [v]

−{K∇uh} · [v] − [uh] · {K∇v}
)
,

Where σ is the so-called penalty parameter. This posi-
tive parameter penalizes the inter-element jumps to enforce
weak continuity and ensure convergence. Although it is pre-
sented as a constant here, its value may vary throughout the
domain. This is discussed further in Section 2.3 later on.

For a large class of problems with a sufficiently smooth
exact solution (as is the case for the numerical examples in
this paper), the SIPG method yields convergence of order
p + 1 [26].

2.2 Linear systems

In order to compute the SIPG approximation defined by
(2), it needs to be rewritten as a linear system. To this
end, we choose basis functions for the test space V . More
specifically, for each mesh element Ei , we define the basis
function φ

(i)
1 , which is zero in the entire domain, except in

Ei , where it is equal to one. Similarly, we define higher-
order basis functions φ

(i)
2 , ..., φ

(i)
m , which are higher-order

polynomials in Ei and zero elsewhere. In this paper, we use
monomial basis functions.

These latter are defined as follows. In the mesh element
Ei with center (xi, yi) and size h×h, the function φ

(i)
k reads

as follows:

φ
(i)
k (x, y) =

(
x − xi

1
2h

)kx
(
y − yi

1
2h

)ky

,

where kx and ky are selected as follows:
k 1 2 3 4 5 6 7 8 9 10 . . .

kx 0 1 0 2 1 0 3 2 1 0 . . .

ky 0 0 1 0 1 2 0 1 2 3 . . .

p = 0 p = 1 p = 2 p = 3 . . .

The dimension of the basis within one mesh element is equal
to m = (p+1)(p+2)

2 .
Next, we express uh as a linear combination of the basis

functions as follows:

uh =
N∑
i=1

m∑
k=1

u
(i)
k φ

(i)
k . (3)

The new unknowns u(i)k in (3) can be determined by solving
a linear system Au = b of the form:
⎡
⎢⎢⎢⎢⎣

A11 A12 . . . A1N

A21 A22
...

...
. . .

AN1 . . . ANN

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u1

u2
...

uN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2
...

bN

⎤
⎥⎥⎥⎦ ,

where the blocks all have dimension m:

Aji =

⎡
⎢⎢⎢⎢⎢⎢⎣

B
(
φ
(i)
1 , φ

(j)

1

)
B

(
φ
(i)
2 , φ

(j)

1

)
. . . B

(
φ
(i)
m , φ

(j)

1

)

B
(
φ
(i)
1 , φ

(j)

2

)
B

(
φ
(i)
2 , φ

(j)

2

) ...

...
. . .

B
(
φ
(i)
1 , φ

(j)
m

)
. . . B

(
φ
(i)
m , φ

(j)
m

)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

ui =

⎡
⎢⎢⎢⎢⎣

u
(i)
1

u
(i)
2
...

u
(i)
m

⎤
⎥⎥⎥⎥⎦ , bj =

⎡
⎢⎢⎢⎢⎢⎢⎣

L
(
φ
(j)

1

)

L
(
φ
(j)

2

)
...

L
(
φ
(j)
m

)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

for all i, j = 1, ..., N . This system is obtained by substi-
tuting the expression (3) for uh and the basis functions φ(j)

�

for v into (2). Once the unknowns u(i)k are solved from the
system Au = b, the final SIPG approximation uh can be
obtained from (3).

2.3 Penalty parameter

The SIPG method involves the penalty parameter σ which
penalizes the inter-element jumps to enforce weak continu-
ity. This parameter should be selected carefully; on the one
hand, it needs to be sufficiently large to ensure that the SIPG

346 Comput Geosci (2014) 18:343–356

method converges and the coefficient matrix A is symmet-
ric and positive definite (SPD) [26]. At the same time, it
needs to be chosen as small as possible, since the condition
number of A increases rapidly with the penalty parameter
[7].

Computable theoretical lower bounds for a large vari-
ety of problems have been derived by Epshteyn and Riviere
[11]. For one-dimensional diffusion problems, it suffices to

choose σ ≥ 2
k2

1
k0
p2, where k0 and k1 are the global lower

and upper bound, respectively, for the diffusion coefficient
K . However, while this lower bound for σ is sufficient to
ensure convergence (assuming the exact solution is suffi-
ciently smooth), it can be unpractical for problems with
strong variations in the coefficients. For instance, if the dif-
fusion coefficient K takes values between 1 and 10−3, we
obtain σ ≥ 2,000p2, which is inconveniently large. For this
reason, it is common practice to choose, e.g., σ = 20 rather
than σ = 20,000 for such problems [8, 25].

An alternative strategy is to choose the penalty parame-
ter based on local values of the diffusion-coefficient K , e.g.,
choosing σ = 20K rather than σ = 20. It has been demon-
strated numerically in [9] that a diffusion-dependent penalty
parameter can benefit the efficiency of a linear solver (also
cf. Section 5.2). For general tensors K , this strategy can
be defined as follows: for an edge with normal n, we set
σ = αλ, where λ = nT Kn and α is a user-defined con-
stant. The latter should be as small as possible in light of the
discussion above.

If the diffusion is discontinuous, this definition may not
be unique. For instance, in the example above, we could
have λ = 1 on one side and λ = 0.001 on the other side
of an edge. In such cases, it seems a safe choice to use the
largest limit value of λ in the definition above (e.g., λ = 1
in the example). The reason for this is that theoretical stabil-
ity and convergence analysis are usually based on a penalty
parameter that is sufficiently large.

An alternative strategy for dealing with discontinuities is
to use the harmonic average of both limit values [4, 6, 10,
12]. In this case, the penalty parameter reads σ = 2α

λiλj
λi+λj

,
where λi and λj are based on the information in the mesh
elements Ei and Ej , respectively, (adjacent to the edge
under consideration). This choice is equivalent to using the
minimum of both limit values [4, p. 5]. In that sense, it
seems less “safe” than the maximum strategy above.

In [4, 6, 10, 12], the “harmonic” penalty parameter is
used in combination with the symmetric-weighted interior
penalty (SWIP) method. The main difference between the
standard SIPG method and the SWIP method is the follow-
ing: whenever an average of a function at a mesh element

boundary is considered (denoted by {.} in Section 2.1), the
SWIP method uses a weighted average rather than the stan-
dard average. For this purpose, the weights typically depend
on the diffusion coefficient, i.e., wi = λj

λi+λj
and wj =

λi
λi+λj

(note that the harmonic penalty can then be written as
σ = α(wiλi + wjλj)).

In this paper, we study the effects of both a constant and
a diffusion-dependent penalty parameter, using either the
maximum or the harmonic strategy above. Furthermore, we
consider both the SIPG and the SWIP method. Extension
of the aforementioned theory in [11] for the diffusion-
dependent penalty parameter is left for future research.

3 Two-level preconditioner

To solve the linear SIPG system obtained in the previous
section, we start by considering the two-level precondi-
tioner proposed by Dobrev et al. [8]. Section 3.1 specifies
the corresponding coarse correction operator. Section 3.2
defines the resulting two-level preconditioner. Section 3.3
indicates its implementation in a standard preconditioned
CG algorithm.

3.1 Coarse correction operator

The two-level preconditioner is defined in terms of a coarse
correction operator Q ≈ A−1 that switches from the orig-
inal DG test space to a coarse subspace, then performs a
correction that is now simple in this coarse space, and finally
switches back to the original DG test space. In this case,
the coarse subspace is based on the piecewise constant basis
functions.

More specifically, the coarse correction operator Q is
defined as follows. Let R denote the so-called restriction
operator, such that A0 := RART is the SIPG matrix for
polynomial degree p = 0. In other words, R is a matrix of
size N×Nm, such that Ri,(i−1)m+1 = 1 for all i = 1, ..., N ,
and all other entries are zero (recall the polynomial space
dimension m = (p+1)(p+2)

2). An example is given below.
Using this notation, the coarse correction operator is defined
as follows:

Q := RT A−1
0 R (4)

For example, for a Laplace problem on the domain [0, 1]2
with p = 1, a uniform Cartesian mesh with 2 × 2 elements,

Comput Geosci (2014) 18:343–356 347

and penalty parameter σ = 10, we obtain the following
matrices:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

40 1 1 −10 9 0 −10 0 9 0 0 0
1 25 0 −9 8 0 0 −3 0 0 0 0
1 0 25 0 0 −3 −9 0 8 0 0 0

−10 −9 0 40 −1 1 0 0 0 −10 0 9
9 8 0 −1 25 0 0 0 0 0 −3 0
0 0 −3 1 0 25 0 0 0 −9 0 8

−10 0 −9 0 0 0 40 1 −1 −10 9 0
0 −3 0 0 0 0 1 25 0 −9 8 0
9 0 8 0 0 0 −1 0 25 0 0 −3
0 0 0 −10 0 −9 −10 −9 0 40 −1 −1
0 0 0 0 −3 0 9 8 0 −1 25 0
0 0 0 9 0 8 0 0 −3 −1 0 25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A0 =

⎡
⎢⎢⎣

40 −10 −10 0
−10 40 0 −10

−10 0 40 −10
0 −10 −10 40

⎤
⎥⎥⎦ ,

R =

⎡
⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎦ .

Observe that A0 has the same structure as a central dif-
ference matrix (aside from a factor σ = 10). Furthermore,
every element in A0 is also present in the upper left cor-
ner of the corresponding block in the matrix A. This is
because the piecewise constant basis functions are assumed
to be in any polynomial basis. As a consequence, the matrix
R contains elements equal to 0 and 1 only, and does not
need to be stored explicitly; multiplications with R can
be implemented by simply extracting elements or inserting
zeros.

3.2 Two-level preconditioner

We can now formulate the two-level preconditioner pro-
posed by Dobrev et al. [8]. To this end, consider the coarse
correction operator Q defined in (4), a damping parameter
ω ≤ 1, and an invertible smoother M−1 ≈ A−1. Then, the
result y = Pprecr of applying the two-level preconditioner
to a vector r can be computed as follows:

y(1) = ωM−1r (pre-smoothing),

y(2) = y(1) +Q(r − Ay(1)) (coarse correction),

y = y(2) + ωM−T (r −Ay(2)) (post-smoothing). (5)

In this paper, we consider block Jacobi and block Gauss-
Seidel smoothing. These smoothers have the following
property [30]:

M +MT − ωA is SPD. (6)

Using the more abstract analysis in [35, p. 66], condi-
tion (6) implies that the preconditioning operator Pprec is
SPD. As a consequence, the two-level preconditioner can
be implemented in a standard preconditioned CG algorithm
(cf. Section 3.3 hereafter).

Requirement (6) also implies that the two-level precon-
ditioner yields scalable convergence of the CG method
(independent of the mesh element diameter) for a large class
of problems. This has been shown for polynomial degree
p = 1 by Dobrev et al. [8], using the analysis in [13].

3.3 Implementation in CG

Assuming (6), the two-level preconditioner is SPD and can
be implemented in a standard preconditioned CG algorithm.
Below, we summarize the implementation of this scheme
for a given preconditioning operator P and start vector x0:

1. r0 := b − Ax0

2. y0 := P r0

3. p0 := y0

4. for j = 0, 1, ... until convergence do
5. wj := Apj

6. αj := (rj , yj)/(pj ,wj)

7. xj+1 := xj + αjpj

8. rj+1 := rj − αjwj

9. yj+1 = P rj+1

10. βj := (rj+1, yj+1)/(rj , yj)
11. pj+1 := yj+1 + βjpj

12. end

4 Deflation variant

Next, we cast the two-level preconditioner into the deflation
framework using the abstract analysis in [34]. This results
in an alternative two-level scheme. Section 4.1 defines the
resulting operator. Section 4.2 compares the two-level pre-
conditioner and the corresponding deflation variant in terms
of computational costs. Section 4.3 discusses the coarse sys-
tems involved in each iteration. Section 4.4 considers the
influence of damping of the smoother.

4.1 Two-level deflation

There are multiple strategies to construct a deflation method
based on the components of the two-level preconditioner.
An overview of different schemes is given in [34]. Below,
we consider the so-called ADEF2 deflation scheme, as this
type can be implemented relatively efficiently, and allows

348 Comput Geosci (2014) 18:343–356

for inexact solving of coarse systems (cf. Section 4.3 later
on). Lacroix et al. [18] have also studied this method in
the alternative context of finite volume discretizations of
multiphase flows.

Basically, this deflation variant is obtained by skipping
the last smoothing step in (5). In other words, considering
the coarse correction operator Q defined in (4), a damping
parameter ω ≤ 1, and an invertible smoother M−1 ≈ A−1,
the result y = Pdeflr of applying the two-level deflation
technique to a vector r can be computed as follows:

y(1) := ωM−1r (pre-smoothing),

y := y(1) +Q(r − Ay(1)) (coarse correction). (7)

The operator Pdefl is not symmetric in general. As such,
it seems unsuitable for the standard preconditioned CG
method. Interestingly, it can still be implemented success-
fully in its current asymmetric form, as long as the smoother
M−1 is SPD (requirement (6) is not needed), and the start
vector x0 is pre-processed according to the following:

x0 	→ Qb + (I − AQ)T x0. (8)

Other than that, the CG implementation remains as dis-
cussed in Section 3.3. Indeed, it has been shown by
[34, Theorem 3.4] that, under the aforementioned condi-
tions, Pdefl yields the same CG iterates as an alternative
operator (called “BNN” [19], [20]) that actually is SPD. For
extensive analysis of (8), we also refer to [17, 36].

4.2 FLOPS

Because the deflation variant skips one of the two smooth-
ing steps, its costs per CG iteration are lower than for the
preconditioning variant. In this section, we compare the
differences in terms of floating point operations (FLOPS).

Table 1 displays the (approximate) costs for a two-
dimensional diffusion problem with polynomial degree p, a
Cartesian mesh with N = n × n elements, and polynomial
space dimension m := (p+1)(p+2)

2 . Using the precondition-
ing variant, the CG method requires per iteration (27m2 +
14m)N flops, plus the costs for two smoothing steps and one
coarse solve. Using the two-level deflation method, the CG

Table 1 Comparing the computational costs per CG iteration for A-
DEF2 deflation and the two-level preconditioner for our applications

Operation Flops # defl. # prec.

mat-vec (Au) 9 m2N 2 3

Inner product (uT v) 2 mN 2 2

Scalar multiplication (αu) mN 3 3

Vector update (u± v) mN 5 7

Smoothing (M−1u) Variable 1 2

Coarse solve (A−1
0 u0) Variable 1 1

method requires per iteration (18m2 + 12m)N flops, plus
the costs for only one smoothing step and one coarse solve.

A block Jacobi smoothing step with blocks of size
m requires (2m2 − m)N flops, assuming that an LU -
decomposition is known. In this case, the smoothing costs
are low compared to the costs for a matrix-vector product,
and the deflation variant is roughly 30 % cheaper (per iter-
ation). For more expensive smoothers, this factor becomes
larger. A block Gauss-Seidel sweep (either forward or back-
ward) requires the costs for one block Jacobi step, plus the
costs for the updates based on the off-diagonal elements,
which are approximately 4m2N flops.

4.3 Coarse systems

Both two-level methods require the solution of a coarse sys-
tem in each iteration, involving the coefficient matrix A0.
In Section 3.1, we have seen that A0 has the same struc-
ture and size (N × N) as a central difference matrix. As a
consequence, a direct solver is not feasible for most practi-
cal applications. At the same time, many effective inexact
solvers are readily available for this type of system.

For some deflation methods, including DEF1, DEF2,
R-BNN1, R-BNN2, such an inexact coarse solver is not
suitable (an overview of alternative preconditioning strate-
gies is given in [34], and is summarized in Table 2). This is
because those methods contain eigenvalue clusters at 0, so
that small perturbations in those schemes (e.g., due to inex-
act coarse solves) can result in an “unfavorable spectrum,
resulting in slow convergence of the method”—[34, p. 353].
ADEF2 does not have this limitation, as it clusters these
eigenvalues at 1 rather than 0. This is one of the reasons why
we focus on this particular deflation variant. However, we
stress that (fast) convergence of the overall method is only
established if the accuracy of the approximate solution of
the coarse systems is sufficiently high, as is also supported
by our numerical results in Section 5.3 later on.

In Section 5.3, we will investigate the use of an inex-
act coarse solver that applies the CG method in an inner
loop with a scalable algebraic multigrid preconditioner. This

Table 2 Summary of alternative preconditioning strategies as given in
[34]

Name Operator

PREC M−1

DEF1 M−1RT

DEF2 RM−1

A-DEF2 RM−1 +Q

BNN RM−1RT +Q

R-BNN1 RM−1RT

R-BNN2 RM−1

Comput Geosci (2014) 18:343–356 349

strategy will be studied for both the two-level preconditioner
and the ADEF2 deflation variant.

An alternative strategy is the flexible CG (FCG) method
[3, 22]. The main difference with standard CG lies in the
explicit orthogonalization and truncation of the search direc-
tion vectors, possibly combined with a restart strategy. We
do not study the FCG method in this paper, as we will see
in Section 5.3 that the simpler standard preconditioned CG
method is sufficient for our application. Alternative prob-
lems might benefit from the more advanced FCG strategy
though. Investigation of the latter is left for future research.

4.4 Damping

Damping often benefits the convergence of multigrid meth-
ods [40]. For multigrid methods with smoother M = I , a
“typical choice of [ω] is close to 1

||A||2 ,” although a “better
choice of [ω] is possible if we make further assumptions on
how the eigenvectors of A associated with small eigenval-
ues are treated by coarse-grid correction”—[33, p. 1727]. In
that reference, the latter is established for a coarse space that
is based on a set of orthonormal eigenvectors of A. How-
ever, such a result does not seem available yet for the coarse
space (and smoothers) currently under consideration.

At the same time, deflation may not be influenced by
damping at all. The latter has been observed theoretically in
[33, p. 1727] for the DEF(1) variant. For the ADEF2 variant
under consideration, such a result is not yet available.

Altogether, it is an open question how the damping
parameter can best be selected in practice. For this rea-
son, we use an emprical approach in this paper, and study
the effects on both two-level methods for several values of
ω ≤ 1.

5 Numerical experiments

Next, we compare the two-level preconditioner and the
corresponding deflation variant through numerical exper-
iments. Section 5.1 specifies the experimental setup.
Section 5.2 studies the influence of SIPG penalty parame-
ter. Section 5.3 investigates the effectiveness of an inexact
solver for the coarse systems. Section 5.4 studies the impact
of (damping of) the smoother on the overall computational
efficiency. Section 5.5 considers similar experiments for
more challenging test cases.

5.1 Experimental setup

We consider multiple diffusion problems of the form (1)
with strong contrasts in the coefficients on the domain
[0, 1]2. At first, we primarily focus on the problem illus-
trated in Fig. 1. This test case, inspired by [38], has five

K = 1

K = 10 − 3

K = 1

K = 10 − 3

K = 1

Fig. 1 Permeability for the problem with five layers

layers, and the diffusion is either 1 or 10−3 in each layer,
mimicking the presence of sandstone and shale. In Section
5.5, we also study problems that mimic the occurrence of
sand inclusions within a layer of shale, and ground water
flow. Furthermore, we consider an anisotropic problem.

The Dirichlet boundary conditions and the source term
f are chosen such that the exact solution reads u(x, y) =
cos(10πx) cos(10πy) (unless indicated otherwise). We
stress that this choice does not impact the matrix or the
performance of the linear solver, as we use random start vec-
tors (see below). Furthermore, subdividing the domain into
10 × 10 equally sized squares, the diffusion coefficient is
constant within each square.

All model problems are discretized by means of the SIPG
method as discussed in Section 2, although the SWIP variant
with weighted averages is also discussed. We use a uni-
form Cartesian mesh with N = n × n elements, where
n = 20, 40, 80, 160, 320. Furthermore, we use monomial
basis functions with polynomial degree p = 3 (results for
p = 1, 2 are similar though). For N = 3202 mesh elements,
this means that the number of degrees of freedom is a lit-
tle over 106. In most cases, the penalty parameter is chosen
diffusion-dependent, σ = 20nT Kn, using the largest limit
value at discontinuities (cf. Section 2.3). However, we also
study a constant penalty parameter, and a parameter based
on harmonic means.

The linear systems resulting from the SIPG discretiza-
tions are solved by means of the CG method, combined with
either the two-level preconditioner (5) or the corresponding
deflation variant (7). Unless specified otherwise, damping is
not used. For the smoother M−1, we use block Jacobi with
small blocks of size m × m (recall that m = (p+1)(p+2)

2).
For the preconditioning variant, we also consider block
Gauss-Seidel with the same block size (deflation requires a
symmetric smoother).

Diagonal scaling is applied as a pre-processing step in all
cases, and the same random start vector x0 is used for all

350 Comput Geosci (2014) 18:343–356

problems of the same size. Pre-processing of the start vector
according to (8) is applied for deflation only, as it makes no
difference for the preconditioning variant. For the stopping
criterion, we use the following:

‖rk‖2

‖b‖2
≤ TOL, (9)

Where TOL = 10−6, and rk is the residual after the kth
iteration.

Coarse systems, involving the SIPG matrix A0 with poly-
nomial degree p = 0, are solved directly in most cases.
However, a more efficient alternative is provided in Section
5.3. In any case, the coarse matrix A0 is quite similar to a
central difference matrix, for which very efficient solvers
are readily available.

Finally, we remark that all computations are carried out
using a Xeon E3-1240 V2 system and the GFortran (4.7.1)
compiler.

5.2 The influence of the penalty parameter

This section studies the influence of the SIPG penalty
parameter on the convergence of the CG and the SIPG meth-
ods. We compare the differences between using a constant
penalty parameter, and a diffusion-dependent value. Similar
experiments have been considered in [9] for the two-level
preconditioner for p = 1, a single mesh, and symmetric
Gauss-Seidel smoothing (solving the coarse systems using
geometric multigrid). They found that “proper weighting,”
i.e., a diffusion-dependent penalty parameter, “is essential
for the performance.” In this section, we consider p = 3,
and both preconditioning and deflation, both with block
Jacobi smoothing. Furthermore, we analyze the scalability
of the methods by considering multiple meshes. Our results
are consistent with those in [9].

Table 3 displays the number of CG iterations required
for convergence for a Poisson problem (i.e., K = 1 every-
where) with σ = 20. Because the diffusion coefficient is
constant, a diffusion-dependent value (σ = 20K) would
yield the same results. We observe that both the two-level
preconditioner (TL prec.) and the deflation variant (TL
defl.) yield fast and scalable convergence (independent of

Table 3 Both two-level methods yield fast scalable convergence for a
problem with constant coefficients (Poisson, # CG iterations, σ = 20)

Mesh N = 202 N = 402 N = 802 N = 1602

Jacobi 325 576 1,114 1,903

Block Jacobi (BJ) 206 357 696 1,183

TL Prec., 2x BJ 49 52 53 54

TL Defl., 1x BJ 36 37 37 38

Table 4 For a problem with extreme contrasts in the permeability, a
constant penalty yields poor convergence (five layers, # CG iterations,
σ = 20)

Mesh N = 202 N = 402 N = 802 N = 1602

Jacobi 2,675 5,064 9,104 15,657

Block Jacobi (BJ) 1,357 2,960 5,660 9,783

TL Prec., 2x BJ 1,089 2,352 4,709 8,781

TL Defl., 1x BJ 453 591 667 698

the mesh element diameter). For comparison, the results
for standard Jacobi and block Jacobi preconditioning are
also displayed (not scalable). Interestingly, the two-level
deflation method requires fewer iterations than the precon-
ditioning variant, even though its costs per iteration are
about 30 % lower (cf. Section 4.2).

Table 4 considers the same test (using a constant σ =
20), but now for the problem with five layers (cf. Fig. 1).
It can be seen that the convergence is no longer fast and
scalable for this problem with large jumps in the coef-
ficients. The deflation method is significantly faster than
the preconditioning variant, but neither produce satisfactory
results.

5.2.1 Diffusion-dependent penalty parameter

In Table 5, we revisit the experiment in Table 4, but this time
for a diffusion-dependent penalty parameter (σ = 20K ,
using the largest limit value of K at discontinuities). Due to
this alternative discretization, the results are now similar to
those for the Poisson problem (cf. Table 3): both two-level
methods yield fast and scalable convergence.

These results motivate the use of a diffusion-dependent
penalty parameter, provided that this strategy does not
worsen the accuracy of the SIPG discretization compared
to a constant penalty parameter. In Fig. 2, it is verified that
a diffusion-dependent penalty parameter actually improves
the accuracy of the SIPG approximation. The higher accu-
racy can be explained by the fact that the discretization
contains more information of the underlying physics for
a diffusion-dependent penalty parameter. Altogether, the

Table 5 For a diffusion-dependent penalty parameter, both two-level
methods yield fast scalable convergence for a problem with large
permeability contrasts (five layers, # CG iterations, σ = 20K)

Mesh N = 202 N = 402 N = 802 N = 1602

Jacobi 1,303 1,490 1,919 3,109

Block Jacobi (BJ) 244 425 697 1,485

TL Prec., 2x BJ 55 56 56 57

TL Defl., 1x BJ 47 48 48 48

Comput Geosci (2014) 18:343–356 351

10
−6

10
−4

10
−2

202 402 802 1602

 constant σ = 20

 diffusion−dependent σ = 20 K

mesh elements

S
IP

G
 L

2−
er

ro
r

Fig. 2 A diffusion-dependent penalty parameter yields better SIPG
accuracy (five layers, σ = 20K)

penalty parameter can best be chosen diffusion-dependent,
and we will do so in the remaining of this paper.

5.2.2 Weighted averages

The results for the diffusion-dependent penalty parameter in
Fig. 2 and Table 5 were established using the largest limit
value of K in the definition of σ at the discontinuities. In
this section, we consider the influence of using weighted
averages, resulting in the SWIP method and a diffusion-
dependent penalty parameter based on harmonic means (cf.
Section 2.3). For this purpose, we study the problem with
five layers again.

We have found that using σ = 20K with this approach
results in negative eigenvalues, implying that the scheme is
not coercive, and resulting in poor CG convergence. The
same is true for σ = αK with α = 100, 200, 500, 1,000.
When using α = 20,000, the matrix is positive-definite
(tested for N = 10, 20 and p = 1, 2, 3). Similar outcomes
were found using the SIPG scheme rather than the SWIP
scheme (for the same “harmonic” penalty parameter).

At the mesh element edges where the diffusion coeffi-
cient K is discontinuous, using α = 20,000 and a harmonic
penalty yields σ = 20

1.001 . At the same time, using α = 20
and a “maximum” penalty (i.e., using the largest limit value
at discontinuities) yields σ = 20. These values are nearly
the same. However, at all other edges, where K is continu-
ous, σ is 1,000 times larger for the harmonic penalty (with
α = 20,000) than for the maximum penalty (with α = 20).
Because the penalty parameter should be chosen as small as
possible (cf. Section 2.3), we conclude that it can best be
based on the largest limit value at discontinuities. This is in
line with our earlier speculation that using the maximum is
a “safe” choice.

We have also combined the “maximum” penalty with
the SWIP method and compared the outcomes to the ear-
lier results for the SIPG method (both for σ = 20K).
We have found that the discretization accuracy and the CG

Table 6 The difference between the SWIP method (this table) and the
SIPG method (cf. Table 5) is small (five layers, # CG iterations)

Mesh N = 202 N = 402 N = 802 N = 1602

Jacobi 1,309 1,500 1,935 3,129

Block Jacobi (BJ) 244 424 697 1485

TL Prec., 2x BJ 55 56 56 57

TL Defl., 1x BJ 47 48 49 49

convergence are practically the same; the relative absolute
difference in the discretization error is less than 2 % (for
p = 1, 2, 3 and N = 202, 402, 802, 1602). Comparing
Table 6 (SWIP) to Table 5 (SIPG), it can be seen that the
number of CG iterations required for convergence is nearly
identical.

Altogether, we conclude that both the SIPG and the
SWIP method are suitable for our application, as long as
the penalty parameter is chosen diffusion-dependent, using
the largest limit value at discontinuities. We will apply this
strategy using the standard SIPG method in the remaining
of this paper.

5.3 Coarse systems

To solve the coarse systems with coefficient matrix A0,
a direct solver is usually not feasible in practice. This is
because A0 has the same structure and size (N × N) as a
central difference matrix. To improve on the efficiency of
the coarse solver, we have investigated the cheaper alter-
native of applying the CG method again in an inner loop
(cf. Section 4.3). This section discusses the results using
the algebraic multigrid preconditioner MI 20 in the HSL
software package,1 which is based on a classical scheme
described in [31]. The inner loop uses a stopping criterion
of the form (9).

Table 7 displays the number of outer CG iterations
required for convergence using the two-level preconditioner
and deflation variant, respectively, (for the problem with
five layers). Different values of the inner tolerance TOL are
considered in these tables. For comparison, the results for
the direct solver are also displayed. We observe that low
accuracy in the inner loop is sufficient to reproduce the lat-
ter. For both two-level methods, the inner tolerance can be
104 times as large as the outer tolerance. For the highest
acceptable inner tolerance TOL = 10−2, the number of iter-
ations in the inner loop is between 2 and 5 in all cases (not
displayed in the tables).

In terms of computational time, the difference between
the direct solver and the inexact AMG-CG solver is

1HSL, a collection of Fortran codes for large-scale scientific computa-
tion. See http://www.hsl.rl.ac.uk/

http://www.hsl.rl.ac.uk/

352 Comput Geosci (2014) 18:343–356

Table 7 Coarse systems can be solved efficiently by using an inexact
solver with a relatively low accuracy (TOL) in the inner loop (five
layers, # outer CG iterations)

Mesh N = 402 N = 802 N = 1602 N = 3202

Preconditioning

Direct 56 56 57 58

TOL = 10−3 56 56 57 58

TOL = 10−2 56 57 58 58

TOL = 10−1 59 65 70 78

Deflation

Direct 48 48 48 49

TOL = 10−3 48 48 48 49

TOL = 10−2 48 48 48 49

TOL = 10−1 48 54 79 67

negligible for the problems under consideration. However,
for large three-dimensional problems, it can be expected that
the inexact coarse solver is much faster, and thus crucial for
the overall efficiency and scalability of the linear solver.

5.4 Smoothers and damping

This section discusses the influence of the smoother and
damping on both two-level methods. In particular, we con-
sider multiple damping values ω ∈ [0.5, 1], and both Jacobi
and (block) Gauss-Seidel smoothing. The latter is applied
for the preconditioning variant only, as deflation requires a
symmetric smoother.

Table 8 displays the number of CG iterations required
for convergence for the problem with five layers. For the
deflation variant (Defl.), we have found that damping makes
no difference for the CG convergence, so the outcomes

Table 8 Damping can improve the convergence for the precondi-
tioner, but has no influence for deflation (five layers, # CG Iterations)

Mesh N = 402 N = 802 N = 1602 N = 3202

Prec., 2x BJ (ω = 1) 56 56 57 58

(ω = 0.9) 40 40 42 43

(ω = 0.8) 36 37 39 39

(ω = 0.7) 35 36 36 37

(ω = 0.6) 35 36 36 37

(ω = 0.5) 36 37 38 39

Prec., 2x BGS (ω = 1) 34 35 35 37

(ω = 0.9) 34 34 35 36

(ω = 0.8) 35 34 36 37

(ω = 0.7) 35 36 37 38

(ω = 0.6) 36 37 38 39

(ω = 0.5) 37 39 39 40

Defl., 1x BJ (ω = 1) 48 48 48 49

Table 9 The deflation method and the block Jacobi smoother tend to
be cheaper due to lower costs per iteration (five layers, CPU time in
seconds)

Mesh N = 402 N = 802 N = 1602 N = 3202

Prec., 2x BJ (ω = 1) 0.19 0.82 3.86 17.61

(ω = 0.9) 0.14 0.60 2.80 13.14

(ω = 0.8) 0.12 0.56 2.60 11.96

(ω = 0.7) 0.12 0.54 2.41 11.37

(ω = 0.6) 0.12 0.54 2.41 11.36

(ω = 0.5) 0.12 0.55 2.54 11.95

Prec., 2x BGS (ω = 1) 0.21 0.93 3.93 18.07

(ω = 0.9) 0.21 0.91 3.93 17.62

(ω = 0.8) 0.22 0.91 4.04 18.08

(ω = 0.7) 0.21 0.96 4.15 18.55

(ω = 0.6) 0.22 0.98 4.26 19.03

(ω = 0.5) 0.23 1.03 4.37 19.50

Defl., 1x BJ (ω = 1) 0.11 0.50 2.39 11.66

for ω < 1 are not displayed. Such a result has also been
observed theoretically in [33] for an alternative deflation
variant (known as DEF(1)).

For the preconditioning variant (Prec.), damping can
both improve and worsen the efficiency; for block Jacobi
smoothing, choosing, e.g., ω = 0.7, can reduce the number
of iterations by 37 %; for block Gauss-Seidel smoothing,
choosing ω < 1 has either no influence or a small negative
impact in most cases.

We have also performed the experiment for standard
point Jacobi and point Gauss-Seidel (not displayed in the
table). However, this did not lead to satisfactory results;
over 250 iterations in all cases, even when the relaxation
parameter was sufficiently low to ensure that (6) is satis-
fied (only restricting for point Jacobi). Altogether, the block
(Jacobi/Gauss-Seidel) smoothers yield significantly better
results than the point (Jacobi/Gauss-Seidel) smoothers.

We speculate that this is due to the following: the coarse
correction operator Q simplifies the matrix A to A0, which

0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

prec.

defl.

damping parameter ω

C

G
 it

er
at

io
ns

0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

prec.

defl.

damping parameter ω

C
P

U
 ti

m
e

in
 s

ec
on

ds

Fig. 3 Unless an optimal damping parameter is known, deflation is
cheaper due to lower costs per iteration (five layers, N = 1602, block
Jacobi)

Comput Geosci (2014) 18:343–356 353

Table 10 Sand inclusions

0

5

10

15

20

mesh elements

C
P

U
 ti

m
e

in
 s

ec
.

402 802 1602 3202

Prec., 2x BJ
Prec., 2x BJ (ω = 0.7)
Defl., 1x BJ

CG iterations

Mesh N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 16,000 64,000 256,000 1,024,000

Prec., 2x BJ 53 56 58 59

Prec., 2x BJ (ω = 0.7) 32 34 34 34

Defl., 1x BJ 46 47 48 48

eliminates the “higher-order” information in each element
(regarding the higher-order basis functions), but preserves
the “mesh” information (i.e., which elements are neigh-
bors and which are not). Intuitively, a suitable smoo-
ther would reintroduce this higher-order information, orig-
inally contained in dense blocks of size m × m. The
block (Jacobi/Gauss-Seidel) smoothers are better suited
for this task, which could explain why they are more
effective.

5.4.1 Computational time

Based on the results in Table 8, it appears that the pre-
conditioning variant with either block Jacobi (with optimal
damping) or block Gauss-Seidel is the most efficient choice.
However, the costs per iteration also need to be taken into
account.

Table 9 reconsiders the results in Table 8 but now in terms
of the computational time in seconds (using a direct coarse

Table 11 Ground water

0

5

10

15

20

25

mesh elements

C
P

U
 ti

m
e

in
 s

ec
.

402 802 1602 3202

Prec., 2x BJ
Prec., 2x BJ (ω = 0.7)
Defl., 1x BJ

CG iterations

Mesh N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 16,000 64,000 256,000 1,024,000

Prec., 2x BJ 67 68 68 69

Prec., 2x BJ (ω = 0.7) 41 42 42 42

Defl., 1x BJ 59 59 60 60

354 Comput Geosci (2014) 18:343–356

Table 12 Anisotropy

0

5

10

15

20

25

mesh elements

C
P

U
 ti

m
e

in
 s

ec
.

402 802 1602 3202

Prec., 2x BJ
Prec., 2x BJ (ω = 0.7)
Defl., 1x BJ

CG iterations

Mesh N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 16,000 64,000 256,000 1,024,000

Prec., 2x BJ 61 67 68 71

Prec., 2x BJ (ω = 0.7) 39 39 41 42

Defl., 1x BJ 54 55 57 57

solver). It can be seen that block Gauss-Seidel smoothing
is relatively expensive. The deflation variant (with block
Jacobi smoothing) is the fastest in nearly all cases. This
is due to the fact that it requires only one smoothing step
per iteration, instead of two. When an optimal damping
parameter is known, the preconditioning variant reaches a
comparable efficiency. This is also illustrated in Fig. 3.
However, it is an open question how the damping parameter
can best be selected in practice.

5.5 Other test cases

In this section, we repeat the experiments in Table 9 for
more challenging test cases. For the preconditioning variant,
we only display the results for block Jacobi smoothing with-
out damping (ω = 1) and with optimal damping (ω =
0.7).

Tables 10 and 11 consider problems that mimic the
occurrence of sand inclusions within a layer of shale and
groundwater flow, respectively. Similar problems have been
studied in [38]. Table 12 considers an anisotropic problem
with two layers (with exact solution u(x, y) = cos(2πy)).
Because the diffusion is a full tensor, this test case mimics
the effect of using a non-Cartesian mesh.

It can be seen from these tables that, as before, both two-
level methods yield fast and scalable convergence. Without
damping, deflation is the most efficient. When an opti-
mal damping value is known, the preconditioning variant
performs comparable to deflation.

6 Conclusion

This paper compares the two-level preconditioner proposed
in [8] and the alternative ADEF2-deflation variant for lin-
ear systems resulting from SIPG discretizations. We have
found that both two-level methods yield fast and scalable
convergence for diffusion problems with large jumps in the
coefficients. This result is obtained provided that the SIPG
penalty parameter is chosen dependent on local values of
the permeability (using the largest limit value at disconti-
nuities). The latter also benefits the accuracy of the SIPG
discretization. Furthermore, the impact of using weighted
averages (SWIP) is then small. Coarse systems can be
solved efficiently by applying the CG method again in an
inner loop with low accuracy.

The main difference between both methods is that the
deflation method can be implemented by skipping one of
the two smoothing steps in the algorithm for the precon-
ditioning variant. This may be particularly advantageous
for expensive smoothers, although the basic block Jacobi
smoother was found to be highly effective for the prob-
lems under consideration. Without damping, deflation can
be up to 35 % cheaper than the original preconditioner. If an
optimal damping parameter is used, both two-level strate-
gies yield similar efficiency (deflation appears unaffected
by damping). However, it remains an open question how the
damping parameter can best be selected in practice.

Altogether, both two-level methods can contribute
to cheaper and more accurate pressure simulations for

Comput Geosci (2014) 18:343–356 355

layered systems with strong permeability contrasts. Future
research could focus on theoretical support for these find-
ings and more advanced, larger-scale test cases, including
three-dimensional problems on more realistic geometries.

References

1. Antonietti, P.F., Ayuso, B.: Schwarz domain decomposition pre-
conditioners for discontinuous Galerkin approximations of elliptic
problems: non-overlapping case. M2AN Math. Model. Numer.
Anal. 41(1), 21–54 (2007)

2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified
analysis of discontinuous Galerkin methods for elliptic problems.
SIAM J. Numer. Anal. 39(5), 1749–1779 (electronic) (2002)

3. Axelsson, O., Vassilevski, P.S.: Variable-step multilevel precon-
ditioning methods. I. Selfadjoint and positive definite elliptic
problems. Numer. Linear Algebra Appl. 1(1), 75–101 (1994)

4. Ayuso de Dios, B., Holst, M., Zhu, Y., Zikatanov, L.: Multi-
level preconditioners for discontinuous Galerkin approximations
of elliptic problems with jump coeffients. arXiv:1012.1287v2
(2012)

5. Brenner, S.C., Zhao, J.: Convergence of multigrid algorithms for
interior penalty methods. Appl. Numer. Anal. Comput. Math. 2(1),
3–18 (2005)

6. Burman, E., Zunino, P.: A domain decomposition method based
on weighted interior penalties for advection-diffusion-reaction
problems. SIAM J. Numer. Anal. 44(4), 1612–1638 (electronic)
(2006)

7. Castillo, P.: Performance of discontinuous Galerkin methods for
elliptic PDEs. SIAM J. Sci. Comput. 24(2), 524–547 (2002)

8. Dobrev, V.A., Lazarov, R.D., Vassilevski, P.S., Zikatanov, L.T.:
Two-level preconditioning of discontinuous Galerkin approxima-
tions of second-order elliptic equations. Numer. Linear Algebra
Appl. 13(9), 753–770 (2006)

9. Dobrev, V.A., Lazarov, R.D., Zikatanov, L.T.: Preconditioning
of symmetric interior penalty discontinuous Galerkin FEM for
elliptic problems. In: Domain Decomposition Methods in Sci-
ence and Engineering XVII, Lecture Notes in Computer Sci-
ence and Engineering, vol. 60, pp. 33–44. Springer, Berlin
(2008)

10. Dryja, M.: On discontinuous Galerkin methods for elliptic prob-
lems with discontinuous coefficients. Comput. Methods Appl.
Math. 3(1), 76–85 (electronic) (2003). Dedicated to Raytcho
Lazarov

11. Epshteyn, Y., Rivière, B.: Estimation of penalty parameters for
symmetric interior penalty Galerkin methods. J. Comput. Appl.
Math. 206(2), 843–872 (2007)

12. Ern, A., Stephansen, A., Zunino, P.: A discontinuous Galerkin
method with weighted averages for advection-diffusion equations
with locally small and anisotropic diffusivity. IMA J. Numer.
Anal. 29(2), 235–256 (2009). doi:10.1093/imanum/drm050

13. Falgout, R.D., Vassilevski, P.S., Zikatanov, L.T.: On two-grid con-
vergence estimates. Numer. Linear Algebra Appl. 12(5–6), 471–
494 (2005)

14. Feng, X., Karakashian, O.A.: Two-level additive Schwarz meth-
ods for a discontinuous Galerkin approximation of second order
elliptic problems. SIAM J. Numer. Anal. 39(4), 1343–1365 (elec-
tronic) (2001)

15. Fidkowski, K.J., Oliver, T.A., Lu, J., Darmofal, D.L.: p-Multigrid
solution of high-order discontinuous Galerkin discretizations of

the compressible Navier-Stokes equations. J. Comput. Phys.
207(1), 92–113 (2005). doi:10.1016/j.jcp.2005.01.005

16. Gopalakrishnan, J., Kanschat, G.: A multilevel discontinuous
Galerkin method. Numer. Math. 95(3), 527–550 (2003)

17. Kuznetsov, Y.: Matrix computational processes in subspaces.
In: Glowinski, R., Lions, J. (eds) Computing Methods in
Applied Sciences and Engineering, vol. VI, pp. 15–31.
North-Holland. (1984). Proceedings of the 6th International
Symposium on Computing Methods in Applied Sciences
and Engineering, Versailles, France, December 12–16,
(1983)

18. Lacroix, S., Vassilevski, Y., Wheeler, J., Wheeler, M.: Iterative
solution methods for modeling multiphase flow in porous media
fully implicitly. SIAM J. Sci. Comput. 25(3), 905–926 (2003)

19. Mandel, J.: Balancing domain decomposition. Commun. Numer.
Methods Eng. 9, 233–241 (1993)

20. Mandel, J., Brezina, M.: Balancing domain decomposition for
problems with large jumps in coefficients. Math. Comput.
65(216), 1387–1401 (1996)

21. Nicolaides, R.A.: Deflation of conjugate gradients with applica-
tions to boundary value problems. SIAM J. Numer. Anal. 24(2),
355–365 (1987)

22. Notay, Y.: Flexible conjugate gradients. SIAM J. Sci. Comput.
22(4), 1444–1460 (electronic) (2000)

23. Persson, P.O., Peraire, J.: Newton-GMRES preconditioning for
discontinuous Galerkin discretizations of the Navier-Stokes equa-
tions. SIAM J. Sci. Comput. 30(6), 2709–2733 (2008)

24. Prill, F., Lukáčová-Medviďová, M., Hartmann, R.: Smoothed
aggregation multigrid for the discontinuous Galerkin method.
SIAM J. Sci. Comput. 31(5), 3503–3528 (2009)

25. Proft, J., Rivière, B.: Discontinuous Galerkin methods for
convection-diffusion equations for varying and vanishing diffusiv-
ity. Int. J. Numer. Anal. Model. 6(4), 533–561 (2009)

26. Rivière, B.: Discontinuous Galerkin methods for solving elliptic
and parabolic equations. In: Frontiers in Applied Mathematics,
vol. 35. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia (2008). Theory and implementation

27. Rivière, B., Wheeler, M., Banas̀, K.: Part ii. discontinuous galerkin
method applied to a single-phase flow in porous media. Comput.
Geosci. 4, 337–349 (2000)

28. Saad, Y., Suchomel, B.: ARMS: an algebraic recursive multilevel
solver for general sparse linear systems. Numer. Linear Algebra
Appl. 9(5), 359–378 (2002). doi:10.1002/nla.279

29. Sherwin, S.J., Kirby, R.M., Peiró, J., Taylor, R.L., Zienkiewicz,
O.C.: On 2D elliptic discontinuous Galerkin methods. Int. J.
Numer. Methods Eng. 65(5), 752–784 (2006)

30. van Slingerland, P., Vuik, C.: Scalable two-level precondition-
ing and deflation base on a piecewise constant subspace for
(SIP)DG systems. Tech. Rep. 12–11, Delft University of Technol-
ogy (2012)

31. Stüben, K.: An introduction to algebraic multigrid. In:
Trottenberg, U., Oosterlee, C.W., Schüller, A. (eds.) Multigrid,
pp. 413–532. Academic Press, New York (2001)

32. Sun, S., Wheeler, M.: Local problem-based a posteriori error
estimators for discontinuous galerkin approximations of reactive
transport. Comput. Geosci. 11(2), 87–101 (2007)

33. Tang, J.M., MacLachlan, S.P., Nabben, R., Vuik, C.: A com-
parison of two-level preconditioners based on multigrid and
deflation. SIAM J. Matrix Anal. Appl. 31(4), 1715–1739
(2010)

34. Tang, J.M., Nabben, R., Vuik, C., Erlangga, Y.A.: Compari-
son of two-level preconditioners derived from deflation, domain

http://arxiv.org/abs/1012.1287v2
http://dx.doi.org/10.1093/imanum/drm050
http://dx.doi.org/10.1016/j.jcp.2005.01.005
http://dx.doi.org/10.1002/nla.279

356 Comput Geosci (2014) 18:343–356

decomposition, and multigrid methods. J. Sci. Comput. 39(3),
340–370 (2009)

35. Vassilevski, P.S.: Multilevel block factorization preconditioners.
Matrix-based analysis and algorithms for solving finite element
equations. Springer, New York (2008)

36. Vassilevski, Y.: A hybrid domain decomposition method based
on aggregation. Numer Linear Algebra Appl. 11(4), 327–341
(2004)

37. Vuik, C., Segal, A., Meijerink, J.: An efficient preconditioned
CG method for the solution of a class of layered problems with

extreme contrasts in the coefficients. J. Comput. Phys. 152, 385–
403 (1999)

38. Vuik, C., Segal, A., Meijerink, J., Wijma, G.: The construction of
projection vectors for a Deflated ICCG method applied to prob-
lems with extreme contrasts in the coefficients. J. Comput. Phys.
172, 426–450 (2001)

39. Xu, J.: Iterative methods by space decomposition and subspace
correction. SIAM Rev 34(4), 581–613 (1992)

40. Yavneh, I.: Why multigrid methods are so efficient. Comput. Sci.
Eng. 8(6), 12–22 (2006)

	Fast linear solver for diffusion problems with applications to pressure computation in layered domains
	Abstract
	Introduction
	Discretization
	SIPG method
	Linear systems
	Penalty parameter

	Two-level preconditioner
	Coarse correction operator
	Two-level preconditioner
	Implementation in CG

	Deflation variant
	Two-level deflation
	FLOPS
	Coarse systems
	Damping

	Numerical experiments
	Experimental setup
	The influence of the penalty parameter
	Diffusion-dependent penalty parameter
	Weighted averages

	Coarse systems
	Smoothers and damping
	Computational time

	Other test cases

	Conclusion
	References

