
Journal of Computational and Applied Mathematics 275 (2015) 61–78

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Scalable two-level preconditioning and deflation based on a
piecewise constant subspace for (SIP)DG systems for
diffusion problems
P. van Slingerland, C. Vuik ∗

Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

h i g h l i g h t s

• We consider a solver for the discontinuous Galerkin method.
• We use the Symmetric Interior Penalty variant.
• The deflated solver appears to be scalable.
• Our solver is independent of the jump in the coefficients.

a r t i c l e i n f o

Article history:
Received 10 October 2012
Received in revised form 28 May 2014

MSC:
65F10
65N30
65N55

Keywords:
Two-level preconditioning
Deflation
Symmetric interior penalty Galerkin
discretization

Conjugate gradient method
Diffusion problems

a b s t r a c t

This paper is focused on the preconditioned Conjugate Gradient (CG) method for linear
systems resulting from Symmetric Interior Penalty (discontinuous) Galerkin (SIPG) dis-
cretizations for stationary diffusion problems. In particular, it concerns two-level pre-
conditioning strategies where the coarse space is based on piecewise constant DG basis
functions. In this paper, we show that both the two-level preconditioner and the corre-
sponding BNN (or ADEF2) deflation variant yield scalable convergence of the CG method
(independent of the mesh element diameter). These theoretical results are illustrated by
numerical experiments.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The discontinuous Galerkin method can be interpreted as a finite volume method that uses piecewise polynomials of
degree p rather than piecewise constant functions. As such, it combines the best of both classical finite element methods
and finite volume methods, making it particularly suitable for handling non-matching grids and designing hp-refinement
strategies. However, the resulting linear systems are usually larger than those for the aforementioned classical discretization
schemes. This is due to the larger number of unknowns per mesh element. At the same time, the condition number typically
increases with the number ofmesh elements, the polynomial degree, and the stabilization factor [1,2]. Problemswith strong
variations in the coefficients pose an extra challenge. Altogether, standard linear solvers often result in long computational
times and/or low accuracy.

∗ Corresponding author.
E-mail address: c.vuik@tudelft.nl (C. Vuik).

http://dx.doi.org/10.1016/j.cam.2014.06.028
0377-0427/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2014.06.028
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2014.06.028&domain=pdf
mailto:c.vuik@tudelft.nl
http://dx.doi.org/10.1016/j.cam.2014.06.028

62 P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78

In search of efficient and scalable algorithms (for which the number of iterations does not increase with e.g. the number
of mesh elements), much attention has been paid to subspace correction methods [3]. Examples include classical geometric
(h-)multigrid [4–6], spectral (p-)multigrid [7–9], algebraic multigrid [10,11], Schwarz domain decomposition [12,13], and
mixtures of these [14]. Usually, these methods can either be used as a standalone solver, or as a preconditioner within an
iterative Krylov method. The latter tends to be more robust for problems with a few isolated ‘bad’ eigenvalues, as is typical
for problems with large contrasts in the coefficients.

This research is focused on the preconditioned Conjugate Gradient (CG) method for linear systems resulting from
Symmetric Interior Penalty (discontinuous) Galerkin (SIPG) discretizations for stationary diffusion problems. In particular, it
concerns two-level preconditioning strategieswhere the coarse space is based on the piecewise constant DG basis functions.

The latter strategy has been introduced by Dobrev et al. [15]. In [16], their method has been carried over to deflationwith
the help of the analysis in [17]: it has been demonstrated numerically that both two-level variants yield fast and scalable
CG convergence using (damped) block Jacobi smoothing.

To provide theoretical support for this, we derive bounds for the condition number of the preconditioned/deflated system
which are independent of the mesh element diameter (the influence of the polynomial degree and the diffusion coefficient
on these theoretical bounds is not considered in this paper). Such bounds are already available for the preconditioning
variant with p = 1, as derived in [15] using the work of Falgout et al. [18]. Here, we extend these results by allowing p ≥ 1.
Furthermore, we include BNN/ADEF2 deflation in the analysis. Additionally, we demonstrate that the required restrictions
on the smoother are satisfied for (damped) block Jacobi smoothing. Finally, we extend the numerical support in [16] for
these results by studying test problems with strong variations in the coefficients.

The outline of this paper is as follows. Section 2 specifies both two-level methods for the linear SIPG systems under
consideration. Section 3 derives an auxiliary regularity result, which is used to derive themain scalability result in Section 4.
Numerical experiments are discussed in Section 5. Finally, we summarize themain conclusions in Section 6. Formore details,
we refer to our technical report [19].

2. Methods and assumptions

This section specifies the methods and assumptions that we consider in this paper. Section 2.1 discusses the diffusion
model under consideration and discretizes it by means of the SIPG method. Section 2.2 considers two two-level precondi-
tioning strategies for solving the resulting linear system by means of the preconditioned CG method.

2.1. SIPG discretization for diffusion problems

Model problem. We study the following diffusion problem on the d-dimensional domain Ω with source term f , scalar diffu-
sion coefficient K (bounded below and above by positive constants), and a combination of Dirichlet and Neumann boundary
conditions (specified by gD on ∂ΩD ≠ ∅ and gN on ∂ΩN with outward normal n respectively):

−∇ · (K∇u) = f , in Ω,

u = gD, on ∂ΩD ≠ ∅,

K∇u · n = gN , on ∂ΩN . (1)

We assume that themodel parameters are chosen such that aweak solution of thismodel problem exists (cf. [20] for specific
sufficient conditions). Furthermore, we assume that Ω is either an interval (d = 1), polygon (d = 2) or polyhedron (d = 3).
Mesh. To discretize the model problem (1), we subdivide Ω into mesh elements E1, . . . , EN with maximum element
diameter h.

We assume that each mesh element Ei is affine-equivalent with a certain reference element E0
that is an interval/polygon/polyhedron (independent of h) with mutually affine-equivalent edges. (2)

Note that all meshes consisting entirely of either intervals, triangles, tetrahedrons, parallelograms, or parallelepipeds satisfy
this property. The mesh does not need to be conforming.

Furthermore, we assume that themesh is regular in the sense of [21, p. 124]. To specify this property, for all i = 0, . . . ,N ,
let hi and ρi denote the diameter of Ei, and the diameter of the largest ball contained in Ei respectively. We can now define
regularity as1:

hi

ρi
. 1, ∀i = 1, . . . ,N. (3)

1 Throughout this paper, we use the symbol . in expressions of the form ‘‘F(x) . G(x) for all x ∈ X ’’ to indicate that there exists a constant C > 0,
independent of the variable x and the maximum mesh element diameter h (or the number of mesh elements), such that F(x) ≤ CG(x) for all x ∈ X . The
symbol & is defined similarly.

P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78 63

Finally, we assume that the mesh is quasi-uniform in the following sense:

h
hi

. 1, ∀i = 1, . . . ,N. (4)

SIPG method. Now that we have specified the mesh, we can construct an SIPG approximation for our model problem (1).
To this end, define the test space V that contains each function that is a polynomial of degree p or lower within each mesh
element, and thatmay be discontinuous at the element boundaries. The SIPG approximation uh is now defined as the unique
element in this test space that satisfies the relation B(uh, v) = L(v) for all test functions v ∈ V , where B and L are certain
(bi)linear forms that are specified hereafter.

To specify these forms, we use the following notation: let Γh denote the collection of all edges e = ∂Ei ∩ ∂Ej in the
interior. Similarly, let ΓD and ΓN denote the collection of all edges (points/lines/polygons) at the Dirichlet and Neumann
boundary respectively. Additionally, for all edges e, let he denote the length of the largest mesh element adjacent to e for
one-dimensional problems, the length of e for two-dimensional problems, and the square root of the surface area of e for
three-dimensional problems. Finally, we introduce the usual trace operators for jumps and averages at the mesh element
boundaries: in the interior, we define at ∂Ei ∩ ∂Ej: [v] = vi · ni + vj · nj, and {v} =

1
2 (vi + vj), where vi denotes the trace

of the (scalar or vector-valued) function v along the side of Ei with outward normal ni. Similarly, at the domain boundary,
we define at ∂Ei ∩ ∂Ω: [v] = vi · ni, and {v} = vi. Using this notation, the forms B and L can be defined as follows (for
one-dimensional problems, the boundary integrals below should be interpreted as function evaluations of the integrand):

BΩ(uh, v) =

N
i=1


Ei
K∇uh · ∇v, Bσ (uh, v) =


e∈Γh∪ΓD


e

σ

he
[uh] · [v] ,

Br(uh, v) = −


e∈Γh∪ΓD


e


{K∇uh} · [v] + [uh] · {K∇v}


,

B(uh, v) = BΩ(uh, v) + Bσ (uh, v) + Br(uh, v),

L(v) =


Ω

f v −


e∈ΓD


e


[K∇v] +

σ

he
v


gD +


e∈ΓN


e
vgN , (5)

where σ ≥ 0 is the so-called penalty parameter.
This parameter penalizes the inter-element jumps to enforce weak continuity required for convergence. Its value may

vary throughout the domain, and we assume that it is bounded below and above by positive constants (independent of the
maximum element diameter h). Furthermore, we assume that the scheme is coercive in the sense that:

0 < BΩ(v, v) + Bσ (v, v) . B(v, v), ∀v ∈ V . (6)

For a large class of problems, it has been shown in [20, pp. 38–40] that this condition is satisfied as long as the penalty
parameter is sufficiently large.

Linear system. In order to compute the SIPG approximation, we choose a basis for the test space V : for each mesh element
Ei, we set the basis function φ

(i)
1 equal to zero in the entire domain, except in Ei, where it is equal to one. Similarly, we define

higher-order basis functions φ
(i)
2 , . . . , φ

(i)
m , which are a higher-order polynomial in Ei and zero elsewhere. Note that, e.g., for

one-dimensional problems, we havem = p + 1 basis functions.
More specifically, the basis functions are constructed as follows. For all i = 1, . . . ,N , let Fi : Ei → E0 denote an invertible

affine mapping (which exists by assumption (2)). Furthermore, let the functions φ
(0)
k : E0 → R (with k = 1, . . . ,m) form

a basis for the space of all polynomials of degree p and lower on the reference element (setting φ
(0)
1 = 1). Using this basis

on the reference element, the basis function φ
(i)
k is zero in the entire domain, except in the mesh element Ei, where it reads

φ
(i)
k = φ

(0)
k ◦ Fi.

Now that we have defined the basis functions, we can express uh as a linear combination of these functions: uh =N
i=1

m
k=1 u

(i)
k φ

(i)
k . The new unknowns u(i)

k in this expression can be determined by solving a linear system Au = b of
following form (also cf. e.g. [20]):


A11 A12 · · · A1N

A21 A22
...

...
. . .

AN1 · · · ANN



u1
u2
...
uN

 =


b1
b2
...
bN

 , (7)

64 P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78

where the blocks all have dimensionm, and where, for all i, j = 1, . . . ,N:

Aji =


B(φ(i)

1 , φ
(j)
1) B(φ(i)

2 , φ
(j)
1) · · · B(φ(i)

m , φ
(j)
1)

B(φ(i)
1 , φ

(j)
2) B(φ(i)

2 , φ
(j)
2)

...
...

. . .

B(φ(i)
1 , φ(j)

m) · · · B(φ(i)
m , φ(j)

m)

 , ui =


u(i)
1

u(i)
2
...

u(i)
m

 , bj =


L(φ(j)

1)

L(φ(j)
2)
...

L(φ(j)
m)

 . (8)

Note that A is Symmetric and Positive-Definite (SPD), as the bilinear form B is coercive (6). This can be seen by observing
that, for any nonzero vector x, there exists a nonzero function v ∈ V (specifically, v =

N
i=1

m
k=1 x(i−1)m+k φ

(i)
k) such that

xTAx = B(v, v)
(6)
& BΩ(v, v) + Bσ (v, v) > 0.

2.2. Two-level preconditioning and deflation

In the previous section, we obtained a linear SIPG system of the form Ax = b, where A is SPD. To solve this system,
we consider the preconditioned CG method. In particular, we focus on a two-level preconditioner introduced by Dobrev
et al. [15], and the corresponding BNN-deflation variant. In this section, both variants are discussed.
Preconditioning variant. The two-level preconditioner is defined in terms of a coarse correction operator Q ≈ A−1 that
switches from the original DG test space to a coarse subspace, then performs a correction that is now simple in this coarse
space, and finally switches back to the original DG test space. In this paper, we study the coarse subspace that is based on
the piecewise constant basis functions.

More specifically, the coarse correction operator Q is defined as follows. Let R denote the so-called restriction operator
such that A0 := RART is the SIPG matrix for polynomial degree p = 0. In other words, R is a matrix of size N × Nm such
that Ri,(i−1)m+1 = 1 for all i = 1, . . . ,N , and all other entries are zero. Using this notation, the coarse correction operator is
defined as Q := RTA−1

0 R.
The two-level preconditioner combines this operator with a nonsingular smootherM−1

prec ≈ A−1 with the property

Mprec + MT
prec − A is SPD. (9)

It can be seen that this requirement is satisfied for (block)Gauss–Seidel smoothing (in that case,Mprec+MT
prec−A is the (block)

diagonal of A). Furthermore, it will be shown in Section 4.4 that this requirement is satisfied for block Jacobi smoothing. The
result y = P−1

precr of applying the two-level preconditioner to a vector r can now be computed in three steps:

y(1)
= M−1

precr (pre-smoothing),

y(2)
= y(1)

+ Q (r − Ay(1)) (coarse correction),

y = y(2)
+ M−T

prec(r − Ay(2)) (post-smoothing). (10)

The operator P−1
prec is SPD assuming that (9) is satisfied [22, p. 66].

BNN deflation variant. Basically, the BNN deflation variant is obtained by turning (10) inside out, and using an SPD smoother
M−1

defl ≈ A−1 (such as block Jacobi). We do not impose a condition of the form (9) at this point. The result y = P−1
deflr of

applying the BNN deflation technique to a vector r can now be computed as:

y(1)
:= Q r (pre-coarse correction).

y(2)
:= y(1)

+ M−1
defl(r − Ay(1)) (smoothing),

y := y(2)
+ Q (r − Ay(2)) (post-coarse correction). (11)

The operator P−1
defl is SPD for any SPD smootherM−1

defl, as can be shown using the more abstract analysis in [22, p. 66].
Finally, we stress that the BNN deflation variant can be implemented more efficiently in a CG algorithm by using the

so-called ADEF2 deflation variant. The latter is obtained by skipping the pre-coarse correction step in (11). ADEF2 yields
the same iterates as BNN, as long as the starting vector x0 is pre-processed according to: x0 → Qb + (I − AQ)Tx0 [17].
Furthermore, ADEF2 requires only 2mat–vecs and 1 smoothing step per iteration, whereas the preconditioning variant (10)
requires 3 mat–vecs and 2 smoothing steps. In Section 5, we will compare the overall numerical efficiency of these two
methods. However, for the theoretical purposes in this paper, it is more convenient to study BNN than ADEF2.
Additional smoother requirements. To derive the theoretical results in this paper, we require additional assumptions on the
smoothers. To specify these, for any SPD matrix M , let πM := RT (RMRT)−1RM denote the projection onto the coarse space
Range(RT) that yields the best approximation in theM-norm (cf. [18]). Additionally, for any nonsingular matrixM such that
M + MT

− A is SPD, define the symmetrization M := MT (M + MT
− A)−1M .

P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78 65

Using this notation, we can now specify the additional smoother requirements:

2Mdefl − A is SPD, (12)

h2−dvT Mprecv . vTv, ∀v ∈ Range(I − πI), (13)

h2−dvTMdeflv . vTv, ∀v ∈ Range(I − πI). (14)

It will be shown in Section 4.4 that these requirements are satisfied for (damped) block Jacobi smoothing (a similar strategy
can be used to show (13) for block Gauss–Seidel smoothing with blocks of sizem × m).

The conditions (9) and (12) imply that ‘‘the smoother iteration is a contraction in the A-norm’’ [18, p. 473]. Themain idea
behind the conditions (13) and (14) is that the smoother should scale with h2−d in the same way that A does, and that M is
an efficient preconditioner for A in the space orthogonal to the coarse space Range(RT) [22, p. 78]. A slightly stronger version
of (13) is also used in [15] to establish scalable convergence.

3. Auxiliary result: regularity on the diagonal of A

We want to show that the linear solvers discussed in the previous section are scalable (independent of h). To this end,
we require an auxiliary result that roughly states that the diagonal blocks of A all behave in a similar manner in the space
orthogonal to the coarse space. This section derives this property: after discussing two intermediate results in Sections 3.1
and 3.2 respectively, the desired outcome is given in Theorem 1 in Section 3.3.

3.1. Intermediate result I: using regularity

The first intermediate result is a rather abstract property of the mesh. To state this result, recall the mapping Fi : Ei → E0
(cf. Section 2). Because this mapping is invertible and affine by assumption (2), there exists an invertible matrix Gi ∈ Rd×d

and a vector gi ∈ Rd such that Fi(x) = Gix + gi for all x ∈ Ei. Next, let |G−1
i | denote the determinant of G−1

i , and define
Zi := |G−1

i |GT
i Gi. We now have the following result2:

Lemma 1. The eigenvalues of the matrix Zi above satisfies the following relation:

1 . λmin(h2−dZi) ≤ λmax(h2−dZi) . 1, ∀i = 1, . . . ,N. (15)

To show this result, we use that the mesh is regular (3) and quasi-uniform (4). Furthermore, we use the following rela-
tions [21, pp. 120–122]3:

|G−1
i | =

meas(Ei)
meas(E0)

, ∥Gi∥2 ≤
h0

ρi
, ∥G−1

i ∥2 ≤
hi

ρ0
. (16)

We can now prove Lemma 1:

Proof of Lemma 1. Because Zi := |G−1
i |GT

i Gi, and Gi is invertible, it follows from the relations in (16), and the fact that
ρd
i . meas(Ei) . hd

i for all i = 1, . . . ,N:

λmax(h2−dZi) = h2−d
|G−1

i | ∥Gi∥
2
2 .

meas(Ei)
hd


h
ρi

2

.


hi

h

d 
h
ρi

2

,

λmin(h2−dZi) = h2−d
|G−1

i |
1

∥G−1
i ∥

2
2

&
meas(Ei)

hd


h
hi

2

&
ρi

h

d


h
hi

2

.

Here, we have also used that meas(E0), h0 and ρ0 do not depend on h. Hence, the proof is completed if we can show that
1 ≤

h
hi

≤
h
ρi

. 1 for all i = 1, . . . ,N . The first two inequalities in this relation follow from the fact that ρi ≤ hi ≤ h. The last
inequality follows from (3) and (4). Hence, we obtain (15), which completes the proof. �

3.2. Intermediate result II: the desired result in terms of local bilinear forms

The second intermediate result concerns the individual diagonal blocks of A in terms of local bilinear forms. To state this
result, we require the following notation: let V0 denote the space of all polynomials of degree p and lower defined on the

2 Throughout this paper, λmin and λmax denote the smallest and the largest eigenvalue of a matrix with real eigenvalues respectively.
3 Throughout this paper, meas(.) denotes the Lebesgue measure.

66 P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78

reference element E0. Additionally, let Γi denote the set of all edges of Ei that are either in the interior or at the Dirichlet
boundary. Furthermore, let Γ0 denote the set of all edges of the reference element E0. Next, define the following bilinear
forms4:

B(i)
Ω (v, w) =


Ei
K∇ (v ◦ Fi) · ∇ (w ◦ Fi) , B(0)

Ω (v, w) =


E0

∇v · ∇w,

B(i)
σ (v, w) =


e∈Γi


e

σ

he
[v ◦ Fi] · [w ◦ Fi] , B(0)

σ (v, w) =


e∈Γ0


e
[v] · [w] , (17)

for all v, w ∈ V0 and i = 1, . . . ,N . Using this notation, we now have the following result:

Lemma 2. The bilinear forms above satisfy the following relations:

B(0)
Ω (w, w) . h2−dB(i)

Ω (w, w) . B(0)
Ω (w, w), ∀w ∈ V0, ∀i = 1, . . . ,N. (18)

0 ≤ h2−dB(i)
σ (w, w) . B(0)

σ (w, w), ∀w ∈ V0, ∀i = 1, . . . ,N. (19)

To show this result, we use the mesh properties (2)–(4), and the assumption that the diffusion coefficient and the penalty
parameter are bounded above and below by positive constants (independent of h). We discuss the proof of both relations
individually hereafter.

Proof of (18) in Lemma 2. Because the diffusion coefficient K is bounded below and above by positive constants (indepen-
dent of h), we may write (both displayed relations below are for all w ∈ V0 and for all i = 1, . . . ,N):

Ei
∇ (w ◦ Fi) · ∇ (w ◦ Fi) . B(i)

Ω (w, w) .


Ei

∇ (w ◦ Fi) · ∇ (w ◦ Fi) . (20)

To rewrite the integrals, we apply the chain rule (using that the Jacobian of Fi is equal to Gi), and a change of variables (from
x ∈ Ei to Fi(x) ∈ E0, which introduces a factor |G−1

i |). Multiplication with h2−d then yields (recall Zi = |G−1
i |GT

i Gi):
E0

(∇w)T (h2−dZi)(∇w) . h2−dB(i)
Ω (w, w) .


E0

(∇w)T (h2−dZi)(∇w).

Application of Lemma 1 completes the proof of (18). �

Proof of (19) in Lemma 2. We restrict ourselves to the three-dimensional case. The proof for one- and two-dimensional
problems follows similarly [19]. Because the penalty parameter σ is bounded below and above by positive constants
(independent of h), and because B(i)

σ is Symmetric and Positive-SemiDefinite (SPSD), it follows using the notation in (17)
that (all displayed relations below are for all w ∈ V0 and for all i = 1, . . . ,N):

0 ≤ h2−dB(i)
σ (w, w) .


e∈Γi


e

h2−d

he
[w ◦ Fi] · [w ◦ Fi] . (21)

For three-dimensional problems, the faces e are polygons and he =
√
meas(e) (as defined in Section 2.1), i.e. the square

root of the surface area of e. Because all faces are mutually affine-equivalent (2), for all e, there exists an invertible affine
mapping re : D → e for some polygon D ⊂ R2 (independent of h). By definition of the surface integral over e, we may now
rewrite (21) as (using d = 3):

0 ≤ h−1B(i)
σ (w, w) .


e∈Γi

1
h he


D
[w ◦ Fi ◦ re(u, v)] · [w ◦ Fi ◦ re(u, v)]

∂re∂u
×

∂re
∂v

 du dv.

Because re(u, v) is affine, and

e 1 =


D

 ∂r
∂u ×

∂r
∂v

 du dv, it follows that
 ∂r
∂u ×

∂r
∂v

 =
meas(e)
meas(D)

. Hence, using meas(e) = h2
e and

observing he
h . 1 for all edges e:

0 ≤ h−1B(i)
σ (w, w) .


e∈Γi

1
meas(D)


D
[w ◦ Fi ◦ re(u, v)] · [w ◦ Fi ◦ re(u, v)] du dv. (22)

4 Here, the trace operators are defined as before at the domain boundary, by extending the function to be zero outside E0 and Ei . In particular, [v] = v ·ne
for v ∈ V0 and e ∈ Γ0 .

P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78 67

Next, consider a single e ∈ Γi: note that Fi ◦ re(D) = Fi(e) =: e0 ⊂ ∂E0, and define the invertible affinemapping re0 := Fi ◦ re.

As above, we have that
 ∂re0

∂u ×
∂re0
∂v

 =
meas(e0)
meas(D)

. By definition of the surface integral over e0, we may now write (using that
meas(e0) does not depend on h):

1
meas(D)


D
[w ◦ Fi ◦ re(u, v)] · [w ◦ Fi ◦ re(u, v)] du dv .


e0

[w] · [w] .

Next, we apply this strategy for all e ∈ Γi, which yield different (disjunct) e0 ⊂ ∂E0, although the entire boundary of E0 is
not reached in the presence of Neumann boundary conditions. Substitution of the results into (22) then yields

0 ≤ h−1B(i)
σ (w, w) .


e∈Γi


Fi(e)

[w] · [w] ≤


ê∈Γ0


ê
[w] · [w] = B(0)

σ (w, w).

This completes the proof for three-dimensional problems (d = 3). �

3.3. Final auxiliary result: regularity on the diagonal of A

Using the intermediate results in the previous sections, we can now show the final result of this section, which roughly
states that the diagonal blocks of A all behave in a similar manner in the space orthogonal to the coarse space. To state this
result, we require the following notation: suppose that AΩ results from the bilinear form BΩ in the same way that A results
from the bilinear form B: this is established by substituting AΩ for A and BΩ for B in (7) and (8). Similarly, suppose that the
matrices Aσ and Ar result from the bilinear forms Bσ and Br respectively. Altogether, wemaywrite A = AΩ +Aσ +Ar . Finally,
let Dσ be the result of extracting the diagonal blocks of sizem×m from Aσ . Using this notation, we now have the following
result:

Theorem 1. The matrices AΩ and Dσ above satisfy the following relations:

vTv . h2−dvTAΩv, ∀v ∈ Range(I − πI), (23)

h2−dvTAΩv . vTv, ∀v ∈ RmN , (24)

0 ≤ h2−dvTDσ v . vTv, ∀v ∈ RmN . (25)

To show this result, we use the mesh properties (2)–(4), and the assumption that the diffusion coefficient and the penalty
parameter are bounded above and below by positive constants (independent of h).

The main idea is to observe that AΩ is an N ×N block diagonal matrix with blocks of sizem×m, where the first row and
column in every diagonal block is zero: this follows from the fact that BΩ(φi

k, φ
(j)
ℓ) = 0 for i ≠ j, and that the gradient of the

piecewise constant basis function φ
(j)
1 is (piecewise) zero. As a consequence, we can treat the diagonal blocks individually

using Lemma 2, and then combine the results (a similar strategy is used for the block diagonal Dσ).
To show (23), we also use the nature of πI = RTR, which is the projection operator (as defined in Section 2.2, usingM = I

and RRT
= I) onto the coarse space Range(RT) that yields the best approximation in the (Euclidean) 2-norm. As a result, the

space Range(I − πI) is orthogonal to Range(RT), where the latter corresponds to the piecewise constant basis functions. In
particular, any v ∈ Range(I − πI) ⊂ RNm is of the form:

v =


0 vT1 0 vT2 . . . 0 vTN
T

, (26)

with v1, . . . vN ∈ Rm−1. Using these ideas, we can now show Theorem 1:

Proof of Theorem 1. Let A(i)
Ω denote the result of deleting the first row and column in the ith diagonal block in AΩ . In other

words:
A(i)

Ω


ℓ−1,k−1

= B(i)
Ω (φ

(0)
k , φ

(0)
ℓ), (27)

for all k, ℓ = 2, . . . ,m. Next, observe that B(0)
Ω is independent of h and symmetric. Furthermore, for all higher-order

polynomials v ∈ span{φ
(0)
2 , . . . , φ

(0)
m } \ {0}, the gradient of v is nonzero, which implies that B(0)

Ω (v, v) > 0. In other words,
B(0)

Ω is even positive-definite for the subspace span{φ
(0)
2 , . . . , φ

(0)
m } \ {0}. As a consequence, combining Lemma 2 with (27),

we obtain a result similar to (23), but then for the individual diagonal blocks:

wTw . h2−dwTA(i)
Ω w, ∀w ∈ Rm−1, ∀i = 1, . . . ,N.

Using the notation in (26), these relations hold in particular for w = vi, for all i = 1, . . . ,N . Summing over all i and using
the structure of v in (26) once more then yields (23). The relations (24) and (25) follow in a similar manner from Lemma 2
(without deleting the first row and column in each diagonal block). This completes the proof of Theorem 1. �

68 P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78

4. Main result: scalability of both two-level methods

Using the auxiliary property obtained in the previous section, we can now show the main result of this paper: both two-
level methods yield scalable convergence of the preconditioned CG method (independent of the mesh element diameter).
After discussing two intermediate results in Sections 4.1 and 4.2 respectively, the scalable convergence is finally established
in Theorem 2 in Section 4.3. This result is particularly valid for block Jacobi smoothing, as is demonstrated in Section 4.4.

4.1. Intermediate result I: using the error iteration matrix

In this section, we consider the condition number of the preconditioned system for arbitrary SPDmatrices A and a certain
class of SPD preconditioners P−1. Specifically, each preconditioner P−1 in this class is such that, for some SPD matrixM , the
so-called error iteration matrix I − P−1A has the same eigenvalues as (recall the notation in Section 2.2):

TM := (I − πA)(I − M−1A)(I − πA).

In Section 4.2 hereafter, we will see that both two-level methods are in this class for certain specific choices of M , i.e. both
P−1
prec and P−1

defl (as defined in Section 2.2) are in the larger class of preconditioners P−1 considered here. Defining

KM := sup
v≠0

∥(I − πM)v∥2
M

∥v∥2
A

, (28)

we now have the following result:

Lemma 3. The condition number (in the 2-norm) of the preconditioned system P−1A above can be bounded as follows:

κ2(P−1A) ≤ λmax(M−1A)KM . (29)

Additionally, if 5 M − A ≥ 0, then,

κ2(P−1A) = KM . (30)

To show this, we use that TM has real eigenvalues (as A
1
2 TMA−

1
2 is symmetric), and that [23, Theorem 2.1 and Corollary 2.1]:

TM hasm times eigenvalue 0, (31)

λmin(TM) ≥ 1 − λmax(M−1A), (32)

λmax(TM) = 1 −
1

λmax(A−1M(I − πM))
. (33)

Proof of Lemma 3. First, note that P−1A and P−
1
2 AP−

1
2 have the same positive eigenvalues and singular values. Hence, we

may express the condition number as:

κ2(P−1A) =
λmax(P−1A)

λmin(P−1A)
=

1 − λmin(TM)

1 − λmax(TM)

(33)
=

1 − λmin(TM)

1 −


1 −

1
λmax(A−1M(I−πM))


=


1 − λmin(TM)


λmax


A−1M(I − πM)


. (34)

Because I − πM = (I − πM)2 is a projection and M(I − πM) is symmetric, it follows that:

λmax

A−1M(I − πM)


= λmax


A−1M(I − πM)2


= λmax


A−1(I − πM)TM(I − πM)


= λmax


A−

1
2 (I − πM)TM(I − πM)A−

1
2


= sup
v≠0

∥(I − πM)v∥2
M

∥v∥2
A

(28)
= KM .

5 Throughout this paper, for symmetrical matrices M1,M2 ∈ Rn×n , we write M1 ≤ M2 to indicate that vTM1v ≤ vTM2v for all vectors v ∈ Rn; the
notation ≥, <, and > is used similarly.

P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78 69

Substitution into (34) yields:

κ2(P−1A) =

1 − λmin(TM)


KM . (35)

Application of (32) now completes the proof of (29). To show (30), assume thatM −A ≥ 0, which implies that I −A
1
2 M−1A

1
2

≥ 0:

M ≥ A

M−1 [24, pp. 398, 471]
≤ A−1

A
1
2 M−1A

1
2 ≤ I

I − A
1
2 M−1A

1
2 ≥ 0.

Hence, defining the symmetric projection π̄A := A
1
2 πAA−

1
2 , it follows that the eigenvalues of TM are non-negative:

A
1
2 TMA−

1
2 = (I − π̄A)


I − A

1
2 M−1A

1
2


(I − π̄A) ≥ 0.

As a result, (31) implies that λmin(TM) = 0. Substitution into (35) yields (30), which then completes the proof. �

4.2. Intermediate result II: implications for the two-level methods

Next, we apply the result in the previous section to analyze the condition number of the preconditioned system for both
the two-level preconditioner P−1

prec and the corresponding BNN deflation variant P−1
defl (as specified in Section 2.2). For the

two-level preconditioner, it is well-known that

κ2(P−1
precA) ≤ KMprec . (36)

This follows as a special case from [18] (also cf. [22, pp. 70–73]), and relies on assumption (9). Below, we obtain similar
bounds for the deflation variant, assuming (12). Furthermore we observe that the theory in [23] implies (via Lemma 3) that
(36) remains true if we replace the inequality by equality (see also the error propagation bounds for successive subspace
correction algorithms shown by Zikatanov [25]). This latter derivation is also included to indicate the similarities of the two
methods. Altogether, we have the following result, which applies for any SPD matrix A:

Lemma 4. Suppose that A is SPD and let P−1
prec and P−1

defl be the two-level operators specified in Section 2.2. Then, assuming (9),
the condition number (in the 2-norm) of the preconditioned system P−1

precA can be expressed as follows:

κ2(P−1
precA) = KMprec . (37)

Additionally, assuming (12), we have for deflation:

κ2(P−1
deflA) ≤ λmax(M−1

deflA)KMdefl < 2KMdefl , (38)

and, under the stronger assumption Mdefl − A ≥ 0:

κ2(P−1
deflA) = KMdefl . (39)

To show this result, we apply Lemma 3, using (σ denotes the spectrum):

σ

I − P−1

precA


= σ

TMprec


, (40)

σ

I − P−1

deflA


= σ

TMdefl


. (41)

These relations follow similar to [26, p. 1730]. Finally, we use that, for any nonsingularM [22, Proposition 3.8]:

M + MT
− A > 0 ⇒ M − A ≥ 0. (42)

Proof of Lemma 4. Combining (9) and (42) gives Mprec − A ≥ 0. Using this with (40) in Lemma 3 yields (37). Similarly, (39)
follows from Lemma 3 using (41) and the assumption Mdefl − A ≥ 0. To show (38), note that the first inequality results
from Lemma 3 and (41), while the second inequality follows from observing that (12) implies that λmax(M−1

deflA) < 2. This
completes the proof. �

70 P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78

Remark 1 (Comparing Preconditioning and Deflation). If Mprec = Mdefl =: M SPD with M − A ≥ 0, then, using Lemma 4, it
can be shown [27] that both methods are related in the following sense:

1
2
κ2(P−1

deflA) ≤ κ2(P−1
precA) ≤ κ2(P−1

deflA). (43)

At the same time, the error of the jth CG iterate uj in the A-norm for both methods can be bounded as follows [28]:

∥u − uj∥A ≤ 2∥u − u0∥A


κ2(P−1A) − 1
κ2(P−1A) + 1

j+1

, P−1
= P−1

prec, P
−1
defl.

Hence, ifM − A ≥ 0, so that (43) implies that κ2(P−1
precA) ≤ κ2(P−1

deflA), then the error ∥u − uj∥A can be bounded by a smaller
value for the preconditioner than for the deflation variant. It should be stressed that this relates upper bounds for the errors
of the two methods, not the errors themselves. In general, we may have 2M − A > 0 rather than the stronger assumption
M − A ≥ 0, in which case the analysis above (and the corresponding relation between the upper bounds for the errors)
no longer applies. Altogether, (43) provides insight in the way both two-level methods are related, but does not imply that
preconditioning is always better. �

4.3. Final main result: scalability of both two-level methods

Using the intermediate results in the previous sections, we can now show the main result of this paper: both two-level
methods yield scalable convergence of the CG method, that is, independent of the mesh element diameter (the influence of
the polynomial degree and the diffusion coefficient is not considered here). This result has been shown by Dobrev et al. [15]
for the preconditioning variant for p = 1. In this section, we use a similar strategy to extend these results for p ≥ 1 and for
the deflation variant (in the next section, we show that the theorem below is particularly true for block Jacobi smoothing).

Theorem 2 (Main Result). Let A be the discretization matrix resulting from an SIPG scheme with p ≥ 1 (cf. Section 2.1).
Suppose that the conditions (2)–(4) and (6) are satisfied, and that the diffusion coefficient and the penalty parameter are bounded
above and below by positive constants (independent of h). Let P−1

prec and P−1
defl denote the two-level preconditioner and BNN

deflation variant respectively (cf. Section 2.2). Suppose that the smoother Mprec is nonsingular and Mdefl is SPD, and that the
conditions (9) and (12)–(14) are satisfied. Then, both two-level methods yield scalable CG convergence in the sense that the
condition number κ2 (in the 2-norm) of the preconditioned system can be bounded independently of the maximummesh element
diameter h:

κ2(P−1
precA) . 1, κ2(P−1

deflA) . 1. (44)

To show Theorem 2, the main idea is to consider Lemma 4:

κ2(P−1
precA) ≤ KMprec , κ2(P−1

deflA) ≤ 2KMdefl . (45)

The proof is then completed by showing that KMprec , KMdefl . 1, for any smoother that satisfies the criteria above. This is
established using coercivity (6) and the auxiliary result Theorem 1. Altogether, Theorem 2 can now be shown as follows.

Proof of Theorem 2. First, we will show that KMprec . 1. For ease of notation, we will write M for Mprec. The main idea is
to show that ∥(I − πM)v∥M . ∥v∥A for all v: because πM is a projection onto the coarse space Range(RT) that yields the
best approximation in the M-norm, we can replace πM by the suboptimal projection πI , and then combine the properties
established so far:

∥(I − πM)v∥2M ≤ ∥(I − πI)v∥2M (13)
. hd−2

∥(I − πI)v∥2
2

(23)
. ∥(I − πI)v∥2

AΩ

Section 3.3
. ∥v∥2

AΩ

Bσ SPSD
. ∥v∥2

AΩ+Aσ

(6)
. ∥v∥2

A, ∀v ∈ RNm.

Substitution of this relation into the definition of KM (introduced at the beginning of Section 4.1) yields KM . 1. A similar
strategy, using (14) instead of (13), yields KMdefl . 1. Substitution of KMprec , KMdefl . 1 into (45) now yields (44), which
completes the proof of Theorem 2. �

4.4. Special case: block Jacobi smoothing

This section demonstrates that Theorem 2 is valid for (damped) block Jacobi smoothing. To specify this result, suppose
that MBJ is the block Jacobi smoother with blocks of size m × m. Next, consider the specific choices Mprec,Mdefl = ω−1MBJ

P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78 71

with damping parameter ω > 0 (independent of h). We assume that ω ≤ 1, with ω < 1 strictly for the preconditioning
variant. Additionally, we assume that there exists a permutation matrix P such that A can be permuted as:

PAPT
= ∆ − L − LT , (46)

with

∆ =


∆1

∆2
. . .

∆q

 , −L =


0
L1 0

. . . 0
Lq−1 0

 ,

for some block-diagonal matrices ∆1, . . . , ∆q with blocks of sizem×m, matrices L1, . . . , Lq−1, and integer q ≤ N . Note that
this assumption implies that thematrix A has property Aπ in the sense of [29, Definition 6.7]. Moreover, we remark that (46)
is satisfied if the mesh can be colored by two colors6 (in that case, we can choose q = 2, and ∆1 and ∆2 each correspond to
one of the two colors). In particular, structured rectangular meshes can be colored by two colors and thus satisfy (46).

Altogether, assuming7 (46), we can now show that all smoother requirements for Theorem 2 are satisfied for (damped)
block Jacobi smoothing:

Corollary 1. Suppose that the mesh can be colored by two colors. Then, Theorem 2 applies for the damped block Jacobi smoothers
Mprec and Mdefl above, i.e. both two-level methods yield scalable CG convergence in the sense that the condition number κ2 (in
the 2-norm) of the preconditioned system can be bounded independently of the maximum mesh element diameter h:

κ2(P−1
precA) . 1, κ2(P−1

deflA) . 1.

This result follows immediately from Theorem 2 once we have verified that the conditions (9), (12), (13), and (14) are
satisfied for the (SPD) damped block Jacobi smoothers under consideration. In other words, writing M := ω−1MBJ, we
need to show:

2M − A > 0, (47)

h2−dvTMv . vTv, ∀v ∈ Range(I − πI), (48)

h2−dvT Mv . vTv, ∀v ∈ Range(I − πI), (49)

for all ω ≤ 1, with ω < 1 strictly for (49). We treat each relation separately.
To show (47), we use that (ρ denotes the spectral radius):

ρ(B) < 1, B := ∆−1(L + LT), (50)

which follows from [29, Theorem 6.38] using (46) and the fact that A and M are SPD.

Proof of (47). Without loss of generality, assume thatω = 1. Next, observe that PMPT
= ∆. As a result, it can be shown that

P(2M − A)PT
= ∆(I + B). Hence, λmin(2M − A) = λmin(I + ∆

1
2 B∆−

1
2). Since (50) implies that ρ(B) = ρ(∆

1
2 B∆−

1
2) < 1, it

follows that 2M − A > 0. This completes the proof. �

To show (48), the main idea is to use Theorem 1 and the following property (cf. [15, p. 760] and [30, p. 4]):

0 < B(v, v) . BΩ(v, v) + Bσ (v, v), ∀v ∈ RNm. (51)

Proof of (48). Without loss of generality, we may assume that ω = 1. Next, recall the notation introduced in the beginning
of Section 3.3. Additionally, similar to Dσ , let Dr be the result of extracting the diagonal blocks of sizem × m from Ar . Using
this notation, and the fact that AΩ is a block diagonal matrix with blocks of size m × m, we may write M = AΩ + Dσ + Dr .
Next, consider (51) in matrix form, and note that the relation is also true when considering the diagonal blocks only:

vTMv . v(AΩ + Dσ)v, ∀v ∈ RNm. (52)

Application of Theorem 1 now yields (48), which completes the proof. �

To show (49), we combine the previous results (47) and (48):

Proof of (49). Using (47), and the fact that ω < 1 strictly, it can be shown [19] that M ≤
1

2(1−ω)
M . Combining this relation

with (48) yields (49), which then completes the proof. �

6 That is, the mesh can be represented by a graph whose vertices can be colored such that connected vertices do not have the same color.
7 Alternatively, we could assume that the damping parameter ω is sufficiently small. This option is not considered further in this paper.

72 P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78

4.5. Influence of damping and the penalty parameter for block Jacobi smoothing

This section studies the influence of damping and the penalty parameter on the constants in Corollary 1, where the same
damped block Jacobi smoother is used for both two-level methods.

Regarding damping, it can be shown (the proof is given at the end of this section):

κ2(P−1
deflA) ≤

2
ω
KMBJ , κ2(P−1

precA) <
1

2ω(1 − ω)
KMBJ . (53)

Although these upper bounds may not be optimal, the fact that the upper bound for the preconditioner blows up as ω tends
to 1 is in line with our numerical observation in Section 5 later on that the preconditioning variant performs better for ω
safely away from 1.

To study the influence of the penalty parameter, let σ
(i)
max denote the largest value that the penalty parameter σ attains

at the edges of mesh element Ei, and let K (i)
min denote the smallest value that the diffusion coefficient K attains within Ei

(for all i = 1, . . . ,N). We can now bound KMBJ in terms of the local ratio between the penalty parameter and the diffusion
coefficient, assuming8 Aσ + Ar ≥ 0 (the proof is given at the end of this section):

KMBJ ≤ C1 max
i=1,...,N

σ
(i)
max

K (i)
min

+ C2, (54)

for some positive constants C1 and C2 that are independent of the mesh element diameter h and the penalty parameter σ
(but possibly dependent on the diffusion coefficient K). The result of substituting (54) into (53) is in line with our numerical
observation in Section 5 later on that the penalty parameter can best be chosen dependent on local values of the diffusion
coefficient.

We end this section with the proofs of (53) and (54). To this end, we use that, for any SPD matrixM (Not05, Eq. (45)):

1
2
M ≤ M ≤

1
2 − λmax(M−1A)

M. (55)

Furthermore, for any SPD matricesM,N and scalar α > 0 [27]:

M ≤ αN ⇒ KM ≤ αKN . (56)

Proof of (53). The first inequality follows from (45), (56) and the fact that Mdefl = ω−1MBJ. To show the second inequality,
we use that (47) implies that λmax(M−1

precA) < 2ω:

κ2(P−1
precA)

(45)
= KMprec

(56), (55)
≤

1

2 − λmax(M−1
precA)

KMprec

λmax(M−1
precA)<2ω
<

1
2(1 − ω)

KMprec

(56),Mprec=ω−1MBJ
≤

1
2ω(1 − ω)

KMBJ .

This completes the proof of (53). �

Proof of (54). By definition,

KMBJ

(28)
= sup

v≠0

∥(I − πMBJ)v∥
2
MBJ

∥v∥2
A

.

As in the proof of Theorem 2, we may replace πMBJ by the suboptimal projection πI :

KMBJ ≤ sup
v≠0

∥(I − πI)v∥2
MBJ

∥v∥2
A

.

8 This condition seems closely related to coercivity (6). How either can be guaranteed in practice (for problems with strong contrasts in the coefficients)
is left for future research.

P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78 73

Using the notation in Section 3.3 and (52), we can rewrite this as:

KMBJ ≤ sup
v≠0

∥(I − πI)v∥2
AΩ+Dσ +Dr

∥v∥2
AΩ+Aσ +Ar

.

Next, we use the assumption Aσ + Ar ≥ 0:

KMBJ

Aσ +Ar≥0
≤ sup

v≠0

∥(I − πI)v∥2
AΩ+Dσ +Dr

∥v∥2
AΩ

Section 3.3
= sup

v≠0

∥(I − πI)v∥2
AΩ+Dσ +Dr

∥(I − πI)v∥2
AΩ

= 1 + sup
v∈Range(I−πI)

∥v∥2
Dσ +Dr

∥v∥2
AΩ

.

Next, consider the notation for A(i)
Ω in Section 3.3 and, similarly, let D(i)

σ and D(i)
r denote the result of removing the first row

and column from diagonal block i in Dσ and Dr respectively. Then, we may write, using the notation for the components of
v in Section 3.3:

KMBJ ≤ 1 + sup
v∈Range(I−πI)

N
i=1

vTi (D
(i)
σ + D(i)

r)vTi

N
i=1

vTi A
(i)
Ω vi

.

At the same time, it can be shown (similar to Section 3) that there exist positive constants CΩ , Cσ , Cr independent of h and
σ , with CΩ , Cσ also independent of K , such that, for allw ∈ Rm−1:

h2−dwTA(i)
Ω w ≥ CΩK (i)

minw
Tw,

h2−dwTD(i)
σ w ≤ Cσ σ (i)

maxw
Tw,

h2−dwTD(i)
r w ≤ CrwTw.

Combining these relations gives:

vTi (D
(i)
σ + D(i)

r)vTi ≤
Cσ σ

(i)
max + Cr

CΩK (i)
min

vTi A
(i)
Ω vi.

Using the latter relation, we may now write:

KMBJ ≤ 1 + sup
v∈Range(I−πI)

N
i=1


Cσ σ

(i)
max+Cr

CΩK (i)
min

vTi A
(i)
Ω vi


N
i=1

vTi A
(i)
Ω vi

≤ 1 + max
i=1,...,N


Cσ σ

(i)
max

CΩK (i)
min


+ max

i=1,...,N


Cr

CΩK (i)
min


.

This can be rewritten as (54), which then completes the proof. �

5. Numerical results

The previous section demonstrated theoretically that both two-level methods yield mesh-independent convergence of
the CGmethod. In this section, we extend the numerical support in [16] for this result by studying test problemswith strong
variations in the coefficients.
Test cases.We consider several diffusion problems of the form (1) on the domain [0, 1]2, as illustrated in Fig. 1 (ifwe subdivide
the domain into 10× 10 equally sized squares, the diffusion coefficient is constant within each square). The first problem is
a bubbly flow problem with large jumps in the coefficients, inspired by [26]. We also consider this problem with reversed
coefficients, i.e. where the diffusion coefficient K = 1 inside the ‘bubbles’ and K is a small constant outside the bubbles (we
consider different values K = 10−1, 10−3, 10−5). The final problem is challenging due to homogeneous Neumann boundary
conditions (indicated by the black lines in Fig. 1). For all problems, the Dirichlet boundary conditions and the source term

74 P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78

Fig. 1. Illustration of the test cases.

Table 1
Bubbly flow with reversed coefficients (Kmax = 1, Kmin =

10−5) and penalty σ = 20K : SIPG convergence in the L2-norm.

Mesh p = 2 p = 3
Error Order Error Order

N = 202 6.25e−02 – 8.36e−03 –
N = 402 6.90e−03 3.18 4.69e−04 4.16
N = 802 6.53e−04 3.40 2.73e−05 4.10
N = 1602 6.86e−05 3.25 1.66e−06 4.04

f are chosen such that the exact solution reads u(x, y) = cos(10πx) cos(10πy). We stress that this choice does not impact
the matrix or the performance of the linear solver, as we use random start vectors (see below).
Experimental setup. All model problems are discretized by means of the SIPG method as discussed in Section 2.1. We use a
uniformCartesianmeshwithN = n×n elementswith n = 40, 80, 160, 320, andmonomial basis functionswith polynomial
degree p = 2, 3 (results for p = 1 are similar though). As a result, the largest problems have over 106 degrees of freedom.

The penalty parameter9 is chosen diffusion-dependent, σ = 20K , as motivated by [16,27]: such a strategy was first
proposed in [32]. A common alternative approach is to choose the penalty parameter constant, e.g. σ = 20 [15,33]. Scalable
convergence is obtained in both cases [19]. However, a diffusion-dependent penalty parameter yields significantly faster
results for problems with strong variations in the coefficients, as well as faster SIPG convergence. This was demonstrated
numerically in [16,27], and computational evidence for the improved SIPG convergence is also provided below. For this
reason, we consider σ = 20K here. Where K is discontinuous, we use the largest of the two trace values (in our experience,
for the applications under consideration, this strategy is more suitable than the alternative of using harmonic means
[32,34], while the SIPG convergence remains practically the same [27]).

The resulting linear systems are solved by means of the preconditioned CG method, combined with either the two-level
preconditioner or the corresponding ADEF2 deflation variant, as discussed in Section 2.2. Furthermore, we use (damped)
block Jacobi smoothing (cf. Section 4.4). For the damping parameter we consider ω = 1 for the deflation variant, and both
ω = 1 and ω = 0.7 for the preconditioner, as motivated by [16]. Diagonal scaling is applied as a pre-processing step in
all cases, and the same random start vector x0 is used for all problems of the same size. For the stopping criterion we use:
∥rk∥2
∥b∥2

≤ 10−6, where rk is the residual after the kth iteration. Coarse systems, involving the SIPG matrix A0 with polynomial
degree p = 0, are solved directly. However, a more efficient strategy has been studied in [16]. In any case, the coarse matrix
A0 is quite similar to a central difference matrix, for which very efficient solvers are readily available.
Results. Before showing the performance of the two-level methods, we first illustrate that our choice for the penalty
parameter (σ = 20K) benefits the SIPG convergence. This can be seen by comparing Table 1 (for σ = 20K) and Table 2
(for a constant σ = 20) for the bubbly flow problem with reversed coefficients (Kmax = 1, Kmin = 10−5). For σ = 20K the
L2-convergence is of order p + 1. This is an improvement over the constant penalty case, both in terms of the order and the
values of the errors. Results for the other test problems are similar.

Next, we consider the two-level methods: Tables 3–7 display the results in terms of the number of CG iterations required
for convergence. The corresponding computational times are provided in Tables 8–12. It can be seen that both two-level

9 The penalty parameter needs to be sufficiently large to ensure that the SIPG scheme is convergent and the coefficient matrix is SPD. At the same time,
a larger penalty parameter typically yields a larger condition number of the coefficient matrix. For certain one-dimensional problems, it suffices to choose

σ ≥ 2p2 k21
k0
, where k0 and k1 are the global lower and upper bound respectively of the diffusion coefficient K [31]. Here, we apply similar values in a local

fashion by replacing both k1 and k0 by local values of K . Specifically, in this paper, we use σ = 20K (which is roughly equal to 2p2K for p = 3), although
smaller values of σ ≥ 2p2K yield faster (mesh-independent) results.

P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78 75

Table 2
Bubbly flowwith reversed coefficients (Kmax = 1, Kmin = 10−5) and
fixed penalty parameter σ = 20: SIPG convergence in the L2-norm.

Mesh p = 2 p = 3
Error Order Error Order

N = 202 1.96e−01 – 2.47e−02 –
N = 402 5.22e−02 1.91 3.13e−03 2.98
N = 802 1.37e−02 1.93 3.93e−04 2.99
N = 1602 3.43e−03 2.00 4.77e−05 3.04

Table 3
Bubbly flow: # CG iterations.

Degree p = 2 p = 3
Mesh N = 402 N = 802 N = 1602 N = 3202 N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 9600 38400 153600 614400 16000 64000 256000 1024000

Prec., 2x BJ 41 42 43 44 55 56 57 58
Prec., 2x BJ (ω = 0.7) 31 31 32 32 33 34 35 35
Defl., 1x BJ 41 39 40 41 45 45 45 46

Table 4
Bubbly flow with reversed coefficients (Kmax = 1, Kmin = 10−5): # CG iterations.

Degree p = 2 p = 3
Mesh N = 402 N = 802 N = 1602 N = 3202 N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 9600 38400 153600 614400 16000 64000 256000 1024000

Prec., 2x BJ 48 57 60 61 58 67 74 77
Prec., 2x BJ (ω = 0.7) 37 41 44 45 43 46 47 48
Defl., 1x BJ 49 55 59 60 55 62 66 67

Table 5
Bubbly flow with reversed coefficients (Kmax = 1, Kmin = 10−3): # CG iterations.

Degree p = 2 p = 3
Mesh N = 402 N = 802 N = 1602 N = 3202 N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 9600 38400 153600 614400 16000 64000 256000 1024000

Prec., 2x BJ 50 53 53 54 63 65 68 69
Prec., 2x BJ (ω = 0.7) 38 40 41 41 43 44 44 45
Defl., 1x BJ 52 54 54 57 56 59 60 61

Table 6
Bubbly flow with reversed coefficients (Kmax = 1, Kmin = 10−1): # CG iterations.

Degree p = 2 p = 3
Mesh N = 402 N = 802 N = 1602 N = 3202 N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 9600 38400 153600 614400 16000 64000 256000 1024000

Prec., 2x BJ 46 46 46 46 59 60 60 61
Prec., 2x BJ (ω = 0.7) 35 36 36 36 38 38 38 39
Defl., 1x BJ 46 47 47 48 49 50 52 52

Table 7
Neumann BCs: # CG iterations.

Degree p = 2 p = 3
Mesh N = 402 N = 802 N = 1602 N = 3202 N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 9600 38400 153600 614400 16000 64000 256000 1024000

Prec., 2x BJ 45 45 45 45 59 59 60 60
Prec., 2x BJ (ω = 0.7) 34 35 36 36 36 37 37 38
Defl., 1x BJ 47 47 47 47 49 49 50 50

methods yield fast and mesh-independent convergence. Without damping, deflation is the most efficient. When a suitable
damping value is known, the preconditioning variant performs comparable to deflation.

Factors that influence the convergence rate. There are several factors that can affect the convergence rates in Tables 3–7.

76 P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78

Table 8
Bubbly flow: CPU time in seconds.

Degree p = 2 p = 3
Mesh N = 402 N = 802 N = 1602 N = 3202 N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 9600 38400 153600 614400 16000 64000 256000 1024000

Prec., 2x BJ 0.05 0.28 1.44 7.58 0.18 0.83 3.85 17.89
Prec., 2x BJ (ω = 0.7) 0.04 0.20 1.08 5.57 0.11 0.51 2.39 10.96
Defl., 1x BJ 0.04 0.19 1.08 6.13 0.10 0.47 2.27 11.09

Table 9
Bubbly flow with reversed coefficients (Kmax = 1, Kmin = 10−5): CPU time in seconds.

Degree p = 2 p = 3
Mesh N = 402 N = 802 N = 1602 N = 3202 N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 9600 38400 153600 614400 16000 64000 256000 1024000

Prec., 2x BJ 0.06 0.37 2.00 10.21 0.19 0.98 4.92 23.72
Prec., 2x BJ (ω = 0.7) 0.04 0.27 1.48 7.59 0.14 0.68 3.15 14.96
Defl., 1x BJ 0.04 0.27 1.57 8.89 0.12 0.66 3.25 15.96

Table 10
Bubbly flow with reversed coefficients (Kmax = 1, Kmin = 10−3): CPU time in seconds.

Degree p = 2 p = 3
Mesh N = 402 N = 802 N = 1602 N = 3202 N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 9600 38400 153600 614400 16000 64000 256000 1024000

Prec., 2x BJ 0.06 0.33 1.73 9.32 0.21 0.97 4.54 21.21
Prec., 2x BJ (ω = 0.7) 0.05 0.25 1.35 7.12 0.14 0.67 2.97 14.02
Defl., 1x BJ 0.04 0.27 1.44 8.43 0.13 0.61 2.97 14.51

Table 11
Bubbly flow with reversed coefficients (Kmax = 1, Kmin = 10−1): CPU time in seconds.

Degree p = 2 p = 3
Mesh N = 402 N = 802 N = 1602 N = 3202 N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 9600 38400 153600 614400 16000 64000 256000 1024000

Prec., 2x BJ 0.06 0.30 1.52 7.98 0.20 0.89 4.00 18.80
Prec., 2x BJ (ω = 0.7) 0.04 0.24 1.20 6.29 0.13 0.57 2.56 12.16
Defl., 1x BJ 0.04 0.23 1.26 7.17 0.11 0.52 2.56 12.45

Table 12
Neumann BCs: CPU time in seconds.

Degree p = 2 p = 3
Mesh N = 402 N = 802 N = 1602 N = 3202 N = 402 N = 802 N = 1602 N = 3202

Degrees of freedom 9600 38400 153600 614400 16000 64000 256000 1024000

Prec., 2x BJ 0.06 0.29 1.49 7.78 0.20 0.87 4.04 18.64
Prec., 2x BJ (ω = 0.7) 0.04 0.23 1.20 6.27 0.12 0.56 2.52 11.92
Defl., 1x BJ 0.04 0.24 1.27 7.07 0.11 0.53 2.49 12.05

First, a larger value of the penalty parameter σ typically leads to a larger condition number of the coefficient matrix,
and thus more CG iterations. This motivates the use of a diffusion-dependent penalty parameter, as its local approach (cf.
footnote 9) yields significantly smaller (yet effective) penalties. At the same time, we stress that using σ = 20K is not the
smallest possible value, and that smaller choices for σ yield faster (mesh-independent) results. For instance, for the reversed
bubbly flow problem with Kmin = 10−5, p = 2 and N = 3202, using σ = 1.66p2K = 6.64K resulted in 27 (Prec., ω = 0.7)
and 38 (Defl.) iterations, rather than the 45 and 60 iterations observed in Table 4.

Furthermore, the number of iterations seems to increase slightly with the polynomial degree p (e.g. for the bubbly flow
problem with p = 1 and N = 802, we observed 35 (Prec.), 30 (Prec., ω = 0.7) and 39 (Defl.) CG iterations).

Moreover, a larger jump in the coefficients can somewhat reduce the convergence speed. For the reversed bubbly flow
problem, this can be seen in Tables 4–6. At the same time, for a Poisson problem with p = 3 and N = 1602, we observed 54
(Prec.), and 38 (Defl.) CG iterations: compared to the results in Tables 3–7, the differences are quite small.

Finally, the effectiveness of our approach depends on the applied smoother and the underlying discretization. For
example, using standard Jacobi or a constant penalty parameter can lead to poor convergence [27]. Helenbrook et al. [7]
have also observed that using p = 0 at the coarse level can yield poor convergence for certain LDG discretizations and the
scheme of Bassi et al. (cf. [7]) (and propose to use continuous basis functions at the coarse level instead). We speculate that

P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78 77

the mesh-independent results in Tables 3 and 7 can be explained by an appropriate combination of low- and higher-order
information: the coarsematrix (with p = 0) is quite similar to the (low-order) central differencematrix for this problem (due
to the diffusion-dependent penalty parameter). The higher-order information (regarding the higher-order basis functions)
is re-introduced via the block Jacobi smoother. Altogether, the effectiveness of using p = 0 at the coarse level in linear
solvers for DG matrices depends on the specific underlying DG discretization scheme and the applied smoother. Further
investigation of this topic is left for future research.
Performance per iteration. Aside from the number of iterations (and the factors that influence it), the overall performance of
the two-level methods is also affected by the costs per iteration. These depend on the following three aspects.

The first aspect is the coarse correction operator. A popular choice is tomake use of continuous linear basis functions [15,
14]. In this work, we use a coarse space that is based on the piecewise constant DG basis functions. The corresponding
restriction (and prolongation) operator can be applied to a vector by simply extracting elements (and inserting zeros), so
these costs are negligible. Furthermore, the coarse matrix A0 is quite similar to a central difference matrix, for which very
efficient solvers are readily available. These two properties of our coarse correction operator limit the costs per iteration
and, as such, contribute to the overall efficiency.

The second aspect is the smoother. Examples of choices include pre- and post-smoothing with symmetric Gauss–
Seidel [15] and with block Gauss–Seidel [14]. Here, we observe that the cheaper block Jacobi smoother is sufficient to com-
plement our coarse correction operator. As the smoother is applied in each iteration, and even twice for the preconditioning
variant, the high efficiency of our smoother positively affects the overall performance of the scheme.

The third aspect is the number of smoothing operations per iteration. Two-level methods that take the form of a
preconditioner require two smoothing steps, while some deflation variants, including the ADEF2 method considered in
this paper, require only one smoothing step per iteration. This is why the costs per iteration are lower for deflation than for
preconditioning in our study (cf. [16] for a detailed comparison in terms of floating point operations). For more expensive
smoothers, this benefit of deflation can be expected to be even more relevant.

Altogether, aside from mesh-independent convergence in terms of the number of CG iterations, a significant advantage
of the two-level methods considered in this paper is that the costs per iteration are relatively low.

6. Conclusion

This paper is focused on a two-level preconditioner proposed in [15] and the corresponding BNN (ADEF2) deflation
variant for linear SIPG systems. For both two-levelmethods, we have found that the condition number of the preconditioned
system can be bounded independently of the mesh element diameter, implying scalable CG convergence. This result is valid
for any polynomial degree p ≥ 1. We have verified that the restrictions on the smoother are satisfied for block Jacobi
smoothing. Numerical experiments with strong variations in the coefficients illustrate our main result. Future research
could focus on a theoretical comparison of both two-level methods and onmore advanced, larger scale numerical test cases.
Furthermore, the performance of both two-level methods could be compared to that of other preconditioning strategies.

Acknowledgment

We would like thank Yvan Notay for his useful suggestions for generalizing the theory in this paper.

References

[1] P. Castillo, Performance of discontinuous Galerkin methods for elliptic PDEs, SIAM J. Sci. Comput. 24 (2) (2002) 524–547.
[2] S.J. Sherwin, R.M. Kirby, J. Peiró, R.L. Taylor, O.C. Zienkiewicz, On 2D elliptic discontinuous Galerkin methods, Internat. J. Numer. Methods Engrg. 65

(5) (2006) 752–784.
[3] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (4) (1992) 581–613.
[4] P. Hemker, W. Hoffman, M.v. Raalte, Two-level Fourier analysis of a multigrid approach for discontinuous Galerkin discretization, SIAM J. Sci. Comput.

25 (3) (2003) 1018–1041.
[5] S.C. Brenner, J. Zhao, Convergence of multigrid algorithms for interior penalty methods, Appl. Numer. Anal. Comput. Math. 2 (1) (2005) 3–18.
[6] J. Gopalakrishnan, G. Kanschat, A multilevel discontinuous Galerkin method, Numer. Math. 95 (3) (2003) 527–550.
[7] B.T. Helenbrook, H.L. Atkins, Solving discontinuous Galerkin formulations of Poisson’s equation using geometric and p-multigrid, Numer. Linear

Algebra Appl. 46 (9) (2008) 894–902.
[8] K.J. Fidkowski, T.A. Oliver, J. Lu, D.L. Darmofal, p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible

Navier–Stokes equations, J. Comput. Phys. 207 (1) (2005) 92–113.
[9] P.-O. Persson, J. Peraire, Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier–Stokes equations, SIAM J. Sci.

Comput. 30 (6) (2008) 2709–2733.
[10] F. Prill, M. Lukáčová-Medviďová, R. Hartmann, Smoothed aggregation multigrid for the discontinuous Galerkin method, SIAM J. Sci. Comput. 31 (5)

(2009) 3503–3528.
[11] Y. Saad, B. Suchomel, ARMS: an algebraic recursive multilevel solver for general sparse linear systems, Numer. Linear Algebra Appl. 9 (5) (2002)

359–378.
[12] P.F. Antonietti, B. Ayuso, Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-

overlapping case, M2AN Math. Model. Numer. Anal. 41 (1) (2007) 21–54.
[13] X. Feng, O.A. Karakashian, Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems, SIAM

J. Numer. Anal. 39 (4) (2001) 1343–1365 (electronic).
[14] P. Bastian, M. Blatt, R. Scheichl, Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems, Numer. Linear

Algebra Appl. 19 (2) (2012) 367–388.

http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref1
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref2
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref3
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref4
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref5
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref6
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref7
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref8
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref9
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref10
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref11
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref12
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref13
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref14

78 P. van Slingerland, C. Vuik / Journal of Computational and Applied Mathematics 275 (2015) 61–78

[15] V.A. Dobrev, R.D. Lazarov, P.S. Vassilevski, L.T. Zikatanov, Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic
equations, Numer. Linear Algebra Appl. 13 (9) (2006) 753–770.

[16] P. van Slingerland, C. Vuik, Fast linear solver for diffusion problems with applications to pressure computation in layered domains, Comput. Geosci.
(2014) http://dx.doi.org/10.1007/s10596-014-9400-8.

[17] J.M. Tang, R. Nabben, C. Vuik, Y.A. Erlangga, Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid
methods, J. Sci. Comput. 39 (3) (2009) 340–370.

[18] R.D. Falgout, P.S. Vassilevski, L.T. Zikatanov, On two-grid convergence estimates, Numer. Linear Algebra Appl. 12 (5–6) (2005) 471–494.
[19] P. van Slingerland, C. Vuik, Scalable two-level preconditioning and deflation basd on a piecewise constant subspace for (SIP)DG systems, Tech. Rep.

12-11, Delft University of Technology, 2012.
[20] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, in: Frontiers in Applied

Mathematics, vol. 35, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
[21] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, in: Classics in Applied Mathematics, vol. 40, Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, 2002.
[22] P.S. Vassilevski, Multilevel Block Factorization Preconditioners: Matrix-Based Analysis and Algorithms for Solving Finite Element Equations, Springer,

New York, 2008.
[23] Y. Notay, Algebraic analysis of two-grid methods: the nonsymmetric case, Numer. Linear Algebra Appl. 17 (1) (2010) 73–96.
[24] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1988.
[25] L. Zikatanov, Two-sided bounds on the convergence rate of two-level methods, Numer. Linear Algebra Appl. 15 (2008) 439–454.
[26] J.M. Tang, S.P. MacLachlan, R. Nabben, C. Vuik, A comparison of two-level preconditioners based onmultigrid and deflation, SIAM J. Matrix Anal. Appl.

31 (4) (2009–2010) 1715–1739.
[27] P. van Slingerland, Discontinuous Galerkin methods: linear systems and hidden accuracy (Ph.D. thesis) Delft University of Technology, 2013.
[28] J. Tang, Two-level preconditioned conjugate gradientmethodswith applications to bubbly flowproblems (Ph.D. thesis) Delft University of Technology,

2008.
[29] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.
[30] K. Johannsen, A symmetric smoother for the nonsymmetric interior penalty discontinuous Galerkin discretization, Tech. Rep. ICES Report 05-23,

University of Texas at Austin, 2005.
[31] Y. Epshteyn, B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods, J. Comput. Appl. Math. 206 (2) (2007)

843–872.
[32] M. Dryja, On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients, Comput. Methods Appl. Math. 3 (1) (2003) 76–85.

(electronic).
[33] J. Proft, B. Rivière, Discontinuous Galerkinmethods for convection–diffusion equations for varying and vanishing diffusivity, Int. J. Numer. Anal. Model.

6 (4) (2009) 533–561.
[34] A. Ern, A.F. Stephansen, P. Zunino, A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and

anisotropic diffusivity, IMA J. Numer. Anal. 29 (2) (2009) 235–256.

http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref15
http://dx.doi.org/doi:10.1007/s10596-014-9400-8
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref17
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref18
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref19
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref20
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref21
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref22
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref23
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref24
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref25
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref26
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref27
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref28
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref29
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref30
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref31
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref32
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref33
http://refhub.elsevier.com/S0377-0427(14)00315-X/sbref34

	Scalable two-level preconditioning and deflation based on a piecewise constant subspace for (SIP)DG systems for diffusion problems
	Introduction
	Methods and assumptions
	SIPG discretization for diffusion problems
	Two-level preconditioning and deflation

	Auxiliary result: regularity on the diagonal of A
	Intermediate result I: using regularity
	Intermediate result II: the desired result in terms of local bilinear forms
	Final auxiliary result: regularity on the diagonal of A

	Main result: scalability of both two-level methods
	Intermediate result I: using the error iteration matrix
	Intermediate result II: implications for the two-level methods
	Final main result: scalability of both two-level methods
	Special case: block Jacobi smoothing
	Influence of damping and the penalty parameter for block Jacobi smoothing

	Numerical results
	Conclusion
	Acknowledgment
	References

