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Abstract

The transition from homogeneous to localized deformations during the loading of a soil specimen within a ®nite element com-

putation is often characterized by a bifurcation point, indicating loss of uniqueness of the solution. The signalling of a bifurcation point

is done via the eigenvalues of the structural sti�ness matrix resulting from the ®nite element discretization. Eigenvectors related to

negative eigenvalues can be used to perturb a homogeneous state and to obtain a localized deformation mode. This procedure is called

branch switching. Several methods are proposed to perform this branch switching. Ó 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Soil is a di�cult material to model, but of importance for e.g., the building of infrastructures and the oil
industry. The homogeneous deformation of soil can be modeled quite well in contrast to the regime beyond
homogeneous deformations, i.e., that of localized deformations. The transition from homogeneous to lo-
calized deformation is frequently characterized by a bifurcation point, indicating loss of uniqueness of the
solution. A bifurcation point in the solution path is often (and typically so in the examples considered here)
a consequence of spatial symmetry and of the homogeneous distribution of material parameters. At a
certain load level, there may be more than one possible solution but most paths will be unstable. Material
perturbation is a generally accepted method to circumvent the problem of loss of uniqueness [5]. This,
however, may in¯uence the peak load and the post-bifurcation deformation mode.

de Borst [1] has shown how the eigenvectors related to negative eigenvalues can be used to perturb a
homogeneous state and to arrive at a path associated to localized deformation. This procedure is called
branch switching. Here, it is shown how the method can be extended to account for more than one ei-
genvector associated to a negative eigenvalue. The orthogonality requirement of this perturbation may be
too strict and not appropriate for the evolving localized deformation. For this reason an alternative method
was developed, which is called de¯ation. It uses right and left eigenvectors of the tangent sti�ness matrix to
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establish an incremental displacement vector which is related to a new tangent sti�ness matrix with positive
eigenvalues only.

The outline of the article is as follows. In Section 2 the most important characteristics of the soil model
are described, including the yield function and the plastic ¯ow law, the ®nite element model and the concept
of bifurcation. In Section 3 the perturbation methods are discussed, ®rst the orthogonal perturbation and
then the de¯ation method. In Section 3.3 these two types of perturbation are related to each other. This is
followed by a description of the perturbation methods, but with use of Schur vectors instead of eigen-
vectors, which leads to a considerable improvement of the e�ciency. In Section 4 the results of a pure shear
test and several biaxial compression tests (Section 4.2) are discussed.

2. Overview of the model

In this section we present a short overview of the most important characteristics of soil plasticity. The
constitutive law, the yield surface and the kinematic relation are brie¯y discussed as well as the ®nite el-
ement discretization.

2.1. Material laws

A constitutive law describes the relation between stresses r and strains �. The elastic response is de-
scribed by Hooke's law: r � De�, whereas the total elasto-plastic response is given by

_r � Dep _�; Dep � De ÿ DemnTDe

H � nTDem
; �1�

in which H is a hardening parameter. The two vectors m and n are the direction of plastic ¯ow and the
normal to the yield surface, respectively. The Drucker±Prager yield surface is used to separate the stresses
that lead to an elastic response from those that result in plastic deformation. The Drucker±Prager yield
function reads:

f �
�������
3J2

p
� 6 sin /

3ÿ sin /
p ÿ 6c cos /

3ÿ sin /
; �2�

with J2 the second invariant of the deviatoric stresses and p the hydrostatic pressure [6]. The parameters c
and / are the cohesion and the friction angle, respectively. The normal to the yield surface ni � of =ori

changes with a change in friction angle /. The components of the direction of plastic ¯ow are obtained
from mi � og=ori, with g as f but with / replaced by the dilatancy angle w of the material. If / � w the
normal to the yield surface equals the direction of plastic ¯ow. Normally, soil is described better with a non-
associated ¯ow rule, i.e., / 6� w.

2.2. Finite element discretization

The weak formulation of the equilibrium condition inside the body and on its surface can be written
as [6]

ÿ
Z

Xe

d�Tr dV �
Z

oXe

duTt dS � 0; �3�

with r the stress vector, � the strain vector and t the vector of surface tractions. The volume of an element is
denoted by Xe and its boundary by oXe. The vector u contains the displacements. In the examples con-
sidered in this article body forces are not included.

For ®nite loading steps the constitutive law (Eq. (1)) is linearized as follows:

r � ~r�DepD�; �4�
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where ~r is ®xed and D� is a strain increment. The nodal degrees of freedom of element l of the ®nite element
mesh are denoted by uln . The global displacement of element l is denoted by ul and is computed with the
interpolation matrix Nl:

ul � Nlu
ln : �5�

The elements of matrix Nl are functions of nodal coordinates. The kinematic equation relating strain and
displacement reads: �ln � LTuln . The di�erential operator L is made up of derivatives in space coordinates.
It now follows that

�ln � LTNlu
ln � Buln with B � LTNl: �6�

With Eq. (6) and the linearized constitutive equation (4), Eq. (3) becomes for element l:Z
Xe

d�lT
n r dV �

Z
Xe

d�lT
n �~r�DepD�

ln� dV

�
Z

Xe

dulT
n BTDepBDuln dV �

Z
Xe

dulT
n BT~r dV

�
Z

oXe

�Nlduln�Tt dS: �7�

The nodal displacements do not depend on the space variables and can be taken out of the integral. De-
®ning:

Kl �
Z

Xe

BTDepB dV ; Dfl �
Z

oXe

NT
l t dS ÿ

Z
Xe

BT~r dV ; �8�

Eq. (7) becomes

dulT
n KlDuln � dulT

n Dfl: �9�
This relation holds for a speci®c element. The relation of all elements is thus expressed as:

duTfKDuÿ Dfg � 0: �10�
In K and f all element contributions are assembled and u is the vector of all nodal displacements. The
equation must hold for every virtually admissible nodal displacement vector du and thus KDu � Df must
hold.

The iterative Newton±Raphson [2] iteration is used to solve the incremental ®nite element equations. The
total force is applied in small increments. Eq. (10) can therefore also be written as:

KiDiu � liq; �11�
where Di denotes the ith increment of the Newton±Raphson iteration. Vector q is ®xed during the whole
process, whereas parameter li can be di�erent for every increment.

2.3. Bifurcation

Bifurcation of the load±displacement path is de®ned as loss of uniqueness, which means that there exist
more than one displacement increment that satis®es the incremental equilibrium (Eq. (11)). In here, the
focus is on continuous bifurcations for which the same tangent sti�ness matrix relates the possible dis-
placement increments to the force increment. Suppose KiDiu � liq has two solutions Diu for one li. Sub-
tracting the appropriate incremental relations and leaving out the subscripts, gives the bifurcation condition:

K�D1uÿ D2u� � KD1ÿ2u � 0 �12�
with D1u and D2u the two possible displacement increments, and D1ÿ2u their di�erence. Eq. (12) implies that
K must be singular, i.e., at least one eigenvalue must equal zero. Let kj; j � 1; . . . ; k be the zero eigenvalues
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and xj; yj the associated right and left eigenvectors. Because K is singular, a non-trivial solution of Eq. (12)
exists if li � 0 or if q lies in the column space of K so that yT

j q � 0 for all j. The latter is called a bifurcation
point. Note that for the examples discussed here, zero eigenvalues or an exact bifurcation point are never
found. This is due to the fact that neither the material model nor the load increment procedure are con-
tinuous. Therefore, a change from loading to unloading results in a change of tangent stiffness matrix and a
discontinuity in the load±displacement curve. In the examples of Section 3.2 it is assumed that a bifurcation
point is passed if at least one eigenvalue is negative. For a symmetric matrix it holds that a negative ei-
genvalue exists if negative pivots arise, but for non-symmetric matrices only an odd number of negative
pivots assures the presence of negative eigenvalues. However, it has been found that the signalling of
negative eigenvalues via negative pivots is quite accurate [9].

3. Branch switch procedures

In this section several methods are discussed that can be used to obtain a localized deformation mode by
perturbing the homogeneous solution with eigenvectors related to negative eigenvalues that arise if
uniqueness is lost. For all methods it holds that after the perturbation, the solution vector is renormalized
to its original length.

3.1. Orthogonal perturbation

The method described by de Borst [1] is set up with one eigenvector related to a negative eigenvalue and
is recapitulated brie¯y. It is then extended so that it can handle more than one negative eigenvalue.

A bifurcation point is de®ned by a system matrix with at least one zero eigenvalue (Section 2) while
the displacement is not stationary. If, at this point, a right eigenvector associated to a zero eigenvalue
is added to the incremental displacement vector, another solution is obtained for the same problem,
because

KfDu� axg � KDu; �13�

with x the right eigenvector related to the zero eigenvalue and a a non-zero weight factor. In practice, x is
related to a (slightly) negative eigenvalue. This perturbation thus consists of adding the eigenvector x

multiplied by a to the homogeneous solution

~u � u� ax; �14�

where a is chosen such that ~u ? u. The parameter a is then given by

a � ÿ uTu

xTu
: �15�

For eigenvectors x that are almost orthogonal to the displacement vector u, the weight factor a is very
large. For more negative eigenvalues, the method can be extended by summation of all alxl for every
eigenvector xl

~u � kuÿ
Xk

l�1

uTu

xT
l u

xl: �16�

The number of negative eigenvalues k appears in the front of the right-hand side of the equation, in order to
guarantee the orthogonality condition ~u ? u at the end of all eigenvector perturbations.

The method described in this section will be referred to as orthogonal perturbation and will be denoted
by ?.

710 H. van der Veen et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 707±719



3.1.1. Complex eigenvalues and eigenvectors
A non-symmetric matrix may possess complex eigenvalues. Although these were not found in the ex-

amples, they were encountered in previous studies [9]. A complex eigenvector can be incorporated in the
perturbation without too much extra calculations and without introducing complexity in the solution.

Suppose that k � a� ib is a complex eigenvalue with negative real part: i2 � ÿ1 and a < 0. Since the
tangent sti�ness matrix is real, the complex conjugate of this eigenvalue (aÿ ib) is also present. The two
associated pairs of right and left eigenvectors are denoted by xr � ixi; yr � iyi and xr ÿ ixi, yr ÿ iyi. Suppose
that only two eigenvalues are complex: k1 � a� ib and the associated complex conjugate k2 � aÿ ib. The
orthogonal perturbation (Eq. (16)) then reads:

~u � 2uÿ uTu

�xr � ixi�Tu
�xr � ixi� ÿ uTu

�xr ÿ ixi�Tu
�xr ÿ ixi�

� 2uÿ uTu�xr ÿ ixi�Tu�xr � ixi� � uTu�xr � ixi�Tu�xr ÿ ixi�
�xr � ixi�Tu �xr ÿ ixi�Tu

� 2uÿ 2uTu xrT
u xr � 2uTu xiT u xi

�xrT u�2 � �xiT u�2 : �17�

The cross products with imaginary terms cancel. More than one pair of complex eigenvalues can be pro-
cessed in the same way.

3.2. De¯ation

It is assumed that under displacement control (used consistently in this study) the emergence of negative
eigenvalues in the systems matrix indicates a passage beyond a bifurcation point. Once the path has been
found that relates to the critical localization mode, the system matrix will again have only positive ei-
genvalues. This property has been used in constructing a more general eigenvector perturbation method.
All eigenvectors related to negative eigenvalues are considered, and the analysis is based on the right and
left eigenvectors. In this manner the aspect of non-symmetry in case of non-associated plasticity problems is
explicitly taken into account.

The basic idea was to perturb the matrix with negative eigenvalues just after bifurcation with the as-
sociated eigenvectors such that the negative eigenvalues are replaced by positive eigenvalues. This can be
done by applying the de¯ation technique used often to obtain several eigenvalues from a matrix, see e.g.,
[7]. If kl; l � 1; . . . ; k are the negative eigenvalues of K, with associated right and left eigenvectors xl; yl, then
the de¯ation of K can be written as follows:

~K � Kÿ
Xk

l�1

xl kl xl yT
l : �18�

It is assumed that xl is normalized to Euclidean length one and that jyT
l xlj � 1. The de¯ation leaves all

eigenvectors unchanged. This can be veri®ed by post-multiplication by a right eigenvector. Also the positive
eigenvalues are unperturbed. If xl � 1 for all l then zero eigenvalues replace the negative eigenvalues. If
xl > 1 the negative eigenvalues turn positive with magnitude �1ÿ xl�kl. Thus, all eigenvalues of ~K are
again positive. For this reason xl is chosen larger than one.

Some ®rst experiments were carried out, that perturbed the system matrix directly [11] with promising
results. However, this method is computationally expensive. In general the system matrix is not assembled
for the solution procedure, but all calculations are carried out on element level. However, to compute ~K
assemblage of the element matrices is necessary. Moreover, the tangent sti�ness matrix has a band structure
that is destroyed by the perturbation. In [11] this was prevented by perturbing only the band, and hence
introducing inaccuracies in the perturbation.

Due to the computational disadvantages of perturbing the system matrix directly, the method was
further developed so that it would become more economic. Next, it is shown how the perturbation can be
rewritten as a simple summation of vector updates.
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In matrix form the de¯ation of (18) becomes

~K � Kÿ XDYT: �19�
Here D is a diagonal matrix with entries equal to:

dl � xlkl; 16 l6 k;
dl � 0; k < l6 n:

�20�

Note that Eq. (19) includes all eigenvectors but this is only necessary for the derivation of the simpli®ed
formulation. The ®nal method makes use only of eigenvectors associated to negative eigenvalues.

A solution is sought of the equation ~KD~u � Df (Eq. (10)). This equation relates increments of dis-
placement to increments of force, where the solution is perturbed. In the following the Ds are left out of the
equations for clarity. During this analysis it holds that ~u � ~Kÿ1f. Of course, the inverse is never really
computed in practice but a decomposition is made. The original and perturbed matrix can be decomposed
into eigenvectors and eigenvalues as follows

K � XKYT; ~K � X~KYT; ~K � KÿD: �21�
For the derivation of the computationally more attractive de¯ation method the theoretical inverse in
~u � ~Kÿ1f is split into two parts. One part is the known Kÿ1 of the unperturbed problem. The inverse of ~K
can be written as

~Kÿ1 � X~Kÿ1YT � XKÿ1YT ÿ X ~DYT � Kÿ1 ÿ X ~DYT: �22�
The elements of ~D (not the inverse of D but part of the inverse of the non-singular ~K), for 16 l6 k, can be
determined with Eq. (20) from

1

kl ÿ dl
� 1

kl
ÿ ~dl () ~dl � ÿxl

kl�1ÿ xl� : �23�

For k < l6 n the elements ~dl are simply zero because dl � 0. For the computation of ~u, ~Kÿ1f is split as
follows:

~u � ~Kÿ1f � Kÿ1f ÿ X ~DYTf � uÿ X ~DYTf: �24�
The last term can be written as a multiple vector update, leaving out the zero terms due to zero diagonal
elements of ~D

~u � uÿ
Xk

l�1

~dlxly
T
l f � u�

Xk

l�1

xly
T
l u

1ÿ xl
xl � u�

Xk

l�1

axl xl �25�

with axl � xly
T
l u=�1ÿ xl�. In Eq. (25) the identity has been used that yT

l f � yT
l Ku � kly

T
l u. The pertur-

bation has been simpli®ed to several vector updates of the displacement vector with the eigenvectors related
to negative eigenvalues.

The choice of xl is free as long as it is larger than one. If xl is taken constant, independent of the
negative eigenvalue, a method arises denoted by xc. This method is referred to as constant de¯ation. If xl is
di�erent for each eigenvalue and such that the norm of the perturbation axl xl for each 16 l6 k is equal to
the norm of the unperturbed displacement vector a method evolves that is denoted by xn. The di�erent xnl s
for this normalized de¯ation method are determined according to

kuk � xnl y
T
l u

1ÿ xnl

���� ����kxlk () xnl �
kuk

kukÿ j yT
l u j kxlk ; �26�

where kxlk � 1 and xnl > 1. If kuk is less than jyT
l uj the term on the right-hand side of Eq. (26) assigns a

value less than one to xnl which contradicts the assumption that xnl > 1. In practice this never happened.
Note that axnl

can be computed directly from the norm of u but then it would be impossible to verify
xnl > 1. This method is referred to as normalized (xn) de¯ation.
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3.2.1. Complex eigenvalues and eigenvectors
For the de¯ation perturbation it is also possible to take into account the complex eigenvalues if they

would occur. Suppose again that only two eigenvalues have become complex: k1 � a� ib and the associ-
ated complex conjugate k2 � aÿ ib. The de¯ation of the homogeneous solution vector can then be sim-
pli®ed as follows:

~u � u� x1�yr � iyi�Tu

1ÿ x1

�xr � ixi� � x2�yr ÿ iyi�Tu

1ÿ x2

�xr ÿ ixi�

� u� x1

1ÿ x1

�
� x2

1ÿ x2

�
yrT

u
� �

xr ÿ x1

1ÿ x1

�
� x2

1ÿ x2

�
yiT u
� �

xi

� ix1

1ÿ x1

�
ÿ ix2

1ÿ x2

�
yrT

u
� �

xi � ix1

1ÿ x1

�
ÿ ix2

1ÿ x2

�
yiT u
� �

xr: �27�

The imaginary cross products disappear if x1 � x2. For the constant de¯ation this is so by de®nition. For
the normalized de¯ation xi is determined by the norm of the eigenvectors (Eq. (26)) and is therefore the
same for the ®rst eigenvalue and for the second eigenvalue, which is the complex conjugate of the ®rst. The
de¯ation perturbation with complex eigenvectors thus becomes

~u � u� 2xyrT
u

1ÿ x
xr ÿ 2xyiT u

1ÿ x
xi: �28�

Extension of the complex eigenvector perturbation to more complex eigenvectors is straightforward.

3.3. Relation between orthogonal perturbation and de¯ation

The de¯ation method as well as the orthogonal perturbation can, for one negative eigenvalue, be written
as ~u � u� ax. Each method determines a in a di�erent manner:

x ) ax � xyTu

1ÿ x
; �29�

? ) a? � ÿuTu

uTx
: �30�

Accordingly, ax and a? are equal if:

xyTu

1ÿ x
� ÿ uTu

uTx
() x � uTu

uTuÿ �yTu��uTx� : �31�

The x can therefore be chosen such that the de¯ation and the orthogonal perturbation methods are equal.
However, the condition that x > 1 will not be satis®ed if �yTu��uTx� > uTu. This happened occasionally in
the examples discussed in Section 4.

3.4. Schur vectors

It can be attractive to use Schur vectors instead of eigenvectors. With Schur vectors an orthogonal
reduction of K can be obtained as follows:

KS � SR; �32�
with R an upper triangular matrix, STS � I and I the identity matrix. All matrices are of the same di-
mensions. The eigenvalues of K are found on the diagonal of R. If K is normal (KKT � KTK) then R equals
the diagonal matrix of eigenvalues and S is the eigenvector matrix. A partial Schur decomposition is a
decomposition with a Schur matrix that has less columns than rows to an upper triangular matrix that is
accordingly of smaller dimension than K. Of course, the eigenvalues of this upper triangular matrix ap-
proximate the eigenvalues of K better if the decomposition is more complete.
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Schur vectors are mutually orthogonal and the ordinary de¯ation used to obtain more than one ei-
genvalue is often more stable if performed with Schur vectors [3,7]. Alternative perturbations are formed by
using Schur vectors instead of right eigenvectors in Eq. (16) and instead of right and left eigenvectors in
Eq. (25). In practice there was no visual di�erence between the Schur vectors and the eigenvectors when both
are plotted as deformation modes. No serious improvement is therefore expected from this approach. An
important advantage of the Schur decomposition is that there is no di�erence between right and left vectors.
Therefore, with Schur vectors only half as many vectors need to be computed for the de¯ation perturbation.

4. Examples

In this section two di�erent problems are analyzed, with several discretizations. In each example the
prescribed displacement is continued and re®ned up to one hundredth of the initial step size, until negative
pivots appear. These pivots are computed within the Gaussian elimination process to solve each of the load
displacement increments.

Once negative pivots are found, the eigenvalues and the right and left eigenvectors are computed with the
BILAPO method [10](Bi-Lanczos [8] with Partial Orthogonalization) whereas the Schur vectors are com-
puted with Arnoldi's method [4]. With the BILAPO method right and left eigenvectors are computed at the
same time, whereas Arnoldi's method computes only one set at a time. The BILAPO method is cheaper
than running Arnoldi's method twice for a ®xed number of iterations, although in practice the BILAPO
method approaches the cost of running Arnoldi's method twice [9].

4.1. Pure shear

The ®rst example is primarily chosen as a test case for the proposed branch switch methods. In Fig. 1(a)
the loading case as well as the discretization is shown. Linear elements have been used with nodes only at
the corners. Note that the right and left-hand sides of this element are linked by dependence relations in
order to behave identically with respect to the horizontal and the vertical displacement so as to simulate the
one-dimensional underlying con®guration. With 12 linear elements the total number of nodal degrees of
freedom is 52, but only 23 are free. During homogeneous deformations the rod may shorten, but it is not
allowed to bend.

Softening is applied to the cohesion c. During loading it holds that if the softening parameter goes from 0
to 10, the cohesion diminishes from 0.01 to 0.001. Young's modulus equals to 1:8625 N/mm2 and Poisson's

Fig. 1. Con®guration and mesh of: (a) the pure shear test and (b) the biaxial compression test.
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ratio m � 0:49. In the ®rst block of Table 1 the load F and displacement D at which negative eigenvalues
appear are summarized. These values are estimated in the top element. For all dilatancy angles that were
investigated 11 negative eigenvalues and pivots were found. Only the constant de¯ation method worked
well. The orthogonal perturbation and the normalized de¯ation methods caused localization in more than
one element and negative pivots remained. For the zero dilatancy angle the bifurcation occurs at the onset
of plastic deformation.

Fig. 2 shows all eigenmodes related to negative eigenvalues for sin w � 0:3. The eigenmodes are similar
for the other dilatancy angles.

4.2. Biaxial compression

The biaxial compression test consists of a two-dimensional specimen of 60� 120 mm2. The specimen is
loaded at the top, supported at the bottom and the sides are free, see also Fig. 1(b). Softening is applied to
the cohesion c, and Young's modulus equals 1:8625 N/mm2. The friction angle is chosen such that
sin / � 0:3 whereas the dilatancy angle is varied: sin w � 0:3; 0:2; 0:1. Two discretizations are considered,
namely a mesh with rectangular quadratic elements and a mesh with triangular quadratic elements.

4.2.1. Rectangular mesh
A discretization of the biaxial compression test with 24� 48 quadrilaterals with quadratic interpola-

tion results in 7103 nodal degrees of freedom. For this test case the Poisson ratio is chosen equal to 0.3,
and the softening is such that the cohesion decreases from 0.01 to 0.001 when the hardening parameter
increases from 0 to 1000. The bifurcation load and displacement, the number of negative pivots and the
number of negative eigenvalues is di�erent for each of the dilatancy angles. The data are summarized in
the second block of Table 1. This table also shows the results of the three variants of the eigenvector
perturbation.

When the di�erence between the friction angle / and the dilatancy angle w is small, all methods behave
in a rather similar fashion. However, when this di�erence becomes large (sin w � 0:1), di�erences arise. The
normalized de¯ation shows no problems if sin w � 0:1. With the constant de¯ation method negative pivots

Table 1

Load [N] and displacement [mm] values, negative pivots and negative eigenvalues for bifurcationa

sin w Shear Rectangles Triangles

0.3 0.2 0.1 0.0 0.3 0.2 0.1 0.0 0.3 0.2 0.1

F 0.136 0.134 0.128 0.122 2.49 2.47 2.44 2.44 2.47 2.46 2.41

D 5.61 7.23 6.57 1.20 12.8 22.0 26.0 26.6 5.48 7.50 3.68

p < 0 11 11 11 11 4 2 6 3 4 6 3

k < 0 11 11 11 11 4 2 4 1 4 6 1

? ) ) ) ) + + ) ) + + )
xn ) ) ) ) + + + ) + + )
xc + + + + + + + ) ) + )

a A plus sign indicates successful perturbation and a minus sign unsuccessful perturbation.

Fig. 2. Pure shear test. Eigenmodes associated to negative eigenvalues for sin w � 0:3.
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remain, but gradually disappear in the increments after the perturbation. The ®nal deformation is that of a
re¯ected shearband. With the orthogonal perturbation the incremental deformation just after perturbation
is that of a single shear band, but with signi®cant extra localization in the rest of the specimen. This leads
to the growth of multiple shearbands in later iterations and to a divergence of the Newton±Raphson
iteration.

For a zero dilatancy angle none of the perturbation methods was successful. Two negative pivots appear
before negative eigenvalues are found. When the number of negative pivots has reduced to one, a negative
eigenvalue is also found. The associated eigenvector is strongly undulating. Perturbation with the or-
thogonal method or normalized de¯ation, leads to an unstable deformation similar to the eigenmode. With
the constant de¯ation method the deformation remains homogeneous.

Fig. 3 shows some typical eigenmodes related to negative eigenvalues, and Fig. 4 some of the localized
deformation modes.

4.2.2. Triangular mesh
The specimen deformed under biaxial loading is now discretized with 12� 24 rectangles each of which is

subdivided into four triangles, so that a problem with 4703 degrees of freedom arises. Poisson's ratio equals
to 0.49 and the cohesion decreases from 0.01 to 0.001 when the hardening parameter increases from 0 to 10.
The load and displacement values associated to the occurrence of negative pivots and eigenvalues are
summarized in the last block of Table 1. In this table the performance of the perturbation methods is also
represented. Constant de¯ation for sin w � 0:3 resulted in a double shearband. For sin w � 0:1 two neg-
ative pivots appeared before negative eigenvalues were found. Once the number of negative pivots had
increased to three, a negative eigenvalue was found.

With a zero dilatancy angle the problem became uncontrollable. At the onset of plasticity 95 negative
pivots appeared and this was considered unrealistic and the calculations were not continued.

Fig. 5 shows some typical eigenmodes related to negative eigenvalues, and Fig. 6 shows some of the
localized deformation modes.

Fig. 3. Biaxial compression with rectangular elements. Eigenmodes associated to negative eigenvalues, farthest and closest to zero for

di�erent dilatancy angles.
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Fig. 4. Biaxial compression test with rectangular elements. Deformation modes found with constant de¯ation and with normalized

de¯ation.

Fig. 5. Biaxial compression test with triangular elements. Eigenmodes associated to negative eigenvalues, farthest and closest to zero

for di�erent dilatancy angles.
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5. Conclusions

The orthogonal perturbation method [1] was generalized to include all eigenvectors associated to neg-
ative eigenvalues. This method worked satisfactorily, but the orthogonality requirement may be too strong.
Therefore a new perturbation technique was developed that is more general. It is based on the idea that
under displacement control a tangent sti�ness matrix associated with a properly localized solution possesses
no negative eigenvalues. This eigenvector perturbation method is called de¯ation and performs as well as
the orthogonal perturbation.

Instead of eigenvectors it is possible to use Schur vectors. In the problems that have been investigated the
performance was unchanged by substitution of Schur vectors at the place of eigenvectors in the pertur-
bation. However, only half as many vectors need to be computed for the de¯ation perturbation if Schur
vectors are used instead of eigenvectors. Moreover, the Schur vectors form an orthogonal set of vectors in
contrast to eigenvectors of nonsymmetric matrices. This may improve the performance.

It is noteworthy that the signalling of bifurcation by negative pivots of the nonsymmetric tangent
sti�ness matrix K was quite accurate. In a few examples, where nonsymmetry was very pronounced, one or
two negative pivots appeared prior to negative eigenvalues. An increase or a decrease of negative pivots to
an odd number signalled the presence of negative eigenvalues and indicated a passage beyond a bifurcation
point. The solution could then be steered onto a path associated to a localized deformation pattern with
help of eigenvectors associated to negative eigenvalues.
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Fig. 6. Biaxial compression test with triangular elements. Deformation found with orthogonal perturbation, normalized de¯ation and

constant de¯ation. The second three modes are obtained by perturbation with Schur vectors.
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