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Abstract-In theory the bi-Lanczos algorithm is an attractive possibility for solving the unsymmetric 
eigenproblem. In practice, however, it turns out to be unstable due to loss of orthogonality of the iteration 
vectors. In this paper we discuss the possibilities of reorthogonalizing the bi-Lanczos iteration vectors. 
To save part of the advantage of the bi-Lanczos method over the other most commonly used Krylov 
subspace based method of Arnoldi (bi-Lanczos lacks the growth of the number of vector operations per 
iteration), we propose partial reorthogonalization. In that case reorthogonalization takes place if and only 
if too much orthogonality is lost, so that the results are accurate enough, whereas the algorithm is still 
less time consuming than Amoldi. The theory presented here is an extension of the theory available for 
partial reorthogonalization of the symmetric Lanczos algorithm. 

1. INTRODUCTION 

Large unsymmetric eigenproblems play an important 
role in a variety of applied sciences. In fluid and 
structural mechanics, for example, such problems 
arise quite often. One could think of bifurcation 
problems where the smallest eigenvector is an indi- 
cation of the direction in which the solution should 
be continued after bifurcation. The characteristic 
direction of a certain flow can be analyzed by consid- 
ering the eigenvalues and eigenvectors of a certain 
matrix. Furthermore, stable and efficient eigenprob- 
lem algorithms are of vital importance in buckling 
analysis and for the computation of dynamic re- 
sponses. 

To solve the non-symmetric eigenproblem as part 
of finite element analysis, iterative methods like the 
Krylov subspace based methods bi-Lanczos [7] and 
Arnoldi [5, p. 5011 are most commonly used. An 
iterative method computes eigenvalues and eigen- 
vectors in increasing accuracy, so that if interest is 
directed to a small dominant set of the eigenvalues 
and eigenvectors, which is the case for most finite 
element applications, it is possible to achieve satisfy- 
ing results long before all eigenvalues and eigen- 
vectors have been computed. 

Although the method of Arnoldi is very robust and 
is widely used, it can become quite expensive, because 
of growing cost of work and memory per iteration, 
due to explicit reorthogonalization of the iteration 
vectors. Bi-Lanczos would be an attractive alterna- 
tive, but unfortunately it loses orthogonality too 
often, which leads to ghost eigenvalues (non-realistic 
multiple eigenvalues) at the expense of internal 
eigenvalues. The bi-Lanczos method may not even 

converge at all, because of too great loss of orthogo- 
nality [14, p. 511. Loss of orthogonality is noticed 
even in symmetric problems. Nevertheless, we are 
unaware of a publication on bi-Lanczos with re- 
orthogonalization techniques. Breakdown can be a 
problem too for the bi-Lanczos method, but besides 
the fact that for smaller problems this hardly ever 
occurs, much research had been done in this subject 
already. A result of this research is for example the 
“Look Ahead” (bi-)Lanczos algorithm [4]. 

This paper discusses the possibilities of reorthogo- 
nalization of the bi-Lanczos method. Full reortho- 
gonalization is not attractive, because that would 
result in a method more time-consuming than 
Arnoldi. Instead we consider a simple form of partial 
reorthogonalization proposed by Nour-Omid for the 
Lanczos method [6, pp. 565-600]. We will start with 
the description of how to reorthogonalize the iter- 
ation vectors, and continue with the necessary com- 
putations to obtain a successful partial reortho- 
gonalization bi-Lanczos algorithm, which we have 
called the bilapo algorithm. 

2. REORTHOGONALIZATION OF THE BI-LANCZOS 
METHOD 

The bi-Lanczos method realizes a projection of an 
n x n matrix A on the Krylov space Kk (k < n) 
spanned by the power basis {v,, Av,, . . , Ak-‘v,j, 
where v, is an initial vector. The reduction results in 
the construction of a tridiagonal non-symmetric 
matrix TL called the Ritz matrix. After k = n steps 
this reduction can be summarized by: AV,, = V,,T,, 
and A’W, = W,Tz. The columns of W,, and V,, are 
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bi-orthogonal: WTV, = I,. The Ritz matrix T” has 
the following form: 

The process can be derived by equating columns 
in the relations AV, = Vk+ !T, + , and ATWk = 
W,+,Tr+,andW:+,V,+,=I,+,.ThematricesT,+, 
and T:, , have the form: 

Tk+,=[,..T; &+,= ‘, ; (2) 

1 4 
To satisfy the bi-orthogonality property, the initial 
vectors v, and wI must be chosen such that ]w:v, 1 = 1. 
The norm ((1 11) used in this paper is the /,-norm. The 
bi-Lanczos method is given by code 1. 

Loss of bi-orthogonality of the iteration vectors 
v and w can take serious forms. To re-establish 
bi-orthogonality at step k, for example, we project 
the vectors vk and wk onto spaces spanned by the 
old iterations vectors, namely the column space of 
Wk_ I and V,_ , We use for this the projection 
matrices Wk_,V:_, and V,_,W:_, A specific 
matrix P is a projection matrix if and only if it 
is idempotent [3, p. 31. P2 = P. This property can 
be proven easily for the matrices Wk._, Vz_, and 
V k-,W:-,: 

(wk_,v:_,j2=w - VT_ k I k I 

and 

because of the bi-orthogonality property VT_, 
W, _ , = W:_ , V, ~, = I, _ , . But these matrices do not 
define an orthogonal projection because they are not 
symmetric. The matrix Wk_ ]V:_, projects the 
column space of W,_, onto itself: Wk _ , 
V:_,Wk-,=Wk-,, and similarly for V,_ , 

WL, and V,_ , . Wilkinson [15, pp. 391-3931 shows 
that Wk , V:_ , can be used to re-establish bi-orthog- 
onality of the left iteration vectors wk, whereas 
V k _ , W:_ , is used to re-establish bi-orthogonality of 
the right iteration vectors vk. 

The implication of these projections in practice is 
the following. Suppose one wishes to reorthogonalize 
a vector We to reestablish bi-orthogonality. Reorthog- 
onalization of wk can then be written as: 

+k=w,-W,_,V;_,w, 

= wk - I@: wk)w I + (6 wk)w2 

(5) 

+ . + (v:_ , wk)wk _ ,I. (6) 

In a similar way the proper formulas for the reorthog- 
onalization of vk can be established. The result is 

vk = vk - [(wfv,)v, + (w:v,)v, 

+“‘+(w:~,v,)v,~,]. (7) 

If the iteration vectors are not normalized, v:wk # 1, 
then obviously the reorthogonalization should be 
performed as follows: 

f, = Wk - 
“c’ (V,‘Wk)W, 

T 
i=, v, w, 

and 

k ’ (WF Vk)V, 
Gk=Vk- 1 7. 

r=l Y v, 
(8) 

To be certain that the orthogonalization is correct, 
we must show that after reorthogonalization of vk 
and wk it is still true that V:_ 1 I, = W:_ ,jk = 0, if 
we suppose (induction) that the bi-orthogonality 
property holds until the (k - 1)th iteration. There- 
fore, premultiply the first part of eqn (8) by VT and 
the second part by wf , for j < k : 

v;-Qk = v; Wk _ ^c’ (v’w;)‘:‘“~ = gwk _ VfWk = 0 

t=I v, WI 

(9) 

Wfqk = W;Vk _ *c’ ‘““:‘““~ = w;vk - w,y$k = 0, 

,=I w,v, 
(10) 

which is what we wanted to find. 
Summarizing, the projection technique to re-estab- 

lish semi-orthogonality includes the performance of 
two summations of inner products taken and requires 
twice as many floating point operations per iteration 
as the reorthogonalization of Gram-Schmidt in, for 
example, the Arnoldi method. Furthermore, the re- 
orthogonalization must be performed during two 
successive iterations. Otherwise it would be useless, 
since the recurrence for the next iteration vector is 
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constructed from the last IWO iteration vectors: 

and 

ykwk+l =ATWk-akWk-~k-lwk-l. (11) 

Concluding, bi-Lanczos can be attractive compared 
to Arnoldi only if reorthogonalization is performed 
less than every four iterations. That is why we will 
now turn our attention to partial reorthogonalization 
techniques. The next section covers recent results on 
the subject of partial reorthogonalization of the 
bi-Lanczos method and this paper is concluded with 
the performance of some tests. 

3. PARTIAL REORTHOGONALIZATlON OF BI-LANCZOS 

The following results on partial reorthogonaliza- 
tion of bi-Lanczos are obtained by investigating and 
generalizing theory known for the symmetric Lanczos 
method on the subject of partial [13] and selective [9] 
reorthogonalization. We begin with a brief summary 
of the contents of these papers. 

The bi-Lanczos method reduces to the Lanczos 
method if the matrix A, of which one wants to find 
the eigenvalues, is symmetric. In that case the column 
spaces V, and W, are equal and thus V:V, = Ik, The 
orthogonal matrix V, is usually denoted by 
Qk = [ql, . . , qkJ and the resulting tridiagonal matrix 
T is symmetric. Full reorthogonalization of the iter- 
ation vectors qk guarantees the stringent requirement 
of ]q,TqJ < nc with i -c/c, i.e. orthogonality at 
roundoff level. However, the effort of explicit re- 
orthogonalization of the new Lanczos vector Q+ , 

against all previous Lanczos vectors is not necessary. 
Numerical results [ 111 and theoretical considerations 
in connection with the various reorthogonalization 
methods [8] have shown that a more relaxed con- 
dition, namely (qfq,] < 4 is sufficient to permit the 
computation of eigenvalues without the appearance 
of spurious duplicate copies (copies of eigenvalues 
that turn up because of loss of orthogonality are 
referred to as spurious or ghost eigenvalues). The 
more relaxed condition JqTq,] < 4 is referred to in 
the literature as the semi-orthogonality condition. 
The analysis and numerical results can be summar- 
ized with the following. 

Theorem 12 

Let Tk be the tridiagonal matrix computed by the 
Lanczos algorithm, where by some means the Lanc- 
zos vectors are kept semi-orthogonal. Then T, is, 
up to roundoff, the orthogonal projection of A onto 
span (Qm). 

Proof of this theorem can be found in Simon [12], 
theorem 2.5. 

These results considering the symmetric Lanczos 
method have motivated us to investigate partial 
reorthogonalization of the bi-Lanczos method. 
In this paper we will restrict ourselves to numerical 
experiments. However, in the near future we 
hope to substantiate our results with theoretical 
considerations. 

We will describe one way to maintain semi-orthog 
onality called partial reorthogonalization. This 
method is analogous to the method proposed by 
Simon [13] for the symmetric Lanczos algorithm. 

To monitor loss of bi-orthogonality among the 
iteration vectors of the bi-Lanczos method, we set up 
relations for the elements of $2, = W,‘V,: ou = w’v,. 
Explicit computation of the inner products w’v, is far 
too expensive, because for every iteration we would 
need to compute one more inner product. In theory 
s2, should be the identity matrix, but in practice, the 
off-diagonal elements depend on the machine pre- 
cision E. In the kth iteration the residual vectors of the 
bi-Lanczos algorithm are equal to: 

rk=fikVk+I=AVk-akVk-Yk-IVk-I (13) 

Pk=~kWk+l=ATWk-~kWk-~k-IWk-I. (I41 

Premultiply eqn (13) by wf and eqn (14) by VT so that 
the relations are found for the elements of matrix R,: 

wT~kyk+,=w~Avk-akw~vk-Yk-Iw:vk_I (15) 

v~ykwk+,=v~ATwk-akvfwk-/?k_,~~~k_,. 

(16) 

Rearrange the terms and fill in the elements of $2,: 

w: Av, = fikOi.k +I fakw,k+?k-,%,k-I (17) 

V:AT”‘k = YkWk + I., +akWk.i+flk-~%~.i. (18) 

Similar equations can be set up for the ith iteration 
in relation to the kth step: 

w,TAvi = Bi”k,i+ I + aiok,i + Yi- I wk,t - 1 w 

v:ATwi=Y,mi+ I.k +  a&%,k + Pi- Iwi- ,,k’ (20) 

The matrix & is not symmetric. But the left hand side 
of eqn (20) is equal to the left hand side of eqn (17), 
since both are the inner product of Av, and wi. 
Equation (18) can be related to eqn (19) in the same 
way, and the related equations can be subtracted 
from each other. This leads to: 

h @i.k + 1 + Yk - I %k - I +  tak - ai)~i.k 

-Y,“i+,.k-~i-,w,-,.k=o (21) 
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Rewriting the equations, such that ok + ,,i and w,.~ + , 
can be easily computed: 

w,.k + I =[-Yk-,~i.k-,+(ai-ak)Wi,k 

+ Yiw, +  ,.k +  b!- I w! - I.kl/bk c23) 

W k+,.~=[-~k-,Wk-,,,f(ai-ak)ok,, 

+ fiiwk,t +  I + Y!- I wk.i - ,l/Yk (24) 

The recurrences (23) and (24) should be updated for 
k > 1, i < k. The diagonal elements of Sz, are set 
equal to one to start with, and the off-diagonal 
elements mk,k + , and ok + ,,k are set equal to ne. Again, 
6 denotes the machine precision and n the order of 
matrix A. This enables us to compute all elements of 

nk. 

As an example, suppose the iteration is at step 
k + 1 = 4. We then need to compute the last column 
and last row of @, that is w,,~, w~,~, wq,, and wq,r, 

r 1 nc WI.3 q4 1 
1 nt O2,4 

1 
(25) 

W3.l nt nt 

These particular elements can be computed with 
recurrences (23) and (24). The elements of the last 
column follow from eqn (23): 

WI.4 = I-_y20,,2 + (E, - ~3b1.3 + r,~~2.31/83 (26) 

w2.4 = [-Y2w2.2 + (a2 - a3)w2.3 + YZw3.3 + p, %31/83 

(27) 

= [(a2 - a3Iw2,3 + Blwl,31/S3. (28) 

The parameters w,,~ and w2,3 are equal to nt. The 
elements of the last row are computed with eqn (24): 

W 4.1 = [-pZw2., + (a, - a3)w3,, + b,w3,21/Y3 (29) 

O4.2 = [-82w2.2 + (a2 - a3)w3,2 + 8Zw3,3 + YI w3.,1/Y3 

(30) 

= [(a2 - a3)Wj.z + ?I W3,,1/73 (31) 

with w2., and w~,~ equal to m. 

If either w,.~+, or wk+ ,,,, i <_j, exceeds &, the 
algorithm pauses and performs reorthogonalization 
of iteration vectors uk + , and wk + , against all previous 
computed iteration vectors. The bi-orthogonality 

property is re-established and the ws of the last 
row and column are set equal to nt. This is repeated 
in the next iteration to ensure complete recovery of 
bi-orthogonality. The bi-Lanczos algorithm then con- 
tinues. Note that we use fi as reorthogonalization 
criterion. The use of fi instead of 4 seems logical 
considering the reset values of nc after reorthog- 
onalization. Some numerical experiments (see next 
section) have shown that the results computed with 
criterion & are accurate, while fewer pauses are 
made by the algorithm. 

At this point we have established all ingredients of 
the bilapo (Bi-Lanczos with Partial Orthogonaliza- 
tion) algorithm. The proper semi-Fortran code is 
given by code 2. 

A theoretical comparison 

To compare bi-Lanczos and Arnoldi [l, IO] we 
consider the number of vector operations (copies, 
vector updates, inner products) and matrix-vector 
multiplications to be performed for each method, per 
iteration. The Arnoldi method needs per iteration 
only one matrix-vector multiplication, and approxi- 
mately (k2 + k)/2 vector operations due to full re- 
orthogonalization. The bi-Lanczos method, on the 
other hand, needs two matrix-vector multiplications. 
If a reorthogonalization is necessary, (k2 + k) vector 
operations will need to be executed: (k2 + k)/2 for 
both iteration vectors. Moreover, this reorthogonal- 
ization must be repeated in the next iteration, which 
means another (k + I)‘-+ (k + I) vector operations 
to ensure a successful reorthogonalization. 

Although the number of vector operations needed 
to perform full reorthogonalization of the iteration 
vectors of the bi-Lanczos method seems to be quite 
large, it must be kept in mind that the reorthogonal- 
ization is needed only when loss of orthogonality has 
really occurred. This is in contrast to the Arnoldi 
method where full reorthogonalization, although 
cheaper, is performed every iteration step. The ques- 
tion is now, when is the bi-Lanczos method with 
partial reorthogonalization cheaper and when is it 
more expensive than the method of Arnoldi. Since the 
number of reorthogonalizations depends on the prob- 
lem, there is unfortunately no straightforward answer 
to this question. Instead we will discuss two exper- 
iments in the next section. These experiments were 
performed on an Iris Silicon Graphics workstation. 
The problems are solved with a finite element soft- 
ware package Diana (Diplacements analysis), main- 
tained by and developed at TNO-Bouw, Building and 
Construction Research, in Rijswijk, The Netherlands. 

4. EXPERIMENTS 

4.1. Two-dimensional convection-diffusion 

Consider a linear steady flow in a fully rectangular 
area (1 x 1 m2, Fig. 1). The domain is covered with 
a grid consisting of 10 x 10 quadrilateral linear 
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Fig. 1. Convectiondiffusion grid. 

elements. The two-dimensional convection-diffusion 
equation which underlies this problem can be written 
as: 

-6A4 +cVc$=O, (32) 

where L is the diffusion coefficient and c the convec- 
tion vector. The convection term causes non- 
symmetry because of the discretization of the 
first-order derivatives. The finite element discretiza- 
tion most commonly used is the Galerkin method. 
It is used here without upwind terms so that the 
solution may contain undesired numerical wiggles. 
The element mesh leads to 90 linear equations to 
be solved and thus a matrix of order 90. The small 
size of this problem enables us to compute the 
eigenvalues with Eispack subroutines (public do- 
main). They can be used as a reference for the 
bi-Lanczos method. 

As characteristics of the flow we have chosen: 

ED, BC, CD: 4 = 0 m potential 

AE: 4=lm potential 

diffusion 0.001 m* s-’ 

convection (1.0,0.2) m s-‘. 

Figure 2 shows all eigenvalues computed with 
Eispack. We have compared the results of Eispack 
with the results of the ordinary bi-Lanczos method 
(Fig. 3) and of the bilapo algorithm (Fig. 4). The 
bi-Lanczos method shows a significant loss of orthog- 
onality, but the bilapo algorithm gives good approxi- 
mations. A dot in the figures means a relative residual 
norm less than 10e4 and a plus a relative residual 

I I I 

-o.wz 0 O.W2 

M-U 
Fig. 2. Eispack eigenvalues test la. 

I 

0.004 

Fig. 3. Bi-Lanczos eigenvalues test la. 

+ 

norm greater than lo-“. These norms are computed 
with: 

relative residual norm = 
IlAx - WI 

IIMI ’ 
(33) 

where 1 is an approximation of the eigenvalue of A, 
and x an approximation of the corresponding eigen- 
vector. 

In Figs 5 and 6 we give a quantitative comparison 
of the relative residual norms after 90 iterations for 
the bi-Lanczos and bilapo method. As these graphs 
show, the results computed with the bilapo method 
are more accurate than those computed with bi- 
Lanczos. 

To obtain these accurate results, the bilapo algor- 
ithm pauses six times for reorthogonalization. If one 
of the OS exceeds the stop criterion ,,/&, full re- 
orthogonalization takes place. This has occurred at 
the 35, 48, 61, 69, 78 and 86th iteration. Full re- 
orthogonalization is necessary one iteration after 
these stops too. The time that elapses to compute 90 
eigenvalues is shown in Table 1 and Fig. 7. We have 
compared these times with the elapsed time for an 
implementation of the simple Bi-Lanczos method and 
the method of Arnoldi. 

Figure 7 shows clearly the quadratic growth of the 
CPU time used for the Arnoldi method because of the 
reorthogonalization of the iteration vectors at every 
step, and a linear growth in CPU time for the simple 
bi-Lanczos method. The bilapo method is still more 
expensive. However, the differences between the bi- 

0.05 

im(h) 0 

-0.05 I 
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, :. *. 
: _. ‘.,*, .: . . 
;.:* 

::’ 
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-0.002 0 0.002 

MU 

Fig. 4. Bilapo eigenvalues test la. 
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logarithm -5 - 
3.. . 

relative . . . . 
residual 

norm -lO- 

. * 

0.8 4 - Amoldi 

Bi-Lanczos 

-15- 
: . 

I I 
-0 50 

eigenvalue numbers 

Fig. 5. Logarithm of the bi-Lanczos residuals test la. 

-0-l .... 
I I I 

20 40 60 80 
iteration 

Fig. 7. Elapsed time test la; Arnoldi, bi-Lanczos and bilapo. 

Lanczos method and Arnoldi is not very large for this (u, = 0). The characteristic properties of this problem 
small problem. are: 

After this test we investigated the influence of the 
stop criterion on the number of stops made by bilapo 
and on the accuracy of the final results. Instead of 
fi we set the stop criterion on @. Figures 8 
and 9 show the eigenvalues and their accuracy after 
the iteration is completed. The accuracy of bilapo is 
still satisfactory for practical purposes. The bilapo 
algorithm stopped only four times, at iteration 44, 64, 
77 and 89. The total elapsed time was now 
0.63 CPU s. The bilapo method is now more attrac- 
tive because it is less time consuming (Fig. 10). 

4.2. Non-associated plasticity 

A concentrated load is applied normal to the free 
surface of a semi-infinite body. Due to its axial 
symmetry, only a 2D mesh was constructed in the 
cross-section of the body (0.5 m horizontal x 0.4 m 
vertical, Fig. 11). This has resulted in a matrix of 
order 2698. The body is supported along l-2 (dis- 
placement in y-direction uI = 0), 2-3 (u, = 0) and 4-1 

Young’s (elasticity) modulus E 0.96 N m2 

Poisson’s ratio v 0.20 

cohesion 0.001 N 

friction angle (p 20.0” 

dilatancy angle $ o.oc. 

The data are related according to the Drucker-Prager 
and MohrCoulomb yield criteria [2]. Furthermore, a 
vertical displacement of magnitude u? = - 1 .O mm is 
imposed on the top side, equally distributed over the 
middle portion of the area (in Fig. 11 over 0.05 m of 
the upper left corner). The displacement is imposed in 
small increments until a total amount of - 1.0 mm 
results. The resulting deformation is plastic: it cannot 
be recovered by unloading the system and it is 
therefore permanent. Because of a difference in 4 and 
rj a non-associated plasticity deformation arises. This 
results in a non-symmetric tangent stiffness matrix. 

-5- . 
. . . . . . . . . . * 

. . . : . . . -. 1. 
**. 

logarithm 
relative . . . . . 
residual -IO- . . 

norm 

0.1 - 
. . 
:. 

. . 

I I 
-0 50 

eigenvalue numbers 

Fig. 6. Logarithm of the bilapo residuals test la. 

0.05 - !‘, 
,::.. , 

‘. : . . : 
im(li) 0- : 

; : . 
* : ,: : 

. . . :. . . ‘.: I: . . 
-0.05 - ;.:’ 

: : 
-O.l- 

I I I 
-0.002 0 0.002 

m(V 

Fig. 8. Bilapo eigenvalues test lb. 

Table 1. CPU time used (s), test la 

Method 10 20 30 40 
Iterations 

50 60 70 80 90 

Bi-Lanczos 0.03 0.08 0.13 0.18 0.23 0.27 0.32 0.37 0.42 
Arnoldi 0.08 0.12 0.17 0.23 0.30 0.37 0.47 0.57 0.68 
Bilapo 0.09 0.14 0.20 0.27 0.35 0.41 0.51 0.63 0.72 
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. . 

L 
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Fig. 9. Logarithm of the bilapo residuals test lb. 

- Amoldi 

-0-l . . . . 
I I I I 

20 40 60 80 
iteration 

Fig. IO. Elapsed time with more loose stop criterion; 
Amoldi, bi-Lanczos and bilapo. 

The amount and moment of deformation must smallest of n = 2698 eigenvalues. These eigenvalues 
be supplied by a hardening/softening (cohesion are real. The first two columns of Table 2 show the 
increase/decrease) table. The data in this table are eigenvalues computed by Arnoldi and their relative 
heuristic values, and must be adjusted until a realistic residual norms (33). “Bilapo 1” denotes the original 
deformation graph results. algorithm with a stop (reorthogonalization) criterion 

We have compared the results produced by of & for the reorthogonalization of the iteration 
Arnoldi and bilapo (Table 2) by computing the five vectors. Again we have analyzed the consequences of 

Fig. 11. Non-associated plasticity mesh. 

Table 2. The five smallest eieenvalues and their norms 

eigenv 

Arnoldi 

norm 

bilapo 1 

eigenv 

bilapo 2 

eigenv 

0.1000 x 10-Z 0.4030 x 1o-6 0.1000 x 10-Z 0.1000 x IO-’ 
0.2629 x 1O-2 0.9063 x 1O-5 0.2629 x 10-l 0.2629 x IO-* 
0.3853 x IO-’ 0.1511 x 1o-4 0.3853 x IO-* 0.3853 x IO-* 
0.6223 x 10mZ 0.8446 x IO-” 0.6223 x IO-* 0.6223 x IO-* 
0.8986 x IO-* 0.2442 x IO-2 0.8986 x IO-* 0.8987 x IO-’ 
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elapsed 
time 

in 
seconds 

4m- 
- Amoldi 

300- . . bilapol 

l * bilapo2 

200- 

100- 

-07 
I I I I I I 

ICQ 200 300 400 XN 600 
number of iterations 

Fig. 12. Elapsed time for Amoldi, and the two bilapo 
variations test 2. 

a different reorthogonalization criterion of a. 
The columns under “bilapo 2” show the eigenvalues 
computed by this criterion. The agreement with the 
method of Arnoldi is satisfactory for both bilapo 
methods. 

Figure 12 shows the CPU time that it takes for the 
three methods to compute the five smallest eigen- 
values. The original bilapo method requires about the 
same time as Arnoldi but the variation (bilapo2) is 
clearly less time consuming. 

5. CONCLUSIONS AND DlSClJSSlON 

We have shown in this paper that the newly 
developed bilapo method can be as attractive as the 
well-known Arnoldi method. At the start of the 
iteration it is slightly more time consuming because of 
an extra matrix-vector multiplication per iteration 
compared to the Arnoldi method. However, because 
the reorthogonalization of the iteration vectors is not 
performed every iteration, the bilapo method ap- 
proaches the time required by Arnoldi at the end. If 
a more relaxed criterion is used the bilapo algorithm 
is even faster than Arnoldi. 

The research on this method is still going on, and 
there are many aspects that should be investigated. A 
cheaper matrixxvector multiplication, for example, 
would speed up the bilapo algorithm more than the 
Arnoldi method. Tuning of the parameters like the 
reorthogonalization criterion could work to the ad- 
vantage of the bilapo method as well, without a 

Fig. 13. The bi-Lanczos method [5, p. 5031 (code 1) 

vo=wo=O;IvTw,l=l;ro=v,;po=w, 

b=l;k=O: stopped=.false. 

Do While (PI f 0) 

if stopped then 

ik =pk - Ztl (VTpk)pi and Fk = rk - Z$ (W?Wi 

Pt = llrtll : if ( bk = 0) breakdown 

reset all o’s ; stopped = .faLse. 

end if 

if k > 1 then 

update w’s (see equations 23 , 24 ) 
if maul.(w) > 6 then 

& = pk - ,Xft, (vTpk)p; and ik = rk - Zf.,,(n’:r& 

& = llrtll : if ( pk = 0 ) breakd.mvn 

stopped = .true. 

end if 

end if 

Yk = rlPr@t 

pk = ATwt - atwk - Pt-, IV-, 

$k = llrxll 

End While 

Fig. 14. The bilapo method (code 2). 

significant loss of accuracy. Furthermore, for the 
bilapo method it is not necessary to reorthogonalize 
against all iteration vectors (as is done in the present 
version) if loss of orthogonality has occurred. This 
loss may be caused only by a certain subset of the 
iteration vectors, so reorthogonalization is necessary 
only with respect to the vectors belonging to this 
subset. 

For larger problems the time-cost of the reorthog- 
onalization in Arnoldi will become a more serious 
drawback. The bilapo method could then become a 
very attractive alternative. 
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