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Abstract. In this study various numerical schemes for simulating 2D
laminar reacting gas flows, as typically found in Chemical Vapor Depo-
sition (CVD) reactors, are proposed and compared. These systems are
generally modeled by means of many stiffly coupled elementary gas phase
reactions between a large number of reactants and intermediate species.
The purpose of this study is to develop robust and efficient solvers for
the stiff heat-reaction system. The velocities are assumed to be given.
For non-stationary CVD simulation, an optimal combination in terms of
efficiency and robustness between time integration, nonlinear solvers and
linear solvers has to be found. Besides stability, which is important due
to the stiffness of the problem, the preservation of non-negativity of the
species is crucial. It appears that this extra condition on time integration
methods is much more restrictive towards the time-step than stability.

1 Introduction

In Chemical Vapor Deposition (CVD) literature, and also other reactive flow
literature, one is usually looking for the steady state solution of the species
equations (1). The usual procedure to find this steady state solution is to per-
form a (damped/relaxed) Newton iteration with an (arbitrary) initial solution.
Hopefully, the Newton iteration converges to the steady state. If this is not the
case one performs some (artificial) time stepping in order to find a better initial
solution for the next Newton iteration. In this paper we present suitable time in-
tegration methods for stiff problems. Furthermore, we compare these integration
methods by their performance, in terms of efficiency.

In our research we are not looking for the steady state solution only, but we
also want the transient solution. In order to simulate this transient, we have to
use a time integration method that can handle stiff problems.

2 Model for CVD Simulation

The mathematical model describing the CVD process consists of a set of PDEs
with appropriate boundary and initial conditions, which describe the gas flow,
the transport of energy, the transport of species and reactions in the reactor.
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The gas mixture in the reactor is assumed to behave as a continuum. The gas
flow in the reactor is assumed to be laminar. Since no large velocity gradients
appear in CVD gas flows, viscous heating due to dissipation will be neglected.
We also neglect the effects of pressure variations in the energy equation. The
composition of the N component gas mixture is described in terms of the dimen-
sionless mass fractions ωi = ρi

ρ , i = 1, . . . , N , having the property
∑N

i=1 ωi = 1.
The transport of mass, momentum and heat are described respectively by the
continuity equation , the Navier-Stokes equations and the transport equation for
thermal energy expressed in terms of temperature T . See for instance [4, 6].

We assume that in the gas-phase K reversible reactions take place. For the
kth reaction the net molar reaction rate is denoted as Rg

k

( mole
m3·s

)
. For an explicit

description of the net molar reaction rate, we refer to [4, 6]. The mass diffusion
flux is decomposed into concentration diffusion and thermal diffusion. In this
study we describe ordinary diffusion in terms of effective diffusion coefficients
D

′
i, such that we obtain

∂(ρωi)
∂t

= −∇ · (ρvωi) + ∇ · (ρD
′
i∇ωi) + ∇ · (DT

i ∇(ln T )) + mi

K∑

k=1

νikRg
k, (1)

where D
T
i the multi-component thermal diffusion coefficient for species i.

The main focus of our research is on efficient solvers for the above species
equation(s) (1). Typically the time scales of the slow and fast reaction terms
differ orders of magnitude from each other, and from the time scales of the
diffusion and advection terms, leading to extremely stiff systems.

Simplified System. Since our research focuses on solving the species equations
(1), we will only solve the coupled system of N species equations, where N de-
notes the number of gas-species in the reactor. The velocity field, temperature
field, pressure field and density field are computed via another simulation pack-
age developed by Kleijn [5]. Other simplifications are the omission of surface
reactions and thermal diffusion.

We consider a CVD process,which is a simplification of the CVD process
considered in [5], that deposits silicon Si from silane SiH4. The gas-mixture
consists of 7 species and the reaction mechanism

G1 : SiH4 � SiH2 + H2
G2 : Si2H6 � SiH4 + SiH2
G3 : Si2H6 � H2SiSiH2 + H2
G4 : SiH2+Si2H6 � Si3H8
G5 : 2SiH2 � H2SiSiH2.

The studied reactor configuration is illustrated in Figure 1. As computational
domain we take, because of axisymmetry, one half of the r−z plane. The pressure
in the reactor is 1 atm. From the top a gas-mixture, consisting of silane, with
mass fraction fin,SiH4

= 0.001, and helium (the rest), enters the reactor with a
uniform temperature Tin = 300 K and a uniform velocity uin. At a distance of
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z

substrate

r

Outflow

35 cm.

30 cm.

Inflow

10 cm.

Fig. 1. Reactor geometry

10 cm. below the inlet a non rotating susceptor with temperature T = 1000 K
and a diameter 30 cm. is placed.

We emphasize that this test-problem is not representing a practical process,
but representing its computational problems. Further details on the test-problem
can be found in [6].

3 Properties of Numerical Methods for Solving the
Species Equations

As seen in the previous section the species eqns. (1) are PDEs of the advection-
diffusion-reaction type. In order to have a unique solution appropriate boundary
conditions and initial values have to be chosen.

To approximate the solution we use the Method of Lines (MOL), i.e., we first
discretize in space, resulting into the ODE system

w′(t) = F (t, w(t)), 0 < t ≤ T, w(0) given. (2)

The next step is to integrate the ODE system (2) with an appropriate time
integration method. We remark that the stiff reaction terms in CVD motivates
to integrate parts of F (t, w(t)) implicitly. In general, due to the nonlinearities in
the reaction term, (huge) nonlinear systems have to be solved.

The topic of this research is to find the best combination of time integration,
nonlinear and linear solvers in terms of efficiency. Note that if the computational
cost of one time step is (very) expensive, then a time integration method that
needs more, but computational cheaper, time steps is better in terms of efficiency.

Besides the efficiency criteria, also some other properties are desired for the
numerical methods. As already mentioned in Section 2 the system of species
equations is stiff. Following [2], we say that stiffness indicates a class of problems
for which implicit methods perform (much) better than explicit methods. The
eigenvalues of the Jacobian δf

δy play certainly a role in this decision, but quantities
such as the dimension of the system and the smoothness of the solution are also
important.
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Positivity. A natural property for mass fractions is that they are non-negative.
As a consequence, it should also hold for the mathematical model, spatial dis-
cretization and time integration of the process. While the first one is obvious,
the latter two should not introduce any (small) negative components causing
blow up of the solution. It appears that this extra condition on time integra-
tion methods is much more restrictive towards the time step than stability. We
remark that positivity for spatial discretization can be assured by locally first
order upwinding.

An ODE system w′(t) = F (t, w(t)), t ≥ 0, is called positive if w(0) ≥ 0 implies
w(t) ≥ 0 for all t > 0. It is easy to prove that linear systems w′(t) = Aw(t) are
positive if and only if aij ≥ 0 for i �= j. See [7]. For general nonlinear semi-
discretizations w′(t) = F (t, w(t)), it appears that unconditional positivity is a
very restrictive requirement. Suppose that F (t, w(t)) satisfies the condition :

Condition 1. There is an α > 0, with α as large as possible, such that ατ ≤ 1
and

v + τF (t, v) ≥ 0 for all t ≥ 0, v ≥ 0. (3)

Application of Euler Forward to the nonlinear system w′(t) = F (t, w(t)) gives

wn+1 = wn + τF (tn, wn). (4)

Provided that wn ≥ 0, Condition 1 guarantees positivity for wn+1 computed via
Euler Forward (4). Furthermore, assume that F (t, w(t)) also satisfies :

Condition 2. F (t, v) is continuously differentiable and

‖I − τJF (t, v)‖ ≤ C, for any v ∈ R
n, t ≥ 0 and τ > 0, (5)

whereby C is a positive constant, I the identity matrix and JF (t, v) the Jacobian
matrix of derivatives of F (t, v) with respect to v.

In [2] it has been proven that Condition 1 and 2 imply positivity for Euler
Backward for any step-size τ . However, in practice the solutions of the resulting
nonlinear systems have to be approximated, which might introduce small neg-
ative components. In the case the negative components of the solution are the
result of rounding errors, then it is justified to set them to zero. In the case one
has negative components in the solution as consequence of the nonlinear (New-
ton) solver, then the most common method to avoid negative concentrations is
clipping. Clipping has the disadvantage that mass is not longer preserved. In
practice it is desired not to use clipping. In our experience, the implementa-
tion of variable time step size algorithm, see [6], avoids negative concentrations
without the use of clipping.

We conclude this section with the claim that Euler Backward is the only time
integration that is unconditionally positive. For a proof we refer to [1]. This
means that for any higher order (implicit) time integration method a time step
criterion is needed to ensure preservation of non-negativity.
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4 Suitable Time Integration Methods (TIM)

In this section we briefly present integration methods that are suitable, from a
theoretic point of view, for the time integration of the species equations. More
comprehensive descriptions are given in [2, 6]. At the end of this section we will
also make some remarks on the linear and nonlinear solvers.

From the previous section it is clear that the Euler Backward method is
a suitable method to perform time integration. It has the advantage of being
unconditionally positive. Disadvantages are the first order consistency and the
probably high computational costs for one time step. The latter is due to the
fact that the succeeding approximations are computed in an implicit manner.

4.1 Time Integration Methods

We will discuss a selection of time integration methods that have good properties
in both stability and positivity, or TVD.

Rosenbrock Methods. The two stage Rosenbrock method

wn+1 = wnb1k1 + b2k2

k1 = τF (wn) + γτAk1

k2 = τF (wn + α21k1) + γ21τAk1 + γτAk2, (6)

with A = F ′(wn) is the Jacobian matrix of F , and b1 = 1 − b2, α21 =
1

2b2
and γ21 = − γ

b2
, is interesting. The method is of order two for arbitrary γ

as long as b2 �= 0 . The stability function is given as

R(z) =
1 + (1 − 2γ)z + (γ2 − 2γ + 1

2 )z2

(1 − γz)2
. (7)

For γ ≥ 1
4 the method is unconditionally stable. For γ+ = 1 + 1

2

√
2, we have the

property that R(z) ≥ 0, for all negative real z. For diffusion-reaction problems,
which have negative real eigenvalues, this property ensures positivity of the so-
lution. It appears that the second order Rosenbrock method performs quite well
with respect to the positivity property, as has been shown in [8]. In [8] it is
conjectured that the property R(z) ≥ 0 for all negative real z plays a role.

Backward Differentiation Formulas (BDF). The k-step BDF methods are
implicit, of order k and defined as

k∑

j=0

αjwn+j = τF (tn+k, wn+k), n = 0, 1, . . . , (8)

which uses the k past values wn, . . . , wn+k−1 to compute wn+k. Remark that
the most advanced level is tn+k instead of tn+1. The 1-step BDF method is
Backward Euler. The 2-step method is

3
2
wn+2 − 2wn+1 +

1
2
wn = τF (tn+2, wn+2), (9)

and the three step BDF is given by
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11
6

wn+3 − 3wn+2 +
3
2
wn+1 − 1

3
wn = τF (tn+3, wn+3). (10)

Remark 1. A disadvantage of linear multi-step methods is that the first k − 1
approximations cannot be computed with the linear k-step scheme. To compute
the first (k − 1) approximations, one could use for the first step a BDF 1-step
method, for the second approximation a BDF 2-step method, . . . and for the
(k − 1)st approximation a BDF (k − 1)-step scheme.

For the 2-step BDF method we obtain positivity, under Conditions 1 and 2, of
w′(t) = F (t, w(t)) whenever ατ ≤ 1

2 , provided that w1 is computed from w0 by a
suitable starting procedure, i.e., w1 has been computed such that w1 ≥ 0 holds.
For a derivation we refer to [2, 6].

IMEX Runge-Kutta Chebyshev Methods. The second order Runge-Kutta
Chebyshev method is given as

wn0 = wn,

wn1 = wn + μ̃1τF (tn + c0τ, wn0),
wnj = (1 − μj − νj)wn + μjwn,j−1 + νjwn,j−2 + j = 1, . . . , s

+μ̃1τF (tn + cj−1τ, wn,j−1) + γ̃jτF (tn + c0τ, wn0), (11)
wn+1 = wns.

The coefficients ω0, ω1, bj , cj, μ̃j , . . . can be found in [6]. In Figure 2 its stability
region is given. The parameter β(s) moves to −∞ when the number of stages s
increases.

The IMEX extension of the above scheme is as follows. Suppose we have an
ODE system w′(t) = F (t, w(t)), where F (t, w(t)) can be split as

F (t, w(t)) = FE(t, w(t)) + FI(t, w(t)). (12)

In (12) the term FI(t, w(t)) is the part of F which is (supposed to be) too stiff
to be integrated by an explicit Runge-Kutta Chebyshev method. Obviously, the
term FE(t, w(t)) is the moderate stiff part of F that can be integrated in an
explicit manner using RKC methods. The first stage of (11) becomes in the
IMEX-RKC scheme

wn1 = wn + μ̃1τFE(tn + c0τ, wn0) + μ̃1τFI(tn + c1τ, wn1), (13)

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2
−5

0

5

β(s)

Second Order Chebyshev Polynomial

Fig. 2. Stability region of (11) with s = 5
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with μ̃1 as defined before. Note that the highly stiff part of F is treated implicitly.
The other (s − 1) subsequent stages of (11) will be modified in a similar way.

With respect to stability of this IMEX extension of (11) we remark that the
implicit part is unconditionally stable, whereas the stability condition for the
explicit part remains unchanged.

4.2 Nonlinear and Linear Solvers

In all suitable TIM nonlinear systems F (x) = 0, x ∈ R
n have to be solved. The

Newton iteration is, with its second order convergence, an obvious choice. The
disadvantage of having local convergence will disappear if one uses a line-search
algorithm, such that

‖F (xk+1)‖ ≤ ‖F (xk)‖ k = 0, 1, 2, . . . , (14)

for some norm in R
n. More background information can be found in [3, 6].

In the Newton iteration linear systems have to be solved. In most 2D ap-
plications direct solvers like LU factorization are still applicable. To reduce the
amount of work one usually re-arranges the unknowns, in order to reduce the
bandwidth of the matrix. Also in our case it is possible to reduce the bandwidth
of the Jacobian considerably. The way to do this is described in [7].

For 3D problems direct solvers (LU factorization) are no longer applicable.
To approximate the solution of the linear systems one has to switch to iterative
linear solvers like, for instance, Krylov Subspace methods.

5 Numerical Results

In this section we compare the performance of the TIM of Section 4.1 for solving
the species equations. If necessary, nonlinear systems will be solved by the full
Newton iteration. Linear systems will be solved using the LU factorization with
rearranging, as mentioned in Section 4.2. Since the solutions differ not much, we
are only interested in the performance of the TIM.

For a comparison between the workloads of the various TIM, we look to the
amount of CPU time, the number of time steps and the workload per time step
it takes to reach steady state. We say that steady state is reached when the
norm of the right hand side of (1) is below a threshold, in our case 10−4, and
the fluxes at the boundaries are constant. The threshold is equal to the accuracy

Table 1. Workloads of various TIM (performed on a Pentium IV 3.2 GHz)

TIM CPU time # time steps Average CPU time / time step
Euler Backward 600 CPU sec 163 3 CPU sec

2nd order Rosenbrock 375 CPU sec 100 3 CPU sec
BDF-2 600 CPU sec 63 8 CPU sec

IMEX-RKC(5) > 5000 CPU sec > 500 25 CPU sec
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of the solution of the system of Navier Stokes eqns., pressure eqn., etc. For the
different TIM mentioned in Section 4.1 the workloads are given in Table 1.

6 Conclusions

Based on Table 1, we conclude that for this 2D test-problem Rosenbrock is the
cheapest TIM to solve (1). The ‘bad’ performance of the IMEX RKC scheme
is due to that per time step more than one nonlinear system has to be solved.
Although these nonlinear systems are cheaper to solve, it did not pay off in this
2D test case. However, this property can become interesting in 3D simulations.
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