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Abstract

The numerical modeling of laminar reacting gas flows in thermal Chemical Vapor Deposition (CVD) processes commonly involves the solution
of convection–diffusion-reaction equations for a large number of reactants and intermediate species. These equations are stiffly coupled through the
reaction terms, which typically include dozens of finite rate elementary reaction steps with largely varying rate constants. The solution of such stiff
sets of equations is difficult, especially when time-accurate transient solutions are required. The latter is important for the study of start-up and shut-
down cycli, but also for the study of inherently transient CVD processes, such as Rapid Thermal CVD (RTCVD) and Atomic Layer Deposition
(ALD). In this study various numerical schemes for multidimensional transient simulations of laminar reacting gas flows with homogeneous and
heterogeneous chemical reactions are compared in terms of efficiency, accuracy and robustness. As a test case, we study the CVD process of silicon
from silane, modeled according to the classical 16 species, 27 reactions chemistry model for this process as published by Coltrin and coworkers [M.E.
Coltrin, R.J. Kee, G.H. Evans, J. Electrochem. Soc. 136 (1989) 819].We validate our results by comparison to steady state solutions in the benchmark
paper of Kleijn [ C.R. Kleijn, Thin Solid Films, 365 (2000) 294]. It is concluded that, for time-accurate transient simulations of the stiff chemistry
problems in CVD modeling the conservation of the non-negativity of the species concentrations is much more important, and much more restrictive
towards the time step size, than stability. For the time integration methods studied in this paper, we give suggestions for the associated optimal
nonlinear and linear solvers, such that the total computational costs are reduced as much as possible.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The growth of thin solid films via Chemical Vapor Deposition
(CVD) is of considerable importance in the micro-electronics
industry. Other applications of thin solid films via CVD can for
instance be found in the glass industry as protective and
decorative layers. The CVD process considered in this paper
involves the deposition of silicon in an atmospheric pressure, cold
wall, stagnation flow single wafer reactor, starting from the
thermal decomposition of silane at the heated susceptor surface.
This CVD process was one of the very first for which a detailed
chemistry model, based on a large number of elementary reaction
steps leading to the formation of many intermediate species, has
been proposed in literature [1]. The numerical modeling of
realistic CVD processes and equipment, based on such detailed
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chemistry models, involves the solution of multi-dimensional
convection–diffusion-reaction equations for a large number of
reactants and intermediate species. These equations are stiffly
coupled through the reaction terms, which typically include
dozens of finite rate elementary reaction steps with largely
varying rate constants. The solution of such stiff sets of equations
is difficult, and the numerical solvers present in most commercial
CFD codes have great problems in handling such stiff systems of
equations. This is especially the casewhen time-accurate transient
solutions are required. The latter is important for the study of start-
up and shut-down cycli, but also for the study of inherently
transient CVD processes, such as RTCVD and ALD.

In this paper we focus on solving the system of species
equations, which describe mass transport due to convective and
diffusive transport, and their conversion due to chemical re-
actions, in a time accurate way. Since there may be orders of
magnitude difference between the time scales of advection,
diffusion and the various chemical reactions, the system of
species equations is extremely stiff. To stably integrate the
species equations in time, a suitable time integration method has
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Fig. 1. Reactor geometry and boundary conditions.
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to be found. Moreover, we demand that negative species con-
centrations are not allowed in the transient solution, because
they cause blow up of the solution in finite time, see, for
instance, [3]. Since we do not want to apply clipping, and thus
artificially add mass to the system, this extra property puts a
severe restriction on time integration methods.

This paper is organized as follows. First we give details of the
CVD process considered in this paper, followed by a brief
overview of the numerical methods that we used to do the
experiments. We conclude with some transient numerical results.

2. Model equations

The model assumptions and equations used have been
described in great detail in [4]. The gas mixture is assumed to
behave as a continuum, Newtonian fluid. The composition of
the N component gas mixture is described in terms of mass
fractions ωi, i = 1,..., N. In this paper we focus on the time
accurate numerical solution of the nonlinearly, stiffly coupled
set of species equations, i = 1,…, N,
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where the diffusive mass flux is composed of concentration and
thermal diffusion.

The studied reactor is illustrated in Fig. 1, where as com-
putational domain one half of the (r–z) plane is taken. From the
top a gas-mixture, consisting of 0.1 mole% silane diluted in
helium, enters the reactor with a uniform temperature Tin =
300 K and velocity μin = 0.1 m/s. In the hot region above the
susceptor with temperature Ts = 1000 K the reactive gas silane
decomposes into silylene and hydrogen. In the model of Coltrin
and coworkers [1], which was used in this paper, this first gas
phase reaction initiates a chain of 25 homogeneous gas phase
reactions leading to the (de)formation of 14 silicon containing
gas phase species. Each of these silicon containing species may
diffuse towards the susceptor to produce a thin solid film.

There is some ambiguity as to which values were used in [1],
in the present work we followed the approach used in [4], i.e.,
we set the sticking coefficient of Si2 H5 equal to one, the
sticking coefficient of Si3 H8 equal to zero and for the other
species the values as were used in [1].

3. Numerical methods

The species equations are first discretized in space, and
thereafter integrated in time. For spatial discretization a hybrid
Finite Volume (FV) scheme has been used, which uses central
differences if possible and first order upwinding if necessary.
More information on the hybrid FV scheme can be found in, for
instance, [5]. It should be noted that the hybrid FV discretization
conserves the non-negativity of the solution.

Implicit treatment of the reaction terms, when integrating in
time, is needed for stability reasons. When, in addition, also the
positivity of the solution is needed, this results in an extra,
severe condition on the time step size.

Moreover, it has been proven in [3], that the first order accurate
Euler Backward time integration method is the only known
method being unconditionally positive (and stable). Every higher



Fig. 2. Axial steady state concentration profiles along the symmetry axis for
some selected species. Solid lines are Kleijn's solutions [4], circles are long time
steady state results obtained with the present transient time integration methods.

Fig. 4. Transient total deposition rates on the symmetry axis for wafer
temperatures varying from 900 K up to 1100 K. On the right vertical axis: steady
state total deposition rates obtained with Kleijn's steady state code [4].
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order time integration method will need impractically small time
steps to integrate the solution positively. However, in this paper
we test next to EB, also the second order accurate Rosenbrock
scheme ROS2, the second order BDF2 scheme, and the second
order IRKC scheme. To test these schemes seems to contradict
with the previous remark, but each of these higher order methods
have their advantages. As has been experienced in several tests,
see [3], the ROS2 scheme performswell with respect to positivity.
For the BDF2 scheme the positivity condition can be computed
explicitly, and the IRKC scheme is designed to integrate
convection–diffusion- reaction schemes very efficiently. More
information on these time integration schemes can be found in
[3,7]. For the recently developed IRKC scheme, which integrates
the moderately stiff convection–diffusion part of the species
equations explicitly, and the reaction part implicitly, we refer to
[8]. Since a validated software version of [8] is not available, we
adjusted the IRKC solver for stiff diffusion-reaction PDEs
Fig. 3. Transient deposition rates due to some selected species on the symmetry
axis for simulations with a non-rotating wafer at 1000 K. On the right vertical
axis: steady state deposition rates obtained with Kleijn's steady state code [4].
available through [8], such that it is available for the integration
of stiff convection–diffusion-reaction equations. These adjust-
ments of the IRKC code of [6] are described in [8].

The nonlinear systems arising from the implicit treatment of
the species equations are solved by means of a Newton solver,
which, if necessary, uses global convergence techniques like
linesearch [7]. For a comprehensive description of the (non)
linear solvers used, we refer to [7].

4. Results

Since the reactants are highly diluted in the carrier gas helium,
we use the steady state velocity fields, temperature field, pres-
sure field and density field computed by Kleijn [4]. For such
systems, the computation of the laminar flow and temperature
Fig. 5. Radial profiles of the total steady state deposition rate for wafer
temperatures varied from 900 K up to 1100 K. Solid lines are Kleijn's steady
state results, circles are long time steady state results obtained with the present
transient time integration method.



Table 1
Integration statistics for EB, BDF2, ROS2 and IRKC, with full Newton solver

Number of EB BDF2 ROS2 IRKC

F 190 757 424 42,7911
F' 94 417 142 2008
Linesearch 11 0 0 30
Newton iters 94 417 0 17,331
Rejected time steps 1 10 2 728
Accepted time steps 38 138 140 1284
CPU Time 6500 30,500 8000 19,500
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fields etc., is, in comparison with computation of the species
mass fractions, a relatively trivial task. The simulations start
from the instant that the reactor is completely filled with the
carrier gas helium and a mixture of helium and silane starts to
enter the reactor, and stop when steady state is obtained.
Correctness of our solution is then validated against the steady
state solution obtained with the software of Kleijn [4]. All
simulations presented in this paper are test cases where the wafer
is not rotating.

In Fig. 2 steady state mass fraction profiles are presented for
some selected species, as well as the ones obtained by Kleijn
[4], for a wafer temperature equal to 1000 K. In this case, the
total steady state deposition rate of silicon at the symmetry axis
as found by Kleijn [4] is 1.92 nm/s, whereas we found a
deposition rate of 1.93 nm/s. Both values compare excellently
to those obtained with the well-known 1-dimensional CVD
simulation code SPIN within the Chemkin family [2]. In Fig. 3
transient deposition rates are presented for some selected
species, as well as the transient total deposition rate. It can be
seen that the time dependent behavior of these deposition rates
is monotonically increasing and stabilizes when the solution is
in steady state.

In Fig. 4 we present transient total deposition rates for
simulations with wafer temperatures varying from 900 K up to
1100 K. The time dependent behavior of all deposition rates is
monotonically increasing until the species concentrations are in
steady state. Note that the relative contributions of the various
silicon containing species to the total deposition rate is a
function of the wafer temperatures, with the relative contribu-
tion of Si2H2 increasing with increasing temperature, and the
relative contribution of H2SiSiH2 decreasing with increasing
temperature. Fig. 5 shows radial profiles of the total steady state
deposition rates of both Kleijn's steady state computations [4],
and our steady state results obtained with the time integration
methods as discussed in Section 3, for wafer temperatures
varied from 900 K up to 1100 K. Again, the agreement is for all
wafer temperatures excellent. For all studied temperatures, the
steady state growth rates obtained with the present transient
solution method were found to differ less than 5% from those
obtained with Kleijn's steady state code.

The integration statistics of the various time integration
methods mentioned in Section 3 are presented in Table 1. Based
upon these experiments we conclude that the unconditionally
stable and positive time integration method Euler Backward is
the cheapest in terms of computational costs. However, the
second order ROS2 scheme performs also quite well, although it
is not unconditionally positive for the species equations, see [7].
When the convection part is omitted, then the ROS2 scheme
becomes unconditionally positive. This property explains
probably the good behavior with respect to positivity for the
convection–diffusion-reaction case. The performance of the
IRKC scheme is between BDF2 and ROS2. The relative large
number of rejected time steps in IRKC is mainly due to a failure
with respect to positivity. Due to its special structure, the direct
solvers within the IRKC scheme are also applicable in 3D
simulations, whereas the other schemes have to switch to
iterative linear solvers.

5. Conclusions and future research

In terms of computational costs the Euler Backward scheme
is the best choice. In spite of its conditional positivity, the ROS2
scheme performed quite well in comparison with the other
higher order integration methods. However, for time accurate
simulations on 3D geometries, we expect that the IRKC scheme
will perform better, because the convection–diffusion terms are
solved explicitly. The only systems to be solved originate from
the reaction terms, and the corresponding dimension remains
the same when going from 2 to 3 spatial dimensions; this
dimension equals the number of species. The other time
integration methods have to switch to iterative linear solvers,
where appropriate preconditioners have to be developed. For
problems from chemistry, like the one in this paper, this is still a
challenging task for future research.
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