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ABSTRACT

In this study, various numerical schemes for transient simulations of 2D laminar reacting gas
flows, as typically found in chemical vapor deposition reactors, are proposed and compared.
These systems are generally modeled by means of many stiffly coupled elementary gas phase
reactions between a large number of reactants and intermediate species. The purpose of this
study is to develop robust and efficient solvers for the stiff reaction system, where as a first
approach the velocity and temperature fields are assumed to be given. In this paper, we mainly
focus on the performance of different time integration methods and their properties to success-
fully solve the transient problem. Besides stability, which is important due to the stiffness of
the problem, the preservation of nonnegativity of the species is crucial. It appears that this
latter condition on time integration methods is much more restrictive toward the time step
than stability.
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2 VAN VELDHUIZEN, VUIK AND KLEIJN

1. INTRODUCTION

Chemical vapor deposition (CVD) is a process that
uses chemically reacting gases to deposit thin solid
films on a solid material. A CVD system consists
of a chemical reactor in which precursor gases con-
taining the atoms to be deposited are introduced,
usually diluted in an inert carrier gas. The depo-
sition on a solid surface is due to chemical reac-
tions, which are usually driven by thermal energy.
Applications of thin solid films can be found in
various technological areas such as microelectron-
ics (semiconductors), optical devices (mirror and/or
lens coatings), and as decorative or protective coat-
ings in, for instance, the ceramics and glass indus-
tries [1].

In the literature on simulation of CVD, and also
other reactive flows, one is usually looking for the
steady-state solution of the species equations. The
usual procedure to find this steady-state solution
is to perform a (damped/relaxed) Newton iteration
with an (arbitrary) initial solution. Hopefully, the
Newton iteration converges to the steady-state. If
this is not the case, one performs some (artificial)
time stepping in order to find a better initial solu-
tion for the next Newton iteration [2,3].

CVD is a typical example of a multiscale problem,
i.e., the time scales of advection and diffusion often
differ in orders of magnitude from the time scales
of the chemical reactions. The resulting system
of advection-diffusion-reaction equations that de-
scribe the transport of the chemical species, due to
advection and diffusion, and their conversion due
to the chemical reactions is extremely stiff. For typi-
cal CVD simulations where the number of species is
in the range 25–100, and the number of grid points
in each spatial direction between 30 and 100, simu-
lations are usually limited to 2D and mostly steady-
state. It is our aim to perform multidimensional
transient CVD simulations. Therefore, a suitable
time integration method has to be selected to stably
integrate the stiff system of species equations. The
time integration method should also conserve the
nonnegativity of the species. This so-called positiv-
ity property appears to be more restrictive towards
the time step size than stability. Of course, other
important criteria for transient solvers are efficiency
and robustness.

2. MODEL FOR CVD SIMULATION

The mathematical model describing a CVD process
consists of a set of PDEs with appropriate boundary
and initial conditions, which describe the gas flow,
the transport of energy, the transport of species, and
reactions in the reactor. The gas mixture in the re-
actor is assumed to behave as a continuum. The
gas flow in the reactor is assumed to be incompress-
ible and laminar. Viscous heating due to dissipa-
tion and the effects of pressure variations in the
energy equation can be neglected for low viscos-
ity, low Mach number flows. The composition of
the N -component gas mixture is described in terms
of the dimensionless mass fractions ωi = ρi/ρ,
i = 1, . . . , N , having the property

∑N
i=1 ωi = 1.

The transport of mass, momentum, and heat are de-
scribed, respectively, by the continuity equation, the
Navier-Stokes equations, and the transport equa-
tion for thermal energy expressed in terms of tem-
perature T . See, for instance, [3].

We assume that in the gas-phase K reversible re-
actions of the form

N∑

i=1

ν′ikAi

kg
k,forward

À
kg

k,backward

N∑

i=1

ν′′ikAi (1)

take place. In (1), Ai are the species in the gas mix-
ture, ν′ik the forward stoichiometric coefficient for
species i in reaction k, and ν′′ik the backward stoi-
chiometric coefficient for species i in the kth reac-
tion. The net stoichiometric coefficient is defined as
νik = ν′′ik − ν′ik. For the kth reaction the net molar
reaction rate Rg

k

(
mole/m3 · s) is defined as

Rg
k = kg

k,forward

N∏

i=1

(
Pωim

RTmi

)ν′ik

− kg
k,backward

N∏

i=1

(
Pωim

RTmi

)ν′′ik

(2)

where the forward reaction rate constant kg
k,forward is

fitted according to a modified Arrhenius expression

kg
k,forward(T ) = AkTβke−Ek/RT (3)

The backward reaction rate constant kg
k,backward are

computed self-consistently from thermochemistry,
according to
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kg
backward(T ) =

kg
forward(T )
Kg(T )

(
RT

P 0

)∑N
i=1 νik

(4)

with Kg(T ) the reaction equilibrium constants.
The mass diffusion flux is decomposed into con-

centration diffusion and thermal diffusion. In this
study, we describe ordinary diffusion in terms of ef-
fective diffusion coefficients D′i, such that we obtain
for species transport in the reactor

∂(ρωi)
∂t

= −∇ · (ρvωi) +∇ · (ρD′i∇ωi)

+∇ · [DT
i ∇(lnT )

]
+ mi

K∑

k=1

νikRg
k (5)

where DT
i is the multicomponent thermal diffusion

coefficient for species i.
The main focus of our research is on efficient

solvers for the above species equations (5). A de-
tailed description of the physics involved and the
boundary conditions can be found in [4].

3. REACTOR CONFIGURATION AND
CHEMISTRY MODEL

In addition to the transport model as has been de-
scribed in the previous section, we provide de-
tails on the reactor configuration and the chemistry
model involved. Both the reactor configuration and
the chemistry model are taken from [3]. For a sim-
pler test problem, we refer to [5,6].

3.1 Reactor Configuration

The reactor geometry is presented in Fig. 1. The
computational domain is, because of axisymmetry,
one half of the (r-z) plane. The pressure in the re-
actor is 1 atm. From the top, a gas mixture, con-
sisting of 0.1 mole% diluted in helium enters the re-
actor with a uniform temperature Tin = 300 K and
velocity uin = −0.1m/s. At a distance of 10 cm be-
low the inlet, a (nonrotating) susceptor with temper-
ature Ts = 1000 K and a diameter of 30 cm is placed.

r

z

θ

susceptor

outflow

inflow

solid
wall

dT/dr = 0
v = 0
u = 0

Tin=300 K fSiH4
= 0.001 fHe= 0.999uin= 0.10 m/s

Ts=1000 K u, v = 0

dT/dz = 0
dv/dz = 0

0.175 m

0.15 m

0.
10

 m

FIGURE 1. Reactor geometry
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4 VAN VELDHUIZEN, VUIK AND KLEIJN

3.2 Chemistry Model

In the hot gas region above the susceptor, the re-
active species silane SiH4 decomposes into silylene
SiH2 and hydrogen gas H2. This gas phase reac-
tion initiates a chain of 25 homogeneous gas phase
reactions leading to the (de)formation of silicon-
containing gas species. Each of these species may
diffuse to the susceptor to form solid silicon.

3.2.1 Gas Phase Chemistry

The 26 gas phase reactions between the 17 gas phase
species in this chemistry model, taken from [3,7], are
listed in Table 1. The reaction terms in Eq. (5) are
constructed as in Eqs. (2)–(4), where the fit parame-
ters can be found in Table 1. The backward reaction
rates are computed via Eq. (4), where the reaction
equilibrium Kg is approximated as

Kg(T ) = AeqT
βeqe−Eeq/RT (6)

The fit parameters of Eq. (6) can be found in Table 1.

3.2.2 Surface Chemistry

Because of the modeled chain of gas phase reactions
initiated by the decomposition of silane, the gas
mixture in the reactor contains 14 different silicon-
containing species, which each may diffuse toward
the wafer surface to produce a thin film of solid sili-
con. Film growth is due to irreversible, unimolec-
ular decomposition reactions of silicon-containing
species at the surface, due to one of the following
surface reactions:

SinH2m

RS
SinH2m−→ n Si (s) + m H2 (g) (7)

SinH2m+1

RS
SinH2m+1−→ n Si (s) + m H2 (g) + H (g) (8)

with n = 1, 2, 3 and m = 0, 1, 2, 3, 4. In surface re-
actions (7) and (8), we have besides the deposition
of silicon also desorption of gaseous hydrogen. The
stoichiometric coefficients will follow immediately
from reactions (7) and (8). The molar reaction rate
RS

i for the decomposition of gas species i is given as

RS
i =

γi

1− (γi/2)
Pfi

(2πmiRTs)1/2
(9)

where γi is the sticking coefficient of species i, and
Ts the temperature of the wafer surface [3]. The

sticking coefficients are for all silicon-containing
species equal to one, except for γSi3H8 = 0, γSi2H6 =
0.537exp−9400/Ts and γSiH4 = (1/10)γSi2H6 . The
growth rate GSi of solid silicon Si is defined as

GSi =
mSi

ρSi

S∑
s=1

RS
s χn (10)

with n the number of silicon atoms in the reacting
species, according to Eqs. (7) and (8). More back-
ground information can be found in, for example,
[2–4]. The finite volume discretization of the bound-
ary condition for the reacting surface can be found
in [8].

4. CONSERVATION OF THE POSITIVITY OF THE
SPECIES CONCENTRATIONS

To numerically solve the species equations, we ap-
ply the method of lines, i.e., we first discretize in
space, to yield a semidiscrete system

w′(t) = F [t, w(t)], 0 < t ≤ T (11)

where w(0) is given.
Details on the spatial discretization can be found

in [4]. The MOL approach is further discussed in [8].
The next step is to apply a suitable ODE method to
integrate Eq. (11).

Following [9], we say that stiffness indicates a
class of problems for which implicit methods per-
form (much) better than explicit methods. The
eigenvalues of the Jacobian δf/δy certainly play a
role in this decision, but quantities such as the di-
mension of the system and the smoothness of the
solution are also important. Therefore, the stiff re-
action terms in CVD chemistry models motivates to
integrate (parts of) F [t, w(t)] implicitly. Besides the
stability issue, we also want to conserve the physi-
cal interpretation of the species concentrations. This
means that we demand preservation of their non-
negativity during transient simulation. In this sec-
tion we discuss this property mainly for time inte-
gration and discover it is not easily satisfied for stiff
chemistry problems.

4.1 Positive Time Stepping

The natural nonnegativity of the mass fractions
should be preserved within the mathematical
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NUMERICAL METHODS FOR REACTING GAS FLOW SIMULATIONS 5

TABLE 1. Fit parameters for the forward reaction rates (4) and gas phase equilibria constants (6) for the benchmark
problem. The parameters Ak, βk, Aeq , and βeq are dimensionless, while Ek and Eeq have units of kJ/mol. Note that
the corresponding table in [3] contains a number of typographical and printing errors, which have been corrected the
present table

Reaction Ak βk Ek Ak,eq βk,eq Ek,eq

SiH4 ­ SiH2 + H2 1.09× 1025 −3.37 256 6.85× 105 0.48 235
SiH4 ­ SiH3 + H 3.69× 1015 0.0 390 1.45× 104 0.90 382
Si2H6 ­ SiH4 + SiH2 3.24× 1029 −4.24 243 1.96× 1012 −1.68 229
SiH4 +H ­ SiH3 + H2 1.46× 107 0.0 10 1.75× 103 −0.55 −50
SiH4 +SiH3 ­ Si2H5 + H2 1.77× 106 0.0 18 1.12× 10−6 2.09 −6
SiH4 +SiH ­ Si2H3 + H2 1.45× 106 0.0 8 1.82× 10−4 1.65 21
SiH4 +SiH ­ Si2H5 1.43× 107 0.0 8 1.49× 10−10 1.56 −190
SiH2 ­ Si + H2 1.06× 1014 −0.88 189 1.23× 102 0.97 180
SiH2 + H ­ SiH + H2 1.39× 107 0.0 8 2.05× 101 −0.51 −101
SiH2 + H ­ SiH3 3.81× 107 0.0 8 2.56× 10−3 −1.03 −285
SiH2 + SiH3 ­ Si2H5 6.58× 106 0.0 8 1.75× 10−12 1.60 −241
SiH2 + Si2 ­ Si3 + H2 3.55× 105 0.0 8 5.95× 10−6 1.15 −225
SiH2 + Si3 ­ Si2H2 + Si2 1.43× 105 0.0 68 2.67× 100 −0.18 59
H2SiSiH2 ­ Si2H2 + H2 3.16× 1014 0.0 222 1.67× 106 −0.37 112
Si2H6 ­ H3SiSiH + H2 7.94× 1015 0.0 236 1.17× 109 −0.36 235
H2 + SiH ­ SiH3 3.45× 107 0.0 8 1.42× 10−4 −0.52 −183
H2 + Si2 ­ Si2H2 1.54× 107 0.0 8 7.47× 10−6 −0.37 −216
H2 + Si2 ­ SiH + SiH 1.54× 107 0.0 168 1.65× 103 −0.91 180
H2 + Si3 ­ Si+ Si2H2 9.79× 106 0.0 198 1.55× 102 −0.55 189
Si2H5 ­ Si2H3 + H2 3.16× 1014 0.0 222 1.14× 106 0.08 210
Si2H2+H ­ Si2H3 8.63× 108 0.0 8 3.43× 10−4 −0.31 −149
H + Si2 ­ SiH + Si 5.15× 107 0.0 22 1.19× 103 −0.88 29
SiH4 +H3SiSiH ­ Si3H8 6.02× 107 0.0 0 7.97× 10−16 2.48 −233
SiH2 +Si2H6 ­ Si3H8 1.81× 108 0.0 0 1.36× 10−12 1.64 −233
SiH3 + Si2H5 ­ Si3H8 3.31× 107 0.0 0 1.06× 10−14 1.85 −318
H3SiSiH ­ H2SiSiH2 1.15× 1020 −3.06 28 9.58× 10−3 0.50 −50

model, spatial discretization, and time integration
of the system. While the first one is obvious, the lat-
ter two should not introduce any (small) negative
components causing blowup of the solution. It ap-
pears that this extra condition on time integration
methods is much more restrictive toward the time
step than stability.

In order to preserve positivity on the level of spa-
tial discretization we used a hybrid finite volume
scheme [4], where the unknown species mass frac-
tions, densities, and temperatures are arranged in
a colocated way, and the velocities are staggered.
This hybrid scheme approximates the mass fluxes
through the cell faces by central differences, and
when the cell Peclet number is larger than 2, first-
order upwinding is applied. It can be found in [5]

that this FV discretization is positive for all spatial
meshes.

An ODE system w′(t) = F [t, w(t)], t ≥ 0, is
called positive if w(0) ≥ 0 implies w(t) ≥ 0 for
all t > 0. It is easy to prove that linear systems
w′(t) = Aw(t) are positive if and only if aij ≥ 0 for
i 6= j [5]. For general nonlinear semidiscretizations
w′(t) = F [t, w(t)], it appears that unconditional pos-
itivity is a very restrictive requirement.

Under the assumption that the nonlinear sys-
tem arising from the Euler backward (EB) time dis-
cretization has a unique solution, it has been proven
[9] that EB is positive for every time step size τ.
The question a rises whether higher-order time in-
tegration schemes exist that are also uncondition-
ally positive. The nonexistence of such a scheme is
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6 VAN VELDHUIZEN, VUIK AND KLEIJN

shown in [10], where it has been proven that any
unconditionally positive time integration method
is of order p ≤ 1. This result implies that EB is
the only known time integration scheme being un-
conditionally positive and that for any higher-order
(implicit) time integration method a (tight) condi-
tion on the time step size is needed to ensure preser-
vation of nonnegativity, see also Section 5. In [5],
the nonexistence of unconditionally positive higher-
order (Runge Kutta and/or multistep) time integra-
tion methods has been discussed in further detail.

4.2 Positivity for Nonlinear Solvers

The theory on positivity, as presented in the previ-
ous section, is not always valid when solving prac-
tical problems. For example, the unconditional pos-
itivity of EB does not hold in practice. The nonlin-
ear systems arising from the EB time discretization
cannot be solved exactly, and therefore one usually
applies Newton’s method to solve them. The ap-
proximated nonlinear solution is not guaranteed to
be positive.

In the case that there are negative species concen-
trations after the nonlinear solver, which are the re-
sult of iterative errors within the nonlinear solver, it
is justified to set them equal to zero. For instance,
negative concentrations as a consequence of round-
ing errors from the linear solver in the Newton iter-
ation can be set to zero.

In the case of negative entries that cannot be as-
signed to be rounding errors, our strategy is to redo
the time step with halved time step size to enforce
positivity. In our experience, this strategy in combi-
nation with a variable time step controller, see Sec-
tion 5, avoids negative concentrations for EB. The
strategy as described here, and in more detail in [5],
gives a positive solution without clipping, i.e., clip-
ping sets negative concentrations equal to zero and
has the disadvantage of adding mass to the system.

4.3 Positivity with Surface Chemistry

Since the species concentrations are computed in the
cell centers of the control volumes, the computa-
tion of the mass flux due to surface chemistry is not
straightforward, in particular, when it needs to pre-
serve positivity. The approach that we used to dis-
cretize the reacting wall is taken from [11].

According to Eq. (9), for the type of surface re-
actions assumed in the present paper, the molar re-
active surface flux is linearly proportional to the
species molar concentration at the wafer. Conse-
quently, the reactive surface mass flux is linearly
proportional to the species mass fraction, and is de-
noted as Fwall = Kωwall, with ωwall the unknown
species mass fraction at the wafer. Transport phe-
nomena near the wafer consist of diffusion only,
since advection is negligible near the wafer [3,4,8].
At the reacting boundary it will hold that the trans-
port mass flux, in this case only due to diffusion,
should be equal to Fwall, or in discretized form

Fwall =
D
∆z

(ωcenter −ωwall) (12)

where D is the total diffusion coefficient, ωcenter the
species mass fraction in the cell center, and ∆z the
distance from the cell center to the wafer [3,4]. From
(12), ωwall can be derived as

ωwall =
ωP

1 + ∆zK
D

(13)

It follows from (13) that ωwall is positive when ωP

is positive, and ωwall ≤ 1 as long as ωcenter ≤ 1.
Thus, by replacing the diffusive mass flux by Fwall =
RSωwall with ωwall as in (13), one obtains a positive
semidiscretization near the reacting wall. Note that
this discretization differs from the one in [4]. Details
can be found in [8].

5. SUITABLE TIME INTEGRATION METHODS
(TIM)

The topic of this research is to find the most ef-
ficient combination of time integration, nonlinear,
and linear solvers. Note that if the computational
cost of one time step is expensive, then a time inte-
gration method that needs more, but computation-
ally cheaper, time steps can be more efficient.

In this section, we briefly present integration
methods that are suitable, from a theoretical point
of view, for the time integration of the species equa-
tions. More comprehensive descriptions can be
found in [9]. This section is concluded with the pre-
sentation of the nonlinear and linear solvers, and the
variable time step size controller as implemented in
our code.
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5.1 Time Integration Methods

While being unconditionally positive, the EB
method has the disadvantage of first-order consis-
tency. In this section, we discuss a selection of
higher-order methods, which have good properties
in both stability and positivity.

5.1.1 Rosenbrock Methods

The stiff ODE scheme called two-stage Rosenbrock
(ROS2), is given by

wn+1= wn + b1k1 + b2k2 (14)

k1= τF (wn) + γτAk1 (15)

k2= τF (wn+ α21k1)+ γ21τAk1+ γτAk2 (16)

where A = F ′(wn) is the Jacobian matrix of F , and
b1 = 1 − b2, α21 = 1/2b2, and γ21 = −γ/b2. The
method is second-order consistent for arbitrary γ

as long as b2 6= 0. For γ ≥ 1/4, the method is
unconditionally stable and for γ+ = 1 + (1/2)

√
2,

the scheme is unconditionally positive for diffusion
reaction problems. For advection diffusion reac-
tion problems the ROS2 scheme also performs, quite
well, as has been experienced in [12].

5.1.2 Backward Differentiation Formulas (BDF)

The k-step BDF methods are implicit, of order k, and
defined as

k∑

j=0

αjwn+j = τF (tn+k, wn+k), n = 0, 1, . . . (17)

which uses the k past values wn, . . . , wn+k−1 to com-
pute wn+k. Note that the most advanced level is

tn+k instead of tn+1. The 1-step BDF method is
backward Euler and the two-step method is

3
2wn+2 − 2wn+1 + 1

2wn = τF (tn+2, wn+2) (18)

Note that the first (k − 1) approximations cannot be
computed with the k-step BDF scheme, but have to
be obtained by another scheme. The time step con-
straint to be positive for the BDF-2 scheme is twice
as strict as for (explicit) Euler Forward scheme. See
[5,6,9].

5.1.3 IMEX Runge-Kutta-Chebyshev (IRKC)
Methods

The second-order explicit Runge-Kutta-Chebyshev
method is given as

wn0 =wn

wn1 =wn + µ̃1τF (tn + c0τ, wn0)

wnj =(1− µj − νj)wn + µjwn,j−1 + νjwn,j−2

+ µ̃1τF (tn+cj−1τ, wn,j−1)+ γ̃jτF (tn+ c0τ,wn0)
j = 1, . . . , s

wn+1 =wns (19)

The coefficients ω0, ω1, bj , cj , µ̃j , . . . can be found in
[9]. In Fig. 2, the stability region for s = 5 is given.
The parameter β(s) moves to−∞when the number
of stages s increases, and therefore this scheme is
suitable for explicit integration of moderately stiff
diffusion terms.

The IMEX extension of the above scheme is as
follows. Suppose we have an ODE system w′(t) =
F [t, w(t)], with F [t, w(t)] = FE [t, w(t)] + FI [t, w(t)].
The part FI [t, w(t)] of F [t, w(t)] is too stiff to be
integrated explicitly by the RKC scheme (19) and
FE [t, w(t)] is the moderately stiff part of F [t, w(t)]

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2
−5

0

5

β(s)

Second Order Chebyshev Polynomial

FIGURE 2. Stability region of Eq. (19) with s = 5
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8 VAN VELDHUIZEN, VUIK AND KLEIJN

that can be integrated explicitly by the RKC scheme
(19). The first stage of (19) becomes, in the IRKC
scheme,

wn1 = wn + µ̃1τFE(tn + c0τ, wn0)

+ µ̃1τFI(tn + c1τ, wn1) (20)

with µ̃1 as defined before. Note that the highly stiff
part of F is treated implicitly. The other (s− 1) sub-
sequent stages of (19) are modified similarly.

With respect to stability of this IMEX extension of
(19), it can be remarked that the implicit part is un-
conditionally stable, whereas the stability condition
for the explicit part remains unchanged [13]. Un-
conditional positivity is not ensured for this scheme.

5.2 Nonlinear and Linear Solvers

The nonlinear systems coming forth from the time
discretizations described in the previous section are
solved by Newton’s method. The disadvantage of
local convergence can be overcome by implement-
ing an Armijo type algorithm. For more details we
refer to [14] and to [5] for implementation details.

The linear systems within the Newton algorithm
are solved by a LU factorization with diagonal scal-
ing. To reduce the amount of work, a reordering of
the unknowns and equations has been done. This
reordering reduces the bandwidth of the Jacobian
considerably, thus reducing the amount of fill in and
saving computational costs. For details, we refer to
[5,6].

Current research includes the incorporation of it-
erative linear solvers, which is not straightforward.
The linear systems are recognized by huge condi-
tion numbers, which influence the convergence be-
havior. Second, the behavior with respect to positiv-
ity is unpredictable.

5.3 Variable Time Stepping

We briefly explain the variable time-stepping algo-
rithm as it is implemented in our code. Consider
an attempted step from tn to tn+1 = tn + τn with
time step size τn that is performed with a pth-order
time integration method. Suppose an estimate Dn

of order p̂ of the norm of the local truncation error is
available. Then if Dn < Tol, this step τn is accepted,
whereas if Dn > Tol, the step is rejected and redone

with a halved time step size. If Dn < Tol, then the
new step size is computed as

τnew = rτ, r =
(

Tol

Dn

)1/(p̂+1)

(21)

By giving bounds on r, it is possible to put bounds
on the growth factor r of the new step size. Further-
more, an attempted time step from tn to tn+1 is also
rejected when the solution on time tn+1 has nega-
tive species concentrations. In that case we halve
the time step size, τn ← 1

2τn, and recompute the
solution on time tn+1. Details can be found in [5,9].

6. NUMERICAL RESULTS

In this section, we compare the performance of the
different time integration methods of Section 5.1 to
solve the species equations (5), with nonlinear and
linear solvers as mentioned in Section 5.2.

Since the gas mixture is highly diluted by the car-
rier gas helium He, we used the steady-state veloc-
ity, density, temperature, and pressure fields com-
puted by Kleijn [3] for our transient simulations.
Finding the solutions of these fields is a rather trivial
task in comparison with solving the time-dependent
species equations. Our transient simulations run
from initial conditions, where the reactor is com-
pletely filled with helium carrier gas, and a mixture
of silane diluted in helium starts to enter the reac-
tor, into steady-state. Thereafter, we compare our
steady-state solution with the one obtained in [3].
Actually, in the present simulation, thermal diffu-
sion (Soret effect) was neglected. Therefore, the re-
sults were compared with results obtained with the
code used in [3], recomputed without thermal diffu-
sion. For the sake of clarity, we considered the case
with wafer temperature Ts = 1000 K and a nonro-
tating disk, see also [3].

In Table 2, the integration statistics for the
schemes discussed in Section 5 can be found for the
simulations with and without reacting surface. In-
clusion of surface chemistry changes the physics of
the system, resulting in different integration statis-
tics. In this case, we observed for all schemes except
IRKC longer CPU times, and more sensitive behav-
ior of the Newton method and for positivity. For the
IRKC scheme with included surface chemistry, we
measured shorter simulation times, but the differ-
ence between both is for CPU times in the region of
noise.
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TABLE 2. Integration statistics of EB, ROS2, BDF-2, and IRKC running into steady-state (performed on a Pentium IV
3.2 GHz). Number of F -evaluations for IRKC are the ones containing reaction terms

Without Surface Chemistry Including Surface Chemistry
Number of EB ROS2 BDF-2 IRKC EB ROS2 BDF-2 IRKC
F 192 551 510 71,306 491 2114 3697 77,480
F ′ 74 191 241 450 231 802 1402 10,18
Linesearch 28 0 42 0 68 0 24 0
Newton iters 74 0 241 18,016 231 0 1402 19,500
Rej. time steps 0 22 14 156 5 292 489 370
Acc. time steps 37 169 92 294 94 510 893 648
CPU Time 5500 12,700 23,280 13,800 10,900 ±40,000 > 50,000 12,900

For IRKC, the number of function evaluations
and total number of Newton iterations seems to be
quite high. However, we have to remark that the
Newton process in the IRKC is cheaper than for
the other ODE methods [13]. Self-evidently, when
the number of nonlinear systems increases, also the
number of F evaluations containing the reaction
terms increases.

The deposition rate of solid silicon (10) along
the symmetry axis in the benchmark problem is

2.49 nm/s [3]. In all our simulations, we measured
a deposition rate of 2.43 nm/s in steady-state. The
transient behavior of this deposition rate is mono-
tone, increasing in time toward this value. Further-
more, Fig. 3 shows mass fraction profiles for some
selected species, as a function of the height above
the wafer at the symmetry axis. We conclude that
the steady-state solutions and deposition rates ob-
tained by our transient code agrees well with the re-
sults obtained with the code used in [3].
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FIGURE 3. Steady-state axial mass fraction profiles for some selected species. A similar figure can be found in [3].
Solid lines: profiles obtained with the code of [3]. Circles: our steady-state mass fraction profiles
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7. CONCLUSIONS

We compared a selection of ODE integration meth-
ods that are suitable for transient simulations of stiff
systems of species equations that appear in CVD
and other laminar reacting gas flows. We observe
that inclusion of surface chemistry, where actually
more ”fast” components are added to the system, re-
sults in increasing computational costs. This can be
explained by the fact that to correctly follow faster
processes needs smaller time steps.

Our computational results are actually a compar-
ison of ODE methods, because the nonlinear and
linear solvers are not individually optimized for
each ODE method. Based on the observations in
our experiments, we conclude that EB is the most
efficient time integrator. However, for 3D transient
simulations the IRKC scheme is still an excellent
candidate because the associated nonlinear systems
can be solved in a cheaper way.
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