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Two-dimensional transient simulations are presented of the transport phenomena and multispecies, multire-
action chemistry in chemical vapor deposition (CVD). The transient simulations are run until steady state,
such that the steady state can be validated against the steady state solutions from literature. We compare
various time integration methods in terms of efficiency and robustness. Besides stability, which is important
due to the stiffness of the problem, preservation of non-negativity is crucial. It appears that this latter condi-
tion on a time integration method is much more restrictive toward the time step size than stability. © 2007
Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 24: 1037–1054, 2008
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I. INTRODUCTION

Applications of thin solid films can be found in many technological areas, such as microelec-
tronics, solar cells, optical, mechanical, and decorative coatings. Various technologies are used to
produce these thin layers, such as, for instance sputtering and evaporation. Another technology
that distinguishes itself by involving chemical reactions is chemical vapor deposition (CVD), in
which the material to be deposited is introduced as a gas into a reactor chamber and is deposited
on a solid surface via several chemical reactions.

Numerical flow simulations are widely used for the design of CVD reactor chambers and for
the optimization of CVD processes [1]. Mostly, the simulations are performed in steady state.
However, there is an interest in studying transients, e.g. during start up and shut down, and in
inherently transient processes such as atomic layer deposition (ALD) [2].

In this article, nonstationary simulations of the CVD process are presented, where we mainly
focus on solving the species equations, which describe species mass transport due to advection
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and diffusion, and their conversion due to chemical reactions. Since the time scales of advection,
diffusion, and chemical reactions often differ orders of magnitude, the system of species equations
can be extremely stiff. Therefore, to stably integrate the species equations in time, a suitable time
integration method has to be found. Furthermore, we want that numerical integration of the species
equations conserves the non-negativity of the species concentrations. It appears that this so-called
positivity property puts a severe restriction on time integration methods, and consequently also
on the nonlinear and linear solvers.

In [3], we already discussed some results on the transient numerical solution of a CVD problem,
which, in steady state form, was proposed as a benchmark problem by Kleijn [4]. In this article,
we add the Soret effect (thermal diffusion), discuss other strategies to solve the stiff system of
species equations, and compare the quality of the solutions obtained by the different strategies.
As in [3], it is assumed that the velocities, temperatures, pressures, and densities are known in the
computational domain. Our work in [3] and this article, differ from work in literature on (laminar)
reacting flows, in which, as a result of computational costs and stiffness, the simulations are lim-
ited to steady state and mostly 2D (see [1]). However, in [5], transient simulations are presented
for a CVD model consisting of six species and four reactions. In [5], the authors started their
transient simulation from a pseudo steady state solution until it is completely stabilized. In [6],
transient results for the temperature distribution in a CVD reactor are presented.

The purpose of this article is to examine the transient behavior of the 2D Benchmark problem
proposed by Kleijn [4] and to develop robust and efficient numerical methods to solve the stiff
system of species equations. In particular, we focus on properties of time integration methods
in combination with (non)linear solvers. In the 2D Benchmark problem, a reactive gas, diluted
in an inert carrier gas, reacts through a chain of 26 gas phase reactions to create a mixture of
16 different gas species. These may react at the surface to form a solid film. Unlike the transient
simulations in [5], the transient simulations in this article start from the moment the reactive gases
start entering the reactor and run until steady state has been reached. In Section V, we give details
of this CVD process.

II. MATHEMATICAL MODEL FOR CVD

To mathematically model a CVD process, the gas flow, the transport of energy, the transport of
species, and the chemical reactions in the reactor have to be described. We assume that the gas
mixture in the reactor behaves as a continuum, as an ideal gas and in accordance with Newton’s
law of viscosity. The gas flow in the reactor is assumed to be laminar.

The composition of the N component gas mixture is described in terms of the dimension-
less mass fractions ωi , which sum up to one. Transport of total mass, momentum, and heat are
described, respectively, by the continuity equation, the Navier–Stokes equations, and the transport
equation for thermal energy. Note that the consumption and production of heat due to the chemical
reactions is also included in the energy equation. For most CVD systems, especially when the
reactant are highly diluted, the heat of reactions has a negligible influence on the gas temperature
distribution. For such systems, the computation of the laminar flow and the temperature field is a
relatively trivial task. The difficulty lies in solving the set of highly nonlinear and strongly coupled
species equations, which is the topic of this article.

Transport of mass fraction ωi is described by the species equation

∂(ρωi)

∂t
= −∇ · (ρvωi) + ∇ · [

(ρDi∇ωi) + (
D

T
i ∇(ln T )

)] + mi

K∑
k=1

νikR
g

k , (2.1)
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where diffusive mass fluxes are due to concentration diffusion and thermal diffusion. In (2.1), Di

is the effective diffusion coefficient, D
T
i is the multicomponent thermal diffusion coefficient for

species i [4], v the mass-averaged velocity obtained from the Navier–Stokes equations, and ρ the
density of the gas mixture. Under the assumption that K reversible gas-phase reactions of the
form

N∑
i=1

ν ′
ikAi

k
g
k,forward

�
k
g
k,backward

N∑
i=1

ν ′′
ikAi (2.2)

take place, the net molar reaction rate R
g

k for the kth reaction, see the last term on the right hand
side of (2.1), is defined as

R
g

k = k
g

k,forward

N∏
i=1

(
Pωim

RT mi

)ν′
ik − k

g

k,backward

N∏
i=1

(
Pωim

RT mi

)ν′′
ik

. (2.3)

In Eq. (2.2), Ai are the species in the gas mixture, ν ′
ik the forward stoichiometric coefficient for

species i in reaction k, and ν ′′
ik the backward stoichiometric coefficient for species i in reaction

k. The net stoichiometric coefficient νik is then defined as νik = ν ′′
ik − ν ′

ik . In Eq. (2.3), P is the
pressure in Pa, T the temperature, R the universal gas constant, mi the molar mass of species i,
and m the average molar mass computed as

m =
(

N∑
i=1

ωi

mi

)−1

. (2.4)

Usually, the forward reaction rate constant k
g

k,forward is fitted according to a modified Arrhenius
expression:

k
g

k,forward(T ) = AkT
βk e

−Ek
RT , (2.5)

where Ak , βk , and Ek are fit parameters. For the CVD process considered in this article, these fit
parameters are available through the references presented in Section V. The backward reaction
rate constants k

g

k,backward are computed self-consistently from the forward reaction rate constants
and reaction thermochemistry (see [7]). The forward and backward rate constants of the fastest
and slowest reactions can differ many (e.g. 25) orders of magnitude, introducing stiffness into
the species Eq. (2.1). For a detailed description of the mathematical model for CVD and the
corresponding boundary conditions, we refer to [4, 7].

III. POSITIVITY OF THE SPECIES EQUATIONS

In this article, we focus on properties of time integration of semidiscrete systems w(t)′ =
F(t , w(t)) arising from the spatial discretization of Eq. (2.1), where w(t) is a vector contain-
ing all species mass fractions in all grid points. The stiff, nonlinear reaction terms in F(t , w(t))

have to be integrated implicitly due to stability requirements. As a result, the implicit integration
of stiff reaction terms spends most of its computing time for the evaluation of the Jacobian and
in the solution of linear equations. For 3D simulations, the linear algebra should be accelerated
by, for instance, Krylov methods. For the 2D simulations in this article, direct solvers are still
applicable (see Section IV).
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An important property of the concentrations of chemical species in reacting systems is positiv-
ity. By positivity we mean preservation of non-negativity for the concentrations of all components.
This property should also hold for the mathematical model of the process. It can be shown that
the mathematical model of CVD as presented in Eqs. (2.1)–(2.3) preserves positivity. The next
step is that neither spatial discretization nor time integration should introduce wiggles or nega-
tive components into the solution vector. We use the hybrid finite volume (FV) scheme from [7]
to discretize in space, which conserves non-negativity. It appears that this extra condition on
time integration methods, besides stability, is much more restrictive toward the time step than
stability.

A. Positive Time Integration

Definition. An ODE system w′(t) = F(t , w(t)), t ≥ 0, is called positive, or non-negativity
preserving, if w(0) ≥ 0 (component-wise) =⇒ w(t) ≥ 0, for all t > 0.

The next theorem provides a simple criterion on F(t , w(t)) to test whether the system
w′(t) = F(t , w(t)), t ≥ 0, is positive. For a proof, we refer to [8].

Theorem 3.1. Suppose that F(t , w) is continuous and satisfies a Lipschitz condition with respect
to w. Then the system w′(t) = F(t , w(t)), t ≥ 0, is positive if and only if for any vector w ∈ R

m

and all i = 1, . . . , m, and t ≥ 0 yields

w ≥ 0 (componentwise), wi = 0 =⇒ Fi(t , w) ≥ 0 (3.1)

It is interesting to investigate positivity for semidiscrete systems. Consider, for instance, the
one-dimensional linear advection–diffusion equation

∂

∂t
u(x, t) + ∂

∂x
(a(x, t)u(x, t)) = ∂

∂x

(
d(x, t)

∂

∂x
u(x, t)

)
, (3.2)

with periodic boundary conditions, and where a(x, t) is the space and time-dependent advection
coefficient, and d(x, t) > 0 the space and time-dependent diffusion coefficient. Application of
Theorem 3.1 shows that finite difference discretization by means of central differences gives a
positive semidiscretization if and only if the cell Péclet numbers, defined as ah/d , satisfy

max
x,t

|a(x, t)|h
d(x, t)

≤ 2. (3.3)

Discretizing the advection part by means of first-order upwind, and second-order central differ-
ences for the diffusive part, gives an unconditionally positive semidiscretization. The reaction
terms (2.3) can be written in the production-loss form

R̄
g

k (t , w) = p(t , w) − L(t , w)w, (3.4)

where p(t , w) ≥ 0 (componentwise) is a vector and L(t , w) ≥ 0 (componentwise) a diagonal
matrix, whose components pi(t , w) and Li(t , w) are of polynomial type with non-negative coef-
ficients and can easily be found. Addition of reaction terms (2.3), which can be written in the
production-loss form (3.4), to the advection–diffusion Eq. (3.2) and applying Theorem 3.1 gives a
positive semidiscretization for the one-dimensional advection–diffusion–reaction equation if and
only if p(t , w) ≥ 0 (see also [8, Section I.7]).
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The one-dimensional results above are easily generalized to higher dimensions and to FV
schemes. Therefore, discretizing the species equations in space by means of a hybrid FV scheme
as introduced in [7], which uses the central difference scheme if possible and the first-order upwind
scheme if necessary, maintains positivity. We remark that for higher order upwinding, such as, for
example, third-order upwinding, positivity is not ensured for all step-sizes (see [8, Section I.7]).

Definition. A time integration method wn+1 = ϕ(wn) is called positive if for all n ≥ 0 holds,
wn ≥ 0 =⇒ wn+1 ≥ 0

Positivity restricts the use of time integration methods. In this section, we will present results
for nonlinear systems w′(t) = F(t , w(t)). First, we start exploring the positivity property for
Euler Forward and Backward time integration.

Positivity for Euler Forward and Euler Backward. Suppose that the right hand side of the
nonlinear semidiscretization w′(t) = F(t , w(t)) satisfies

Condition 3.2. There is an α > 0, depending on F(t , w), such that for a time step τ holds: if
ατ ≤ 1, then w + τF (t , w) ≥ 0 for all t ≥ 0 and w ≥ 0

Provided that wn ≥ 0, Condition 3.2 guarantees positivity for wn+1 computed via Euler For-
ward (EF). For linear semidiscrete systems w′(t) = Aw(t) with entries Aij ≥ 0 for i �= j ,
Aii ≥ −ζ for all i and ζ > 0 fixed, Condition 3.2 is easily illustrated. Application of EF to these
systems gives a positive solution if 1+ τAii ≥ 0 for all i. This will hold if ατ ≤ 1. To write down
such an expression for α for Eq. (2.1) is almost undoable, because of the complicated structure
of the chemical source terms.

Furthermore, assume that F(t , w(t)) also satisfies

Condition 3.3. For any v ≥ 0, t ≥ 0 and τ > 0 the equation w = v + τF (t , w), has a unique
solution w that depends continuously on τ and v.

According to the following theorem we have unconditional positivity for Euler Backward (EB).
The proof is taken from [8].

Theorem 3.4. Condition 3.2 and 3.3 imply positivity for EB for any step-size τ

Proof. For given t , v, and with a chosen τ , we consider the equation w = v + τF (t , w) and
we call its solution w(τ). We have to show that v ≥ 0 implies w(τ) ≥ 0 for all positive τ . By con-
tinuity, it is sufficient to show that v > 0 implies w(τ) ≥ 0. This is true because if we assume that
w(τ) > 0 for τ ≤ τ0, except for the ith component wi(τ0) = 0, then 0 = wi = vi +τ0Fi(t , w(τ0)).
According to Condition 3.2, we have Fi(t , w(τ0)) ≥ 0 and thus vi + τ0Fi(t , w(τ0)) > 0, which is
a contradiction.

Remark. Application of EB to the nonlinear semidiscretization w′(t) = F(t , w(t)) needs the
solution of the nonlinear vector equation

wn+1 − τF (tn, wn+1) = wn. (3.5)

Theorem 3.4 ensures for every time step-size τ positivity of the exact solution of (3.5). In prac-
tice, however, the solution of (3.5) can be approximated by an iterative solver, and thus, it is not
guaranteed to be positive. See also Section B
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General Remarks on Positive Time Integration. We remark that unconditionally positive
schemes can be implicit schemes only, like EB. One might hope to find more accurate methods
with this unconditional positivity property. However, this hope is dashed by the following result,
due to Bolley and Crouzeix [9].

Theorem 3.5. Any unconditionally positive time integration method has order p ≤ 1.

For a proof, we refer to [9]. The consequence is that the only well-known method having
unconditionally positivity is EB. Finally, we remark that for higher order methods the need to
preserve positivity may necessitate the use of impractically small time steps.

B. Time Step Strategy

A popular strategy to avoid negative mass fractions as consequence of the nonlinear (Newton)
solver is clipping, i.e., putting a negative mass fraction to zero. A disadvantage of clipping is that
mass is added. In this article, we avoid clipping by adjusting the time step-size if necessary. We
briefly explain our strategy.

To compute a Newton update, a linear system has to be solved. For the 2D simulations in this
article, direct solvers are still feasible. In the Newton update vector, the components that can be
classified as round off errors are removed. After convergence of the Newton iteration, the solution
is tested for negative components. If their magnitude is larger than a possible round-off error, the
time step-size is halved and the Newton iteration is redone.

C. Relation Between Positivity and Total Variation Diminishing,
and Concluding Remarks

Like positivity, total variation diminishing (TVD) is a form of super stability. The TVD property
is developed for studying the properties of numerical schemes to solve hyperbolic conservation
laws (see, for instance, [8, 10–12]).

In [10], it has been proven that higher order TVD schemes can be explicit only. Addition
of explicit stages to an higher order implicit scheme could retrieve the TVD property. For our
application where stiff chemistry is involved, the latter is not preferred. The same will hold for
positivity of these schemes, since results for positivity are derived in the same way. The last
remark can be found in, for instance, [11].

We conclude by noting that, for higher order time integration of the stiff species equations,
one has to fulfill a tight restriction on the time step to maintain positivity, or to have a look at, for
example, IMplicit EXplicit (IMEX) methods [8, Section IV.4].

IV. SUITABLE METHODS TO INTEGRATE

In this section, we give a brief overview of the ODE methods and the nonlinear and linear solvers
we use to solve the PDEs that model the CVD process (2.1).

A. Time Integration Methods

From the previous sections, it became clear that EB is an ideal time integration method. It has
the advantages of being unconditionally stable and positive. A disadvantage is the first-order

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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consistency. Next, we will discuss a selection of higher order time integration methods that are
suitable to integrate (2.1) from a theoretical point of view.

All ODE schemes we tested are equipped with a variable time step selector, as is usual in the
ODE field. Details on variable time stepping can be found in [3, 8, 13, 14].

Rosenbrock Methods. Rosenbrock methods are linearly implicit Runge–Kutta type methods
for stiff ODEs, which have proven to be effective for low to moderate accuracy for various stiff
problems (see [8, 13]). In our experiments, we used the second-order scheme, which depends on
the choice of the parameters b2 and γ , ROS2

wn+1 = wn + b1k1 + b2k2

k1 = τF (tn, wn) + γ τJF k1 (4.1)

k2 = τF (tn + α21τ , wn + α21k1) + γ21τJF k1 + γ τJF k2,

with coefficients b1 = 1 − b2, α21 = 1
2b2

, and γ21 = − γ

b2
. In (4.1), JF is the Jacobian of F(tn, wn).

ROS2 is second-order consistent for arbitrary γ and b2 �= 0, A-stable for γ ≥ 1
4 and L-stable

if γ = 1 ± 1
2

√
2. By selecting for γ the larger value γ+ = 1 + 1

2

√
2, we have the property that

R(z) ≥ 0, for z ∈ R
−, where R(z) is the stability function of ROS2. For diffusion–reaction

problems, which have a Jacobian with negative real eigenvalues, this property ensures a positive
solution. Adding advection introduces imaginary parts to the eigenvalues, such that positivity is
no longer guaranteed. However, as has been experienced in [15], the ROS2 scheme performs quite
well with respect to positivity for advection–diffusion–reaction problems. Although there is no
explanation for this unexpected behavior, it is conjectured that the property that R(z) ≥ 0 for all
z ∈ R

− plays a role [15].

Backward Differentiation Formulas. In chemistry applications, the backward differentiation
formula (BDF) methods belong to the most widely used methods to solve stiff chemical reaction
equations, due to their favorable stability properties. The k-step BDF methods are implicit of
order k and defined as

k∑
j=0

αjwn+j = τF (tn+k , wn+k), n = 0, 1, . . . , (4.2)

which uses the k past values wn, . . . , wn+k−1 to compute wn+k . Note that the most advanced level
is tn+k instead of tn+1. The one-step BDF method is EB, whereas the two-step method is

3

2
wn+2 − 2wn+1 + 1

2
wn = τF (tn+2, wn+2). (4.3)

The BDF-1 and BDF-2 methods are A-stable, but for k > 2 they are A(α)-stable and for k > 6
even unstable [16].

Remark. A disadvantage is that the first (k − 1) approximations cannot be computed with the
k-step BDF scheme. Instead, they should be obtained by another scheme

As for Runge–Kutta methods, the requirement of positivity does place a severe time step-
size restriction on BDF methods. Under Conditions 3.2 and 3.3, we obtain positivity for BDF2
whenever ατ ≤ 1

2 , provided that w1 is computed positively from w0. Remark that this positivity
condition is a factor 2 tighter than the condition for EF.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1044 VAN VELDHUIZEN, VUIK, AND KLEIJN

IMEX Runge–Kutta Chebyshev Methods. The IMEX extension of the class of Runge–Kutta
Chebyshev (RKC) methods, developed by Verwer et al. [17], is designed to solve stiff systems of
ODEs. The RKC methods belong to the class of explicit Runge–Kutta methods. They posses an
extended real stability interval with a length proportional to s2, with s the number of intermediate
stages.

Definition. The stability boundary β(s) is the number β(s) such that [−β(s), 0] is the largest
segment of the negative real axis contained in the stability region

S = {z ∈ C : |R(z)| ≤ 1}

Construction of the second-order RKC scheme is based on choosing shifted Chebyshev polyno-
mials (of the first kind) as stability functions such that the optimal stability bound for explicit RK
schemes, β(s) = 2s2, is best as possible achieved [8]. The scheme is given as

wn0 = wn,

wn1 = wn + µ̃1τF (tn, wn0),

wnj = (1 − µj − νj )wn + µjwn,j−1 + νjwn,j−2

+ µ̃1τF (tn + cj−1τ , wn,j−1) + γ̃j τF (tn, wn0), j = 2, . . . , s (4.4)

wn+1 = wns ,

with coefficients

ω0 = 1 + ε

s2
, ω1 = T ′

s (ω0)

T ′′
s (ω0)

, (4.5)

bj = T ′′
j (ω0)

(T ′
j (ω0))2

, cj = T ′
s (ω0)

T ′′
s (ω0)

T ′′
j (ω0)

T ′
j (ω0)

≈ j 2 − 1

s2 − 1
, (4.6)

µ̃1 = b1ω1, µj = 2bjω0

bj−1
, νj = − bj

bj−2
, (4.7)

µ̃j = 2bjω1

bj−1
, γ̃j = −aj−1µ̃j , and aj = 1 − bjT − j(ω0). (4.8)

In (4.5) and (4.6), Ti(z) is the ith order Chebyshev polynomial of the first kind. For z ∈ C, it is
recursively defined as

Tj (z) = 2zTj−1(z) − Tj−2(z), (4.9)

where T0(z) = 1 and T1(z) = z. In this case β(s) = 2/3(s2 − 1); the stability function is
R(z) = as + bsTs(ω0 + ω1z) and the stability region for s = 5 is illustrated in Fig. 1(a). For
explicit integration of practical problems, the small stability region around the real axis is not
favorable. Therefore, it is possible to introduce a damping parameter ε into the coefficient ω0,
such that stability regions as in Fig. 1(b) are obtained. The stability boundary is in the damped
case 2/3(s2 − 1)(1 − 2/15ε) instead of the optimal value 2s2 (see [17]).

The IMEX extension of the above scheme is as follows. Suppose we have an ODE system
w′(t) = F(t , w(t)), where F(t , w) can be split as F(t , w) = FE(t , w) + FI (t , w) with FI (t , w)

the part of F(t , w), which is too stiff to be integrated explicitly. The term FE(t , w) is the moderate

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 1. Stability region of (4.4) for s = 5 and ε = 0.1 (10% damping) without damping (a) and with
damping (b).

stiff part of F that can be integrated explicitly by the RKC method. Then, the IMEX extension of
(4.4) from [17] reads

wn0 = wn,

wn1 = wn + µ̃1τFE(tn + c0τ , wn0) + µ̃1τFI (tn + c1τ , wn1),

wnj = (1 − µj − νj )wn + µjwn,j−1 + νjwn,j−2 + µ̃j τFE(tn + cj−1τ , wn,j−1)

+ γ̃j τFE(tn + c0τ , wn0) + [γ̃j − (1 − µj − νj )µ̃1]τFI (tn + c0τ , wn0)

− νj µ̃1τFI (tn + cj−2τ , wn,j−2) + µ̃1FI (tn + cj τ , wnj ) (4.10)

wn+1 = wns .

Note that the highly stiff part of F is treated implicitly.
The IRKC scheme holds that the implicit part is unconditionally stable as long as the eigen-

values of the Jacobian of FI (t , w) are real, whereas the stability condition for the explicit part
remains unchanged. Another property is that steady states are returned exactly, which is not true
for other operator splittings (see [8, Section IV.I]). Unconditional positivity is not guaranteed; the
exact condition is not known to the authors.

We conclude with some remarks on the implementation of the IRKC solver. For efficiency rea-
sons, a modified Newton iteration, in which the Jacobian of F(t , w) is evaluated only once, is used
to solve the s nonlinear systems of equations arising in the s stages in the IRKC scheme. Then,
per time step, only one LU factorization of [I − µ̃1τF ′

I (t , w(t))], where F ′
I (t , w) is the Jacobian

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 2. Stability region of (4.4) with inscribed oval.

of FI (t , w) with respect to w, has to be computed. Details of the variable time step controller,
which tests the current solution for accuracy and the explicitly integrated part for stability, can be
found in [17]. This controller also adjusts the number of stages s, depending on the time step-size
and the conditions for stable integration of advection and diffusion called IRKC(full) or for stable
integration of diffusion only [called IRKC(fly)]. If the eigenvalues emerging from von Neumann
stability analysis are lying in ovals like in Fig. 2, then stability for the advection–diffusion part is
ensured. How this can be done is described in [12, 17].

B. Nonlinear Solvers

An obvious choice to approximate nonlinear solutions of G(x) = 0, x ∈ R
k , k ∈ N, is the second-

order convergent Newton iteration. It is generally known that if the initial guess of the solution is
sufficiently near the exact solution, the Newton iteration converges, and otherwise it diverges.

The disadvantage of local convergence can be discarded by extending the Newton algorithm
with an Armijo-based rule [18]: To have a decreasing sequence ‖G(xn)‖2, the Newton step
dn = −G′(xn)

−1G(xn) is adjusted by the smallest integer m and a small parameter � such
that

‖G(xn + 2−mdn)‖2 ≤ (1 − �2−m)‖G(xn)‖2, (4.11)

and let the Newton-step be 2−mdn. Condition (4.11) is called the sufficient decrease of ‖G‖. The
parameter � is equal to α in the Armijo condition (also known as the α-condition) [19]:

f (xn + dn) ≤ f (xn) + α∇f (xn)
T dn. (4.12)

Condition 4.12 is a sufficient condition on f to let dn be a sufficient decrease direction. It is an
easy exercise to show that � = α by substituting f = 1/2‖G‖2

2 into (4.12). A typical value for
α, and thus also for � , is 10−4. In the case that after two reductions by halving the Newton step
does not lead to sufficient decrease, we build a quadratic polynomial model of

φ(ς) = ‖G(xn + ςd)‖2, (4.13)

based on interpolation of φ at the three most recent values of ς . The next ς is the minimizer of
(4.13), subject to a safeguard that the reduction of ς is at least one half and at most a factor of
ten, (see [18]).
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As is custom in Method of Lines solvers for PDEs (with direct linear solvers), we also have
the possibility to update the Jacobian occasionally, instead of performing a full Newton iteration
in every time step. We will briefly explain the strategy, which can be found in [13]. Define the
convergence rate of the Newton iteration as

�n = ‖dn‖/‖dn−1‖, n ≥ 1, (4.14)

where dn is the Newton update as defined before. Then, we do not recompute the Jacobian in the
next time step when (i) the Newton process converges in one iteration, or, (ii) the convergence rate
in the last Newton iteration was very small, e.g., �n ≤ 10−3, which means that the last Newton
iteration gives fast convergence (see [13, Chapter IV.8]).

C. Linear Solvers

For the 2D problem in this article, the linear systems in the Newton iteration can be solved directly
by means of an LU factorization of the Jacobian. Traditionally, the unknowns are arranged per
species and lexicographic in the grid (see [7]). To reduce the amount of work to factorize the
Jacobian, we reorder the unknowns and equations, which reduces the bandwidth of the Jacobian
considerably (see [3, 14]).

For the IRKC scheme, this reordering of unknowns is required for efficient integration of (2.1)
(see [17]). Define NGRID as the number of grid points in the computational grid and recall that
N is the number of species. If FE(t , w) contains the discretized advection and diffusion terms
and FI (t , w) the chemical source terms, then for this scheme NGRID uncoupled linear systems
of dimension N × N have to be solved per Newton iteration. See [17].

Because of the stiff reaction terms, the condition number of the Jacobian appearing in EB,
ROS2, and BDF2 can be of O(1010). Application of diagonal scaling will decrease the condition
number by approximately two orders of magnitude. As a result, the direct linear solver is two
orders of magnitude more accurate. The estimates of the condition number of the Jacobian in our
code are obtained with routines from the LAPACK package (see [14,20]). We remark that in our
tests the LAPACK routine(s) for estimating the condition number occasionally overestimates the
condition number several orders of magnitude. If an estimated condition number grows several
orders in comparison with the condition number of the previous time step, then in most cases its
magnitude was larger than machine precision. For these exceptions, we manually checked with
MATLAB experiments that it was indeed overestimated. In that case, we have used the previous
estimation, i.e., either the one from the previous Newton iteration or from the previous time step.

V. NUMERICAL SIMULATION

In this section, we present results on the simulations of the benchmark problem of Kleijn [4].
Before discussing the numerical results, we first present relevant information on the chemical
model used. Another reference containing valuable information to reproduce our simulations
is [3]. Note that some tables in [4] contain typographical and printing errors, which have been
corrected in [3].

A. Chemistry Model in the Benchmark [4]

In this article, we are interested in the transient solution of a CVD model consisting of 17 species
and 26 reactions (see Tables 2 and 4 in [4] and Table 1 in [3]). The reactor configuration is
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FIG. 3. Reactor geometry.

as in Fig. 3. In the hot gas region above the susceptor, see Fig. 3, the reactive gas silane SiH4

decomposes into silene SiH2 and hydrogen H2. This gas phase reaction initiates a chain of 25
homogeneous reactions leading to the formation of 14 different silicon containing species, which
each may diffuse to the susceptor to produce a thin solid silicon film.

As computational domain we take, because of axisymmetry, one half of the (r–z) plane. The
pressure in the reactor is 1 atm = 1.01325×105 Pa. From the top a gas-mixture enters the reactor
with a uniform temperature Tin = 300 K and a uniform velocity uin = −0.10 m/s. The inlet silane
mole fraction is fin,SiH4 = 0.001 and the rest is helium. At a distance of 0.1 m below the inlet
a susceptor with temperature Ts = 1000 K and a diameter 0.3 m is placed. Unlike the problem
considered in [4] the susceptor does not rotate. Furthermore, the outer walls of the reactor are
adiabatic and do not rotate.

Note that it suffices to solve 16 nonlinearly coupled species equations (2.1), since the mass
fraction of the carrier gas helium will be computed via the property that they sum up to one.
The reactions terms in (2.1) are constructed as in (2.3) and (2.5), where the fit parameters can be
looked up in [3, 4]. The backward reaction rates are selfconsistently computed from

k
g

backward(T ) = k
g

forward(T )

Kg

(
RT

P 0

)∑N
i=1 νik

, (5.1)

where the reaction equilibrium Kg is approximated by Kg(T ) = AeqT
βeqe

−Eeq
RT , with R the

universal gas constant and the fit parameters Aeq, βeq, and Eeq as in [3, 4].
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FIG. 4. Streamlines and temperature field in Kelvin for the right half part of the reactor configuration given
in Fig. 3.

Since the reactants in the gas mixture are highly diluted in the carrier gas, we use the steady state
velocity fields, temperature field, pressure field, and density field computed by Kleijn [4]. In these
computations, buoyancy has not been accounted for. In Fig. 4, the streamlines and temperature
field are shown.

At the susceptor S irreversible reactions take place, such that gaseous reactants will be trans-
formed into solid and gaseous reaction products. Deposition of solid (s) silicon Si, and desorption
of gaseous (g) hydrogen, is due to one of the surface reactions:

SinH2m

RS
SinH2m−→ nSi(s) + mH2(g), (5.2)

SinH2m+1

RS
SinH2m+1−→ nSi(s) + mH2(g) + H(g), (5.3)

where n = 1, 2, or 3, and m = 0, 1, 2, 3, or 4. The molar reaction rate RS
i for the decomposition

of gas species i is given as

RS
i = γi

1 − γi

2

Pfi

(2πmiRTs)
1
2

, (5.4)

where Ts the temperature of the wafer surface. The sticking coefficient γi is equal to one for all
silicon containing species, except for γSi3H8 = 0, γSi2H6 = 0.537 exp(−9400

Ts
), and γSiH4 = 1

10γSi2H6 .
The deposition rate GSi of solid silicon Si is defined as

GSi = mSi

ρSi

S∑
s=1

RS
s χSi, s, (5.5)
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where χSi,s is the stoichiometric coefficient as given in (5.2) and (5.3), and mSi and ρSi are the
molar mass and the density of (solid) silicon.

The species mass fractions are computed in the cell centers. Therefore, computing the mass flux
due to surface chemistry is not straightforward when it needs to be positive. In [3], we already
described how this could be taken care off. To be self contained we shortly describe the idea.
According to Eq. (5.4), the molar reactive surface flux Fwall is linearly proportional to the species
molar concentration at the reacting surface, and thus also linearly proportional to the species mass
fraction at the wafer. Thus, we can write Fwall = Kωwall, where ωwall is the unknown species mass
fraction at the wafer. For the class of CVD problems considered in this article advective transport
is negligible near the wafer. Thus, only diffusive transport occurs near the wafer, and thus the
diffusive mass flux near the wafer should be equal to Fwall. From this equality, an expression for
ωwall can be found, and thus the reactive surface flux can be computed. It appears that ωwall is
always positive [3].

B. Numerical Results on the Benchmark Problem

We compare the different ODE methods of the previous section in terms of efficiency for solving
the transient CVD problem as presented in [3]. The simulation runs from the the instant that the
reactor is completely filled with helium carrier gas and a mixture of helium and silane starts to
enter the reactor, until steady state. The spatial computational grid consists of 35 equidistant grid
points in radial direction and 32 nonequidistant grid points in axial direction. The grid spacing in
axial direction gradually increases towards the wafer surface. In our experiments, steady state is
obtained when for a certain time step tn the inequality

‖wn+1 − wn‖2

‖wn‖2
≤ 10−6 (5.6)

holds, where wn is the numerical solution of the semidiscretization w(t) = F(t , w) on time
t = tn. Thereafter, (i) our steady state solution is benchmarked against the steady state solution
obtained by Kleijn [4], (ii) the transient solutions of the different schemes are compared with a
time accurate ODE solution, and (iii) we compare the integration statistics.

In Fig. 5, the steady state axial concentration profiles at r = 0 of some selected species are
given, for both our simulations and the ones done by Kleijn [4]. The total deposition rate of solid
silicon, by which we mean the instantaneous deposition rate due to the contributed effect of all
depositing silicon species, found by Kleijn [4] is 1.92 nm/s at r = 0. In our simulations, we
found a deposition rate of 1.93 nm/s. With respect to the quality of our steady state solution(s),
we conclude that they agree well with the steady state solution found in [4]. In addition, in Fig. 6,
the transient deposition rates due to some selected species are presented. Similar transient results
on this problem, or a problem of similar complexity, are not known to the authors.

In Tables I–III, numerical results for the various time integration methods, with either the full
or modified Newton iteration to solve the nonlinear systems, and the relative errors with respect
to a time accurate ODE solution on some fixed times in the L2 norm, are given. We used relative
errors, because the solution contains relatively small components. The user-specified quantity
TOL to monitor the local truncation error is taken equal to 10−3. We observe that for the global
errors as presented in Tables I–III, the behavior is as expected.

For the unconditional positive EB time integration scheme can be remarked that Newton itera-
tions with an approximated Jacobian as in Section IV see Table II, have influence on the positivity
of the solution, i.e., the number of rejected time steps due to negative species increases, and is
in this case equal to 22. Rejected time steps due to negative entries in the solution vector should
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FIG. 5. Axial steady state concentration profiles at r = 0 due to some selected species. Solid lines are
Kleijn’s solutions [4], circles are obtained with the Euler Backward scheme with full Newton solver.

FIG. 6. Transient deposition rates at r = 0 due to some selected species. On the right vertical axis: steady
state deposition rates obtained with Kleijn’s steady state code [4].
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TABLE I. Integration statistics for EB and BDF-2, with full Newton solver.

Number of EB BDF-2

F 190 757
F ′ 94 417
Linesearch 11 0
Newton iters 94 417
Rej. time steps 1 10
Acc. time steps 38 138
CPU Time 6500 30,500
Relative error (t = 1.6/t = 3.2) 6.8 × 10−3/7.9 × 10−4 2.2 × 10−3/1.4 × 10−4

be redone with smaller time steps, resulting in a larger number of F evaluations (the number of
Jacobian evaluations is approximately equal). Thus, as a result of an increasing number of Newton
iterations, the total computational costs increase.

For the BDF2 scheme, application of modified Newton strategy of Section IV gives more sat-
isfying results. From Table II, it can be concluded that for BDF2 an increasing number of cheaper
Newton iterations is computationally cheaper than factorizing the Jacobian in every Newton
iteration.

With respect to the other higher order time integration schemes, we note the following. ROS2
is the cheapest higher order time integrator for this CVD process. For the IRKC scheme, we see
that both versions perform equally well. Since there is no gain in efficiency by using “on the
fly” stability conditions for the explicit part, the more robust fully CFL-protected IRKC(full) is
preferred.

With respect to positivity of the solution during transient simulation, we note the following.
Omission of the reacting surface and thermal diffusion in the reaction Jacobian gives very poor
Newton convergence. We also observed that in this case the solution conserves positivity for very
small time steps only, even for EB. We conclude that for this CVD problem it is required to use
the exact Jacobian, in which case also the derivatives of the reacting surface and thermal diffusion
are included.

VI. CONCLUSIONS

In this article, we presented two-dimensional transient simulations of a benchmark CVD problem
[4], where the accent has been put on the efficient solution of the system of stiff advection–
diffusion–reaction equations. We tested, in terms of efficiency, a collection of time integration

TABLE II. Integration statistics for EB and BDF2, with modified Newton, as explained in Section IV(B).

Number of EB BDF-2

F 720 1786
F ′ 84 163
Linesearch 39 33
Newton iters 463 1441
Rej. time steps 31 33
Acc. time steps 88 121
CPU Time 10,800 17,000
Relative error (t = 1.6/t = 3.2) 6.8 × 10−3/7.9 × 10−4 2.2 × 10−3/1.4 × 10−4
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TABLE III. Integration statistics for ROS2, IRKC(fly), where stability for the explicitly integrated part
is tested for diffusion only, and IRKC(full), where stability conditions are forced for both advection and
diffusion, schemes.

Number of ROS2 IRKC(fly) IRKC(full)

F 424 429,662 427,911
F ′ 142 2005 2008
Linesearch 0 50 30
Newton iters 0 17,425 17,331
Rej. time steps 2 729 728
Acc. time steps 140 1276 1284
CPU Time 8000 20,000 19,500
Relative error(t = 1.6/t = 3.2) 1.1 × 10−3/2.5 × 10−4 1.8 × 10−3/8.3 × 10−5

methods, which have to be suitable for integration of stiff equations, as well as to be positive. For
the resulting (non)linear systems standard techniques are used. It appeared that a clever way of
using standard techniques still can give satisfying results. However, for 3D geometries, iterative
linear solvers will be needed. For problems from chemistry, like the one in this article, this is still
a challenging task for future research.

Based on the observations in our experiments, we conclude that in terms of efficiency Euler
Backward is the best choice to do a transient simulation (running into steady state). The difference
in computational costs has to do with the unconditionally positivity of EB, where the other inte-
gration methods are conditionally positive. For transient simulations of CVD models with more
complicated chemistry involved, and 3D simulations, we expect that IRKC is also an excellent
candidate, because the dimension of the linear systems appearing in this method do not change
when going from two to three spatial dimensions.

The work of S. van Veldhuizen was supported by the Delft Center for Computational Sci-
ence and Engineering. Furthermore, the authors thank both the referees for their suggestions that
improved the manuscript considerably.
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