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Abstract

Numerical modeling of the melting and combustion process is an important tool in
gaining understanding of the physical and chemical phenomena which occur in a gas-
or oil-fired glass melting furnace. The incompressible Navier-Stokes equations are
used to model the gas flow in the furnace. The discrete Navier-Stokes equations are
solved by the SIMPLE(R) method. In our applications many SIMPLE(R) iterations
are necessary to obtain an accurate solution. In this paper Krylov accelerated versions
are proposed: GCR-SIMPLE(R). The properties of these methods are investigated for
a simple two-dimensional flow. Thereafter the efficiency of the methods is compared
for three-dimensional flows in industrial glass melting furnaces.

Keywords: SIMPLE(R) method, Krylov acceleration, efficiency, incompressible Navier-
Stokes

1 Introduction

The increasing demand in quality, production efficiency and environmental issues drive
glass producers in optimizing their melting furnaces. The quality demand is so high and
the melting behavior so complex that a complete understanding of all important physical
and chemical phenomena during the melting process is required to make advances. At
the TNO Institute of Applied Physics a CFD simulation model for gas- and oil-fired glass
melting furnaces has been developed. This is a complete model for glass melting furnaces,
describing the combustion space and glass bath, and predicting the effects on melting
performance and glass quality. The model is successfully used by the glass industry and
furnace manufacturers for product quality improvement, optimization of furnace designs
and trouble-shooting.

The simulation of a complete glass melting furnace often results in large computation
times. One of the reasons for this is that the model uses the so-called SIMPLE(R) pressure-
correction method to solve the incompressible Navier-Stokes equations. It is well known



that the SIMPLE(R) method often requires many iterations. To reduce the large computa-
tion times of the SIMPLE(R) method, a Krylov subspace acceleration of the SIMPLE(R)
method has been developed. The GCR (Generalized Conjugate Residuals) method has
been used for this purpose, since GCR can be applied to the non-symmetric matrices which
result from discretization of the Navier-Stokes equations. The new method presented in
this paper is called GCR-SIMPLE(R).

2 Description of the mathematical model

We compute numerical solutions of the steady state Navier-Stokes equations:

—vAu+u-gradu+gradp = f,

—divu = 0,

combined with appropriate boundary conditions. The vector field u represents the velocity,
p represents the pressure and v is the viscosity. The Stokes equations are the Navier-Stokes
equations without the non-linear term. After discretization of the incompressible Stokes
equations one obtains the following linear system:

(& 5)(5)=(5) »

where u is the algebraic vector of velocity components and the algebraic vector p contains
the pressure unknowns. In the remainder of this paper, this system is abbreviated as
Ax =0b.

Discretization of the continuity equation leads to a zero block on the main diagonal of A,
so the resulting linear system is indefinite and symmetric for the Stokes equations. This
leads to serious problems when linear solvers are used. Various methods are known to
overcome these difficulties: the pressure-matrix method [4], Uzawa method [17, 21, 6, 8],
SIMPLE-type methods[14, 10], penalty method [2], pressure correction method [20], PISO
method [1], etc. For an overview of these methods we refer to [16] Section 9.6. In CFD
packages, a popular method is the SIMPLE method proposed by Patankar and Spalding
[15] or one of its variants SIMPLER [14], SIMPLEST [26], or SIMPLEC [19].

In many applications the SIMPLE method needs many iterations before an accurate solu-
tion is reached. Various authors consider a multigrid acceleration of the SIMPLE method
[24, 11, 3]. In this paper we consider a Krylov subspace acceleration of the SIMPLE(R)
method [23]. The reason for this is that Krylov methods have only a small amount of
overhead costs and are easy to implement in an existing CFD package. Although the dis-
cretized Stokes equation leads to a symmetric coefficient matrix, we use a Krylov subspace
method suitable for non-symmetric matrices, because we also apply the resulting method
to the discrete Navier-Stokes equations, where a non-symmetric coefficient matrix occurs.
Recently, saddle point preconditioners for Krylov subspace methods have been proposed
to solve the discretized Navier-Stokes equations. For a survey we refer to [9].
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3 SIMPLE type methods as distributive iterative meth-
ods

In order to combine the SIMPLE-type methods with a Krylov solver we first write these
methods as a distributive iterative method [26, 24].

3.1 SIMPLE method

The diagonal of the matrix Q is denoted by D and R = —~GTD~!G. The SIMPLE method
as proposed by Patankar [14] is given by the following algorithm:

SIMPLE algorithm

1. Choose an initial estimate p*.

2. Solve Qu* = b; — Gp*.

3. Solve Rdép = by — GTu*.

4. Compute u = u* — D 'Gdp and p := p* + dp.
5. If not converged take p* = p and go to 2.

The solutions of the systems given in 2 and 3 are obtained by a small number of iterations
with a Block Gauss-Seidel method (TDMA solver [14]).

The SIMPLE method can also be seen as a distributive iterative method. Instead of solving
the system Az = b the system ABgry = b,z = Bry will be solved. Choosing Bg and Mg

as:
R o 1
By D ¢) M= ( &) ©)

and using the splitting ABg = Mg — Ny the following iteration is obtained (SIMPLE
method) [24]:
2" = 2F - BRMg (b — Az), k=1,2,..., niter.

In the SIMPLE method the matrix A is multiplied from the right with Bg and the resulting
matrix is split. We can also use a multiplication from the left with By, and use the splitting
My, where the matrices are given by

_ I 0 ([ Q G
BL_(-GTD—1 I)’ML_<O R)' 3)
Using the splitting By, A = My, — Ny, we can use the iteration

o* = 2% + My 'BL(b— Az¥), k=1,2,..., niter.

This is a new SIMPLE type method, which we denote by SIMPLEL.
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3.2 SIMPLER method

First the SIMPLER method is explained. Thereafter the SIMPLER method is written
as a distributive iterative solver. Suppose the velocity vector u is known. Then an easy
calculation shows that p is a solution of the system:

Rp=1b,— G'D (D - Q)u+b).

This idea is used in the SIMPLER method. When u* is known, p**! and u**! are calculated
as follows:

SIMPLER algorithm

1. Solve Rp* = by — GTD!((D — Q)u* + by).

2. Solve Qu* = b; — Gp*.

3. Solve Rdop = by — GTu*.

4. Compute u ! = u* — D™1Gdp and p*+! = p* + Ip.

One iteration of the SIMPLER algorithm is approximately 1.3 times as expensive as one
SIMPLE iteration. Steps 2, 3, and 4 of both methods are comparable.

Using (3) it is easy to check that Ny, is given by

Ne=( _arpp_q) ¢ )" )

Now the first and second step of the SIMPLER algorithm can be written as:

ML<ZI)=NL<Z:>+BL<Z;>. (5)
ML<;‘I):ML<;‘Z)+BL<2;)—(ML—NL)<Z:)- (6)

Multiplying this equation with My, ™" leads to

()= 0 ) owema((5) () "

After this step a SIMPLE iteration follows. So the new solution is given by

() () o () 4(5) o
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Combining both steps shows that one SIMPLER iteration can be denoted by

E)-(2)n(E) )

where Pg is given by
Ps = BRMgr ! — BRMgr 'AM;'Br + M 'BL.

This expression can also be written as

e 0 e
Ps = BgMg ‘B! <(§ 2R>BR My, By.

Summarizing we note that the SIMPLER method can be written as a distributive iterative
method:
¥t = 28 + BRM,'B,'TB,'M'B.(b — AzF),

where T is the block diagonal part of the matrix My + Mpg — A. Note that the SIMPLER
method is closely related to the Symmetric Block Gauss-Seidel method.

Furthermore, when Q is symmetric it follows from the definition that B; = B% and
M;, = M%, which implies that Pg is symmetric. So for the incompressible Stokes equation
the MINRES method combined with the SIMPLER method as preconditioner can be used.

4 A saddle point preconditioner

In this section we describe one of the saddle point preconditioners proposed by Elman
[7]. Thereafter we write the iteration matrices of this preconditioner and the SIMPLE
preconditioner in the same way. This enables us to give a theoretical comparison of both
preconditioners. In Section 6.2 these preconditioners are compared from numerical point
of view.

In [7] saddle point preconditioners of the following form are considered:

-2 %) (10

It is easy to show that

I 0
APE = < GTQ—l GTQflfol > ’

so that the eigenvalues are:

{1}Uuo(GTQ'GX ™).



In [7] various choices for the matrix X are considered. It appears that a balance should
be found between fast convergence, o(GTQ'GX™!) ~ {1}, and the amount of work to
apply the preconditioner to a vector.

For the SIMPLE preconditioner we can compute Mg ':

_ Q! 0
Mg b= ( _R—lGTQ—l R! |-
So the iteration matrix ABgMg ™' can be written as:

( I-(I-QD)GR'G'Q! (I-QD')GR™ )
0 I ’

which implies that the eigenvalues of ABRMpg ™! are:
{1}Uuc(I-(I-QD HGR'GTQ™).

We note that the Elman preconditioner converges in one iteration when X = GT'Q'G,
whereas the SIMPLE preconditioner converges in one iteration when D = Q. In general X
is an approximation of GTQ~!G and D is an approximation of Q. Comparing both pre-
conditioners, it appears that for the SIMPLE preconditioner the iteration matrix converges
to the identity matrix for D — Q, whereas the iteration matrix for the Elman precondi-

tioner converges to a block lower triangular matrix (so the iteration matrix is non-normal)
for X - GTQ !G.

5 The GCR acceleration method

In this section a Krylov acceleration of the preconditioners given in Section 3 and 4 is
given. Many Krylov subspace methods are known to solve non-symmetric linear systems.
We choose the GCR method [5] because the method is robust, minimizes the residual and
allows a variable preconditioner [18, 22]. This final property is very important, since in
practice the inverse of the matrices occurring in the preconditioners are only computed
approximately. So, the preconditioner P¥ is a different operator in every iteration.

GCR algorithm

" =b— Az’
for £ =0, 1,...,ngcr
skl — Phyk
vkt = A gkt
for:=0,1,....k
pRHL = gkl (kL i)y



gkl — k1 _ (Uk—l—l’ Uz’)si

end for
Uk+1 — Uk+1/||’1}k+1||2
Sk—l-l — 8k+1/||’Uk+1||2

g+l = gk 4 (pk pkt1)ghtl

Pkl = pk _ (ph k)t

end for

For P* one can choose BRMgr ' (GCR-SIMPLE), Pg (GCR-SIMPLER), or Pg (GCR-
Elman). Due to the modified Gram-Schmidt orthogonalization, the amount of work and
memory increases when the number of iterations grows. To bound these quantities the
method is truncated or restarted after a small number of iterations. Comparing the amount
of work with that of the SIMPLE method, we note that if the GCR-SIMPLE method is
restarted after ngcr iterations, then nger? vector-updates and nger? /2 inner-products extra
are required. Furthermore, an additional 2ngcr vectors should be stored in memory. When
nger is small these costs are negligible.

For the SIMPLE(R) preconditioners it appears that a diagonal scaling is beneficial for the
convergence of the GCR-SIMPLE(R) method. To implement this the following adaptations
are made: compute D 45 = diag(ABR) and use r’ = D5 (b— Az%), s¥71 = BM; 'Dpr*,
and vFt! = D Askt!,

The discretization of the Navier-Stokes equations gives a non-linear system due to the
convection terms. The discretization equations for the velocities can be written as follows:

Q(u)u+ Gp = by. (11)

Various methods can be chosen to linearize Q(u), like the Newton-Raphson method or
the Picard iteration method. We have used the Picard iteration method where Q(u**!)
is approximated by Q(u*). A non-symmetric linear system is obtained with the same
structure as the discretized Stokes equations. Now, the GCR-SIMPLER algorithm for the
Navier-Stokes equations can be summarized as follows:

20 guessed value
for £ =0,1,2,..., niter

solve A (z*)zF*! = b with GCR-SIMPLER
end for
The other preconditioners can be used in the same way. During each iteration we do not
need to solve this equation until convergence because the matrix A is defined using an
approximation of z¥. This has the advantage that a small value of nger can be chosen

which leads to low memory requirements. The optimal value of nger can be different for
each problem.



6 Numerical experiments

In this section attention will be given to the application of the various methods to solve
the incompressible Navier-Stokes equations. We will first investigate the properties of
SIMPLE(R) and GCR-SIMPLE(R) for a 2D Navier-Stokes flow between two flat plates.
Thereafter we compare the GCR method using the preconditioners proposed in Section 3
and 4 for a Poiseuille flow and a backward facing step problem. Finally, in order to compare
the efficiency for more realistic test problems, the Ford Nashville float glass furnace is used.

In the measurements the following quantities are used:

o C'PUtime: execution time of a used method measured in seconds on an HP-735 in
Section 6.1 and on an HP-J210 in Section 6.3,

e residu: absolute sum of residuals for a given variable,

e niter: number of iterations.

6.1 Numerical properties of the SIMPLE type methods

In this section we present some results obtained when applying the SIMPLER and the
GCR-SIMPLER method to the flow between two flat plates with distance D = 10 ¢m and
length L = 500 ¢m. For this test problem an equidistant grid will be used.

To apply the SIMPLER and the GCR-SIMPLER methods we first define some default
values of parameters used in these methods. For both methods the termination criterion
is: stop when the sum of the absolute residuals of each variable is less than or equal to 1076.
The relaxation factor for the pressure is always 1. The SIMPLER method will be used
with relaxation factors equal to 0.8 for the velocities u; and us. For the GCR-SIMPLER
method nger is taken equal to 3 and the relaxation factors for the velocities u; and uy are
equal to 1. The default TDMA solver is PLANE TDMA. For a motivation of these values
we refer to [23].

First we investigate the dependence of GCR-SIMPLER on the value of ngcr. The results
are given in Table 1. When ngcr increases the number of GCR-SIMPLER iterations
decreases, but every iteration becomes more expensive. On the 40 x 20 grid we see that
the CPU time is more or less the same for all values of nger. For the 40 x 40 grid there
are larger differences. The choice nger = 14 leads to a minimal amount of CPU time;
however, many vectors should be stored in memory. Therefore the value nger = 3 is a
good compromise. When convergence problems occur for the GCR-SIMPLER method it
helps to increase the value of nger.

In Table 2 the results are given for various grid sizes. Both methods need more iterations
when the grid size increases. For a small grid size the CPU times are comparable, whereas
for a large grid size GCR-SIMPLER needs less CPU time than the SIMPLER method. For
the 20 x 20 grid the aspect ratio of the finite volumes is equal to 50.
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ngcr Grid 40 x 20 Grid 40 x 40
niter | CPU time | niter | CPU time
2| 43 10.3 96 39.9
3| 33 9.9 67 35.6
41 30 10.4 59 37.4
6| 21 9.8 38 33.4
8| 17 9.9 31 35
14| 11 10.6 14 27.5

Table 1: Results of the GCR-SIMPLER method for various values of ngcr

Grid size SIMPLER GCR-SIMPLER
niter | CPU time | niter | CPU time
20 x 20 61 5.2 29 5.9
40 x 20 | 139 16.9 33 9.9
80 x 20 | 303 68.5 80 40.2

Table 2: Results for various grid sizes

6.2 Comparison of the various preconditioners

In this section we present convergence results for the preconditioned GCR method, without
restarting or truncation, applied to some test problems. These experiments are done in
Matlab. For the discretization we use the Matlab codes ! given in [25]. In our SIMPLE(R)
preconditioners we always take D = diag(Q). From [7] it appears that X = %I, for a
uniform grid of width A in d dimensions, is a good preconditioner as long as v ~ 1. Since
this preconditioner is easy to use, we take X = «I, where < is chosen such that the conver-
gence of GCR-~Elman is optimal. We cannot use X = %dI because the step-size in z and
y-direction is different. We only report number of iterations to observe the convergence
behavior. All inverse matrices in the preconditioners are computed exactly. In real appli-
cations approximate inverses should be used in order to save flops and memory.

Channel flow

Our first test problem in this section is a flow in a channel with width 2 and the length
is varied. At the inflow boundary we use a parabolic profile, whereas a no-slip boundary
condition is used at the side walls. As outflow boundary conditions we use homogeneous
Neumann conditions for both velocity components. For the discretization we use a stag-
gered grid arrangement [25, 12]. The Dirichlet boundary conditions are included as extra

equations in the linear system. We start the GCR method with 2° = 0 and stop if HIIT:IIH <e.
As a default we take e = 1075.

Lta.twi.tudelft.nl/users/wesselin/cfdbook.html




In many channel flows the length of the channel is much larger than the width of the
channel. From our experiments we know that a number of preconditioners break down
or have a bad convergence behavior when stretched cells occurs. Therefore we vary the
length of the channel two orders of magnitude and report the results for the proposed pre-
conditioners in Table 3. These results are obtained for the Stokes equations on a 16 x 16
grid. Note that the number of iterations increases for the ILU and Elman preconditioners
for increasing length, whereas the number of iterations is constant or decreasing for the
SIMPLE(R) preconditioners.

| Length | 2 [20] 200 |
ILU 5762 91
SIMPLE |18 22| 9
SIMPLER | 9 |11 ] 6
Elman 12 122 31

Table 3: Number of iterations of the preconditioned GCR method for the Stokes equations

We have also used the Oseen equations:

—vAu+w-gradu+gradp = f,

—divu = 0,

where w is a given velocity field. These equations are used during a Picard iteration
to solve the non-linear Navier-Stokes equations. We take w equal to the velocity of the
Poiseuille flow. From Table 4 and 5 it appears that the number of iterations increases for
decreasing v. The behavior for increasing length is comparable for the Stokes and Oseen
equations.

| Length | 2 [ 20200 |
ILU 57 63] 94
SIMPLE [19]24 ]| 11
SIMPLER | 9 |13 ] 7
Elman 12 125 | 39

Table 4: Number of iterations of the preconditioned GCR method for the Oseen equations
forv=1

Finally, solving the Navier-Stokes equations with a Picard iteration the intermediate Stokes
and Oseen equations are solved with a relative large e. Therefore we also give the results
for € = 1072 in Table 6. It appears that for a low accuracy there is a large growth in the
number of iterations for the ILU and Elman preconditioners for increasing length of the
channel.
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H Length ‘ 2 ‘ 20 ‘ 200 H
ILU 53 |91 | 101
SIMPLE 20 | 30 | 17
SIMPLER | 8 |16 | 12
Elman 26 149 | 53

Table 5: Number of iterations of the preconditioned GCR method for the Oseen equations
for v =0.1

| Length | 2 [20 ] 200 ||
ILU 23 [ 54 ] 81
SIMPLE | 6] 9] 4
SIMPLER | 5 | 9 | 7
Elman 2 |32 43

Table 6: Number of iterations of the preconditioned GCR method for the Oseen equations
for v =0.1 and e = 102

Backward facing step

Our second test problem is a backward facing step problem. The length of the channel is
25 and the width is 2. At the inflow boundary we have a parabolic profile at the upper half
part and a no-slip condition at the lower half part of the boundary. In the Oseen equations
we take w equal to zero in the lower part of the channel and equal to the Poiseuille flow
velocities in the upper part of the channel. The horizontal velocity contours of w and u
are given in Figure 1 and 2.

The iteration counts are given in Table 7. Note that the SIMPLER preconditioner is insen-
sitive to the choice of v. For the other preconditioners the number of iterations increases
for decreasing v. This behavior is also reported in [7] for the Elman preconditioner.

Stokes Oseen
Preconditioner v =20.25| v =0.025
ILU 7 7 136
SIMPLE 47 52 66
SIMPLER 16 17 18
Elman 34 41 105

Table 7: Number of iterations of the preconditioned GCR method for the backward facing
step problem

11



Figure 1: Contour plot of horizontal component of w used in the backward facing step
problem

Figure 2: Contour plot of the horizontal component of the solution u of the backward
facing step problem

6.3 The Ford Nashville furnace

In this section the SIMPLER and the GCR-SIMPLER method are used to simulate the
combustion chamber of the Ford furnace [13]. In the model for this furnace, the combustion
of natural gas is described by the conserved scalar approach to high temperature, non-
premixed combustion and the chemistry is described with a one-step global reaction. The
geometry of the Ford furnace is sketched in Figure 3. The internal length, width and
maximum height of the combustion chamber are 34.7x10.1x 2.3 m. The same convergence

Figure 3: Geometry of the Ford float glass furnace

criterion is used for each method. In this problem the iteration process is stopped when
the absolute sum of the residuals of each variable is less than or equal to 10~*. The finite
volume grid consists of 130 x40 x40 = 208000 points. The same relaxation factors are used
for both methods. In the SIMPLER and the GCR-SIMPLER method the same SPACE
TDMA solver is used. The first simulation has been done using the GCR-SIMPLER
method. The results are: niter = 3390, CPUtime =~ 3.3 days. Using the SIMPLER
method the simulation has been stopped after 7.5 days, because the maximum number of
iterations has been reached. We see again a large decrease in CPU time when the Krylov
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acceleration is used. The temperature contours in a plane just above the glass surface
are shown in Figure 4. A comparison of the computed and measured quantities for this
furnace is given in [13]. For more results concerning the convergence behavior of the various
methods applied to the IFRF furnace we refer to [23].

Fluid Temperature ['C]: 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300

Figure 4: The temperature contours of the Ford float furnace using the GCR-SIMPLER
method

6.4 Memory

Using the GCR-SIMPLER method instead of the SIMPLER method leads to more mem-
ory. In Table 8 the memory requirements are given for various problems. For a three-
dimensional problem the increase is approximately 50 %. When ngecr is increased the CPU
time may decrease but the memory requirements increase.

problem SIMPLER | GCR-SIMPLER
(nger = 3)

Flat plates 120 x 120 31 39

IFRF furnace 42 x 37 x 27 52 78

Ford furnace 130 x 40 x 40 202 333

Table 8: Memory requirements for various problems measured in Megabytes

7 Conclusions

An efficient method to simulate glass-melting furnaces is considered. In this method the
incompressible Navier-Stokes equations are used. SIMPLE-type methods are very popular
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to solve the discretized incompressible Navier-Stokes equations. In this paper SIMPLE
and SIMPLER are rewritten as classical distributive iteration methods for linear systems.
Two other preconditioners are considered ILU and Elman [7]. As Krylov acceleration the
GCR method is used.

Firstly the dependence of the GCR-SIMPLE(R) methods on grid-size and ngcr is investi-
gated by numerical experiments. These insights are used to propose a number of default
parameters (nger = 3, TDMA solver, outlet boundary condition, etc.) for these methods.

Secondly the convergence behavior of the ILU, SIMPLE(R), and Elman preconditioner
are compared for two test problems: a channel flow and a backward facing step flow. It
appears that GCR-SIMPLER is only weakly dependent on the stretching of the grid and
the viscosity. Points of current research are: inclusion of more advanced preconditioners
proposed by [7] and comparison of the memory requirements and CPU time of the pro-
posed preconditioners for practical problems.

Finally, the efficiency of SIMPLER and GCR-SIMPLER is compared using a simulation
of an industrial furnace. For these simulations, where the grid has high aspect ratios, the
GCR-SIMPLER method appears to be three times as fast as the SIMPLER method. Fur-
thermore, larger relaxation factors can be used for GCR-SIMPLER, which leads to a still
higher efficiency. After convergence the quality of the computed results (velocity, pressure,
turbulence quantities, etc) is comparable. GCR-SIMPLER requires more memory than

the SIMPLER method.
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