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SUMMARY 

In this paper some iterative solution methods of the GMRES type for the discretized Navier-Stokes equations are 
treated. The discretization combined with a pressure correction scheme leads to two different types of systems of 
linear equations: the momentum system and the pressure system. These systems may be coupled to one or more 
transport equations. For every system we specify a particular LU-type preconditioner and show how to vectorize 
these preconditions. Finally, some numerical experiments to show the efficiency of the proposed methods are 
presented. 
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1. INTRODUCTION 

In this paper we treat the solution of the discretized incompressible Navier-Stokes equations. The 
discretization of these equations in general curvilinear co-ordinates is described in References 1-5. As 
space discretization a finite volume technique on a boundary-fitted structured grid is used. in Reference 
6 iterative methods of the Krylov type to solve the discretized equations have been presented. 
Reference 6 also contains a short survey of other iterative methods. In this paper we shall give 
improvements of the iterative methods described in Reference 6 and apply them to a wider range of 
problems. The improvements with respect to Reference 6 are that (i) new preconditioners are given 
with a better rate of convergence, (ii) different vectorization techniques for the preconditioners are 
given and compared and (iii) the Gh4RESR method with reuse of search directions is introduced and 
appears to be twice as fast as the original GMRESR method for the solution of the pressure system 
(which is in general the most time-consuming part). The methods given will be applied to problems 
with large grid size (up to 160 x 320 cells) and problems which include transport equations. For other 
problems where the given methods are used successfully we refer to References 2, 7 and 8. 

The discretized equations given in Reference 2 have also been solved by multigrid methods. For 
stationary problems we refer to References 9 and 10 and for non-stationary problems to References 1 1 
and 12. For a stationary problem it is not easy to compare the various methods, since the multigrid 
method given in Reference 9 solves the momentum equations simultaneously with the pressure 
equation, whereas in our s o h a r e  we use a time-stepping method combined with pressure correction. 
For non-stationary problems the Krylov subspace methods described in this paper are more efficient 
than the multigrid methods described in References 11 and 12. Recently we have combined the Krylov 
subspace method with multigrid as a preconditioner. This combination gives promising re~ults. '~ 
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196 C. VUIK 

Since the discretized equations contain non-symmetric matrices> we are not able to use the 
conjugate merit or conjugate residual method. This motivates us to use GMRES-like methods, 
which are robust and have an optimal rate of convergence.'"I6 The incompressible Navier-Stokes 
equations in general co-ordinates are given b$ the continuity equation 

u,: = 0 (1) 

and the momentum equations 

where tKB represents the deviatoric stress tensor 

?.B = p(g"u{ + gWP,), 

with g"B the contravariant metric tensor, p the viscosity, p the pressure, ua the contravariant velocity 
component, p the density of the fluid and f" the contravariant component of a body force. The 
transport equation for a scalar C is given by 

where k l ,  k2, k3 and KaB are given functions. 
Before discretization the physical domain is mapped onto a computational domain consisting of a 

number of rectangular blocks. In this paper we restrict ourselves to the one-block case. In order to 
avoid possible pressure oscillations, a staggered grid arrangement is used. The pressure is computed in 
the cell centres and the normal velocity components are calculated at the centres of the cell faces. In the 
remainder of this paper ni is the number of finite volumes in the x,-direction. For further details and the 
discretization of the boundary conditions we refer to Reference 2. 

Finally, the spatial discretization is combined with finite differences for the time derivative. We use 
the Euler backward scheme together with pressure correction. The time step is denoted by At. For a 
given function v and n E N, v" is an approximation of v(nAt). After Newton linearization we obtain two 
systems of equations,2S6 namely the momentum equation 

and the pressure equation 
p&n+l- - g"+', where 4.f" = pn+l -pn .  

A discretization of (3) will be called a transport equation and denoted by 
cn+I?+l = g+l. 

The iterative methods are applied to two test problems: the flow through a curved channel and a 
Boussinesq problem. The curved channel problem makes it possible to compare the results of 
Reference 6 with the results in this paper. The Boussinesq problem is chosen in order to illustrate the 
performance of the solution methods for Navier-Stokes equations coupled with a transport equation. 
In this problem a stretched grid is used. We note that in many other problems the behaviour of the 
iterative method is comparable with that in the aforementioned test problems. 

Curved channel 

The curved channel is displayed in Figure 1. As initial condition we take the velocities equal to zero. 
The boundary conditions are a parabolic velocity profile at i d o w  (boundary l), a no-slip condition at 
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Figure 1. The physical domain of the curved channel problem 

boundaries 2 and 4 and the normal stress and tangential velocity given at outflow (boundary 3). We 
take p = 250 and p = 0.5. 

Boussinesq problem 

In the Boussinesq problem the Navier-Stokes equations are coupled with a temperature (transport) 
equation. We use a standard benchmark problem published in Reference 17. The physical domain and 
the 20 x 10 grid are displayed in Figure 2. Owing to buoyancy, we have a body force given by 

f i  =o, fi = i S ( T  - To), 
where g is the acceleration due to gravity, is a volume expansion coefficient and To is a reference 
temperature. For the velocities we take no-slip boundary conditions. The temperature satisfies a 
transport equation. As temperature boundary conditions we take T =  1 at the left-hand wall and T= 0 
at the right-hand wall. The lower and upper walls are isolated. We calculate the solution with p = 1, 
p= 1, Pr=0-71 and Ra= lo6. 

In Section 2 we discuss and compare different vectorization strategies for incomplete LU-type 
preconditioners. In Section 3 an RILU preconditioner is given for the pressure equation. We observe 
that GMRES-like methods combined with RILU have a better rate of convergence than with RILUD 
but require more memory than RILUD. For the pressure equation the memory is available (because for 
the momentum system much more storage is needed), so we always use the RILU preconditioner. In 
order to reduce storage, the momentum equation has been solved with a new variant of the RILUD 
preconditioner. The insights obtained from the solution of the pressure and momentum equations are 
used to solve the transport equations. A new variant of GMRESR is given in Section 4. Reuse of 
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Figure 2. The 20 x 10 grid used in the Boussinesq problem 
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search directions leads to a faster rate of convergence for the pressure equation. Section 5 contains 
numerical experiments for two test problems on different grid sizes. 

2. OPTIMIZATION AND VECTORIZATION OF THE PRECONDITIONERS 

The discretization of the Navier-Stokes equations leads to a pressure equation with a matrix P with 
nine non-zero diagonak6 Here an incomplete LD-' U decomposition of P is used as preconditioner, so 
that the iterative method is applied to 

u-'DL-'pX 1 U-'DL-'b (7) 
instead of to Px = b. In this paper the preconditioner given in Reference 6 is denoted by ILUD. The 
ILUD preconditioner is implicitly defined by the following  rule^:'^,'^ 

(a) diag(L) = diag(U) = D 
(b) the off-diagonal parts of L and U are equal to the corresponding parts of P 
(c) diag(LD-' U) = diag(P). 

If the last rule is replaced by 

rowsum(LD-' U )  = rowsum(P), (8) 
the MILUD preconditioner of Reference 20 is obtained. We also use an RXLUD(0r) preconditioner, 
which is an average of the ILUD and MILUD preconditioners.*' 

It is well known that using an ILUD-type preconditioner leads to the solution of systems of linear 
equations with an upper or lower triangular matrix. Owing to recurrences, a straightforward algorithm 
for this part runs at scalar speed on a vector machine. We first gwe an optimization of such a scalar 
code according to the lines set out in Reference 22. Then we specify a vectorized version of the 
preconditioner. 

Row scaling 

For the FULUD decomposition there exists a matrix R such that P = LD-' U - R. Multiplication by 
D-' leads to p = D-'P = D-'LD-'U - D-'R = ifi - k With 6 = D-'b we apply the iterative 
method to fi-'i-'k = fi- ' i- '6.  Note that the multiplication by D in every iteration is no longer 
necessary. Furthermore, the solution of the triangular systems is cheaper, because the main diagonals 
of and 6 are equal to the identity matrix. A nice property of this row scaling by D-' is that if L, D 
and U satisfy the MILUD rule (8), then 

rowsum(D-'P) = rowsum(D-'LD-' U ) ,  

so that and 0 also satisfy the MILUD rule. This is in contrast with a symmetric scaling (a row and 
column scaling?2 where this property may be lost for the scaled system. In the remainder of this 
section the row-scaled quantities are denoted by P, L, U and b. 

Eisenstat implementation 

In every iteration step we have to compute vj+l = U-'L-'Pvj. Thus the amount ofwork per iteration is 
approximately twice as much as for the unpreconditioned system. In Reference 23 it is shown that much of 
the extra work can be avoided. To achieve this, it is necessary to apply the iterative method to 

L-'PU-'y = L-'b, (9) 
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where the solution vector x is given by x = U-'y. The rate of convergence of GMRES-like methods 
mainly depends on the eigenvalue distribution of the Since the spectrum of U-'L-'P is 
equal to the spectrum of L-' PUP' ,  we expect and observe the same convergence behaviour if we use 
(9) instead of (7). During the iterative solution of (9) we have to calculate vj+' = L-'PU-'vj. Using 
the equations 

vj+l = L - ' P U - ~ ~ ~  = L-'(L + P - L - u + U ) U - ~ V ~  

the work to calculate vj+l is reduced to two vector updates and the solution of an upper and lower 
triangular system. Thus one iteration of the preconditioned system costs approximately the same 
amount of flops as the unpreconditioned system. A disadvantage, however, is that the decrease in CPU 
time is small on vector computers, since a matrix-vector product is avoided, which is well vectorizable, 
whereas the hard-to-vectorize parts remain. 

Vectorization 

In this subsection we discuss some ways to vectorize the solution of triangular systems. The ideas for 
these vectorizations come fiom References 22 and 25. The vector of unknowns will be denoted by 
x(i, j ) ,  where i refers to the index of the corresponding finite volume in the xldirection andj  to that in 
the x2direction. Straightforward solution of Lx = y  leads to recurrences which prohibit vectorization. 

In Figure 3 a diagonal ordering of the calculation is shown. In this figure the values of x at the points 
denoted by a + sign have already been calculated. The points denoted by a * sign display the stencil 
of L. Using this figure for the nine-point preconditioner, it is easily seen that all the points on the chain 
line diagonal (i + 2j = c) can be calculated independently. Thus this ordering leads to vectorizable code 
(compare with Reference 25). This implementation has the following drawbacks: the initial and final 
diagonals have a small vector length and indirect addressing is used. Indirect addressing costs extra 
CPU time and may lead to memory bank conflicts. Indirect addressing can be avoided by an explicit 
reordering of the unknowns. After this reordering, the unknowns are stored in memory in the same way 
as they are accessed in the diagonal-wise calculation of x fiom Lx = y. Especially for large values of n 
explicit reordering gives a faster code on the Convex C3840 that we used in our experiments. 

Another way to vectorize the code is to change the order such that all the points on the lines 
parallel to the xl-axis are calculated together (line ordering). First suppose that the 
values x(i, k), i = 1,. . . , nl ,  k = 1,. . . , j  have already been determined. To calculate 
x(i,j + 1). i = 1 . . . , nl,  the values x(i - 1, j ) ,  x(i, j ) ,  x(i + 1, j )  and x(i - 1, j + 1) are used. Since 
the first three values are already known for all i, this part of the calculation (75% of the work) can be 

Figure 3. Ordering used for the vectorization of the solution of the system L r = y  for a nine-point preconditioner (left) and a 
seven-point preconditioner (right) 
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done at vector speed. One recurrence remains due to the use of x(i - 1, j + l), so 25% of the work is 
done at scalar speed. Advantages of this vectorization technique are that all vector lengths are equal to 
nl,  easy implementation and no indirect addressing. On the Convex C3840 the diagonal ordering leads 
to somewhat smaller computing times than the line ordering. 

In Section 3 we also define a seven-point preconditioner for the pressure equation. It follows from 
Figure 3 that this preconditioner can be vectorized along the diagonals i + j = c.22*25 Since the vector 
length of the loops is twice the vector length of the diagonal ordering for the nine-point preconditioner, 
a seven-point preconditioner leads to better vectorized code. 

To analyse the vectorization of the RILUD preconditioner for the momentum matrix M, we use the 
block structure 

In Reference 6 it has been shown that the non-zero structure of the diagonal blocks M1 and MZZ is the 
same as for the matrix P. Let us now consider the computation of x from Lx=y. The vectorization 
techniques described for the nine-point preconditioner for the pressure matrix can be used to obtain x 1  
from 

LlIXl = Y1. (1 1) 

Thereafter x2 is calculated from 

L22x2 = Y2 - h X l .  

Since x I  is already known, the right-hand side of (12) can be calculated at vector speed. Finally, the 
computation of x2 from (1 2) can be done in the same way as the solution of (1 1). 

3. PRECONDITIONERS FOR THE DIFFERENT LINEAR SYSTEMS 

In this section, preconditioners are given for the pressure, momentum and transport equations. For the 
pressure equation a nine-point and a seven-point ILU preconditioner are described. Some remarks are 
given on preconditioning a singular pressure matrix. A new variant of the MnUD preconditioner is 
given for the momentum equation. In this preconditioner the dfference between the velocities u1 and 
u2 is taken into account. Finally, the insights obtained from the solution of the pressure and momentum 
equations will be used to solve the transport equation in an efficient way. 

The pressure equation 

preconditioner is denoted by ILU. For ILU the matrices L and U satisfy the following rules: 
First we consider the classical incomplete L U  decomposition of P (all fill-in is neglected). This 

(a) diag(l) = Z 
(b) the non-zero structure of the matrix L + CJ is identical with the non-zero structure of P 
(c) if Pii # 0, then (LU), = Pw 

The last rule can for i = j be replaced by 

roWSum(LU) = rowsum(P), (13) 
which leads to the MILU preconditioner. Also, for this preconditioner we always use an averaged 
method, RILU(a). 

It is known that for a five-point stencil the RILUD and the RILU preconditioner are the same. 
However, for a nine-point stencil it is easily seen that RILU leads to a preconditioner different from 
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RILUD. Note that for this preconditioner the matrices L, U and P should be kept in memory. Thus the 
amount of extra memory for this preconditioner is nine vectors (the same amount of memory as needed 
for P). The Eisenstat implementation cannot be used for this preconditioner, since the offdiagonal part 
of P is not identical with the offdiagonal part of L + U. Th~s implies that an iteration using RILU is 
more expensive than an iteration using RILUD. Since the non-zero structures of L and U are the same 
for RILU and RILUD, the RILU preconditioner can be vectorized in the same way as the RILUD 
preconditioner. 

The optimal choice of a is an open question. Results in Reference 21 indicate that for symmetric 
matrices a close to unity is a good choice. Furthermore, for increasing grid size the optimal value of a 
approaches unity. These insights are confirmed by our experiments (see Section 5) .  

For a problem where all boundary conditions for the velocities are of the Dirichlet type, the pressure 
matrix P is singular. The null space of P is given by 

For such a problem RILU(a=l) gives a breakdown of the iterative method (the same for 
RILUD(a = 1)). This can be explained as follows. Equation (13) can be written as 

Equation (15) together with (14) implies that 

LU( ;) =o,  

so the matrix LU is singular. Owing to the definition of L, it follows that U is singular, which leads to a 
breakdown of the preconditioned GMRES method. A closer look at U shows that the last main 
diagonal element is equal to zero. Changing this element to a small number causes the iterative method 
to converge, but in our experiments a < 1 leads to a much better rate of convergence. 

Since a seven-point preconditioner leads to better vectorized code (compare Section 2), we also use 
a seven-point incomplete decomposition of P, where the stencils of P, L and U are given in Figure 4. 
The matrices L and U are such that 

if L, # 0 or U, # 0, then (LU), = (P),. 

7 8 9  8 9  

P L U 

Figure 4. The stencils of P, L and U 



202 C. W I K  

The amount of extra memory required is equal to seven vectors. In our experiments the rate of 
convergence of this preconditioner is better than with RILUD but worse than with RILU. Although this 
preconhtioner is better vectorizable, we conclude from our experiments that it is better to use the nine- 
point RILU preconditioner. 

The momentum equation 

The momentum equation is given by M"+'u"+' =f"+'. The dimension of the matrix M"+' is twice 
the dimension of the pressure matrix P. The matrix M"+l has 13 non-zero elements per row. For the 
structure of M"+' we refer to Reference 6. Note that the matrix P only depends on the geometry and 
boundary conditions, whereas M"+' depends also on the time and the choice of the time step At, on p 
and on p. In the following we delete the superscript n + 1 for brevity. Owing to the extra memory 
needed for the RILU preconditioner (13 extra vectors of length 2nln2), we restrict ourselves to the 
RILUD preconditioner for the momentum equation. 

We observe that the optimal choice of a used in RILUD(a) depends strongly on the test problem. 
Since our solver is mainly used as a black box solver, we prefer a preconditioner such that one choice 
of a is optimal for a wide range of problems. For that reason we consider the MILUD preconditioner 
more carefully. In the following we denote the MILUD preconditioner by MILUD-1. The matrices L, 
D and U of MILUD-1 satisfy the equation 

rowsum(LD-' U )  = rowsum(M), 

so using the block structure given in (1 0), the following equations are obtained: 

rowsum(Ll D;: U, + L, 07; Ulz) = rowsum(M, + M12), 
rowsum(L,,Di,' U11 + LZlDT,' U,, + L,,D2;' U2,) = rowsum(M,, + M22). 

It is well known that the MILUD-1 preconditioner is very effective if the solution is a slowly varying 
function. In the extreme case of no variation the multiplication by M and LD-' U leads to the same 
result and so the preconditioned GMRES method converges in one iteration. In the momentum 
equations (4) the vector u consists of two parts: ulr the velocity component in the xl-direction, and u2, 
the velocity component in the x2-direction. Since in our code we use contravariant fluxes, which 
implies that velocity components are scaled by the length of cell sides, it is possible that there is a large 
difference between u1 and u2. As a consequence, a close to unity can lead to a bad rate of convergence, 
because, although the components u1 and uz may be slowly varying functions, the difference between 
them may be large. This insight motivates us to propose a slightly adapted preconditioner. MILUD-2, 
where the MILU approach is used in a decoupled way. 

For MILUD-2 the matrices L, D and U satisfy the same rules as for MILUD-1, except rule (16) 
which is replaced by 

(16) 

rowsum(L,,D,' U,,) = rowsum(Mll), 
~owsu~(L,,D,~ u,, + L,,D,-: uZ2) = rowsum(M,,). 

We expect that this preconditioner will work well if u1 and u2 are slowly varying functions, whereas the 
difference between u1 and u2 may be large. In all our experiments this preconditioner has a nice 
convergence behaviour for a close to unity. Hence the MILUD-2 preconditioner is more robust than 
m U D - 1 .  

The transport equation 

Transport equations of the type (3) can be used to describe the transport of temperature, certain 
quantities occurring in engineering models of turbulence," the concentration of salt in an estuary, etc. 
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We distinguish between two classes of transport equations. The first class describes the transport of a 
passive scalar. In this case the Navier-Stokes equations can be solved independently of the transport 
equation. Thereafter the velocities u1 and u2 can be used in (3) to obtain a solution of the transport 
equation. The second class describes the transport of an active scalar. This class consists of 
applications where the Navier-Stokes equations are coupled with the transport equation (9, e.g. a 
Boussinesq problem or turbulence modelling. Since the transport equation has the same properties for 
both classes, the choice of iterative solution method is independent of the type of scalar. 

We note that equation (3) resembles the equations given in (2). This explains why the convergence 
behaviour of an iterative method applied to a transport equation is comparable with its behaviour when 
it is applied to the momentum equation. The matrix C"+' depends on the geometry, the boundary 
conditions, the velocities, the time step and the choice of the functions K1, Kafl and K2. An important 
difference is that the momentum equations describe a vector quantity whereas a transport equation 
describes a scalar quantity. As a consequence, the dimensions and structure of a transport matrix are 
the same as those of the pressure matrix. This motivates us to solve a transport equation with a 
GMRES-like method combined with an RILU preconditioner. 

4. REUSE OF SEARCH DIRECTIONS FOR THE GMRESR METHOD 

In this section we describe a new technique to save iterations and CPU time using the GMRESR 
method.I5 The key idea is the following: if a system of linear equations is solved with different right- 
hand sides, then the information obtained from the solution process for the first right-hand side vector 
is used for the following right-hand sides. 

We describe the adapted GMRESR algorithm for the pressure equation 

P@+' = g+'. (18) 

In this equation the matrix P is constant whereas the right-hand sides are different in every time step. 
The GMRESR algorithm is given by (b = g+' and x k  approximates @+1)6.15*16 

r, = b - P*,, k = -1; 
while 1 1 2  > to1 do 

k := k + 1 ,  compute u!) and cf) = Purl;  
for i = 0,1, .  . . ,k - 1 do 

endfor 
T (9 ( i + l )  = ,(i) ( i + l )  - u(~? - a i  = c i  c k  p c k  k - a i c i ,  l(k - k ai"i; 

(k) ( k )  c& = c k  /llc& 112, = u ~ k ) / ~ ~ c f ) ~ ~ ~ ~  
T T 

x&+l  = x k  + u k c k r k ?  rk+ l  = r k  - c k c k r k ;  
endwhile. 

In this paper we use the original GMRESR algorithm as resented in Reference 15, where uf' is 
computed by one iteration of GMRES(rn) applied to = r k .  Other variants are proposed in 
References 13 and 26. 

Note that the vectors u k  and ck used in the GMRESR algorithm should be stored in memory. Owing 
to memory limitations, it is necessary to bound the number of search directions U k  (and c k )  to be kept in 
memory. Different  technique^".'^ can be used to select which search directions are stored. In this 
paper we use the minalfa truncation strategy,16 which is defined in the following way. Suppose that the 
maximal number of search directions kept in memory is equal to n,. As long as the number of outer 
iterations is less than n,, all search directions are stored in memory. Thereafter the new search direction 
overwrites the old search direction with the smallest absolute value of ai in the for-loop. 
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We now describe the GMRESR method with reuse of search directions for the pressure equation. In 
the first time step we solve PAp' =g' with the GMRESR method. The number of outer iterations is 
equal to n l ,  while GMRESR is truncated after n, outer iterations. In the first time - step the search 
directions ub k = 0,  1, . . . , n,, are used, where n, = min(n1, n3. These vectors and the vectors C k = P U k  

are stored in memory. For the solution of PAp2 =g' we use the following adapted version of 
GMRESR. Before we start the iteration process, the residual is made perpendicular to 
span(c0, . . . , C",} as follows: 

for k = 0, 1,. . . , n, do 
x, = x, + UkCk r,, 

endfor. 
(19) T 

' 0  = r, - c k c ; r o ,  

Thereafter we start the iteration, where the orthogonalization process in the GMRESR algorithm now 
runs from i = 0 to min(n, + k - 1, nJ. The number of outer iterations in the second time step is equal 
to n2. The vectors u k  and cb k = 0, 1, . . . , n, = min(n, + n2, nJ, are stored in memory. These 
directions are reused in the third time step, etc. Note that n, is an upper bound of the number of 
direction vectors which are reused. 

Different strategies are possible for the selection of search directions which are kept in memory. In 
the experiments reported here, we start by storing all search directions. If n, + k - 1 becomes equal to 
nt, the minalfa truncation strategy is used to discard an old search direction. This implies that the 
search directions stored in memory may be different in every time step. Another strategy could be to 
obtain the n, search directions in the first time step and reuse these in every following time step. Thus 
the search directions remain the same for every time step n 2 2. 

To illustrate this adaptation of the GMRESR algorithm, we give results for the first test problem on a 
64 x 256 grid with p = 250 and p = 0.5, implying a Reynolds number of 500. We use GMRESR with 
GMRES(4) as inner loop and the RILU(a = 0.975) preconditioner. In Table I the results are given for 
the pressure equation at the second time step. The CPU time is measured in seconds on one processor 
of a Convex C3840. Note that there is a considerable speed-up when the search directions are reused. 
The convergence behaviour is shown in Figure 5. 

For the o r i g d  GMRESR algorithm the superlinear convergence sets in after seven outer iterations. 
The GMRESR algorithm with reuse of search directions leads to fast convergence from the beginning. 
Thus the gain in iterations and CPU time is not a consequence of the decrease in the norm of the initial 
residual due to (19), but a consequence of the fact that the components in slowly converging 
eigenvectors are absent owing to the expanded orthogonalization. Compare the description of the 
superlinear convergence behaviour of GMRES as given in Reference 24. The results in Table I show 
that the numbex of iterations decreases when the value of n, increases. This agrees with our explanation 
that if more search directions are reused (nt larger), then more components in slowly converging 
eigenvectors are absent, so a faster rate of convergence results. A drawback is that increasing n, leads 
to larger memory requirements. 

Table I. Number of iterations and CPU time for different GMRESR 
variants combined with RILU (a = 0.975) 

Original GMRESR(4) GMRESR(4) with reuse 

nt Outer iterations CPU Outer iterations CPU 

20 14 2.56 7 1.5 
15 14 2.56 8 1 *7 
10 14 2.56 10 2.0 
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Figure 5 .  Convergence behaviour of GMRESR (-) and GMRESR with reuse 
RILU preconditionex (grid 64 x 256) 

of search directions (0) combined with an 

We conclude that the reuse of search directions is a good idea if the original GMRESR algorithm 
applied to the linear system of equations has a superlinear convergence behaviour. If, fiuthennore, the 
required accuracy is low, the CPU time decreases considerably when we reuse the search directions 
(low accuracy is in general sufficient for non-linear or time-dependent problems). Note that this gain in 
CPU time is important, because the solution of the pressure equation is in general the most time- 
consuming part. 

Reuse of search directions can also be used for the momentum equations M"+'u"+' =fn+l. 
Although M"+' # M", we expect that after some time steps the search directions for M"+I and M" are 
related. For the reused vectors uk and Ck the relation M"+'uk = ck no longer holds, because 
M"+' # M". Thus only the vectors Uk are stored in memory. The adapted GMRESR algorithm is now 
started with the loop 

for R = 0, . . . , ns 
uf) = uk, c W  = Mn+IUf); 
fori=O, ..., k -  1 

endfor 
T (9 (;+I) - (i) - a,c,  upl) = ,(i) - a; = c; ck 7 ck -ck I 1 7  k a;u;; 

(4 (k) ck = c f ' / ~ ~ c f ) ~ ~ 2 ~  uk = uk /lick 112; 
endfor. 

Thereafter the GMRESR method continues with (1 9) and the expanded orthogonalization as for the 
pressure equation. For the momentum equation we see only a small gain in iterations and in general no 
gain in CPU time. There are two reasons for this: firstly the search directions are different for M"+' and 
M" and secondly the original GMRESR method converges linearly. The second reason implies that it is 
improbable to obtain a faster convergence by reusing search directions. This is illustrated by the first 
test problem with the 16 x 64 grid, p=250, p =0-5 and Ar=O.15. The convergence behaviour of 
GMRESR with GMRES(4) as inner loop is given in Figure 6 for the momentum equation in the third 
time step. From this figure it appears that the convergence behaviour of GMRESR is linear. Note that 
there is only a small gain in iterations whereas the CPU time is larger. In other experiments (larger grid 
sizes and/or using preconditioners) we obtain comparable results. Thus for the momentum equation 
the GMRESR algorithm with reuse of search directions does not lead to a faster solution method. For 
the transport equation in the second test problem we obtain the same results as for the momentum 
equation. 
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Figure 6. Convergence behaviour of GMRESR (-) and GMRESR with reuse of search directions (0) 

5 .  NUMERICAL RESULTS 

In this section we present the results of some numerical experiments. We start with the curved channel 
problem. The efficiencies of the solution methods for the momentum and pressure equations are given 
using vectorized ILU-type preconditioners. Thereafter we measure the CPU times required to solve the 
Navier-Stokes equations for various grid sizes. For the Boussinesq problem comparable experiments 
have been done. In all cases the CPU time has been measured in seconds on one processor of a Convex 
C3840. 

Curved channel problem 

Consider the curved channel problem described in Section 1. First we investigate the vectorization 
of the preconditioner. On the Convex, the megaflop rate for a vector update (which runs in vector 
speed) is 35 Mflop/s. In Table I1 the megaflop rate is given for the diagonal-wise ordering presented in 
Section 2 for the pressure equation. Without vectorization the multiplication by L-' or U-I has a 
megaflop rate equal to 9. From Table I1 it appears that the megaflop rate for the vectorized version 
becomes higher for increasing grid size. For large grid sizes it is equal to the megaflop rate of a vector 
update. 

In Section 3 we have given some guidelines for the choice of a for the RILU preconditioner used in 
the solution of the pressure equation. We have performed experiments for various values of a. In 
general we prefer postconditioning instead of preconditioning. The reason for this is that using 
postconditioning, which means the solution of PU-'L-'y = b and x = U-IL-ly, the termination 
criterion is based on Ilrk 112, whereas with preconditioning it is based on 11 U-' L-lrk [ I 2 .  Table I11 gives 
the number of iterations for GMRES (without restarting) and various choices of a. The iteration 
process is stopped if ~ ~ r k ~ ~ 2 / ~ ~ r o ~ ~ 2  < lop6. Note that for this problem a= 1 leads to the m i ~ d  
number of iterations. Furthermore, for small grid sizes a E [0.975, 11 leads to the same number of 
iterations, whereas for large grid sizes the optimal values of a are close to unity and the sensitivity of 
the number of iterations required to a increases. The results in Table I11 are obtained by using 111 
GMRES. In order to reduce memory requirements and CPU time, we always use the GMRESR 
method in practical computations. When GMRESR is used, it appears that RILU(0-99) is the best 
choice. 

Table 11. Megaflop rate of the vectorized WU@) preconditioner with 
diagonal ordering for the pressure equation 

Grid size 16 x 64 32 x 128 64 x 256 128 x 512 

Mflop/s 15 22 32 35 
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Table 111. Number of iterations of GMRES using the 
RILU(a) postconditioner for the pressure equation 
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Grid sue a = 0.975 a=0.99 a = l  

16 x 64 23 24 22 
32 x 128 34 34 32 
64 x 256 57 49 46 

128 x 512 104 84 64 

In Figure 7 the numbers of iterations for full GMRES combined with the MILUD or MILU 
postconditioner are given for the pressure equation. One iteration costs approximately the same amount 
of CPU time for both postconditioners. Thus this figure gives a good idea of the performance of the 
postconditioners. Note that especially for large grid sizes the MILU postconditioner becomes much 
better than MILUD. The results presented in Figure 7 motivate us to use an RILU preconditioner 
instead of an RILUD preconditioner. 

Table IV gives CPU time for the solution of the pressure equation using the RILU(0.99) 
postconditioner combined with truncated GMRESR(rn) and reuse of the search directions. The results 
are measured in the second time step. The best results given in Reference 6 for the pressure equation 
are obtained with the GMRES method and the RILUD(0.95) preconditioner. For the 16 x 64 grid this 
costs 3 1 iterations, 0.6 s of CPU time and 3 1 memory vectors. Comparing the results given in Table IV 
with the results given in Reference 6, we see a large gain in CPU time. Part of this gain comes from the 
fact that the Convex C3840 is 2.5 times faster than the Convex C240 used in Reference 6, but in 
addition the new method is approximately three times faster. 

In Reference 6 the momentum equation has been solved with GMRES(5) combined with a diagonal 
preconditioner. For the 16 x 64 grid this costs 57 iterations and 0.6 s of CPU time. In this paragraph 
the results are produced by GMRES(20) combined with a diagonal or ILUD preconditioner. For the 
momentum equation the preconditioned system L-'M"+' U-'y = ,!.-'by x = U-'y has been solved. 
We observe that termination criteria based on Ilrkllz and llL-'rkl12 lead to the same results. The 
iteration process is stopped if ~ ~ , ! . - ' ~ ~ ~ ~ ~ / ~ ~ , ! . - ' r ~ ~ ~ ~  < The experiments are done in the second 
time step. Table V demonstrates that ILUD saves many iterations and much CPU time. For this 
problem MILUD-1 leads to worse results, whereas the number of iterations and CPU time for 
MILUD-2 are comparable with ILUD. Comparing the results for the 16 x 64 grid with Reference 6, 
we see again a large gain in CPU time. Since the termination criterion in Reference 6 is slightly 
stronger than that used in this paper, there is a small difference in the number of iterations. The last 
column in Table V contains the CPU time to build the momentum and pressure equations. Note that 

Figure 7. Number of iterations of full GMRES combined with MILUD (-) and MILU The grid size is e q d  to 
(16 x 2') x (64 x 2 1  
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Table IV Amount of memory, CPU time and number of iterations for the pressure 
equation 

Grid size nt rn Iterations CPU Memory vectors 

16 x 64 10 3 7 0.09 32 
32 x 128 15 3 7 0.32 46 
64 x 256 15 4 7 1.21 47 

128 x 512 20 6 7 7.38 55 

Table V Number of iterations and CPU time using different preconditioners for the momentum equations 

Building 
Diagonal ILUD 

Time step Iterations CPU Iterations CPU of systems Grid size 

16 x 64 0.15000 41 0.24 7 0.075 0.07 
32 x 128 0.07500 38 0.75 6 0.20 0.18 
64 x 256 0.03750 36 2.74 6 0.73 0-60 

128 x 512 0.01 875 39 13.05 7 3.21 2.16 

comparison of Tables IV and V shows that the solution of the pressure equation is the most time- 
consuming part, as has been the general experience on Cartesian grids in the past. 

Boussinesq problem 

For the Boussinesq problem we shall start with experiments for the pressure equation. We have used 
the RILU(0.975) postconditioner combined with GMRESR(m), where the search directions are reused. 
The results we present in Table VI are measured in the third time step, which was found to be typical. 
The termination criterion used is the same as for the curved channel problem. 

Table VII gives results for the momentum equations. In these experiments GMRES(20) combined 
with ILUD, RILUD-l(O.95) and RILUD-2(0.95) as preconditioners has been used. In all cases a time 
step dt=4 x has been chosen independently of the gnd size. We note that the convergence 
behaviour of RILUD-2 is much better than that of RILUD-1 and that for increasing grid size 
RILUD-2 becomes much better than ILUD and RILUD-l(O.95). Since RILUD-2 has at least the 
same performance as ILUD for other problems, e.g. the curved channel problem, it is recommended to 
use the RILUD-2(0.95) preconditioner in all cases. 

Finally, Table VIII gives the results for the transport equation. In every time step first the momentum 
and pressure equations are solved and then the transport equation. The computed temperature is used 
on the right-hand side of the momentum equation in the next time step. The GMRES(20) method 
combined with the MILU postconditioner has been used. The iteration process is stopped if 

Table VI. Amount of memory, CPU time and number of iterations for the 
pressure equation 

Memory 
Grid size nt m Iterations CPU vectors 

20 x 40 10 4 5 0.047 32 
40 x 80 15 5 6 0.33 46 
80 x 160 15 6 10 2.0 47 

160 x 320 20 7 1 1  9.7 55 
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Table VII. Number of iterations and CPU time for the momentum equation 

LUD RILUD-1 RILUD-2 

Grid size Iterations CPU Iterations CPU Iterations CPU 

20 x 40 5 0.03 1 5 0.033 5 0-029 
40 x 80 8 0.15 10 0.17 8 0-15 
80 x 160 13 0.86 27 2.1 1 1  0.75 
160 x 320 23 6.8 68 2.3 13 3.2 

Table VIII. Number of iterations and CPU time for the 
transport equation 

___ 

Building 
Grid sue Iterations CPU ofsystems 

20 x 40 6 0.0 16 0.05 
40 x 80 10 0.1 1 0.15 
80 x 160 14 0.48 0.49 
160 x 320 16 2.3 1.8 

~ ~ r ~ ~ ~ 2 / l l r ~ l l ~  < lop6. Note that comparison of Tables VI, VII and VIII again shows that the solution of 
the pressure erquation is the most time-consuming part. 

6. CONCLUSIONS 

In this paper we have described properties of GMRES-tyPe iterative methods combined with ILU-type 
preconditioners to solve a discretization of the incompressible Navier-Stokes equations in general co- 
ordinates with the pressure correction method. Comparing the results of this paper with those of 
Reference 6, we note a considerable decrease in CPU time to solve the pressure and momentum 
equations owing to the novel idea of reuse of search directions for the pressure equation, improvements 
in pre- and postconditioning and vectorization. 

The pressure equation has been solved with GMRESR combined with an RILU postconditioner. In 
the case of a non-singular pressure matrix a=0.99 appears to be a good choice for the average 
parameter, whereas in the singular case a = 0.975 should be preferred. Finally, reuse of the GMRESR 
search directions leads to a large reduction of CPU time in the solution of the pressure equation. 

The momentum equation has been solved with GMRES(20) combined with RILUD-2. A good 
choice for a is 0.95. The properties of the momentum equation depend not only on the geometry and 
boundary conditions but also on other parameters such as time, time step, p ,  p, etc. Thus the number of 
iterations and CPU time may be different for dfferent values of these parameters. 

The transport equation has been solved with GMRES(20) combined with MILU postconditioning. 
Solving for the pressure takes most of the time, as in the Cartesian case. 
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