
LAGRANGIAN COORDINATES 
AND MULTICLASS MODELS

The kinematic wave model, also known as the Lighthill–Whitham–
Richards, or LWR, model (1, 2), is used to describe dynamic traffic
flow as if it were a continuum flow. Discretization and simulation of
the model are generally based on Eulerian coordinates, with the coor-
dinate system fixed in space. However, recent studies show the advan-
tages of the Lagrangian formulation (3–6). In this formulation the
coordinate system moves with the same velocity as the vehicles. Sim-
ulations based on the Lagrangian formulation lead to more accurate
results with less numerical diffusion (3, 6).

Van Lint et al. introduced a kinematic wave model with multiple
user classes (7). They show qualitatively that this multiclass represen-
tation (referred to as Fastlane) describes traffic flow more accurately
than mixed-class (or single-class) models. As in most multiclass mod-
els, the speed is class-specific. In the Fastlane model the total density
is a weighted summation of all class-specific densities. One of the key
characteristics of the model is the dependence of the weight (which is
equal to the passenger-car equivalent [PCE] value) on the current
speed and consequently on the total density. Therefore, it represents
that in congestion a truck takes relatively more space, when compared
to a car, than under free-flow conditions.

Leclercq and Laval propose a multiclass model with Lagrangian
coordinates using a variational formulation, which restricts the shape
of the fundamental diagram to be triangular or piecewise linear (8).
Moreover, user classes are only introduced after discretization. There-
fore, the multiclass model is not truly continuous. Zhang et al. show
that certain multiclass models are hyperbolic (9). Hyperbolicity is an
important condition for fast and accurate simulations in Lagrangian
coordinates. However, this analysis is limited to multiclass models
in which only the speed is class-specific. Moreover, the speed of a
certain class is always a certain fixed percentage lower than that of
the fastest class. This is especially unrealistic in congestion: then
one would expect the same speed for all user classes. Furthermore,
the total density is an unweighted summation over all class-specific
densities.

The main contribution of the present study is the development of
a Lagrangian formulation of a more generic multiclass traffic flow
model, including fundamental diagrams of any (realistic) shape.
Moreover, the fundamental diagrams can have different shapes for
each class, and the total density is a weighted summation over all
class-specific densities with the weight depending on the total density.
In the next section such a generic multiclass model is derived. The
derivation is partly based on the multiclass model in Eulerian formu-
lation and partly based on the conservation of vehicles law. In the third
section the mathematical properties of the Lagrangian formulation of
the multiclass model are analyzed, and it is shown that under certain
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The kinematic wave model is often used in simulation tools to describe
dynamic traffic flow and to estimate and predict traffic states. Dis-
cretization of the model is generally based on Eulerian coordinates,
which are fixed in space. However, the Lagrangian coordinate system,
in which the coordinates move with the velocity of the vehicles, results
in more accurate solutions. Furthermore, if the model includes multiple
user classes, it describes real traffic more accurately. Such a multiclass
model, in contrast to a mixed-class model, treats different types of vehi-
cles (e.g., passenger cars and trucks or vehicles with different origins or
destinations, or both) differently. The Lagrangian coordinate system is
combined with a multiclass model, and a Lagrangian formulation of the
kinematic wave model for multiple user classes is proposed. It is shown
that the advantages of the Lagrangian formulation also apply for the
multiclass model. Simulations based on the Lagrangian formulation
result in more accurate solutions than simulations based on the Eulerian
formulation.
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of the main drawbacks of the current traffic flow simulation tools is
their long computation time, especially if the user needs accurate
results for a large road network. It takes so long to make an accurate
prediction that the information is no longer valuable for real-time
applications by the time it becomes available. Computing time is
also important for evaluating dynamic traffic-management scenar-
ios, especially if an iterative optimization technique is used. Alter-
native model formulations and numerical implementations of the
model are studied to improve the accuracy and the computing time
of the simulation. This paper focuses on solving the model equations
accurately.

F. van Wageningen-Kessels, H. van Lint, and S. P. Hoogendoorn, Faculty of Civil Engi-
neering and Geosciences, Delft University of Technology, Stevinweg 1, P.O. Box
5048, 2600 GA Delft, Netherlands. K. Vuik, Faculty of Electrical Engineering,
Computer Science and Mathematics, Delft University of Technology, Mekelweg 4,
2628 CD Delft, Netherlands. Corresponding author: F. van Wageningen-Kessels,
f.l.m.vanwageningen-kessels@tudelft.nl.

Transportation Research Record: Journal of the Transportation Research Board,
No. 2188, Transportation Research Board of the National Academies, Washington,
D.C., 2010, pp. 29–36.
DOI: 10.3141/2188-04



mild modeling conditions the same advantages hold as for the
Lagrangian formulation of the mixed-class model. The Lagrangian
formulation of the Fastlane model is derived, and it is shown that the
conditions hold for the two-class version of the Fastlane model in the
Lagrangian formulation. In the fourth section both the Lagrangian and
Eulerian formulations of the Fastlane model are applied to a simple
test problem. Simulations show that the Lagrangian formulation gives
more accurate results than the Eulerian formulation.

LAGRANGIAN FORMULATION 
OF MULTICLASS MODEL

In multiclass models the difference in characteristics of classes is
taken into account. Classes can be origin- or destination-specific, or
both, based on differences in, for example, speed and length. In the
latter case the model usually makes a distinction between passenger
cars and trucks; sometimes these classes are subdivided, for example,
into light and heavy trucks. This study considers neither origin- nor
destination-specific classes. However, the approach and the analysis
can be extended to this. The multiclass model in the Lagrangian for-
mulation can be derived partly from the model in the Eulerian formu-
lation. Therefore, the model in its traditional Eulerian formulation is
first introduced, followed by the introduction and derivation of the
Lagrangian formulation.

Multiclass Kinematic Wave Model

The multiclass kinematic wave model is based on the conservation
of vehicles. The conservation equation holds for each user class, each
user class has its own fundamental relation, and the total density is a
weighted summation over all class-specific densities:

Class-specific conservation equation:

Class-specific fundamental relation:

Total density:

where

t = time coordinate;
x = space coordinate;

ρu = average class-specific density, i.e., average number of
vehicles of class u per meter;

ρ = average total (or effective) density (PCE veh/m);
qu = ρu vu = average flow (veh/s) of class u;
vu = average speed (m/s) of class u;

Qu(ρ) = class-specific fundamental relation denoting the class-
specific equilibrium flow as a function of total density;
and

ηu = user class–specific PCE value.

Values for ηu can be either constant (static) or depend on the total 
density (dynamic). In the Fastlane model the PCE values are dynamic.
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Class 1 is usually considered as the reference class. In most practi-
cal models Class 1 represents passenger cars and its PCE value is one.
The PCE value of other classes is related to the PCE value of the
reference class. If the PCE value is dynamic it usually is an implicit
function: the PCE value depends (indirectly) on the total density and
vice versa. For example, in Fastlane the PCE value of trucks depends
on the current speed of both cars and trucks, which depends on the
current density, which in turn depends on the PCE value of trucks.

More generic versions of the multiclass kinematic wave model can
be defined. However, this model is much more generic than the ones
studied in other research (8, 9). One such model (9) has the fundamen-
tal relation Qu(ρ) = cuQ1(ρ) with cu a class-specific constant and
Q1(ρ) the fundamental relation of the reference class. Furthermore,
the summation is unweighted: ηu = 1, ∀u. In this study the generalized
formulation is used as described above. A more detailed discussion of
this multiclass Eulerian model is available elsewhere (7).

Lagrangian Formulation

The multiclass model can also be formulated in Lagrangian coordi-
nates. The model equations are first introduced, and the derivation
is shown below:

Conservation Class 1:

Other conservation classes:

Class-specific fundamental relation:

Average vehicle spacing:

where su = 1/ρu is the average vehicle spacing (m/veh) of class u, and

is the Lagrangian time derivative. Vehicles are numbered opposite to
the driving direction. The vehicle number of User Class 1 is denoted
by n; vehicles of other user classes are not numbered (see Figure 1).
The model in the Lagrangian formulation is a continuum model, like
the original kinematic wave model, and consequently n can take any
real value: it is not integer. The average vehicle spacing of all vehi-
cles in meters per PCE vehicle is denoted by s = 1/ρ. Vu(s) is the class-
specific fundamental relation in Lagrangian formulation, denoting the
class-specific equilibrium vehicle speed as a function of average spac-
ing. For readability reasons in the remainder of the paper, Class 1 is
referred to as (passenger) cars, and it is assumed that there is only one
other class: trucks. The derivation and most of the analysis of the
model can be generalized to more or other classes straightforwardly.
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Derivation of the Lagrangian Formulation

With the definitions

the derivation of the Lagrangian fundamental relation (Equation 6)
from the Eulerian fundamental relation (Equation 2) is straight-
forward. Any fundamental diagram that is valid in the Eulerian for-
mulation is also valid in the Lagrangian formulation, and there is no
restriction on the shape as in Leclercq and Laval (8). Using the def-
initions from Equation 9, the average vehicle spacing (Equation 7)
can be derived from the average density (Equation 3).

Equation 4, the conservation equation for cars, can be derived sim-
ilarly to the mixed-class Lagrangian conservation equation as
described previously by the authors (5). This method boils down to
following a platoon of vehicles over a time period. The new length of
the platoon equals the old length plus the distance traveled by the first
vehicle minus the distance traveled by the last vehicle. By taking an
infinite platoon and following it over an infinite time period, the
Lagrangian formulation of the conservation equation in the mixed-
class model is found. In the multiclass model only members of the
reference class (cars) are numbered, and the procedure as described
above and earlier (5) can be followed to derive the conservation
equation for cars in the Lagrangian formulation (Equation 4).

In Figure 2 an intuitive derivation of the Lagrangian formulation of
the conservation equation for trucks (Equation 5) is illustrated. Vehi-
cle trajectories are drawn in the t, x-plane. The gray box is a control
volume that indicates a platoon of cars with length dn; the platoon is
followed over time dt. Recall that vehicle flow is considered as a con-
tinuum, as in the Eulerian formulation. Therefore, every class is
assumed to be present at every location at every time. However, the
classes have different characteristics and may travel at different speeds.

All trucks that enter the control volume will also leave it (conser-
vation of vehicles). Trucks enter the box either from the left (i.e., they
are initially within the platoon) or from left and above (i.e., they are
overtaken by cars). The number of trucks that are initially in the pla-
toon is the initial length of the platoon divided by their vehicle spac-
ing: dns1,initial/su,initial. The trucks that are overtaken are the same trucks
that pass line segment l. The length of this line segment is the length
of the time period times the speed difference: (v1 − vu)dt. The num-
ber of trucks entering the control volume from left and above is thus
dt(v1,first − vu,first)/su,initial. The number of trucks leaving the control
volume is similarly dns1,end/su,end + dt(v1,last − vu,last)/su,end. With the
conservation of vehicles, Equation 10 is found:

q v

s

s

u u u

u
u

=

=

=

ρ

ρ

ρ

1

1
9

and

( )

van Wageningen-Kessels, van Lint, Hoogendoorn, and Vuik 31

Rearrangement gives

The definition of the derivative is used to find

An infinite control volume is taken (i.e., let dt → 0 and dn → 0),
Equation 12 is applied, and the conservation of vehicles equation for
trucks is found (Equation 5).

Alternatively, the Lagrangian multiclass conservation equations
(Equations 4 and 5) can be derived from the Eulerian multiclass
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FIGURE 1 Vehicles of User Class 1 (usually passenger cars) are
numbered opposite to driving direction.

FIGURE 2 Diagram showing vehicle trajectories in t, x-plane [solid
and broken lines represent trajectories of cars (Class 1, fast) and
trucks (class u, slow), respectively; number of trucks in control
volume (gray box) is conserved].



conservation equation (Equation 1) by using the definitions in Equa-
tion 9 and the Lagrangian time derivative (Equation 8) (6). How-
ever, the derivation presented above is more intuitive and is, in the
authors’ opinion, easier to understand.

ADVANTAGES OF LAGRANGIAN FORMULATION
AND ITS APPLICATION TO FASTLANE

In this section the advantages of the multiclass model in the Lagrangian
formulation in comparison to the Eulerian formulation are studied.
Both the Lagrangian formulation in general and the Lagrangian
formulation of the Fastlane model are analyzed.

Numerical Advantages

The Godunov scheme (also known as the minimum supply–demand
scheme) is widely used for spatial discretization of the kinematic wave
model (10). The scheme uses information either from downstream (in
congestion) or upstream (in free-flow conditions) in the spatial dis-
cretization. Especially when the traffic state changes from free flow to
congestion, or vice versa, this is computationally demanding (11).

The main advantage of the Lagrangian coordinate system is that
the direction of the information flow is always the same, independent
of the traffic state. Traffic is anisotropic: information never travels
faster than traffic (12). Since the coordinate system travels at the
same velocity as the vehicles, information does not travel faster than
the coordinates. This implies that information only flows down-
stream with respect to the coordinate system, that is, in the direction
of increasing vehicle number n, and not necessarily downstream with
respect to the road. This can also be understood in terms of the reac-
tion of drivers: drivers only react to vehicles in front of them, not to
vehicles behind. Therefore, information only travels from one vehi-
cle to its follower. Because information only flows downstream, the
Godunov scheme reduces to an upwind scheme (4). The upwind
scheme is computationally much less demanding and results in more
accurate solutions with less numerical diffusion. Numerical diffusion
occurs in solutions computed with the Godunov scheme whenever 
the Courant–Friedrichs–Lewy condition (Δt/Δx vmax ≤ 1)  is not satis-
fied exactly (i.e., if Δ t/Δx vmax < 1). Because the maximum velocity
in multi-class models is class-dependent, the Courant–Friedrichs–
Lewy condition cannot be satisfied for all classes, and there will be
diffusion for classes slower than the fastest class if the Eulerian for-
mulation is used. In Lagrangian coordinates combined with an
upwind scheme, there is less diffusion. This has been shown theo-
retically and numerically for the mixed-class model (3). In the fourth
section it is shown numerically that this also holds for multiclass
models.

However, some mild modeling conditions need to be satisfied to
guarantee that information only flows downstream, and as a conse-
quence an upwind scheme can be used to solve the equations. For the
two-class model it can be proven (6) that information only flows
downstream if the following four conditions hold:

1. Class 1 is the reference class with a constant PCE value not
larger than the PCE value of Class 2: 1 = η1(ρ) ≤ η2(ρ), ∀ρ ∈
(0, ρmax).

2. Class 1 is the fastest class: v1(ρ) ≥ v2(ρ), ∀ρ ∈ (0, ρmax).
3. The speed is a nonincreasing function of the density: dvu /dρ ≤ 0,

u = 1, 2, ∀ρ ∈ [0, ρmax].
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4. The total density is an increasing function of the class-specific 
density of Class 2: ∂ρ/∂ρ2 > 0, ∀ρ ∈ [0, ρmax].

In practice these conditions are very mild and are expected to hold
for most commonly used models. In the next subsection it is verified
that these conditions hold for the Fastlane model.

Application to the Fastlane Model

Fastlane is a multiclass model, based on the kinematic wave model in
Eulerian coordinates. The model equations are Equations 1 through 3
together with the fundamental diagram:

The class-specific flow is the class-specific density multiplied by
the class-specific velocity. In free flow the velocity is a linear function
of the total density; in congestion the flow is a linear function of the
total density (see Figure 3). In free flow the class-specific velocity is
really class-specific and depends on the maximum speed of the class,
while in congestion the class-specific velocity is equal for each class,
and thus not really class-specific. Fastlane uses the PCE function

where Lu is the average vehicle length of class u, and Tu is the aver-
age minimum time headway of class u. The PCE function implies
that Class 1 is the reference class with η1 = 1. Equations 1 and 3 can
be transformed into the Lagrangian formulation (Equations 4, 5, and
7) as described above. The PCE function (Equation 14) can be
applied in either the Eulerian or Lagrangian formulation. In the
Lagrangian formulation the Fastlane fundamental diagram becomes

as shown in Figure 3. It can easily be verified that a two-class version
of this model formulation satisfies Conditions 1 through 3 above if

• Vehicles of Class 1 are not slower than vehicles of Class 2
(v1,max ≥ v2,max),

• Vehicles of Class 1 are not longer than vehicles of Class 2 
(L1 ≤ L2), and

• Vehicles of Class 1 do not have a longer time headway than
vehicles of Class 2 (T1 ≤ T2).

In practice these conditions are satisfied if passenger cars are
defined as Class 1 and trucks as Class 2, because cars are faster and
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shorter than trucks and have a lower time headway (13). Condition 4
guarantees that if the number of trucks increases, the total density
increases. Obviously, this holds for any physically meaningful model.
Analysis of the condition shows that it is sufficient, but not neces-
sary, if the PCE function is constant or convex. However, the condi-
tion is not satisfied if the PCE value of Class 2 increases too fast if
the total density increases (6). Whether the condition is satisfied for
the Fastlane model depends on the parameter settings in the PCE
function (Equation 14). It was verified that Condition 4 is satisfied
for a wide range of realistic parameters, including the parameters
used in the test problem in the next section.

TESTS AND RESULTS

Both the Eulerian and the Lagrangian formulation of the Fastlane
model are applied on a simple test problem. The simulation results
are compared on their accuracy.

Test Setup

The test problem consists of one link with periodic boundary condi-
tions (ring road) and two vehicle classes: passenger cars and trucks.
Initially the cars are uniformly distributed over the roadway stretch.
The trucks are initially only on one half of the road. The total density
is above the critical density only for this half of the road. A first-
order upwind scheme for discretization of the Lagrangian conser-
vation equations is applied. The Eulerian conservation equations 
are discretized by using the Godunov scheme. An explicit time-
stepping scheme is used. With the application of the Lagrangian
formulation, the following discretized equation is solved:
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where

Δt = time step size,
j = vehicle group number, and

Δn = vehicle group size (n = jΔn).

With the application of the Eulerian formulation, the following
discretized equation is solved:

where i denotes the grid cell, and Δx the grid cell size (x = iΔx). The
minimum supply–demand concept is used to determine the class-
specific flows qu over the cell boundaries. Therefore, first, the total
demand (d ) and supply (s) in each grid cell is calculated:

Second, the total demand and supply is distributed over the
classes 

(du)i = d

and 

(su)i = s

with the effective flow q(ρi) = Σu ηuqu(ρi). Third, the user class–
specific flow over the cell boundary is calculated as the minimum of
the demand and the supply: (qu)i→i+1 = min {(du)i, (su)i+1}.

For fair comparison, the number of vehicle groups in the
Lagrangian formulation is taken equal to the number of grid cells
in the Eulerian formulation. Table 1 shows the parameters, ini-
tial conditions, and numerical settings. The PCE function is an
implicit function: the PCE value of trucks depends on the total
density, which depends in turn on the PCE value. Therefore, the
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FIGURE 3 Multiclass fundamental diagram in (a) Eulerian and (b) Lagrangian formulations 
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PCE values of trucks are approximated by using an iterative 
procedure.

Test Results

Figure 4 shows simulation results based on both the Lagrangian and
Eulerian formulations. For both formulations the simulation shows a
platoon of trucks moving forward in space. After a short time the cars
also group together, and a platoon with a high-car density appears.
Finally, at the end of the simulation there is congestion on the whole
roadway stretch, the total density is almost uniform over space, and
the state is almost in equilibrium.

There is a remarkable difference between the results based on the
Lagrangian and the Eulerian formulations: in the latter much more
diffusion is seen both around the shocks starting at x = 1,400 m and
at the heads and tails of the platoons. By applying shock wave the-
ory, it is found that the model predicts two shocks starting at x =
1,400 m. These shocks are clearly visible in the results based on the
Lagrangian formulation, while in the Eulerian formulation the
shocks diffuse quickly. Shock wave theory also states that in an
equilibrium situation with congestion everywhere and the total den-
sities uniform over the whole roadway stretch, the characteristic
velocity is equal to the vehicle velocity. Therefore, rather sharp edges
at the heads and tails of the platoons toward the end of the simula-
tion are expected. This is clearly visible with the Lagrangian for-
mulation, while with the Eulerian formulation there is much more
diffusion of the platoon.

Note that both for the shocks at the start of the simulation and
the sharp platoon edges at the end of the simulation the diffusion
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is not in the model itself, but is caused by the numerical method.
The method based on the Lagrangian formulation shows less dif-
fusion and is more accurate than the method based on the Eulerian
formulation.

CONCLUSIONS

The Lagrangian formulation of the kinematic wave model with mul-
tiple user classes can be derived in an intuitive way, based on the con-
servation of vehicles. In this new formulation information only flows
downstream with respect to the coordinate system. Therefore, a more
accurate and computationally less demanding spatial discretization
can be applied. Simulation of a simple test problem based on the
Lagrangian formulation is more accurate than the same simulation
based on the Eulerian formulation.

It is concluded that the model equations of the multiclass kine-
matic wave model can be solved more accurately by applying the
Lagrangian formulation. This can lead to more accurate simulation
tools, which can be applied in, for example, real-time traffic flow
prediction and dynamic traffic-assignment problems.

The simulation results based on the Lagrangian formulation are
more accurate due to less numerical diffusion. In future research
the authors will study this diffusion in more detail. Part of this study
was based on a two-class version of the Fastlane model. Future
research includes the applicability of the proposed methods to gen-
eral multiclass models with more than two user classes. The authors
will study whether in more general cases information only flows
downstream with respect to the Lagrangian coordinate system. Fur-
thermore, computing times for the multiclass model in Lagrangian
and Eulerian formulations will be compared and methods to reduce
the computing time will be studied, such as implicit time-stepping
schemes (5).

Another application of the Lagrangian formulation of the kine-
matic wave model is related to traffic state estimation. First, incor-
porating floating car data (such as global positioning system data) in
the Eulerian formulation of the model can be complicated and com-
putationally demanding (14). It would be much more straightforward
to use the Lagrangian formulation to incorporate floating car data in
a traffic state estimation. This approach would be especially useful
when little or no data from static detectors are available. Second,
and more importantly, the discretized kinematic wave model in the
Lagrangian formulation is much less nonlinear then the discretized
model in the Eulerian formulation. Since it is less nonlinear, simple
and more efficient filters (such as an extended Kalman filter) can be
used for traffic state estimation.
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TABLE 1 Parameters, Initial Conditions, and Numerical
Settings of the Test Case

Parameter Value

Maximum density 133 veh/km = 0.133 veh/m

Critical density 25 veh/km = 0.025 veh/m

Maximum speed cars (v1, max) 120 km/h = 33.3 m/s

Maximum speed trucks (v2, max) 85 km/h = 23.6 m/s

Critical speed 85 km/h = 23.6 m/s

Initial density cars 16.7 veh/km = 0.0167 veh/m

Initial density trucks, first half 13.3 veh/km = 0.0133 veh/m

Initial density trucks, second half 0.7 veh/km = 0.0007 veh/m

Vehicle length cars (l1) 7.5 m

Vehicle length trucks (l2) 18 m

Minimum time headway cars (t1) 1.2 m

Minimum time headway trucks (t2) 1.8 s

Time horizon 300 s

Time step size 5 m

Road length 2,800 m

Number of cars per vehicle group 3.33

Number of vehicle groups 14

Grid cell size 200 m

Number of grid cells 14
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FIGURE 4 Simulation results for multiclass kinematic wave model based on Lagrangian and Eulerian formulations [densities (veh/m) are
indicated as colors in t, x-plane; graphs show class-specific densities for cars (a and b) and trucks (c and d ) and total densities (e and f );
curved lines in Lagrangian formulations indicate trajectories of vehicle groups].
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