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Abstract

We discuss numerical schemes for hyperbolic systems occurring in 
uid dynamics that are uniformly accurate and

eÆcient with respect to changes in the equation of state or of the Mach number. A uni�ed method for compressible

and incompressible 
ows and arbitrary equation of the state is presented. The method is an extenssion of an

incompressible scheme to the compressible case using a staggered grid. An application is given for cavitating 
ow

around a hydrofoil, in which the Mach number ranges between 10�3 and 25, and the equation of state is nonconvex.

For Riemann problems for a perfect gas similar accuracy is obtained as for well-established colocated schemes.
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1 Introduction

Standard numerical methods for gasdynamics break down as the Mach number M # 0. Furthermore, in many cases
they need to be redesigned if the equation of state is di�erent from the perfect gas law, expecially if it is nonconvex.
We call a numerical method for hyperbolic systems uniformly e�ective, if it is uniformly applicable to compressible

(M > 0) and incompressible (M = 0) 
ow, and if it can handle arbitrary equations of state. In this paper we present
some developments concerning such methods.

2 A simple hyperbolic system

The simplest nonlinear hyperbolic system is

Vt � uy = 0 ; ut + p(V )y = 0 :

This is called the p-system. It describes one-dimensional 
ow of an inviscid barotropic medium in the Lagrange
coordinate y (a derivation may be found in [17]), with V the speci�c volume, p the pressure and u the velocity. The
linearized version, rewritten as

dt + ux = 0 ; ut + gdx = 0 ;

gives the linearized shallow-water (SW) equations, with d the depth, g the acceleration of gravity, x a Cartesian
coordinate, and unit average depth.

Starting with [10], the SW equations are usually discretized on a staggered grid, with depth nodes at xj = (j � 1=2)h
and velocity nodes at xj+1=2 = jh, with h the mesh size. The popular schemes of [3], [7], [13] and [14] for the full SW
equations are strongly related to the following eÆcient explicit scheme:

d
n+1
j � d

n
j + �u

nj
j+1=2

j�1=2
= 0 ; � = �=h ;

u
n+1
j=+1=2

� u
n
j+1=2 + �gd

n+1=2j
j+1
j = 0 ; d

n+1=2 = (dn + d
n+1)=2 ;

�J.M. Burgers Center and Delft University of Technology, Faculty of Information Technology and Systems, Mekelweg 4, 2628 CD Delft,
The Netherlands, e-mail: P.Wesseling@its.tudelft.nl

ySupported by the Netherlands Organization for Scienti�c Research (NWO)

1



2

with � a time step. Such a scheme is seldom used in gasdynamics, whewre colocated schemes predominate, giving us
two 
avors (staggered and colocated) of numerical schemes for the hyperbolic systems of computational 
uid dynamics.
Because the above scheme has low computing cost and favorable dispersion and dissipation properties, we want to try
it out on the p-system in the Eulerian coordinate x, given by

�t +mx = 0 ; mt + (um + p(�))x = 0 ; � = 1=V ; m = �u :

These are the barotropic Euler equations.

In order to obtain a uni�ed method for compressible and incompressible 
ow, we deviate from the above scheme by
taking momentum implicit in the �rst equation. The resulting scheme is given by

�
n+1
j � �

n
j + �m

n+1j
j+1=2

j�1=2
= 0 ;(1)

m
n+1
j+1=2

�m
n
j+1=2 + �(unmn + p

n+1=2)jj+1j = 0 ; p
n+1=2 = (pn + p

n+1)=2 :(2)

By taking � � 1, the incompressible case is recovered. The incompressible one-dimensional case is trivial, but the
multidimensional case is not. With � � 1, equation (1) becomes a kinematic constraint (solenoidality condition on
the velocity) which has to be satis�ed at the new time level. The freedom to satisfy this constraint is provided by the
unknown pressure values pn+1j in (2), which can be regarded as Lagrange multipliers. With � � 1, the system (1), (2)
reduces to the classical incompressible staggered scheme of [4], so that (1) and (2) make sense both in the compressible
and incompressible case. In (2) we use the �rst order upwind scheme: (um)nj = (um)n

j�1=2
. In one dimension, solving

the implicit system (1), (2) takes little computing time. In more dimensions this can be done eÆciently with the
pressure-correction method, introduced in [4]. First, a prediction is made for the momentum using the old pressure:

m
�

j+1=2 �m
n
j+1=2 + �(unmn + p

n)jj+1j = 0 :

Next, a correction Æm = mn+1 �m� is postulated of the following form:

Æmj+1=2 = ��Æpj
j+1
j ; Æp = (pn+1 � p

n)=2 :

We substitute mn+1 = m� + Æm in (1), and obtain

�
n+1
j � �

n
j � �

2
Æpj

j+1
j + �

2
Æpj

j
j�1 = ��m�j

j+1=2

j�1=2
:

This is linearized as follows:

�
n+1 � �

n �= 2(
d�

dp
)nÆp :

It remains to see whether the resulting scheme converges in the compressible case to a genuine weak solution that
satis�es the entropy condition. To this end we compare with an exact solution of a Riemann problem, given by the
drawn line in Fig. 1. As can be seen from its graph, the equation of state is nonconvex. The symbols in this graph are
to be disregarded here; they have to do with the construction of the exact solution and the application of Oleinik's
entropy condition, discussed in [17], [16]. The quality of the numerical solution in Fig. 1 is found to be equivalent to
that of Osher's scheme in [17], and suggests convergence to the correct weak solution. The staggered scheme above

is signi�cantly simpler than colocated schemes using approximate Riemann solvers (such as Osher's scheme) or 
ux
splitting (such as the AUSM scheme), because only simple central and upwind di�erences are involved, and therefore
the above scheme requires less computing time. It is also versatile, because it allows the equation of state to be
arbitrary.

3 Application to hydrodynamic 
ow with cavitation

The homogeneous equilibrium model (HEM) is a mathematical model for hydrodynamic 
ow with cavitation, in
which the physics is simpli�ed by assuming a one-phase 
uid and constant temperature. An arti�cial equation of
state p = p(�) is adopted, corresponding to water for p larger than a certain value p2, and to vapor below a certain
value p1, with a smooth arti�cial transition for p1 < p < p2. This leads to the kind of equation of state shown in
Fig. 1. The HEM approach to cavitation is followed in [2], [5], [9], [12], [16]. In the wet part of the 
ow, the Mach
number is very low, e.g. M �= 10�3. In the transition regime p1 < p < p2 the speed of sound c =

p
dp=d� becomes
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Figure 1: Solution of Riemann problem with staggered scheme; h = 1=48; � = 0:4; t = 0:2.

very low, so that we have M as high as 25 in the application shown below. Therefore, to use the HEM approach as
it stands, a numerical implementation is required that is truly uniformly e�ective, allowing both very low and more
than hypersonic (ultrasonic?) Mach numbers, and an arbitrary equation of state. In some works, useful results have
been obtained with numerical schemes not satisfying these demands, by modi�cation of the HEM model; for example,
by making the water arti�cially compressible. Such compromises are not needed with the present numerical method.

To apply HEM to cavitating 
ow around bodies, the scheme (1), (2) needs to be generalized to multi space dimensions
and boundary-�tted coordinates. This is done in [16], [18], [19]. Fig. 2 shows a result concerning unsteady sheet
cavitation on the EN ([6]) hydrofoil. Darker shading corresponds to lower density. Cavitation bubbles are captured
as regions of low density. The 
ow pattern is quite similar to what is found in experiment.

Figure 2: Density distribution in cavitating 
ow around EN hydrofoil.
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4 Uni�ed methods for compressible and incompressible 
ows

We will now say a bit more about uni�cation of numerical methods for compressible and incompressible 
ows. The
case of 
ow of a (non-barotropic) perfect gas is considered. The governing equations are the Euler equations of
gasdynamics. It suÆces to consider the one-dimensional case:

�t +mx = 0 ; mt + (um+ p)x = 0 ;

(�E)t + (mH)x = 0 ; E = e+
1

2
u
2
; H = 
e +

1

2
u
2
; 
 = 7=5 :

The equation of state of a perfect gas is p = (
 � 1)�e. Colocated compressible methods may be extended to low
Mach numbers by preconditioning; see [1] and references quoted there. Here we generalize the (inviscid version of)
the staggered incompressible scheme of [4] to the compressible case; see [1] for references to publications following
this approach. Because � = constant in the incompressible case, p must be introduced as primary variable. To avoid
rounding errors for very low Mach numbers, it is advisable to work with the 
uctuation of the pressure rather than
the pressure itself. Therefore the dimensionless pressure ~p is chosen as follows:

~p =
p� p0

�ru
2
r

;

where p0 is the ambient pressure and �r and ur are units of density and velocity. The ambient pressure is given at
a subsonic out
ow or supersonic in
ow boundary. By manipulation of thermodynamic relations and the governing
equations the equation for �E can be replaced by an equation for p. The resulting dimensionless equations are (deleting
tildes):

�t +mx = 0 ; mt + (um+ p)x = 0 ;

M
2
r [pt + (up)x + (
 � 1)pux] + ux = 0 ; M2

r =
�ru

2
r


p0
:

We see that if the reference Mach number Mr # 0 the solenoidality condition of incompressible 
ow is recovered.
The pressure equation is not in conservation form, so it remains to be seen if the Rankine-Hugoniot conditions are
satis�ed.

To enhance accuracy, higher order 
ux-limited schemes (MUSCL) for spatial discretization and Runge-Kutta time
stepping can be used. These are familiar techniques in computational gasdynamics using colocated schemes; see for
example [8]. These techniques are also used in the following scheme:

�
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n
j + �m+1�(u

(m)
�
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m
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(4)
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n+1
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= m
(4)

j+1=2
�

1

2
�Æpj

j+1
j ; Æp = p

n+1 � p
n
;

M2
rfÆpj + �(un+1pn)j

j+1=2

j�1=2
+ �(
 � 1)pnj u

n+1j
j+1=2

j�1=2
g+ �u

n+1j
j+1=2

j�1=2
= 0 :

Here the superscript m 2 f1; 2; 3; 4g is a Runge-Kutta stage counter. The Runge-Kutta method of [11] is used. For

second order spatial accuracy, �
(m)

j+1=2
, (u(m)m(m))j and pn

j+1=2
are approximated with a 
ux-limited scheme, using

the van Albada ([15]) limiter. Substitution of un+1
j+1=2

= (m=�)n+1
j+1=2

gives for Æp a linear system, that is reminiscent

of a discretized convection-di�usion equation. Pressure correction is not included in the Runge-Kutta stages, to
save computing time. The numerical solution of a Riemann problem is compared with the exact solution in Fig. 3.
The maximum Mach number is 2. In this and similar problems the accuracy is found to be comparable to that of
well-established second order (MUSCL) colocated schemes, such as the Osher and AUSM schemes. Apparently, the
staggered scheme satis�es the Rankine-Hugoniot and entropy conditions. Extension to two-dimensional examples is
given in [1]. Stationary contact discontinuities are found to be preserved. Obviously, as Mr # 0 the scheme reduces to
the classical incompressible scheme of [4]. As a consequence, the performance for Mr arbitrary small is good.

We conclude that staggered schemes with pressure correction provide a viable approach to uniformly e�ective numerical
methods for hyperbolic systems.
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Figure 3: Solution of a Riemann problem; � = 0:3; h = 1=48; t = 0:15.
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