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Abstract We present a mathematical model for
Biogrout, which is a technique for soil reinforcement
that is based on microbially induced carbonate pre-
cipitation. The model deals with the entire process,
consisting of fixation of bacteria, as well as of the
subsequent soil reinforcement. The paper deals with
the coupling of two earlier models for bacterial place-
ment and reinforcement, where the construction of the
model is discussed, as well as numerical results. Further,
we present analytical solutions for the constant flow
velocity case. The model is based on the assumption
that the porous medium is stiff.
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1 Introduction

Biogrout is a soil improvement method that is based on
microbially induced carbonate precipitation (MICP).
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The Biogrout process consists of two parts: the
placement of the microbes and the precipitation of
calcium carbonate. Some examples of applications are
as follows:

• prevention of liquefaction [2, 3],
• bore hole stabilisation [4], and
• slope stabilisation [2].

The first step in the Biogrout process is the injection
of bacteria. The bacteria will adsorb onto the porous
matrix. That gives retardation. To fixate the bacteria
onto the porous matrix, a fixation fluid is injected. This
fixation fluid is a solution with a high salinity, and it will
overtake the weakly adsorbed bacteria and strongly fix
them onto the solid matrix. In [7], a model has been
derived to describe the placement of the bacteria.

The second part in the Biogrout process is the in-
jection of reactants. Urea (CO(NH2)2) and calcium
chloride (CaCl2) are injected into the soil. The bacteria
catalyse the hydrolysis of urea, and ammonium (NH+

4 )
and carbonate (CO2−

3 ) are formed. In the presence of
calcium ions (Ca2+), the carbonate precipitates as cal-
cium carbonate (CaCO3). In [9], the reaction equations
are discussed in more detail. The hydrolysis reaction is
given by

CO(NH2)2 + 2H2O
bacteria−−−−→ 2NH+

4 + CO2−
3 . (1)

The precipitation of calcium carbonate happens in sev-
eral steps, depending on the pH. The overall reaction
equation for the precipitation is given by

Ca2+ + CO2−
3 → CaCO3(s). (2)
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Combining the hydrolysis reaction equation (1) and
the reaction equation for the precipitation of calcium
carbonate (2) gives the overall Biogrout reaction
equation:

CO(NH2)2 + Ca2+ + 2H2O(l) → 2NH+
4 + CaCO3(s).

(3)

The side-product ammonium chloride (NH4Cl) has
to be removed. The solid calcium carbonate forms
bridges between the sand grains. These bridges cause
an increase in the strength and stiffness of the soil.

In [5] and [6], a model has been proposed for the
transport and reaction of the reactants and the for-
mation of calcium carbonate, based on the biochemi-
cal reaction Eq. 3. In [5, 6], a homogeneous bacterial
activity was assumed, which is probably not realistic.
Therefore, in [7], a model was derived that describes
the placement of the bacteria. Solving the model equa-
tions gives the distribution of the bacteria. In this paper,
these two models are combined to end up with a model
that describes the placement of bacteria as well as the
transport of the reactants and the formation of cal-
cium carbonate. In Section 2, the (partial differential)
equations are given for both models and shortly dis-
cussed. Further, analytical solutions are presented that
are valid under idealised conditions. In Section 3, it is
described which numerical methods are used to solve
the model equations. Some results of the numerical
simulations with the combined model are presented in
Section 4 as well as a comparison with the model in
which a homogeneous bacterial activity was assumed.
Some discussion and conclusions can be found in
Section 5.

2 Mathematical model

In this section, the model equations are given for the Bi-
ogrout process. In Section 2.1, the (partial differential)
equations are given for the placement of the bacteria,
whereas the equations for the precipitation of calcium
carbonate are presented in Section 2.2. Finally, some
analytical solutions are derived.

2.1 Model equations for the placement of the bacteria

The first step in the Biogrout process is the injection
of bacteria. These bacteria will partly adsorb onto the
solid matrix. This adsorption gives retardation. Next, a
fluid with high salinity is injected into the subsoil. This
solution acts as a fixation fluid to the bacteria. This fluid

will overtake the adsorbed bacteria and strongly fixate
them onto the matrix of the porous media. When, later
on, the suspended bacteria are flushed away, the fixated
bacteria stay in place and will play an important role in
the precipitation of calcium carbonate, which is the sec-
ond part in the Biogrout process. For completeness, we
give the model equations for the placement of bacteria,
as derived in [7].

The model for the placement of bacteria contains
three phases of bacteria: bacteria in suspension, ad-
sorbed bacteria and fixated bacteria. Concentration
Cbac is defined as the bacterial concentration in sus-
pension, concentration C

bac
is the concentration of ad-

sorbed bacteria and Sbac is the concentration of fixated
bacteria. Note that, for convenience, the concentrations
C

bac
and Sbac have the same unit as Cbac, although the

adsorbed and fixated bacteria are no longer in suspen-
sion but adsorbed or fixated onto the porous matrix.
The following differential equations are derived for the
concentrations of the bacteria:

∂
(
θCbac

)

∂t
= ∇ · (

Dbacθ∇Cbac) − ∇ · (
qCbac)

− θrads + θrdes, (4)

∂
(
θC

bac
)

∂t
= θrads − θrdes − θrfix, (5)

∂
(
θ Sbac

)

∂t
= θrfix, (6)

In these equations, θ is the porosity, Dbac is the disper-
sion tensor, q is the Darcy flow velocity which relates
to the pore water flow velocity v as q = vθ , rads is the
adsorption reaction rate, rdes is the desorption reaction
rate and rfix is the fixation reaction rate. The left-hand
side of Eqs. 4, 5 and 6 models accumulation, the first
term at the right-hand side of Eq. 4 represents the
dispersion and diffusion of the bacteria and the second
term is the advection term. Since the adsorbed and
fixated bacteria can not be transported, there are no
dispersion/diffusion and advection terms in Eqs. 5 and
6. The other terms in Eqs. 4, 5 and 6 stand for the
adsorption, desorption and fixation reactions. These
equations show that it is assumed that only adsorbed
bacteria are fixated (only Eqs. 5 and 6 contain a fixation
reaction term).

In the case of an equilibrium-controlled adsorption,
the concentration of the adsorbed species tend to the
adsorption isotherm. In the Biogrout process, there are
both temporarily adsorbed and permanently adsorbed
(fixed) bacteria. The adsorption isotherm ϕ(Cbac) de-
pends on the concentration of bacterial cells in suspen-
sion (Cbac) and may also depend on properties of the
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microorganisms, the porous medium and the pH. It has
been assumed that the equilibrium of the permanently
adsorbed bacteria is equal to βϕ(Cbac) and that the
equilibrium of the temporarily adsorbed bacteria is
equal to (1 − β)ϕ(Cbac). The fraction β ranges between
0 and 1. Its value depends on the concentration of the
fixation fluid Cfix but may also depend on properties of
the microorganisms, the pH and the porous medium.

As a driving force for the adsorption reaction, the
difference between the adsorption isotherm and the
concentration of the adsorbed (temporarily or perma-
nently) bacteria is used. Adsorption only takes place
when the adsorption isotherm is larger than the concen-
tration of the adsorbed and fixated bacteria. That gives
the following adsorption reaction rate:

rads = kads

(
ϕ(Cbac) −

(
C

bac + Sbac
))

+
, (7)

where kads is the adsorption reaction rate constant. The
notation (.)+ considers the positive part of an expres-
sion and has been defined as (.)+ := max(0, .).

In the same way, the driving force for the fixation
reaction is the difference between concentration S and
its equilibrium βϕ(Cbac) and fixation only takes place
if Sbac is smaller than its equilibrium. We multiply this
driving force by the concentration of adsorbed bacteria

C
bac

to guarantee that bacteria only can be fixated if
there are adsorbed bacteria present, hence

rfix = kfixC
bac (

βϕ
(
Cbac) − Sbac)

+ . (8)

In this equation, kfix is the fixation reaction constant.
As a reaction rate for desorption (the opposite phe-

nomenon of adsorption), the following equation was
derived:

rdes = kdes

((
C

bac − (1 − β)ϕ
(
Cbac)

)

+ (
Sbac − βϕ

(
Cbac))

−
)

+
, (9)

where kdes is the desorption reaction rate. The nota-
tion (.)− has been defined as (.)− := min(0, .), which
implies that only the negative part of an expres-
sion is considered. Again, the driving force is the
difference between the concentration of temporarily

and permanently adsorbed bacteria (respectively, C
bac

and Sbac) and their equilibria (respectively, being (1 −
β)ϕ(Cbac) and βϕ(Cbac)). Desorption only takes place
if the difference is positive. Otherwise, it would be
adsorption. The term (Sbac − βϕ(Cbac)) is only consid-
ered if it is negative for the following reason: Con-
sider the case that Sbac is larger than its equilib-
rium, Sbac > βϕ(Cbac) (which can happen, if Cbac is

decreasing) and that C
bac

is smaller than its equilib-

rium, C
bac

< (1 − β)ϕ(Cbac), while the sum of adsorbed
bacteria is larger than the adsorption isotherm, C

bac +
Sbac > (1 − β)ϕ(Cbac) + βϕ(Cbac) = ϕ(Cbac). The latter
implies that there is a driving term for desorption and
that the concentration of temporarily adsorbed bacteria

C
bac

will decrease. However, this temporarily adsorbed
bacteria concentration is already smaller than its equi-
librium, which would give adsorption rather than des-
orption. Hence, if Sbac is larger than its equilibrium,
the difference should not contribute to desorption. That
explains why this difference is only taken into account
if it is negative.

The ratio β depends on the concentration of fixation
fluid Cfix. As a relation between β and the concentra-
tion of fixation fluid, the following Monod equation is
used:

β = β0
Cfix

Km,fix + Cfix
, (10)

for some positive constant β0.
For this concentration of fixation fluid, the following

partial differential equation is derived:

∂
(
θCfix

)

∂t
= ∇ · (

Dfixθ∇Cfix) − ∇ · (
qCfix) , (11)

where Dfix is the dispersion tensor. The left-hand side
of this equation models accumulation, the first term at
the right-hand side stands for dispersion and diffusion
and the last term is the advection term.

For the simulations in this paper, a Langmuir adsorp-
tion isotherm is used, as given in [10]:

ϕ(Cbac) = KlCmaxCbac

1 + KlCbac
, (12)

where the positive constant Kl denotes the Langmuir
constant and Cmax is the maximum adsorption capacity.

A differential equation for the flow is given in the
next subsection.

2.2 Model equations for the precipitation of calcium
carbonate

After the placement of bacteria, urea (CO(NH2)2) and
calcium chloride (CaCl2) are injected into the soil.
The bacteria provide the hydrolysis of urea accord-
ing to reaction (1). Carbonate (CO2−

3 ) and ammonium
(NH+

4 ) are formed. The carbonate precipitates with
the calcium (Ca2+) as calcium carbonate (CaCO3), see
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precipitation reaction (2). The solid calcium carbonate
causes a (slight) decrease in porosity and in perme-
ability, which has an influence on the flow and the
pressure. The hydrolysis and precipitation reactions
influence the density of the solution. In [5, 6], partial
differential equations are given for the concentration
of urea, calcium chloride, ammonium chloride and cal-
cium carbonate, for the pressure and the flow, as well as
relations for the porosity, permeability and density of
the fluid. In this subsection, we repeat them and shortly
discuss them.

We start with the partial differential equations for
the aqueous species:

∂(θCi)

∂t
= ∇ · (θD · ∇Ci) − ∇ · (qCi) + niθrhp. (13)

In this equation, θ is the porosity, Ci is the dissolved
concentration of species i, i ∈ {urea, Ca2+, NH+

4 } with
M (equal to kilomoles per cubic meter) as a unit, D
is the dispersion tensor, q is the Darcy velocity, ni

is a constant that deals with the stoichiometry in the
biochemical reaction Eq. 3 and rhp is the reaction rate
of the production of calcium carbonate, which is a
function of the urea concentration and the bacterial
concentrations. From the stoichiometry of reaction (3),
the values of ni for the various aqueous species are
given by nurea = −1, nCa2+ = −1 and nNH+

4
= 2.

The left-hand side of Eq. 13 stands for the accu-
mulation. In the right-hand side, we have terms for
dispersion/diffusion, for the advection and for the bio-
chemical reaction (3).

For the reaction rate rhp of Eq. 3, the following
relation has been used:

rhp = vmax
Curea

Km,urea + Curea

(
Cbac + C

bac + Sbac
)

. (14)

Here, vmax is the bacterial conversion rate constant and
Km,urea ≥ 0 is the saturation constant.

For the concentration of the solid calcium carbonate
CCaCO3 , we have the following differential equation:

∂CCaCO3

∂t
= mCaCO3θrhp. (15)

In this equation, mCaCO3 is the molar mass of calcium
carbonate, which is used to convert moles into mass.
Since it has been assumed that the calcium carbonate
is not transported, there are no transport terms in the
differential equation. Hence, Eq. 15 only contains an
accumulation term and a reaction term.

The solid calcium carbonate that is formed in the
pores causes a decrease in porosity. The difference
(CCaCO3(t) − CCaCO3(0)) gives the amount of calcium

carbonate that has been formed per unit of volume.
Division by the density of calcium carbonate ρCaCO3

gives the decrease in pore volume per unit of volume.
That leads to the following relation between the cal-
cium carbonate concentration and the porosity:

θ(t) = θ(0) − CCaCO3(t) − CCaCO3(0)

ρCaCO3

. (16)

For the flow, we use the continuity equation that was
derived in [8], which is an adaptation of the differential
equation derived in [6].

∇ · q = Kθrhp. (17)

The constant K has been defined as

K :=
(

mCaCO3

ρCaCO3

− (1 − Vs)

)
. (18)

In this definition, 1 − Vs is the decrease of liquid vol-
ume per number of converted urea particals according
to the biochemical reaction (3). In [8], we compared
Eq. 17 to another differential equation for the flow:

∂ (ρθ)

∂t
= −∇ · (ρq

) − mCaCO3θrhp. (19)

The results were very similar, at least in 1-D, but Eq. 17
turned out to be more stable than Eq. 19. We also note
that Eq. 17 is consistent with the Oberbeck–Boussinesq
approximation as rhp → 0, i.e. in absence of the
reaction.

As a relation between the flow and the pressure p,
Darcy’s law is used [10]:

qx = −kx

μ

∂p
∂x

, (20)

qy = −ky

μ

∂p
∂y

, (21)

qz = −kz

μ

(
∂p
∂z

+ ρlg
)

. (22)

In Darcy’s law, ki is the intrinsic permeability in the var-
ious coordinate directions, i ∈ {x, y, z}, μ is the viscosity
of the fluid, ρl is the density of the fluid and g is the
gravitational constant.

The Kozeny–Carman equation is used to determine
the intrinsic permeability. This equation is an empiri-
cal relation between the intrinsic permeability and the
porosity that is commonly used in ground water flow
modelling (see [1]):

k = kx = ky = kz = (dm)2

180
θ3

(1 − θ)2 . (23)

In this relation, dm is the mean particle size of the sand.
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Table 1 Boundary conditions
for the various concentrations
and the flow for the
one-dimensional
configuration

�1 �2

Phase 1 Phase 2 Phase 3 Phase 1–3

Cbac (Dθ∇C − qC) · n = qincin (Dθ∇C − qC) · n = 0 (Dθ∇C − qC) · n = 0
∂C
∂n

= 0

Cfix (Dθ∇C − qC) · n = 0 (Dθ∇C − qC) · n = qincin (Dθ∇C − qC) · n = 0
∂C
∂n

= 0

Curea (Dθ∇C − qC) · n = 0 (Dθ∇C − qC) · n = 0 (Dθ∇C − qC) · n = qincin
∂C
∂n

= 0

CCa2+
(Dθ∇C − qC) · n = 0 (Dθ∇C − qC) · n = 0 (Dθ∇C − qC) · n = qincin

∂C
∂n

= 0

CNH+
4 (Dθ∇C − qC) · n = 0 (Dθ∇C − qC) · n = 0 (Dθ∇C − qC) · n = 0

∂C
∂n

= 0

q q = qin q = qin q = qin

For the fluid density, the empirical relation that is
given in [6] is used:

ρl =1000+15.4996Curea+86.7338CCa2+ +15.8991CNH+
4 .

(24)

The bacteria hardly influence the density. Hence, they
are not taken into account in the density calculation.

Substituting Eqs. 20, 21 and 22 into Eq. 17, using
relation (23), gives a partial differential equation for
the pressure, which can be used to solve for the flow
pattern if the boundary conditions are given in terms of
pressure, or if density differences influence the flow.

∇ · q = ∇ ·
(

− k
μ

(∇ p + ρlgez)

)
= Kθrhp. (25)

Here, ez is the unit vector in vertical direction, taken
positive upwards.

2.3 Boundary conditions and initial conditions

We consider a one-dimensional configuration, which
corresponds to a column. We take a line with a length of
1 m, with inflow at the left-hand side (�1) and outflow
at the right-hand side (�2).

The injection strategy exists of three phases. Dur-
ing phase 1, from time t = T0 = 0 h until time t = T1,
bacteria are injected. During phase 2, from time t = T1

until time t = T2, a fixation fluid is injected. The third

phase is from time t = T2 until time t = Tend. During
this phase, urea and calcium chloride are injected.

Table 1 gives the boundary conditions for the one-
dimensional configuration.

Initially, all concentrations are equal to zero. The
initial porosity is equal to some constant θ0. Since the
partial differential equations for the concentration of
urea and the concentration of calcium ions are the
same, as well as the initial and boundary conditions,
both concentration–distributions are identical. There-
fore, we only consider the concentration of urea. We
use the parameter values given in Table 2.

2.4 Analytical solution

In this subsection, an analytical solution is derived for
a simplified version of system (4)–(18). For the ana-
lytical solution, we restrict ourselves to one dimension.
Furthermore, the reaction constants are infinitely large:
kads, kdes, kfix → ∞ and dispersion and diffusion are
neglected: Di = 0 for i ∈ {bac, fix, urea, Ca2+, NH+

4 }.
The decrease of the porosity and the change of liquid
volume as a result of the reaction are also neglected:
θ(x, t) = θ0 and K = 0. As we consider one- dimen-
sional flow without sinks and sources and a constant
porosity, the pore water velocity v is constant.

The analytical solution for the concentration of sus-
pended bacteria Cbac, the concentration of temporarily

adsorbed bacteria C
bac

and the concentration of fixated

Table 2 Values that are
taken for the various
parameters

αbac = 0.001 m, αfix = 0.001 m, αurea = 0.001 m,
αCa2+ = 0.001 m, αNH+

4
= 0.001 m, Dm,bac = 10−9 m2/s,

Dm,fix = 10−9 m2/s, Dm,urea = 10−9 m2/s, Dm,Ca2+ = 10−9 m2/s,
Dm,NH+

4
= 10−9 m2/s, Kl = 0.5 [1], Cmax = 1 [1],

β0 = 0.505 [1], Km,urea = 0.01 kmol/m3, Km,fix = 0.01 kmol/m3,
mCaCO3 = 100.1 kg/kmol, ρCaCO3 = 2710 kg/m3, Vs = 0.97035 m3/kmol,
dm = 200 μm, g = 9.81 m/s2, θ0 = 0.35 [1],
qin = 0.35 m/h, vmax = 0.72 kmol/m3/h, cin = 1 [1] or kmol/m3,
T1 = 0.5 h, T2 = 1.0 h, Tend = 2.0 h.
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bacteria Sbac are derived in [7]. We give the analytical
solution for Cbac:

Cbac =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for (t, x) ∈ (0, T1) × (0, s(t)) ∪ (T1, T3) × (xR(t), s(t));
0 for (t, x) ∈ (T1, ∞) × (0, xL(t)) ∪ R

+ × (s(t), ∞);
1
Kl

⎛

⎝

√√
√
√ (1 − β(1))KlCmax

x
t−T1

v − x
t−T1

− 1

⎞

⎠ for (t, x) ∈ (T1, ∞) × (xL(t), min(xR(t), s(t))),
(26)

where the shock speed s(t) is given by

s(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vt
1 + ϕ(1)

for t < T3;

v(1 + Kl)T3

1 + Kl + KlCmax
+

∫ t

T3

v

√
(1 − β(1))KlCmax(t̄ − T1)

√
(1 − β(1))KlCmax(t̄ − T1) + KlCmax

√
s(t̄) − (t̄ − T1)

dt̄ for t > T3,
(27)

and the location of the endpoints of the constant states
are determined by

xL = v(t − T1)

1 + (1 − β(1))KlCmax
; (28)

xR = v(t − T1)

1 + (1−β(1))KlCmax
(1+Kl)2

. (29)

Time T3 is the time at which the shock speed of the
bacteria changes, which is calculated from

T3 =
(1+Kl)

2

KlCmax
+ (1 + Kl)

Kl + β(1)
T1. (30)

The concentrations of temporarily adsorbed bacteria

C
bac

and fixated bacteria Sbac are determined as a func-
tion of the concentration of suspended bacteria Cbac:

C
bac = (

1 − β
(
cfix)) KlCmaxCbac

1 + KlCbac
, (31)

Sbac = max
0≤t̄≤t

{

β
(
cfix) KlCmaxCbac

1 + KlCbac

}

, (32)

see [7] for a derivation.
In [7], the ratio β is given by β(Cfix) = β0Cfix. In this

article, we use the more complex but also more physical
relation β(Cfix) = β0

Cfix

Km,fix+Cfix , see relation (10). Here,
β0 has a somewhat larger value, such that the value of
β(1) is the same as for the case in [7].

In this article, the fixation fluid is only injected for
a finite time, while in [7], the injection of fixation fluid
is never stopped. In this article, a solution containing

Ca2+ is being injected after the injection of fixation
fluid. The Ca2+ is needed for the precipitation reaction
but also acts as a fixation fluid due to its high salinity.
Hence, the solution in [7] is still valid for this study.

The analytical solution for the concentration of urea
is constructed with the method of characteristics. Along
characteristics, we have

d
dt

Curea(t, x(t)) = Curea
t + Curea

x x′(t)

= −vmax
Curea

Km,urea + Curea

×
(

Cbac + C
bac + Sbac

)
, (33)

with

x′(t) = v. (34)

The injection of the urea starts at time T2. This time
has been chosen in such a way that the urea does not
overtake the non-fixated bacteria within the domain.
We define xfu as the position of the urea front. If xfu,
xL < L, it should hold that

xfu = v(t − T2) < xL. (35)

Hence, everywhere in the domain where the urea con-
centration is non-zero, only fixated bacteria are left.
The length of the domain L has been chosen such that
finally a constant concentration of fixated bacteria is
reached, which is the case if L < s(T3). Therefore, on
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(0,T
2
) x →

t
↑

←
C(x,T

2
)=0

←C(0,t)=1 ← x=v(t−T
2
)

C=0
 ↓

K m
 ln

(C 0
/C

)+
C 0

−C
=ω(t−

t 0
)↑

Fig. 1 The (x-t) diagram for the concentration of urea. In
this diagram, we have that C = Curea, C0 = Curea

0 and ω =
vmaxβ(1)

KlCmax
1+Kl

the locations where the concentration of urea is non-
negative, it holds that

Cbac + C
bac + Sbac = Sbac = β(1)

KlCmax

1 + Kl
, (36)

which is a constant. This constant is substituted into
Eq. 33.

A solution to Eq. 33 is the trivial solution:

Curea(x, t) = 0. (37)

The non-trivial solution can be found by application of
separation of variables on Eq. 33 to give the following
implicit solution:

Km,urea ln
(

Curea
0

Curea

)
+ Curea

0 − Curea

= vmaxβ(1)
KlCmax

1 + Kl
(t − t0), (38)

with Curea
0 the concentration at time t0.

Figure 1 displays the (x-t)-diagram for the concentra-
tion of urea.

The factors that determine the concentration of urea
at time t and location x for the non-trivial case are the
initial concentration and the time difference between
time t and the starting point of the characteristic on the

t-axis t0. With Eq. 34, we find that this time difference
equals t − t0 = x/v and hence

Km,urea ln
(

Curea
0

Curea

)
+ Curea

0 − Curea

= vmaxβ(1)
KlCmax

1 + Kl
(t − t0)

= vmaxβ(1)
KlCmax

1 + Kl

x
v
. (39)

That implies that the concentration of urea has a fixed
value on a fixed position x for a time t > T2 + x/v.
Further, Curea = 0 for t < T2 + x

v
. These identities will

be used in the construction of the solution for the
calcium carbonate concentration.

The partial differential equation for the concentra-
tion of calcium carbonate is given in Eq. 15, which
contains reaction rate rhp. This reaction rate is given in
Eq. 14. Substituting relation (36) in this rate gives the
following differential equation for the concentration of
calcium carbonate:

∂CCaCO3

∂t
= mCaCO3θrhp

= mCaCO3θvmaxβ(1)
KlCmax

1 + Kl

Curea

Km,urea + Curea
.

(40)

Integrating this equation leads to

CCaCO3(x, t) =
∫ t

0

∂CCaCO3

∂ t̄
dt̄

= mCaCO3θvmaxβ(1)
KlCmax

1 + Kl

×
∫ t

0

Curea

Km,urea + Curea
dt̄. (41)

Since it holds that Curea = 0 for 0 ≤ t̄ < T2 + x/v and
since Curea is equal to a constant for t̄ ≥ T2 + x/v on a
fixed position x, Eq. 41 becomes

CCaCO3(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for t < T2 + x
v

;

mCaCO3θvmaxβ(1)
KlCmax

1 + Kl

∫ t

T2+
x
v

Curea

Km,urea + Curea
dt̄; for t ≥ T2 + x

v
.

(42)

=

⎧
⎪⎨

⎪⎩

0 for t < T2 + x
v

;

mCaCO3θvmaxβ(1)
KlCmax

1 + Kl

Curea

Km,urea + Curea

(
t − T2 − x

v

)
; for t ≥ T2 + x

v
.

(43)

= mCaCO3θvmaxβ(1)
KlCmax

1 + Kl

Curea

Km,urea + Curea

(
t − T2 − x

v

)

+
. (44)
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In the derivation of these analytical solutions, we sub-
stituted relation (36) into rate (14). According to this
equation, the reaction rate is related to the concentra-
tion of urea via a Monod equation. For completeness,
we consider the case that the rate is linear in the urea
concentration. Then, we have

rhp = vmaxβ(1)
KlCmax

1 + Kl
Curea. (45)

Then, the analytical solution for the concentration of
urea and calcium carbonate reads as follows:

Curea(x, t)=Curea
0 (x−vt)exp

{

−vmax
KlCmax

1+Kl
t

}

, (46)

=

⎧
⎪⎨

⎪⎩

0 for t < T2 + x/v;
exp

{

−vmax
KlCmax

1 + Kl

x
v

}

for t ≥ T2 + x/v,

(47)

CCaCO3(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for t < T2 + x
v

;

(t − T2 − x/v)vmaxβ(1)
KlCmax

1 + Kl
θ exp

{

−vmax
KlCmax

1 + Kl

x
v

}

for t ≥ T2 + x
v

.
(48)

3 Numerical methods

The differential equations for the pressure, the flow and
the concentrations of fixation fluid, bacteria and the
aqueous species are solved by the standard Galerkin
finite element method. The weak formulations have
been derived by multiplication by a test function
η ∈ H1(�) and integration over the domain �. The
Newton–Cotes quadrature rules are used for the de-
velopment of the element matrices and vectors. Fur-
thermore, line elements are used, as well as linear basis
functions. For the time integration, the Euler backward
method is used.

The differential equations for the concentrations of
bacteria (Eqs. 4, 5 and 6) are coupled due to the reaction
terms rads (Eq. 7), rdes (Eq. 9) and rfix (Eq. 8). Due to
the Langmuir isotherm (Eq. 12), the differential equa-
tions are non-linear in the concentration of suspended
bacteria Cbac. Hence, Newton’s method is used to solve
for the differential equations for the concentrations of
bacteria. By doing so, the three various concentrations
of bacteria come together in one matrix-vector system.

Since the differential equation for the concentration
of urea is also non-linear in the concentration, due to
the reaction term, Newton’s method is used to calculate
the concentration of urea.

The partial differential equation for the concentra-
tion of calcium carbonate, Eq. 15, can be considered as
an ordinary differential equation in each grid point. To
calculate the concentration of calcium carbonate, the
following scheme is used:
(
CCaCO3

)n+1 = (
CCaCO3

)n + �tmCaCO3θnrn+1
hp , (49)

which uses the porosity θ from the previous time step
and the reaction rate rhp (Eq. 14) from the current time
step.

As a step size for the time integration is taken �t =
1

640 h and as the length of an element is taken �x =
1

640 m. For a more detailed description of the numerical
methods, see [5–7].

At each time step, the equations are solved
sequentially in the following order: first, the flow is
calculated. This can be done by solving the differential
equation for the pressure (25), and from this pressure,
the flow is calculated with Darcy’s law, Eqs. 20, 21
and 22. Since the pressure is not involved in the
boundary terms for the flow in this case, the flow can
be calculated directly from Eq. 17. Subsequently,
the partial differential equation for the concentration
of the fixation fluid Eq. 11 is solved. Then, the
equations for the concentrations of bacteria Eqs. 4,
5 and 6 are solved as a coupled system, applying
Newton’s method. These concentrations partly
determine the reaction rate rhp (Eq. 14) of the
biochemical reaction, given by Eq. 3. The partial
differential equation for the urea concentration
Eq. 13 is solved, again, using Newton’s method, and
the reaction rate rhp Eq. 14 is updated. Usually,
the Newton method converges in approximately
three iterations. Finally, the concentration of
ammonium (CNH+

4 ) and calcium carbonate (CCaCO3 )
are calculated sequentially and the porosity (θ),
intrinsic permeability (k) and fluid density (ρl)
are updated by using Eqs. 13, 15, 16, 23 and 24,
respectively.
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4 Results

In this section, some analytical and numerical results
are shown, as well as a comparison of the current model
and the model with a homogeneous bacterial activity
that was used in [5, 6]. The numerical results are in
Section 4.1, the comparison of the two models is in
Section 4.2, the analytical results are in Section 4.3
and the comparison of the numerical and analytical
solutions is in Section 4.4.

4.1 Numerical results

We start with the one-dimensional configuration. Nu-
merical simulations have been done for two different
values of the adsorption, desorption and fixation re-
action rate constant. The first value is Kbac := kads =
kdes = kfix = 10 h−1. The results are displayed in the left
graphs of Fig. 2. As a second value has been chosen
Kbac = kads = kdes = kfix = 1,000 h−1. The results for
that value are displayed in the right graphs of Fig. 2. A
small reaction constant means that the process is slow.
The larger the reaction constant is, the more the result
tends to the equilibrium.

The top graphs of Fig. 2 show a situation in the
first phase, in which bacteria are injected. The graphs
show a non-zero concentration of suspended bacteria

(Cbac) and adsorbed bacteria (C
bac

, in the legend called
Cbar). The concentration of adsorbed bacteria in the
equilibrium case is a function of the concentration
of suspended bacteria as described by the Langmuir
isotherm (Eq. 12). The bacteria enter the domain with
a steep front, somewhat smoothened by dispersion and
diffusion. Retardation of the front takes place due to
the adsorption process. The top right graph of Fig. 2
shows a situation that is close to equilibrium. The
top left graph, where the adsorption process is slow
compared to the top right graph, has a very smooth
front. Since, in this phase, fixation fluid is not yet being
injected, there are no fixated bacteria.

The second row of Fig. 2 shows a situation in the
second phase, where fixation fluid is injected. The con-
centration of fixated bacteria, Sbac, is no longer zero.
Since in the right graph, the fixation rate constant is
larger than in the left graph and the concentration of
fixated bacteria is also higher there. In the left graph,
the concentration of adsorbed bacteria is larger than
the concentration of suspended bacteria in a part of the
domain. The reason is the slow desorption process.

The bottom four graphs of Fig. 2 display some shots
of phase 3, where urea and calcium chloride are in-

jected. Note that the calcium carbonate concentration
is scaled, such that the range is comparable to the
range of the other graphs. Since the concentration of
fixated bacteria in the left graphs is lower than in the
right graphs, the concentration of calcium carbonate is
lower as well. An exception to this situation is the zone
around x = 0.6 m in the bottom graphs. Although the
concentration of fixated bacteria is smaller for a smaller
Kbac-value, there are still adsorbed and suspended bac-
teria left in that zone, which also contribute to the
hydrolysis of urea and hence to a higher calcium car-
bonate concentration. The calcium carbonate concen-
tration in the left graphs has its maximum somewhere
in the middle of the domain, whereas in the right graph,
the maximum is close to the injection point.

Both for the calculation of the concentration of the
bacteria and the concentration of urea, Newton itera-
tions are performed. As long as the concentrations are
constant, only one iteration is needed for convergence.
Else, for the calculation of the urea concentration,
approximately three iterations are needed for conver-
gence and approximately three or four iterations are
needed for the calculation of the bacteria. Although
the number of iterations that is needed for convergence
is almost similar, the CPU time per iteration differs
significantly. It takes nine times as much CPU time
per Newton iteration to calculate the (three) concen-
trations of bacteria as to calculate the urea concentra-
tion. The reason is that the matrix that is built for the
calculation of the concentrations of the bacteria is nine
times as large as the matrix for the calculation of the
urea concentration since the concentrations of bacteria
are solved from one matrix-vector system.

4.2 Results of the comparison between the current
model and the model with a homogeneous
distribution of bacteria

In this section, the current model is compared to the
previous model, where the previous model assumes a
homogeneous distribution of bacteria. As in the previ-
ous subsections, this comparison is carried out for two
Kbac-values: Kbac = 10 h−1 and Kbac = 1,000 h−1. To be
able to make a good comparison, the average of the
concentration of fixated bacteria in the current model
is used as a value for the (constant) concentration of
fixated bacteria in the previous model. Some results of
this comparison are shown in Fig. 3. The left graphs dis-
play the results for the low Kbac-value, Kbac = 10 h−1,
and the right graphs show the results for the high Kbac-
value, Kbac = 1,000 h−1.
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The top graphs show the concentration of fixated
bacteria at time t = 2 h. The right plot, which displays
the situation for a high Kbac-value, shows two graphs
that are almost similar. Only at the inflow boundary
that a large difference is visible. That has the following

reason. First, a pulse with bacteria is injected, without
injection of fixation fluid. There is no fixation fluid
in the domain, so there are only non-fixated bacteria.
Then a pulse with fixation fluid is injected. Bacteria are
only fixated at that location where both bacteria and a

Fig. 2 Numerical solution
for the concentration of
suspended, temporarily
adsorbed and fixated bacteria
and the concentration of
fixation fluid, urea and
CaCO3 as a function of
location at several times
(t = 0.2 h, t = 0.7 h, t = 1.2 h
and t = 1.7 h) for
Kbac = 10 h−1 (left graphs)
and Kbac = 1,000 h−1

(right graphs)
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Fig. 3 Several concentrations
as a function of location
at time t = 2 h, for
Kbac = 10 h−1 (left graphs)
and Kbac = 1,000 h−1

(right graphs). Top graphs
concentration of fixated
bacteria, middle graphs urea
concentration and bottom
graphs CaCO3 concentration
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fixation fluid are present. The latter can only happen
where the fixation fluid is overtaking the bacteria since
they are injected after each other. The reason that they
are not injected together is that this would result in
clogging in the injection filter, that leads to stoppage of
the filter. Hence, the injection point is a critical point,
where (almost) no bacteria are fixated.

The middle graphs of Fig. 3 show the urea concen-
tration at time t = 2 h. For the high Kbac-value, there is
visually no difference. But also in the left plot, there is
only a small difference between the graphs.

The bottom graphs display the concentration of cal-
cium carbonate. Again, the concentrations from the
high Kbac-value are similar except near the injection
point. The concentrations, calculated with the low Kbac-
value, however, show a large difference.

It can be concluded that, if the concentration of
fixated bacteria is similar for both models, the calcium
carbonate profile is similar as well. A high reaction
constant leads to a homogeneous bacterial distribution,
at least for the first part of the domain, except for the
region around the injection point. A low reaction rate
constant, corresponding to slow adsorption, desorption
and fixation processes, leads to a non-homogeneous
bacterial distribution and hence to a different calcium
carbonate profile. An instantaneous equilibrium, how-
ever, is not a guarantee that the bacterial distribution
will be homogeneous. The concentration of fixated
bacteria does not depend on the length of the domain.
Since only a finite amount of bacteria is injected, the
domain can be chosen so large that only around the
injection boundary bacteria are fixated and that there
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are no bacteria in the rest of the domain. This can also
be seen from the analytical solution for the instanta-
neous equilibrium, Eqs. 26, 31 and 32. In order to get
a homogeneous distribution of bacteria in this case,
more bacteria should be injected, possibly via multiple
injection points.

4.3 Analytical results

The analytical solution for the equilibrium case, while
dispersion, diffusion, decrease of the porosity and the
change of liquid volume are neglected, is shown in
Fig. 4, as a reaction rate has been taken Eq. 14. This
figure shows the analytical solutions at the same times
as the numerical solutions are shown (Fig. 2). The top
left graph shows a situation of the first phase where
only bacteria are injected. The top right graphs displays
a shot of the second phase, in which fixation fluid is
injected. Where both bacteria and fixation fluid are
present, bacteria are fixated. The bottom graphs show
two shots of the last phase in which calcium carbonate
is formed.

4.4 Comparison of the numerical solutions
to the analytical solutions

In this subsection, we compare the numerical and an-
alytical solution for the concentration of urea and cal-
cium carbonate. The comparison for the concentrations
of bacteria for the bacterial injection model has been

made in [7]. In order to make a valid comparison,
we redo our numerical simulations for Dbac = Dfix =
Durea = DCa2+ = DNH+

4
= 0 and for a constant porosity

and flow rate. We do take a finite Kbac-value, however,
namely Kbac = 10 h−1 and Kbac = 1,000 h−1.

Figure 5 shows the numerical and analytical solution
of the concentration of urea and calcium carbonate.
The figures display the situation at times t = 1.2 h and
t = 1.7 h, as in Figs. 2 and 4. The results at time t = 0.2 h
and t = 0.7 h are not shown since the urea and calcium
carbonate concentration are zero then. Again, the left
graphs show the situation for Kbac = 10 h−1 and the
right graphs for Kbac = 1,000 h−1.

In all the graphs of Fig. 5, the analytical solution
of the urea concentration corresponds well with the
numerical solution. The front of the numerical solution
is less steep than the front of the analytical solution
due to numerical diffusion. For the low Kbac-value (left
graphs), the numerical urea concentration is higher
than the analytical urea concentration in the first part
of the domain. The reason is that not so much urea
is consumed due to the low concentration of fixated
bacteria, which is a consequence of the low Kbac-value.

The analytical solution of the calcium carbonate
concentration is not similar to the numerical solution
for Kbac = 10 h−1. The reason is that the analytical
solution has been constructed for an infinite Kbac-value.
The numerical solution for the high Kbac-value, Kbac =
1,000 h−1, is similar to the analytical solution, except
close to the inlet. Although the graphs are similar, the
difference is not equal to zero. This time, the reason
is not the difference in Kbac-value but the numerical

Fig. 4 Analytical solution
for the concentration of
suspended, temporarily
adsorbed and fixated bacteria
and the concentration of
fixation fluid, urea and
CaCO3 as a function of
location at several times
(t = 0.2 h, t = 0.7 h, t = 1.2 h
and t = 1.7 h)
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Fig. 5 Numerical and
analytical solution of the urea
and calcium carbonate
concentration at times
t = 1.2 h and t = 1.7 h for
Kbac = 10 h−1 (left graphs)
and Kbac = 1,000 h−1

(right graphs). The numerical
solutions are marked with N
and the analytical solutions
are marked with A. In both
the analytical and numerical
solutions, dispersion and
diffusion are neglected, as
well as the effect of the
reaction on the porosity
and flow rate
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diffusion. Due to the numerical diffusion, the numerical
solution to the urea concentration has a less steep front
and the urea penetrates a little further in the column.
Although the concentration is small, reaction (3) can
happen and calcium carbonate is formed. Hence, the
numerical solution to the calcium carbonate concentra-
tion is somewhat larger that the analytical solution.

In Fig. 5, rate (14) has been taken as a reaction rate
for reaction (3). The urea concentration is related to
the reaction rate via a Monod equation. This article
also provides an analytical solution for a reaction rate

that is linear in the urea concentration, Eq. 45. For this
case, the analytical solutions are given in Eqs. 47 and 48.
Figure 6 shows the comparison between the analytical
and numerical solution for both reaction rates at time
t = 1.7 h. In the left graph, the urea concentration is
related to the hydrolysis reaction rate via a Monod
equation (see Eq. 14). In the right graph, the reaction
rate is linear in the urea concentration (see Eq. 45).

The left graph of Fig. 6 is equal to the bottom right
graph of Fig. 5. In both graphs of Fig. 6, the numerical
solution to the urea concentration corresponds well
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Fig. 6 Numerical and analytical solution of the urea and calcium
carbonate concentration at time t = 1.7 h for Kbac = 1,000 h−1.
The numerical solutions are marked with N and the analytical
solutions are marked with A. Left graph the urea concentration

is related to the hydrolysis reaction rate via a Monod Eq. 14.
Right graph the hydrolysis reaction rate is linear in the urea
concentration, see Eq. 45
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with the analytical one, as well for rate (14) (left graph)
as for rate (45) (right graph).

In the right graph, which is calculated with rate
(45), the numerical solution for the calcium carbonate
concentration is closer to the analytical solution than in
the left graph. Due to numerical diffusion, the numeri-
cal urea concentration approximates zero at a location
further away from the inlet than the analytical urea con-
centration does. Since for a small urea concentration

rhp = vmax

(
Cbac + C

bac + Sbac
) Curea

Km,urea + Curea

∼ vmax

(
Cbac + C

bac + Sbac
) Curea

Km,urea
, (50)

and since Km,urea = 0.01 (see Table 2), the rate as de-
termined by Eq. 14 is 100 times larger as the rate as
computed by Eq. 45. This implies that the numerical
calcium carbonate concentration has a larger increase
in the case of use of Eq. 14. Therefore, the difference
between the analytical and numerical solution is larger
if Eq. 14 is used.

5 Discussion and conclusions

In this article, the model for the placement of bacte-
ria and the model for the hydrolysis of urea and the
precipitation of calcium carbonate are coupled. These
two models were introduced and discussed in [6, 7]. We
shortly mention some of the discussion points.

It is crucial to find a good relation for ratio β. This
ratio determines the amount of fixated bacteria. These
bacteria eventually provide the production of calcium
carbonate, which is the aim of Biogrout. Laboratory
experiments need to be carried out to find such a
relation. Whether the Langmuir isotherm is a good
choice for an adsorption isotherm, as well as the values
of the various constants in this isotherm, should also
follow from these experiments. Furthermore, experi-
ments need to be done to find the right values for the
adsorption, desorption and fixation reaction constants.
Another important effect that should be investigated is
the possible wash-out of bacteria as a result of a high
pore-water velocity. This wash-out violates the present
model assumption that fixated bacteria will always stay
sticked to the sand grains.

The precipitation model is based on the biochemical
reaction Eq. 3. In reality, this reaction happens in sev-
eral steps. Some of these steps are equilibrium reactions
that depend on the pH. The differential equation for
the calcium carbonate concentration does not contain

a transport term as it has been assumed that calcium
carbonate precipitates locally and will not be trans-
ported. Calcium carbonate can precipitate in several
ways. It can attach to sand grains but can also form
crystals. Especially when these crystals are small, they
can be transported before they will stick in the pore
throats. The retardation of urea, calcium, ammonium
and fixation fluid is neglected for the moment. Es-
pecially when the particles are charged, there can be
retardation.

In this article, the two models are coupled. It is pos-
sible that the parameters in both models will influence
each other. For example, the bacteria can be encap-
sulated by the calcium carbonate. Then, the urea can
no longer reach these bacteria and therefore, these
bacteria can not contribute to the hydrolysis of urea any
more.

In the biochemical reaction rate rhp (Eq. 14), the
concentration of bacteria is used, multiplied by the
maximal bacterial activity vmax. What actually provides
the hydrolysis of urea are some enzymes in the bacteria.
These enzymes can be released from the bacteria and
flow with the water. Consequently, the activity of the
bacteria decreases. It would be better to use the activity
of the bacteria in the reaction rate (14). From experi-
ments, it is known that the reaction rate decreases [9].
For a good estimation of the hydrolysis reaction rate, it
is necessary to know what the reasons are and how they
influence the rate.

We succeeded in coupling the model for the place-
ment of bacteria with the precipitation model. From
the numerical simulations with the coupled model, it
can be concluded that, when the adsorption, desorption
and fixation processes are fast and hence the Kbac-value
is large, the calcium carbonate concentration has its
maximum close to the injection point. When the Kbac-
value is small, less calcium carbonate is formed, and its
maximum lies further away from the injection point.

Furthermore, a Newton iteration to calculate the
concentrations of bacteria costs nine times as much
CPU time as a Newton iteration to calculate the con-
centration of urea.

A high reaction constant leads to a homogeneous
bacterial distribution, at least for the first part of
the domain, except for the region around the injec-
tion point. Furthermore, the calcium carbonate content
that is calculated from the coupled model is similar
to the calcium carbonate that is calculated from the
model where a homogeneous bacterial distribution is
assumed. A low reaction rate constant, corresponding
to slow adsorption, desorption and fixation processes,
leads to a non-homogeneous bacterial distribution and
hence to a different calcium carbonate profile. High
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reaction rates, however, do not guarantee that the
bacterial distribution will be homogeneous. This can
also be seen from the analytical solution for the instan-
taneous equilibrium, Eqs. 25, 31 and 32. The reason
is that the concentration of fixated bacteria does not
depend on the length of the domain. Since only a
finite amount of bacteria is injected, the domain can be
chosen so large that only bacteria close to the inlet are
fixated and that there are no bacteria in the rest of the
domain.

An analytical solution has been constructed for the
coupled model for the case that dispersion, diffusion,
decrease of the porosity and the change of liquid
volume are neglected and the concentrations of sus-
pended, adsorbed and fixated bacteria are in equilib-
rium. Although these phenomena are neglected, the an-
alytical solution of the calcium carbonate concentration
is similar to the numerical solution with a high Kbac-
value (see Figs. 2 and 4). Hence, in real life applications
that can be modelled through a 1-D model, the analyti-
cal solution can be used as a first estimate for engineer-
ing purposes. If the sorption and fixation processes are
close to equilibrium, the analytical solution might be
as good as the numerical solution since the numerical
solution also includes some error as a result of the error
in the estimation of the various parameters.

We further think that the models can be extended
with the following features:

– The model for the placement of bacteria contains
the most important phenomena of the transport of
bacteria: advection, dispersion, adsorption, desorp-
tion and fixation. Other phenomena, like decay,
growth and systematic motion of bacteria can be
included.

– The fixation of bacteria will cause a decrease in
porosity and permeability. This has not yet been
added to the model.

– As a function for the ratio β, a Monod equation is
used. In this paper, the ratio is only a function of
the fixation fluid, whereas it may also depend on
the properties of the microorganisms, the pH and
the porous medium.

– The (saturated) flow can be extended to unsatu-
rated flow to be able to model also the unsaturated
zones.

Appendix: List of symbols

Cbac normalised concentration of suspended bac-
teria, [1];

C
bac

normalised concentration of temporarily ad-
sorbed bacteria, [1];

Sbac normalised concentration of fixated bacteria,
[1];

Ci concentration of fixation fluid, urea, Ca2+
and NH+

4 (i = fix, urea, Ca2+, NH+
4 ),

[kmol/m3];
CCaCO3 concentration of calcium carbonate mole-

cules, [kg/m3];
θ porosity, [1];
θ0 initial porosity, [1];
Di hydrodynamic dispersion tensor of bacteria,

fixation fluid, urea, Ca2+ and NH+
4 (i = bac,

fix, urea, Ca2+, NH+
4 ), [m2/s];

αi dispersion length of bacteria, fixation fluid,
urea, Ca2+ and NH+

4 (i = bac, fix, urea, Ca2+,
NH+

4 ), [m];
Dm,i diffusion coefficient of bacteria, fixation

fluid, urea, Ca2+ and NH+
4 (i = bac, fix, urea,

Ca2+, NH+
4 ), [m2/s];

ri reaction rate of adsorption, desorption and
fixation (i = ads, des, fix), [1/s];

rhp reaction rate of the hydrolysis of urea and
precipitation of CaCO3, [kmol/m3/s];

ki reaction rate constant of adsorption, desorp-
tion and fixation (i = ads, des, fix), [1/s];

vmax reaction rate constant of the hydrolysis
of urea and precipitation of CaCO3,
[kmol/m3/s];

ϕ adsorption isotherm, [1];
Kl Langmuir constant, [1];
Cmax maximum adsorption capacity, [1];
β factor that describes which part of the ad-

sorbed bacteria are fixated, [1];
β0 factor that describes which part of the ad-

sorbed bacteria are fixated, [1];
qi Darcy flow velocity in the respective coordi-

nate directions (i = x, y, z), [m/s];
vi pore water flow velocity in the respective

coordinate directions (i = x, y, z), [m/s];
K constant in the differential equation for the

flow, [m3/kmol];
1 − Vs volume that disappears per number of con-

verted particles, [m3/kmol];
Km,urea saturation constant of urea and calcium chlo-

ride, [kmol/m3];
Km,fix saturation constant of fixation fluid,

[kmol/m3];
mCaCO3 molecular mass of calcium carbonate,

[kg/kmol];
ρCaCO3 density of calcium carbonate, [kg/m3];
ki intrinsic permeability in the respective coor-

dinate directions (i = x, y, z), [m2];
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dm mean particle size of the subsurface medium,
[m];

μ dynamic viscosity of the fluid, [Pa·s];
p pressure, [Pa];
g gravitation constant, [m/s2];
ρl density of the fluid, [kg/m3];
T1 time at which the injection of bacteria is

stopped and the injection of fixation fluid is
started, [h];

T2 time at which the injection of fixation fluid
is stopped and the injection of precipitation
fluid is started, [h];

T3 time at which the shock speed of the bacteria
changes, [h];

Tend time at which the injection of precipitation
fluid is stopped, [h].
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